
TPC3 Workshop Subtopic #3

Jeff Joyce

Critical Systems Labs

December 9, 2014



Terms of Reference
1. Specific guidance for the use of TP to verify requirements with respect to

completeness, consistency, traceability (up and down).

2. Specific guidance of the use of TP to verify properties of the system/software
architecture, e.g., temporal and spatial partitioning. For example, what are
the kinds of theorems that should be proved to verify that a particular
application on a platform can’t modify (or access) the data of another
application.

3. Specific guidance that limits the extent to which assumptions about the
environment can be introduced. (Without such restrictions, the worst case
consequence is the “false implies everything” problem if the assumptions
turn out to be contradictions).

4. Practical uses of TP at the architecture/detailed design level, i.e., proving that
a protocol is deadlock free or freedom from specific problems such as priority
inversion.

5. Specific guidance on the formulation of verification results for the verification
of requirements and the verification of architectural properties.





1. Specific guidance for the use of TP to verify requirements with respect
to completeness, consistency, traceability (up and down).

2. Specific guidance of the use of TP to verify properties of the
system/software architecture, e.g., temporal and spatial partitioning.
For example, what are the kinds of theorems that should be proved to
verify that a particular application on a platform can’t modify (or
access) the data of another application.

3. Specific guidance that limits the extent to which assumptions about
the environment can be introduced. (Without such restrictions, the
worst case consequence is the “false implies everything” problem if
the assumptions turn out to be contradictions).

4. Practical uses of TP at the architecture/detailed design level, i.e.,
proving that a protocol is deadlock free or freedom from specific
problems such as priority inversion.

5. Specific guidance on the formulation of verification results for the
verification of requirements and the verification of architectural
properties.



RTCA DO 178C FM Supplement

The Formal Methods supplement for RTCA DO 178C/
Eurocae ED-12C explicitly mentions the possibility of using
formal analysis to demonstrate properties of both
requirements specifications and the software architecture

For example:

FM 6.3.2: “If the high-level requirements and low-level
requirements are formally modeled, then formal analysis can be
used to show compliance.”

FM 6.3.3: “If the software architecture is formally modeled, some
aspects of partitioning integrity can be verified by formal analysis.”



• How can TP used to verify properties of
specifications and architectures?
– Completeness

– Consistency

– Temporal/spatial partitioning

– Absence of priority inversion

– Deadlock-free?

• Is it possible to describe generic templates (or
patterns) for how such properties should be
verified?

• Should such templates be “prescribed” by the
strawman?



If S1 is true then do R1

If S2 is true then do R2

…
If SN is true then do RN

Completeness (one possibility):

S1 or S2 or … SN = TRUE

Consistency?

(S1 R1) and (S2 R2) and … (S3 R3) ≠ FALSE

Stimulus Response

Functional
Requirements

If the system is in the armed state and fire condition is
detected or the alarm button is being pressed by the
operator, then turn on the building alarm.

1. If the system is in the armed state and fire condition
is detected or the alarm button is being pressed by
the operator, then turn on the building alarm.

2. If the alarm button is not being pressed by the
operator, then turn off the building alarm.



1. Specific guidance for the use of TP to verify requirements with respect
to completeness, consistency, traceability (up and down).

2. Specific guidance of the use of TP to verify properties of the
system/software architecture, e.g., temporal and spatial partitioning.
For example, what are the kinds of theorems that should be proved to
verify that a particular application on a platform can’t modify (or
access) the data of another application.

3. Specific guidance that limits the extent to which assumptions about
the environment can be introduced. (Without such restrictions, the
worst case consequence is the “false implies everything” problem if
the assumptions turn out to be contradictions).

4. Practical uses of TP at the architecture/detailed design level, i.e.,
proving that a protocol is deadlock free or freedom from specific
problems such as priority inversion.

5. Specific guidance on the formulation of verification results for the
verification of requirements and the verification of architectural
properties.



NGV Example – Some Assumptions

1. The sensor detects the completion of a full rotation of the nose gear wheel with a maximum error of 1
cm, i.e., there is a maximum variation of +/- 1 centimeter in the location of a fixed position on the
perimeter of the wheel between the times when a “click” is signaled to the computer.

2. The two global variables, NGClickTimeand NGRotations, are updated no more than 2 milliseconds after
the sensor detects the completion of a full rotation of the nose gear wheel.

3. The maximum change in velocity (to be tolerated by this function) is 20 meters per second at speeds
above 150 km/hr and no more than 10 meters per second per second at lower speeds. The maximum
tolerable jerk (i.e., derivative of acceleration) is 3 metersper second cubed.

4. The wheel diameter is between 12 and 50 inches.

5. No other part of the software is capable of modifying the values of
estimatedGroundVelocityIsAvailableand estimatedGroundVelocity.

6. The aircraft is moving at least 3km/hr.

7. Once invoked, this update function runs to completion, or at least the global variables NGClickTime and
NGRotations will not be modified by any other part of the software between the time when this
function is entered and when its execution is completed.

consistent?


