
Verification of Diagrammatic Proofs

Mateja J amnik, Alan Bundy, Ian Green
Department of Artificial Intelligence, 80 South Bridge

Edinburgh, EH1 lHN, UK
matejaj@dai .ed.ac.uk, A.Bundy@ed.ac.uk, LGreen@ed.ac.uk

Abstract

Human mathematicians often "prove" theorems
by the use of diagrams and manipulations on
them. We call these diagrammatic proofs. rn
(Jamnik, Bundy, & Green 1997) we presented how
"informal" reasoning with diagrams can be auto-
mated. Three stages of proof extraction proced-
ure were identified. First, concrete rather than
general diagrams are used to prove particular in-
stances of the universally quantified theorem. The
diagrammatic proof is captured by the use of geo-
metric operations on the diagram. Second, an ab-
stracted schematic proof of the universally quanti-
fied theorem is automatically induced from these
proof instances. Third, the final step is to confirm
that the abstraction of the schematic proof from
the proof instances is sound. Our main focus in
this paper is on the third stage, the verification
of schematic proofs. We define a theory of dia-
grams where we prove the correctness of a schem-
atic proof. Vie give an example of an extraction
of a schematic proof for a theorem about the sum
of odd naturals, and prove its correctness in the
theory of diagrams.

Introduction

• 0000
• 000
• 000 n

• 00
• ••• ,0

n + 1

nx(n+l)
1+2+3+" ' +n= ----'---

2
It requires only basic secondary school knowledge of

mathematics to realise that the diagram above is a proof
of a theorem about the sum of natural numbers.

It is an interesting property of diagrams that allows
us to "see" and understand so much just by looking at a
simple diagram. Not only do we know what theorem the

23

diagram represents , but we also understand the proof
of the theorem represented by the diagram and believe
it is correct.

Is it possible to simulate and formalise this sort of
diagrammatic reasoning on machines? Or is it a kind
of intuitive reasoning particular to humans that mere
machines are incapable of? Roger Penrose claims that it
is not possible to automate such diagrammatic proofs. l

We are taking his position as an inspiration and are try-
ing to capture the kind of diagrammatic reasoning that
Penrose is talking about so that we will be able to emu-
late it on a computer. It should be pointed out that we
are not trying to discover automatically the diagram-
matic proofs, but rather to mechanise and explore them
in order to understand them better.

In (Jamnik, Bundy, & Green 1997) we presented a
way of formalising diagrammatic reasoning for natural
number arithmetic and showed how diagrams can be
used for proofs in a formal system. Rather than using
general diagrams, which need abstractions to repres-
ent their generality, we reason with concrete diagrams
(i. e. of a particular size). Theorems of mathematics
can be expressed as diagrams for some concrete values,
i. e. ground instantiations of a theorem. We presented a
three-stage algorithm for extraction of a diagrammatic
proof. First, the initial diagram is manipulated using
some geometric operations. The sequence of geometric
operations on a diagram represents the inference steps
of a diagrammatic proof. Such a concrete proof in-
stance is called an example proof. Second, a general
pattern is extracted from these proof instances, and is
captured in a recursive program. This recurslVe pro-
gram, referred to as a schematic proof, constitutes a
general diagrammatic proof for the universally quanti-
fied theorem. Third , the induced schematic proof has to
be verified to show that it indeed proves a proposition
for all cases.

The main part of this paper deals with the last step in
the extraction of a diagrammatic proof, i. e. the verifica-
tion step. In particular, we define a theory of diagrams

'Roger Penrose presented his position in the lecture at
International Centre for Mathematical Sciences in Edin-
burgh, in celebration of the 50th anniversary of UNESCO
on 8 1995.

From AAAI Technical Report FS-98-04. Compilation copyright © 1998, AAAI. (www.aaai.org). All rights reserved.

which models the processes in a diagrammatic proof. In
this theory, we can prove by a meta-level inductive proof
that a particular schematic proof is correct. There are
two main motivations for defining a theory of diagrams
in which schematic proofs are verified. The first one is
that a diagrammatic schematic proof is an intelligent
guess by a machine of the general form of a proof. In
this sense it is much the same as what humans do when
they induce an abstraction from examples. In an auto-
mated reasoning system, this guess needs to be formally
checked for correctness. Secondly, we choose to avoid
using abstractions (such as ellipsis) in general diagrams
which would be needed if such general diagrams were
used for checking correctness. We discussed in (Jamnik,
Bundy, & Green 1998) why abstractions are problem-
atic to use.

All three stages of the algorithm for formalisation
of diagrammatic proofs are implemented in a diagram-
matic proof system called DrAMoND (DIAgraMmatic
reasONing and Deduction) Rather than automatically
discovering diagrammatic proofs, we use DL\MOND to
try to understand better informal diagrammatic proofs.
The user interactively constructs example proofs by
choosing an initial diagram which represents the the-
orem, and then applies diagrammatic operations to
build a proof. DrAMoND then automatically extracts
a general pattern from these instances, and captures it
in a recursive program . The correctness of a schematic
proof is verified in the theory of diagrams. The verific-
atIOn proof is carried out in the proof planning system
Clam.

The work reported in this paper is intended to be self
contained. Therefore, the next three sections present
the background information on the formalisation of dia-
grammatic reasoning to enable us to put the main res-
ults of this paper in the appropriate context. First,
we give an example of a diagrammatic theorem. In
the subsequent couple of sections we introuuce schem-
atic proofs. Next, the implementation of DIAMOND is
demonstrated. The presentation of the main result of
this paper follows, i. e. we define the theory of diagrams
and prove the correctness theorem for an example of a
diagrammatic schematic proof. Then we report some of
our results and discuss future work. vVe mention some
of the related diagrammatic reasoning systems next. Fi-
nally, we conclude by summarising the main points of
this papf'f.

'Diagrammatic' Theorems
We are interested in mathematical theorems that admit
diagrammatic proofs. We choose mathematics as our
domain for theorems since it allows us to make formal
statements about the reasoning, proof search, induc-
tion, generalisations, abstractions and such issues. We
presented several examples of diagrammatic theorems
and their proofs in (Jamnik , Bundy, & Grren 1997).
\Ve distinguished between three categories of examples,
which are by no means exhaustive, and decided to con-
centrate on the examples of Category 2, an example of

- 24

which is the theorem about the sum of odd naturals.
For examples of other categories, see (Jamnik, Bundy,
& Green 1997). Other speCification of Our problem do-
main include theorems whose instances can be represen-
ted as diagrams without the need for abstraction (e.g.,
the use of ellipsis), and theorems of natura.l number
arithmetic.

Sum of Odd Naturals

This example is taken from (Nelsen 1993). The theorem
about the sum of odd naturals states the following:

n
.) "" n- =

;=1

•••••• •••••• •••••• •••••• ••••••
Note the use of para.meter n. If we take a square we
can cut it into as many ells (which are made up of two
adjacent sides of the square) as the size of the side of
the square. Note that one ell is made out of two sides,
i.e., 2n , but the shared vertex has been counted twice.
Therefore, one ell has a size of (2n - 1), where n is the
size of the side of the square.

From the analysis of the example above and many
others (see (Jamnik, Bundy, & Green 1997) and (Jam-
nik, Bundy, & Green 1998)), we summarise now the
characteristics of examples of Category 2. Theorems of
Category 2 are theorems of discrete space. A diagram is
a representative of a particular instance of a theorem.
Proofs are schematic: they require induction for the
general diagram of size n (a concrete diagram cannot
be drawn for this insta.nce). The constructive w-rule
(explained in more detail in section "Schematic Proof
and Constructive w-rule") is used to formally justify the
extraction of a general proof from the individual proof
instances.

Schematic Proof and Constructive
w-rule

Schematic proofs use the constructive w-rule. The con-
structive w-rule allows inference of the sentence VxP(x)
from an infinite sequence P(n), nEw of sentences by
requiring to provide a general schematic proof, namely
the proof of P(n) in terms of n, where some rules Rare
applied some function of n (i.e., fR(n)) times (a rule
can also be applied a constant number of times). Let
the proof of P(n) be captured using a recursive func-
tion proof(n). ;.,row, proof(n) is schematic in n, since
we applied some rule R fR(n) times. By instantiation
proof(n) generates a proof of P(n) for every n.

Diagrams and Schematic Proofs
Baker did some work on the use of schematic proofs of
arithmetic theorems (Baker, Ireland, & Smaill 1992).
'vVe extend Baker's work on schematic proofs to our
diagrammatic proofs so that the generality of the dia-
grammatic proof is embedded in the schematic proof.
Thus, we eliminate the need for abstractions in dia-
grams, and can extract a general schematic proof from
manipulations on concrete diagrams. The following is
an algorithm for extraction of a diagrammatic schem-
atic proof:

1. The diagrammatic schematic proof starts with a few
particular concrete cases of a theorem represented
by a diagram. The geometric operations on the dia-
gram are performed after that , capturing the infer-
ence steps of the diagrammatic proof.

2. ='l"ext , we abstract (using a learning type inference)
the operations involved in the schematic proof for n .

that the generality is represented as a recurs-
ive program which specifies a sequence of geometric
operations that are used on a diagram. and not as a
general representation of a diagram.

3. The last step is to prove by meta-induction that
the abstracted diagrammatic schematic proof is in-
deed correct. We carry out the verification in a the-
ory of diagrams that models the processes in a dia-
grammatic reasoning system and prove correr:tness
there. This will be! discussed in section "Correctness
of Schematic Proofs".

The schematic diagrammatic proof for the s'U.m of odd
naturals can be more formally expressed as:
• Cut a square into n ells, where an ell consists of 2

adjacent sides of the square.
• For each ell, continue splitting from an ell n - 1 pairs

of dots at the end of two adjacent sides of the ell until
only 1 dot is left, hence 2(n - 1) + l.

DIAMOND System
The diagrammatic proof system DIAMOND is an em-
bodiment of the ideas presented in this pap pr (see also
(Jamnik, Bundy, & Green 1998)).

Clearly, an important issue in the development of
DIAMOND is the internal representation of diagrams
and operations on them. In DIAMOND we use a mix-
ture of Cartesian and topological representations. The
architecture of DIAMOND consists of tViO parts. The
diagrammatic component forms and processes the dia-
gram. It is the interface between DIAMO ND and the
user. The inference engine deals with the diagrammatic
inference steps, processes the operations on the dia-
gram, extracts general schematic proofs from example
proofs, and checks the correctness of schematic proofs.

Geometric operations capture the inference steps of
the proof. The user is expected to select from a set of
all available operations the ones which are applied in
an example proof. 'Ve distinguish between two types

-25

of operations: atomic operations (simple, one-step; e.g.
split, rotate) and composite operations (complex, re-
cursive; e.g. decompose into ells).

The rest of this section presents how instances of
proofs are constructed, the structure of proofs and the
abstraction mechanism used in DIAMOND.

Constructing a Proof
DIAMOND 'S example proof consists of a sequence of ap-
plications of geometric operations on a diagram. The
abstraction is then carried out automatically, if any
such abstraction exists for the two example proofs
given. Both example proofs are expected to be given
with the same order of operations, but with some extra
operations in the case of the proof of (n + 1) for some
particular n .

Consider the example for the sum of odd naturals.
The step cases for proofs for n = 4 and n = 3 look as
follows : ·1·· · •••• LCUT
• •••

·1·· LCl;T 't SPLlT_ENDS(2)
The aim is to recognise automatically the structure of
the proof from a linear sequence of applications of op-
erations. The abstraction mechanism, which will be
described next, extracts the structure common to ex-
ample proofs .

Abstraction
Gi ven some exampJe proofs DIAMOND needs to abstract
from them, so that the final diagrammatic proof is not
only for the cases of specific n's, but holds for all n.
The aim is to reformulate example proofs for nand
n + 1 in the general case into a schematic proof. Such
a schematic proof is a general program which specifies
the applications of some operations, where the number
of application of each operation is dependent on n or is
a constant.

The general representation of an abstracted schem-
atic proof is formali::;ed as a recursive program:

proof (n + 1)
proof (1)

A(n + 1) , proof(n)
= B

where for each n, A(n) is a step case consisting of a
sequence of applications of some operations and B is
a base case for n = 1. "," denotes concatenation of
sequences of operations: "do operations of A(n + 1),
then proof(n) " .

The number of applications of each operation in the
step case A of the schematic proof is dependent on the
parameter n . DIA MON D can automatically detect any
linea r dependency in the number of applications of an

operation. For more information, the reader is referred
to (Jamnik, Bundy, & Green 1998).

The example proof for the sum of odd naturals is ab-
stracted into the following step case and base case:

A(n)
B

[(icut, 1), (split-diagonal_ends, n - 1)]
[I cut, 1)]

where the function in parentheses indicates the num-
ber of times that the operations are applied for each
particular n

Correctness of Schematic Proofs
The last stage of extracting a diagrammatic proof is
to check that the guessed general schematic proof is
indeed correct. In particular, the verification ensures
that the transition from concreteness to generality of
a diagrammatic proof is correct. In human reasoning
this step is often omitted when humans are convinced
that the examples used to induce a general schematic
proof uniformly account for all cases of a theorem. This
can sometimes result in erroneous proofs. In an auto-
mated reasoning system, however, we need to formally
show thp correctness of a schematic proof. To prove
that the schematic proof is correct we need to show in
some meta-theory that proof(n) uniformly proves P(n)
for all n, i.e. it gives a proof tree with P(n) at its root,
and axioms at its leaves. This requires reasoning about
proofs, i. e. meta-level reasoning. A meta-level proof us-
ing general diagrams would be an obvious method for,
verifying our schematic proof. However, such meta-level
proof reintroduces the need for manipulating abstrac-
tions (e.g. ellipsis) on diagrams, which we ari.". trying to
avoid.

One way of overcoming this problem is to define dia-
grams and operations in a theory of diagrams where we
can express abstract diagrams symbolically rather than
diagrammatically. In this theory we can verify schem-
atic proofs by defining the notion of applicability of a
proof. Given that a particular theorem is expressed as
an equality, its schematic proof is correct if applying
the operations specified in the schematic proof on the
diagrammatic representation of the left hand side of the
theorem results in the diagrammatic representation of
the right hand side of the theorem. There are two con-
ditions that need to be satisfied . The first condition is
that there is an appropriate diagrammatic representa-
tion available for the mapping of the theorem into its
diagrammatic representation. The second condition is
that the operations of the schematic proof are defined.
A verification proof is a meta-level proof, because it is
a proof about a property of an object level schematic
proof.

Before Wi.". can state the definition for rorrectness
property of schematic proofs, we need to formalise the
machinery which will enable us to model the processes
of a diagrammatic proof. Therefore, we need to define
diagrams , operations on them, and the applicability of
operations of a schematic proof, which we do next.

. 26

Diagrams
Diagrams in the theory are defined to be of object type.
Here are examples of names of diagrams in the theory:
row, column, ell, frame, square, rectangle , triangle, ...

Diagrams of the theory model natural numbers, DIA-
MOND's primitive notion of a diagram, a dot, is mod-
elled in the theory as the natural number 1. Objects
are introduced via a function diagram which takes the
name of the type of a diagram and the parameters for Its
size. 2 So for instance, a square of size 4 is expressed in
the theory as diagram(square, [4]) . All elementary and
derived objects are expressed using a primitive object
dot.

Constant 0 denotes a null diagram, or in other
words an empty diagram. Note also, that all
triangles are isosceles. Here are some examples
of diagrams: diagram(row , n), diagram(column , n),
diagram(ell , n) , diagram(square, n)

Operators
This section gives the operators available in the theory.
First , we denote the diagrammatic equality by f: which
denotes that two lists of diagrams are identical. 3 This
is to distinguish it from the usual arithmetic equality.
These are the operators that introduce the existence
of several diagrams: ;Q) for append on lists, :: for list
constructor, 0 for an infix operator which introduces a
combination of a number of identical diagrams, :
object -+ object list. Here is the recursive definition of

for all a b:

a l:0 diagram(name, f(i)) f: [diagram(name, f(a))J (1)

u+l u l:0 diagram(name, f(i)) l:0 diagram(name, f(i)) @
i =a i=a.

[diagram(name, f(b + 1))J (2)

Note that f (i) is some list of functions of i that denote
the parameters of a size of a diagram.

Operations
Diagrammatic operations are represented via a function
op : opname x object list -t object list. We give here a
definition of one operation only, but there are many

2The size of a diagram should not be confused with the
arithmetic size of the diagram. The notion of an arithmetic
size of a diagram will be explained in section "Mapping re-
lation dmap".

3To be more precise, denotes an equality of two lists of
diagrams modulo additional information about the position
of a diagram in the proof tree attached to each diagram,
and modulo the order of the list, i. e. two lists with the same
diagrams but in different order are still the same. Therefore,
rather than lists we could use bags which are sometimes
called multisets. This is what is used in the implementation
of the theory, but for the simplicity of presentation in this
papeL we \lse lists as a datatype for collections of diagrams.

more operations defined in the theory. Any other, non-
defined combination of a diagram and an operation is
invalid.

op(lcut, [diagram(square, [n - 1]),
diagram(ell, [n])]@D (3)

Function Definitions
One_Apply and Apply Here we define what it means to
apply an operation opnm to a diagram 0 several times.
vVe use a function apply and function one_apply. Let:

d one_apply(O,opnm, D) = D (4)
d one_apply(n + 1, opnm, D) = op(opnm,

one_apply(n , opnm, D)) (5)

apply([], D) D (6)
d apply((opnm,x) :: opss, D) = apply(opss,

one_apply(x,opnm, D) (7)

Note that OpSS is a list of pairs of operation and the
number of times that this operation is applied to a dia-
gram.

Mapping relation dmap Let the dmap rdation de-
note a mapping of a particular class of statements of
dfithmetic to their equivalent diagrammatic expressions
in the theory of diagrams. dmap is used for linking a
theorem of arithmetic which is stated symbolically to its
diagrammatic representation and diagrammatic proof.
The equivalence is defined to be over the arithmetic
size of the diagram. The arithmetic size of a diagram
is defined to be the the number of counters (dots) in
the diagram. Note that dmap is a relation rather than
a function, because there are several choice in mapping
the same arithmetic expression to different diagrams.
Here are some general mappings:

dmap(n2
, [diagram(square, [n])])

dmap(2n - 1, [diagram(ell, [n])])
b b

dmap(L fu), Dj) such that
)=n j=a

\;fj, a::; j ::; b, dmap(f(j) , [Dj])

(8)
(9)

(10)

Let us denote the arithmetic size of the diagram 0 with
1 0 I· The following holds:

Theorem 1 (Arithmetic size of a diagram) The
arithmetic size of the diagram is equal to the value of the
arithmetic expression that it represents: if dmap(e,O)
then 101 = e.

Note that the type of 1 I is: object list ---+ pnat. The
proof of Theorem 1 is carried out straightforwardly by
mduction on the structure of the relation dmap. Con-
sequently, we have the following:

27

I [diagram(square, [n]) J 1 n 2 (11)
I [diagram(ell, [n])] I = 2n - 1 (12)

D
j I b

LI[Dj]1 (13)
j=a

Now, we state a lemma about the preservation of the
arithmetic size of the sum of all existent diagrams when
an operation is applied on a diagram. For all operations
that were just introduced, the following holds:

Lemma 1 (Arithmetic Size Invariance Under
One Operation) The arithmetic size of the sum of
the resulting diagrams when an operation is applied to
some diagrams is the same as the arithmetic size of the
diagrams on which the operation was applied. Let 0 be
some diagrams such that dmap(e, 0) then:

1 op(opname, D) 1 = 1 D I·
The proof of this lemma consists of a case analysis of
operations and mappings of arithmetic expressIOns. We
shall not give it here. The immediate consequence of
Lemma 1 is the preservation of size when a list of op-
erations is applied to some diagram.

Lemma 2 (Arithmetic Size Invariance Under
Multiple Operations) The size of the s'um of the res-
ulting diagrams when a list of operations is applied to
some diagrams is the same as the size of the diagrams
on which the operations were applied. Let 0 be some
diagrams such that dmap(e, 0) then:

1 apply(ops, D) 1 = 1 D 1

The proof of this lemma is by a straightforward induc-
tion on the structure of opS. We shall not give it here.

Equations
Here Wf! give some axioms (note that a E b denotes that
a natural number a is an element of a list b; thus the
type of an infix E is: pnat x pnat list -t boolean):

o E s ---'; diagram(x, s) cl

0:: D
if!
D

(14)

(15)

Here is theorem (16) which is provable from (6) and (7).

apply(ops, D :: Ds) 1:: apply(ops, [D])@Ds (16)

Finally, we have the machinery for stating a desirable
property about the correctness of a schematic proof
formally:

Definition 1 (Correctness of Schematic Proofs)
For all schematic proofs of a paTticular theorem L(n) =
R(n) for which the following is given:

1 there is a mapping of the arithmetic expressions
L(n) and R(n) into a diugmm representation:
dmap(L(n), D) and dmap(R(n), E),

Base case: n=l

apply(proof(I), [diagram(square, [ID]) [diagram (eJl, [1])]
proof(l) = [(Icut , I)J .JJ.

apply ([(lcut , 1)], [diagram(square, [1])]) !!.. [diagram(ell, [1])J
(7) and (6) .JJ.

one_apply(l, Icut , [diagram(square, [ID]) [diagram(ell, [I])]
(5) and (4) .JJ.

op(lcut , [diagram (sq uare , [1])]) !!:.. [diagram(ell , [IDJ
(3) .JJ.

[diagram(square, [0]), diagram(ell, [1])] !!:.. [diagram(ell, [IDJ
(14) .JJ.

[0, diagram(ell , [1])J !!:.. [diagram (e ll , [1])J
(15) .JJ.

[diagram(ell , [ID] d [diagram(ell, [1])J

Figure 1: Base case of the proof of correctness of a schematic proof.

2. all the operations in the schematic proof are defined,
then,

d apply (proof (n), D) = E

The property in Definition 1 is impossible to prove
for the ,e;eneral case for any theorem, unless very strict
conditions are imposed . The problem is in the mapping
of the expression stating the theorem into its diagram-
matic representation, i.e. L(n) and R(n). In the general
case it is not known what L(n) and R(n) are, so it is
not possible to map them into dia[?;rammatic represent-
ations. It is possible, however , to prove the property in
Definition 1 for a particular theorem at hand.

Proof of Correctness of Schematic Proofs
for an Example
Here we prove the property given in Definition 1 for an
example of a schematic proof of a theorem about the
sum of odd naturals. The theorem is stated as n 2 =
2:7:1 (2i - 1). The schematic proof of this theorem is
given as: 4

proof(l)

proof (n + 1)

[(leut , I)J

[(leut , I)], proof(n)

(17)

(18)

Notice that we can use (8), (10) and (9) to map
the sentential theorem into its diagrammatic repres-
entation: dmap(n2 , [diagram (square, [n])]) and also
dmap(2:7:1 (2i - 1) , diagram (e ll, [iJ)). Thus the

4For the brev ity of presentation we take a simpler version
of the schematic proof which does not include the operation
spliLends. This version of the proof assumes that it has been
previously proved that any ell is of odd size .

- 28

first condition of the detinition for correctness is sat-
isfied. The operations of a schematic proofs are also
defined, so the second condition is satisfied as well. The
proof of correctness of a schematic proof for this par-
ticular example is a meta-level proof which requires in-
duction on n. Figure 1 shows the base case of the proof
of correctness. Figure 2 shows the step case of this in-
ductive proof. •

Results and Further Work
DIAMOND is implemented in Standard ML of New Jer-
sey, Version 109. The code is available upon request to
the first author. DIA MON D passes an induced schematic
proof to Clam, the inducti ve proof planner developed in
Edinburgh (see (Bundy et al. 1991»), where the theory
is implemented and the correctness proof is carried out.

Thus far, the interactive construction of proofs , auto-
matic abstraction from example proofs, and automatIc
verification of some schematic proofs have been Imple-
mented in DIAMO ND. We will extend the commUnIca-
tion between DIA:vtOND and Clam so that other schem-
atic proofs that DIAMOND extracts can be passed to
Clam and be verified in the theory of diagrams . To
date, we can prove about fifteen theorems of significant
depth and range (see (Jamnik, Bundy, & Green 1998».
The correctness proof for most of these theorems can
be carried out in Clam. We are extending the theory
of diagrams, and working on more examples.

Some interesting properties of this theory which
could be investigated include algebraic correctness of
all schematic proofs, incompleteness, and charactensa-
tion of the class of theorems that we can prove In this
theory.

An alternative method to proving correctness of
schematic proofs is to carry out a meta-inductive proof

Step case:
Hypothesis: for n

n

apply(proof(n), [diagram(square , [n])]) diagram(ell, [iD
i =l

Conclusion: for n + 1
n+l

apply(proof(n + 1) , [diagram(square, [n + 1])]) d diagram(ell , [il)
i=l

proof(n + 1) = [(Icut, 1)], proof(n)
n +l

apply(((lcut, 1), proof(n», [diagram(square, [n + 1])]) .E.. diagram(ell, [i])
i=l

(7)
n+1

apply(proof(n) , one _apply(l, Icut, [diagram(square , [n + 1])]) .E.. diagram(ell, [ill
i =l

(5) and (4)
n.+ l

apply(proof(n), op(icut, [diagram(square, [n + 1))]) d diagram(ell , [i])
i=l

(3)
n+l

apply (proof (n), [d iagram(square, [n]), diagram(ell, [n + 1])]) .5!.. diagram(ell, [ill
i=1

(16)
n+l

app ly(proof(n) , [diagram(square, [n])J)@[diagram(ell, [n + 1])] .E.. diagram(ell , [iJ)
.=1

(RHS of hypothesis) lJ.
n n+l

diagram(ell , [iJ)CQl[diagram(el l, [n + lJ)] !!.- diagram(ell , [iD
i=l ,=1

(2) lJ.
11. +1 n+l

diagram(ell, [iD d diagram(ell , [iJ)
1. = 1 i=l

Figure 2: Step case of the proof of correctness of a schematic proof.

on diagrams. This necessitates reasoning with general
diagrams which use abstractions to represent general-
ity. Formalising abstractions (e.g . ellipsis) in diagrams
to use them in meta-inductive proofs could be an inter-
esting issue to consider.

DIAMOND is an interactive proof checker. A long
term goal is to design an automated theorem prover
capable of discovering diagrammatic proofs. For each
new schematic proof that such a theorem prover would
discover, the theory of diagrams will need to be exten-
ded automatically to incorporate and be able t o check
the correctness of the new schematic proof.

Related Work
Several diagrammati c systems such as the Geometry
Nlachine by (Gelernter 1963), Diagram Configuration

- 29

model by (Koedinger & Anderson 1990), GROVER by
(Barker-Plummer & Bailin 1992) , and Hyperproof by
(Barwise & Etchemendy 1991) have been implemented
in the past and are of relevance to our system.

However, they all use diagrams to model algebraic
statements, and use these models for heuristic guid-
ance while searching for an algebraic proof. In contrast,
proofs in our system are explicitly constructed by op-
erations on diagrams.

Other projects on diagrammatic reasoning which are
of interest are by (Furnas 1992), by (Anderson & Mc-
Cartney 1996) , and by (Lindsay 1998).

Closer to our work, but not in the domain of dia-
grammatic reasoning, is work done by (Baker, Ireland ,
& Smail! 1992) described in section "Schematic Proof
and Constructive w-rule" , whereby we exploit the uni-

form structure of inductive proofs to generalise from
example proofs.

Conclusion
In this paper we presented a theory of diagrams which
enables us to check the correctness of diagrammatic
schematic proofs. This constitutes the last stage of
the procedure for extraction of diagrammatic proofs as
presented in our previous work (see (Jamnik, Bundy, &
Green 1997)). A schematic proof is correct if it proves
all cases (i. e. for all n) of the proposition. It consists
of a sequence of operations applied some function of n
times. In the theory we defined the notion of applic-
ability of a schematic proof and defined the correctness
property of schematic proofs. We finally proved the cor-
rectness property for an example of a schematic proof
of a theorem.

One of the aims of our research is to see whether it
is possible to automate the use of diagrams in formal
proofs. We showed that diagrams can be used for formal
proofs. We presented , as an example, a diagrammatic
reasoning system, DIAMOND, which supports interact-
ive construction of diagrammatic proofs.

The first step is to prove interactively concrete ex-
amples of a theorem. Second, the system automatic-
ally abstracts these instances to give a general schem-
atic proof which we hope holds for all n. Finally, in
DIAMOND we have a logical machinery (a theory of dia-
grams, constructive ..J-rule) to subsequently justify that
the schematic proof proves the original theorem.

Acknowledgements
The research reported in this paper was supported
by an Artificial Intelligence Department Studentship,
the university of Edinburgh, and a Slovenian Scientific
Foundation Supplementary Studentship for the first au-
thor, and by EPSRC grant GR/L/11724 for the other
two authors and the computing facilities for the first
a.uthor.

References
Anderson, :yr., and McCartney, R. 1996. Diagram-
matic reasoning and cases . In Proceedinys of the Thir-
teenth National Conference on Artificial Intelligence,
1004-1009. AAAI Press.
Baker, S.; Ireland, A.; and Smaill, A. 1992. On the
use of the constructive omega rule within automated
deduction. In Voronkov , A., ed., Internationnl Confer-
ence on Logic Programming and A utomated Reasoning
- LPAR 92, St. Petersburg, Lecture Notes in Artifi-
cial Intelligence No. 624, 214-225. Springer-Verlag.
Barker-Plummer, D., and Bailin, S. C. 1992. Proofs
and pictures: Proving the diamond lemma with the
GROVER theorem proving system. In Narayanan,
j';". R., ed., Working Notes of the AAAI Spring Sym-
posium on Reasoning with Diagmmmatic Repr·esenta-
tions. AAAI Press.

- 30

Barwise, J., and Etchemendy, J. 1991. Visual inform-
ation and valid reasoning. In Zimmerman, W ., and
Cunningham, S., eds., Visualization in Teaching and
Learning Mathematics. Mathematical Association of
America. 9-24.
Bundy, A.; van Harmelen, F.; Hesketh, J.; and Smaill,
A. 1991. Experiments with proof plans for induction.
Journal of Automated Reasoning 7:303-324. Earlier
version available from Edinburgh as DAI Research Pa-
per No 413.
Furnas, G. W. 1992. Reasoning with diagrams
only. In Narayanan, R., ed., AAAI Spring Sym-
posium on Reasoning with Diagrammatic Representa-
tions: Working Notes, 118·123. American Association
for Artificial Intelligence.
Gelernter, R. 1963 . Realization of a geometry
theorem-proving machine. In Feigenbaum, E., and
Feldman, .J., eds., Computers and Thought. McGraw
Hill. 134-52.
Jamnik, M.; Bundy, A.; and Green, 1. 1997. Auto-
mation of diagrammatic reasoning. In Pollack, M.,
ed., Proceedings of the 15th IJCAI, volume 1, 528-
533. International .Joint Conference on Artificial In-
telligence. Also published in the Proceedings of the
1997 AAAI Fall Symposium. Also available from Ed-
inburgh as DAI Research Paper No. 873.
Jamnik, M.; Bundy, A.; and Green, 1. 1998. On auto-
mating diagrammatic proofs of arithmetic arguments.
Research Paper 910 , Dept. of Artificial Intelligence,
University of Edinburgh. To appear in Journal of Lo-
gic, Language and Information.
Koedinger, K. R., and Anderson, J. R. 1990. Abstract
planning and perceptual chunks. Cognitive Science
14:511·· 550. Reprinted in "Diagrammatic Reasoning:
Cognitive and Computational Perspectives", Glasgow ,
J., Narayallan, N. H., and Chandrasekaran B. (eds .),
AAAI Press / The :YIlT Press, 1995, pages 577-625.
Lilldsay, R. 1998. Using diagrams to understand geo-
metry. Computational Intelligence 14(2).

R. B. 1993. Proofs Without Words: Exercises
·in Visual Thinking. The Mathematical Association of
America.

