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 Avoid introducing defects 

 Remove defects as early as possible 

 

› Unambiguous notations 

› Take small steps 

› Appropriate notations 

› Don’t repeat information 

› Justify decisions 

› Check each stage before progressing 

› Solve difficult problems first 
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Specification - Z Notation 

Implementation - SPARK 

 
     procedure UnlockDoor; 
   --# global in     Clock.CurrentTime; 

   --#        in     Clock.Now; 

   --#        in     ConfigData.State; 

   --#        in out State; 

   --#        in out Latch.State; 

   --#        ... 

   --# derives State, 

   --#         Latch.State from *, 

   --#                          Clock.CurrentTime, 

   --#                          Latch.State, 

   --#                          ConfigData.State & 

   --#         ... 

   --# post 

   --#      ( Latch.IsLocked(Latch.State) <-> 

   --#        Clock.GreaterThanOrEqual 

   --#          (Clock.TheCurrentTime(Clock.CurrentTime), 

   --#           Latch.prf_LatchTimeout(Latch.State)) ); 
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Tokeneer System 
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Assurance Process 
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Tokeneer Assurance in SPARK 
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 Tokeneer had a number of security properties all of which were 

functional in nature. 

› Eg. An alarm will be raised whenever the door/latch is insecure. 

 

 Application architecture was a simple cyclic scheduler, regularly 

polling for inputs, processing and generating outputs. 

 

 Security properties were formulated as post conditions on the 

procedure implementing a single interaction through the scheduling 

loop 

 

 Use of the SPARK language automatically eliminated a number of 

potential language insecurities. 

 

 Performing proof of absence of run-time errors provided an efficient 

way of ensuring the program would not raise exceptions. 
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Tokeneer Experiment Results 

9 

 Lines of code : 9939 

 Total effort (days) : 260  

 Productivity (lines of code / day) : 38 

 Process assessment : EAL5 + 

 

 Defects found to date : 5 
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Industrial Challenges to using Formal Methods 
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 Challenges to adopting formal methods can be divided into those 

introduced by the Notation and those introduced by the Tools.  

 

 Scalability 

› Will the notation and tools cope with a large system? 

 Familiarity of Notation  

› Can we hide the formalism from users? 

 Expressiveness 

› How easy is it to say what we want? 

 

 Speed 

› How long will it take to get results? 

 Support 

› Where do we get help when tools don’t work as expected? 

 Ease of Interpretation 

› How easy is it to understand the output? 
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Security and SPARK 
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 To show a system is secure we need to demonstrate that it satisfies 

a number of security properties. 

 

› These can be functional where they capture things the system must or 

must not do to be secure 

­ E.g.  Door only unlocked when valid token presented. 

 

› Or information driven often requiring non-interference of data from 

different security contexts 

­ E.g. Unclassified context must not include classified information 

 

 SPARK Static Analysis can help with both classes of problem 

 

› Post conditions capturing functional properties are added to SPARK 

specifications and proven. 

 

› Information flow analysis can be used to demonstrate non-interference 

between different classes of data. 
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 Information flow analysis can be difficult to use effectively 

 

 Derives contracts can be difficult to maintain 

› Without abstraction they expose detail of the information flow through 

the whole program 

› A small change at the bottom of a calling hierarchy can ripple up 

through the system. 

 

 Derives contracts for complex structures can obscure the true 

information flow 

› Either the use of data abstraction or structures such as arrays can result 

in “phantom” dependencies being identified.  

 

 Derives contracts do not take into account declassification of data 
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 Use of complex structures can obscure the true information flow. 

 

type KS_T is array ( KS_Range ) of Key_T; 

Key_Store : KS_T; 

 

procedure Load_Key (Index : in KS_Range; Key : in Key_T); 

--# global in out Key_Store; 

--# derives Key_Store from *, Index, Key; 

 

procedure Get_Key (Index : in KS_Range; Key : out Key_T); 

--# global out Key_Store; 

--# derives Key from *, Index, Key_Store; 

 

procedure Manage_Keys (Key1 : in Key_T; Key2 : out Key_T) 

--# global in out Key_Store; 

--# derives Key2, Key_Store from Key1, Key_Store; 

is 

begin 

   Load_Key (1, Key1); Get_Key (2, Key2); 

end Manage_Keys; 

Correctness by 
Construction 

Security and SPARK 
Challenges for Formal 
Methods in Industry 

Tokeneer 



Security and SPARK Information Flow Analysis 

14 

 Derives contracts do not take into account declassification of data 

 

procedure Produce_Output 

--# global in Secret_Data; 

--#        out Unclassified_Output; 

--# derives Unclassified_Output from Secret_Data; 

is 

begin 

   Unclassified_Output := Declassify (Secret_Data); 

end Produce_Output; 

 

 The function Declassify converts secret data to unclassified data. 

 

 This is not apparent from information flow. 
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A new SPARK Language 

 The new generation of SPARK and the toolset based on Ada2012 

provides an opportunity for change. 

 

 Language and Tool development is a collaborative project involving 

Altran, AdaCore and KSU. 
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A new SPARK Language – new features 

 The language will support several profiles aimed at different 

communities including a security profile. 

 

 Proof contracts will be expressed as Ada aspects that can be 

interpreted by the compiler as well as the SPARK toolset. 

› Ada pre- and post- condition aspects can be checked by the compiler at 

execution time. 

› Improves confidence in the specifications given to non-SPARK fragments 

of code by testing against the specification contract used by SPARK. 

› Better support for mixed language programming. 

 

 

procedure Swap_Array_Elements(A: in out Array_Type) 

with Global => (Input => (X, Y)), 

     Pre => X /= Y and X in Index and Y in Index, 

     Post => A = A’Old’Update(X => A’Old(Y),  

                              Y => A’Old(X)); 
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A new SPARK Language – opportunity for change 

 Should it be possible to perform information flow at the level of array 

elements? 

 

 Should the tools provide an option to allow information flow 

contracts to be reverse engineered from the code? 

 

 Would the addition of ghost variables to the proof contexts aid 

reasoning about system properties? 

 

 Could data be tagged with a security classification and the tools 

police data non-interference? 

 

 

What are your thoughts? 
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Tel: +44 1225 466991 

Fax: +44 1225 469006 

Website: www.altran.com 

 

Email: janet.barnes@altran.com 
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