
FMATS2

5th February 2013

Correctness by Construction
for Security

Correctness by

Construction

Tokeneer

Security and SPARK

CONTENT

A. Correctness by Construction

B. Tokeneer

C. Challenges for Formal Methods in Industry

D. Security and SPARK

Correctness by Construction

3

 Avoid introducing defects

 Remove defects as early as possible

› Unambiguous notations

› Take small steps

› Appropriate notations

› Don’t repeat information

› Justify decisions

› Check each stage before progressing

› Solve difficult problems first

Correctness by
Construction

Security and SPARK
Challenges for Formal
Methods in Industry

Tokeneer

Correctness by Construction

4

 Avoid introducing defects

 Remove defects as early as possible

› Unambiguous notations

› Take small steps

› Appropriate notations

› Don’t repeat information

› Justify decisions

› Check each stage before progressing

› Solve difficult problems first

Correctness by
Construction

Security and SPARK
Challenges for Formal
Methods in Industry

Tokeneer

Correctness by Construction

5

Specification - Z Notation

Implementation - SPARK

 procedure UnlockDoor;
 --# global in Clock.CurrentTime;

 --# in Clock.Now;

 --# in ConfigData.State;

 --# in out State;

 --# in out Latch.State;

 --# ...

 --# derives State,

 --# Latch.State from *,

 --# Clock.CurrentTime,

 --# Latch.State,

 --# ConfigData.State &

 --# ...

 --# post

 --# (Latch.IsLocked(Latch.State) <->

 --# Clock.GreaterThanOrEqual

 --# (Clock.TheCurrentTime(Clock.CurrentTime),

 --# Latch.prf_LatchTimeout(Latch.State)));

Correctness by
Construction

Security and SPARK
Challenges for Formal
Methods in Industry

Tokeneer

Tokeneer System

6

Correctness by
Construction

Security and SPARK
Challenges for Formal
Methods in Industry

Tokeneer

Assurance Process

7

Correctness by
Construction

Security and SPARK
Challenges for Formal
Methods in Industry

Tokeneer

Tokeneer Assurance in SPARK

8

 Tokeneer had a number of security properties all of which were

functional in nature.

› Eg. An alarm will be raised whenever the door/latch is insecure.

 Application architecture was a simple cyclic scheduler, regularly

polling for inputs, processing and generating outputs.

 Security properties were formulated as post conditions on the

procedure implementing a single interaction through the scheduling

loop

 Use of the SPARK language automatically eliminated a number of

potential language insecurities.

 Performing proof of absence of run-time errors provided an efficient

way of ensuring the program would not raise exceptions.

Correctness by
Construction

Security and SPARK
Challenges for Formal
Methods in Industry

Tokeneer

Tokeneer Experiment Results

9

 Lines of code : 9939

 Total effort (days) : 260

 Productivity (lines of code / day) : 38

 Process assessment : EAL5 +

 Defects found to date : 5

Correctness by
Construction

Security and SPARK
Challenges for Formal
Methods in Industry

Tokeneer

Industrial Challenges to using Formal Methods

10

 Challenges to adopting formal methods can be divided into those

introduced by the Notation and those introduced by the Tools.

 Scalability

› Will the notation and tools cope with a large system?

 Familiarity of Notation

› Can we hide the formalism from users?

 Expressiveness

› How easy is it to say what we want?

 Speed

› How long will it take to get results?

 Support

› Where do we get help when tools don’t work as expected?

 Ease of Interpretation

› How easy is it to understand the output?

Correctness by
Construction

Security and SPARK
Challenges for Formal
Methods in Industry

Tokeneer

Security and SPARK

11

 To show a system is secure we need to demonstrate that it satisfies

a number of security properties.

› These can be functional where they capture things the system must or

must not do to be secure

­ E.g. Door only unlocked when valid token presented.

› Or information driven often requiring non-interference of data from

different security contexts

­ E.g. Unclassified context must not include classified information

 SPARK Static Analysis can help with both classes of problem

› Post conditions capturing functional properties are added to SPARK

specifications and proven.

› Information flow analysis can be used to demonstrate non-interference

between different classes of data.

Correctness by
Construction

Security and SPARK
Challenges for Formal
Methods in Industry

Tokeneer

Security and SPARK Information Flow Analysis

12

 Information flow analysis can be difficult to use effectively

 Derives contracts can be difficult to maintain

› Without abstraction they expose detail of the information flow through

the whole program

› A small change at the bottom of a calling hierarchy can ripple up

through the system.

 Derives contracts for complex structures can obscure the true

information flow

› Either the use of data abstraction or structures such as arrays can result

in “phantom” dependencies being identified.

 Derives contracts do not take into account declassification of data

Correctness by
Construction

Security and SPARK
Challenges for Formal
Methods in Industry

Tokeneer

Security and SPARK Information Flow Analysis

13

 Use of complex structures can obscure the true information flow.

type KS_T is array (KS_Range) of Key_T;

Key_Store : KS_T;

procedure Load_Key (Index : in KS_Range; Key : in Key_T);

--# global in out Key_Store;

--# derives Key_Store from *, Index, Key;

procedure Get_Key (Index : in KS_Range; Key : out Key_T);

--# global out Key_Store;

--# derives Key from *, Index, Key_Store;

procedure Manage_Keys (Key1 : in Key_T; Key2 : out Key_T)

--# global in out Key_Store;

--# derives Key2, Key_Store from Key1, Key_Store;

is

begin

 Load_Key (1, Key1); Get_Key (2, Key2);

end Manage_Keys;

Correctness by
Construction

Security and SPARK
Challenges for Formal
Methods in Industry

Tokeneer

Security and SPARK Information Flow Analysis

14

 Derives contracts do not take into account declassification of data

procedure Produce_Output

--# global in Secret_Data;

--# out Unclassified_Output;

--# derives Unclassified_Output from Secret_Data;

is

begin

 Unclassified_Output := Declassify (Secret_Data);

end Produce_Output;

 The function Declassify converts secret data to unclassified data.

 This is not apparent from information flow.

Correctness by
Construction

Security and SPARK
Challenges for Formal
Methods in Industry

Tokeneer

A new SPARK Language

 The new generation of SPARK and the toolset based on Ada2012

provides an opportunity for change.

 Language and Tool development is a collaborative project involving

Altran, AdaCore and KSU.

15

Correctness by
Construction

Security and SPARK
Challenges for Formal
Methods in Industry

Tokeneer

A new SPARK Language – new features

 The language will support several profiles aimed at different

communities including a security profile.

 Proof contracts will be expressed as Ada aspects that can be

interpreted by the compiler as well as the SPARK toolset.

› Ada pre- and post- condition aspects can be checked by the compiler at

execution time.

› Improves confidence in the specifications given to non-SPARK fragments

of code by testing against the specification contract used by SPARK.

› Better support for mixed language programming.

procedure Swap_Array_Elements(A: in out Array_Type)

with Global => (Input => (X, Y)),

 Pre => X /= Y and X in Index and Y in Index,

 Post => A = A’Old’Update(X => A’Old(Y),

 Y => A’Old(X));

16

Correctness by
Construction

Security and SPARK
Challenges for Formal
Methods in Industry

Tokeneer

A new SPARK Language – opportunity for change

 Should it be possible to perform information flow at the level of array

elements?

 Should the tools provide an option to allow information flow

contracts to be reverse engineered from the code?

 Would the addition of ghost variables to the proof contexts aid

reasoning about system properties?

 Could data be tagged with a security classification and the tools

police data non-interference?

What are your thoughts?

17

Correctness by
Construction

Security and SPARK
Challenges for Formal
Methods in Industry

Tokeneer

Altran UK Limited

22 St Lawrence Street

SouthGate

BATH BA1 1AN

Tel: +44 1225 466991

Fax: +44 1225 469006

Website: www.altran.com

Email: janet.barnes@altran.com

18

mailto:janet.barnes@altran.com

