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Abstra
tIn this paper we present an investigation into whether and how 
an de
ision pro
e-dures be learnt automati
ally. Our approa
h 
onsists of two stages. First, a re�nedbrute-for
e sear
h pro
edure applies exhaustively a set of given elementary meth-ods to try to solve a 
orpus of 
onje
tures generated by a sto
hasti
 
ontext-freegrammar. The su

essful proof tra
es are saved. In the se
ond stage, a learningalgorithm (by Jamnik et al.) tries to extra
t a required supermethod (i.e., de
i-sion pro
edure) from the given tra
es. In the paper, this te
hnique is applied toelementary methods that en
ode the operations of the Fourier-Motzkin's de
isionpro
edure for Presburger arithmeti
 on rational numbers. The results of our exper-iment are en
ouraging.1 Introdu
tionLearning proof methods and programs is a 
hallenging task. Jamnik and
olleagues [7℄ devised a framework for proof planning [4℄ systems where new1 The �rst author was supported by the EPSRC Advan
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proof methods 
an be learnt automati
ally (the implementation of this frame-work is 
alled Learn
mati
 [8℄). In this approa
h, a proof planning systemis used to 
onstru
t examples of proofs that use similar reasoning patterns.These proofs 
onsist of low level inferen
e steps or proof methods that areavailable to the system initially. The goal is to learn a pro
edure whi
h usesthese methods in some stru
tured and eÆ
ient way. In order to learn su
h apro
edure, a series of example proofs is generated automati
ally. The tra
esof example proofs are then fed into the learning me
hanism whi
h learns theso-
alled method outline, whi
h 
aptures the pattern 
ommon to all of theexample proofs. Finally, the representation of a learnt method outline is en-ri
hed into a fully 
eshed proof method so that it 
an be used by a spe
i�
proof planning system of 
hoi
e. Su
h a learnt proof method is then used insubsequent proof planning attempts for other 
onje
tures.In this paper, we dis
uss how the learning approa
h in Learn
mati
 (forba
kground, see x2.1) 
an be extended and used for a wider range of domainsand pro
edures. In parti
ular, we apply Learn
mati
 to developing de
i-sion pro
edures (for ba
kground, see x2.2). This is a 
hallenging task as thelearnt method should be terminating, sound and 
omplete. Learning de
isionpro
edures automati
ally would be bene�
ial for a reasoning system, espe-
ially for user de�ned theories or when for some theory a de
ision pro
edureis not available. So, our main motivation is a me
hanisation of learning anddis
overy of new de
ision pro
edures (while learning existing de
ision pro
e-dures serves as an illustration of an important step towards the �nal goal).Learning new de
ision pro
edures automati
ally 
an redu
e the time requiredfor developing them, it 
an prevent human implementation 
aws, and presentsa generi
 approa
h (that is independent of the theory) to generating de
isionpro
edures. We propose the programme and demonstrate how it 
an yield onespe
i�
 pro
edure | Fourier-Motzkin's de
ision pro
edure [12℄ (the proposedframework 
an, of 
ourse, be used for other proof methods as well).While our larger aim is to dis
over new pro
edures, we start by learning anexisting pro
edure. This is a diÆ
ult task, sin
e even if the idea of the requiredpro
edure is know and all the building blo
ks are available, it is still very
hallenging to 
ombine them 
orre
tly into the require de
ision pro
edure. Ourframework does not provide full automation (or guarantees formal properties,su
h as termination), however, it 
an be used as a very useful me
hanisedassistant. The user needs to provide the ne
essary building blo
ks and alsosome guidan
e to re�ne the brute for
e sear
h a

ording to the spe
i�
 theory,in order to 
onstru
t examples for automati
 learning whi
h generates thede
ision pro
edure.In the resear
h presented in this paper, we used the system Learn
mati
 [8℄,while all other dis
ussed/used algorithms and modules were newly developed(and serve as an extension to Learn
mati
).2



Our programme (whi
h also re
e
ts the stru
ture of this paper) 
onsistsof the following steps (we illustrate our approa
h with the example of lineararithmeti
 and the Fourier-Motzkin's pro
edure):� the methods that 
an make up a de
ision pro
edure are provided (x3);� the examples of proofs using the given methods are 
onstru
ted (x4); thisrequires:� a number of 
onje
tures is generated randomly (4.1);� implementing a simple prolog dedu
tion system (whi
h essentially 
ar-ries out a brute for
e sear
h) that applies the given methods (4.2);� grouping and ordering of methods to dire
t the brute for
e sear
h andto prevent non-termination in the pro
ess of generating proof examples(4.3);� all example proofs are divided into groups a

ording to a number of vari-ables; from ea
h group the most illustrative proofs are taken; all thesesele
ted proofs make the learning set (4.4).� the sele
ted example proofs are input into the learning me
hanism whi
hlearns a pro
edure that 
aptures the pattern of reasoning employed in all ofthe example proofs (x5);� on the basis of the learnt pattern, a prolog me
hanism automati
allygenerates a 
orresponding supermethod (also in prolog), whi
h is ourrequired de
ision pro
edure (x6);� the learnt pro
edure is tested on the original set of examples (x7).We �nish the paper with a brief dis
ussion of related work in x8, and
on
lusions and future dire
tions in x9.2 Ba
kground2.1 Automati
 learningJamnik et al [7℄ devised a framework within whi
h a proof planning [4℄ sys-tem 
an learn frequently o

urring patterns of reasoning automati
ally from anumber of typi
al examples, and then use them in proving new theorems [9℄.The availability of su
h patterns, 
aptured as proof methods in a proof plan-ning system, redu
es sear
h and proof length. Jamnik et al implemented thislearning framework for the proof planner 
mega [2℄ { they 
all the systemLearn
mati
. The entire pro
ess of learning and using new proof methodsin Learn
mati
 
onsists of the following steps:(i) The user 
hooses informative examples and gives them to 
mega to beautomati
ally proved. Tra
es of these proofs are stored.(ii) Proof tra
es of typi
al examples are given to the learning me
hanismwhi
h automati
ally learns so-
alled method outlines.3



(iii) Method outlines are automati
ally enri
hed by adding to them additionalinformation and performing sear
h for information that 
annot be re
on-stru
ted in order to get fully 
eshed proof methods that 
mega 
an usein proofs of new theorems.The methods Learn
mati
 aims to learn are 
omplex and are beyondthe 
omplexity that 
an typi
ally be ta
kled in the �eld of ma
hine learning.Therefore, Learn
mati
 learns method outlines, whi
h are expressed in thefollowing language L, where P is a set of known identi�ers of primitive methodsused in a method that is being learnt:� for any p 2 P , let p 2 L,� for any l1; l2 2 L, let [l1; l2℄ 2 L,� for any l1; l2 2 L, let [l1jl2℄ 2 L,� for any l 2 L, let l� 2 L, � for any l 2 L and n 2 N, let ln 2 L,� for any list su
h that all li 2 list arealso li 2 L, let T (list) 2 L.\[" and \℄" are auxiliary symbols used to separate subexpressions, \," denotesa sequen
e, \j" denotes a disjun
tion, \�" denotes a repetition of a subexpres-sion any number of times (in
luding 0), n a �xed number of times, and T isa 
onstru
tor for a bran
hing point (list is a list of bran
hes), i.e., for proofswhi
h are not sequen
es but bran
h into a tree. For more information on theexpressiveness of this language, the reader is referred to [9℄.Our learning te
hnique 
onsiders some typi
ally small number of positiveexamples whi
h are represented in terms of sequen
es of identi�ers for prim-itive methods, and generalises them so that the learnt pattern is in languageL. The pattern is of smallest size with respe
t to a de�ned heuristi
 measureof size [9℄, whi
h essentially 
ounts the number of primitives in an expression.The pattern is also most spe
i�
 (or equivalently, least general) with respe
tto the de�nition of spe
i�
ity spe
. spe
 is measured in terms of the numberof nestings for ea
h part of the generalisation [9℄. Again, this is a heuristi
measure.The algorithm is based on the generalisation of the simultaneous 
om-pression of well-
hosen examples. Here is just an abstra
t des
ription of thelearning algorithm, but the detailed steps with examples of how they are ap-plied 
an be found in [9℄:(i) Split every example tra
e into sublists of all possible lengths.(ii) If there is any bran
hing in the examples, then re
ursively repeat thisalgorithm on every element of the list of bran
hes.(iii) For ea
h sublist in ea
h example �nd 
onse
utive repetitions, i.e., pat-terns, and 
ompress them using exponent representation.(iv) Find 
ompressed patterns that mat
h in all examples.(v) If there are no mat
hes in the previous step, then generalise the examples4



by joining them disjun
tively.(vi) For every mat
h, generalise di�erent exponents to a Kleene star, and thesame exponents to a 
onstant.(vii) For every mat
hing pattern in all examples, repeat the algorithm on bothsides of the pattern.(viii) Choose the generalisations with the smallest size and largest spe
i�
ity.The learning algorithm is implemented in SML of NJ v.110. Its inputsare the sequen
es of methods extra
ted from proofs. Its output are methodoutlines.2.2 De
ision pro
eduresA theory T is de
idable if there is an algorithm (whi
h we 
all a de
isionpro
edure) su
h that for an input T -senten
e F , it returns true if and onlyif F is valid in T (i.e., T j= F ) and returns false otherwise. The role ofde
ision pro
edures is often very important in theorem proving (e.g., see [10℄).De
ision pro
edures 
an redu
e the sear
h spa
e of heuristi
 
omponents ofa prover and in
rease its abilities. De
ision pro
edures 
an usually be mu
hmore eÆ
ient than some other proving strategies (e.g., indu
tion). Thereare many de
ision pro
edures in standard use, in
luding de
ision pro
eduresfor fragments of arithmeti
s, theories of lists, theory of equality et
. Due toits importan
e in hardware and software veri�
ation, de
ision pro
edures forfragments of arithmeti
 (like pra | Presburger Rational Arithmeti
) are ofparti
ular interest.Instead of using basi
 inferen
e rules, de
ision pro
edures are usually builtfrom some higher-level building blo
ks. We start with methods in the spiritof Bundy's proof plans for normalisation [5℄.We look at the ideas from Fourier-Motzkin's de
ision pro
edure [12℄ (whi
his essentially the same as the well known implementation of Hodes' de
isionpro
edure for Presburger arithmeti
 [6℄). Fourier-Motzkin's algorithm is ade
ision pro
edure for rational numbers, but it is also often used (be
ause ofits better eÆ
ien
y) as sound (but in
omplete) pro
edure for the universalfragment of pia { Presburger Integer Arithmeti
 (see, for instan
e, [3℄).3 Building blo
ksWe use a simple stand-alone prolog implementation of a dedu
tion systembased on the proof{planning paradigm, but it is simpli�ed as it does notrequire pre
onditions and post
onditions of methods.De
ision pro
edures 
an be implemented as 
ompa
t, optimised pro
eduresor they 
an be built from separate methods (some of whi
h 
an be general-purpose methods, i.e., methods used also within other pro
edures). The lat-5



ter approa
h often leads to additional overhead pro
essing and is thus lesseÆ
ient. However, it is mu
h more 
exible and gives easily understandablealgorithms, and hen
e we use it in our programme.We use the following sorts of normalisation methods (in the spirit ofBundy's proof plans for normalisations [5℄):Remove is a normalisation method used to eliminate a 
ertain fun
tionsymbol, predi
ate symbol or a quanti�er from a formula. For instan
e, we 
aneliminate a 
onne
tion ) by exhaustive appli
ation of the following rewriterule: f1 ) f2 �! :f1 _ f2.Stratify is a normalisation method used to stratify a 
lass of formulae intotwo (or more) synta
ti
al layers 
ontaining just some spe
i�
 predi
ate sym-bols, fun
tion symbols or 
onne
tives. For instan
e, stratify puts a formulainto prenex normal form, moves negations inside disjun
tions and 
onjun
-tions, moves 
onjun
tions inside disjun
tions et
.Thin is a normalisation method that exhaustively applies thinning rewriterules, su
h as elimination of multiple negations: ::f �! f or elimination ofmultiple unary minus symbols: �� t �! t.Redu
e is a method that redu
es the number of o

urren
es (to at mostone) of a 
ertain fun
tion symbol, predi
ate symbol or a 
onne
tive in a for-mula. For instan
e, it redu
es the number of symbols > and ? in a formulabeing proved.Left Asso
iation is one of the normalisation methods for reorganisationwithin a 
lass. If a synta
ti
al 
lass 
ontains only one fun
tion symbol and ifthat fun
tion symbol is both binary and asso
iative, then members of this 
lass
an be put into left asso
iative form. For instan
e, we 
an use this methodfor left asso
iation of addition and multipli
ation (given the needed rewriterules).Poly-form is a method whi
h we will use for putting a formula into poly-nomial normal form. It uses rewrite rules su
h as: i1 � i2 �! i3 where i1; i2; i3represent numbers and i1 � i2 = i3.Reorder is one of the methods for reorganisation within one synta
ti
al
lass. If a 
lass 
ontains only one fun
tion and if that fun
tion is 
ommutativeand asso
iative, this method is used to reorder arguments within a term (whi
his supposed to be in left asso
iative form). We 
an use it to reorder argumentsin a term whi
h is in polynomial normal form or in a formula in disjun
tivenormal form. This transformation requires an ordering on variables as anadditional devi
e.Colle
t is a method whi
h we will use to redu
e multiple o

urren
es ofsome variable in a term.Isolate is a method whi
h we use to isolate a spe
i�
 variable in an atomi
formula.The methods des
ribed above are general ones. Clearly, some theories may6



require more spe
i�
 methods. 4 However, even if all the ne
essary methods(general or theory-spe
i�
) are available, it may still be very 
hallenging to
ombine them 
orre
tly into a required de
ision pro
edure.4 Generating solved examplesWe generated a set of solved examples in several stages: we generated a 
orpus,grouped and ordered the methods, ran brute for
e sear
h for proofs and 
hosesolved examples.4.1 Generating 
orpusWe generated 1000 Presburger arithmeti
 
onje
tures by using the sto
hasti

ontext-free grammar 5 given in Table 1. The probabilities used were 
ho-sen ad-ho
 (a similar sto
hasti
 grammar was used in [11℄). We believe that
hoosing di�erent probabilities would give similar �nal results to the ones wegot in this study. For simpli
ity, we generated only quanti�er-free formulae, 6and then took their universal 
losure.4.2 Sear
h for proofsWe implemented (in prolog) a simple me
hanism for brute-for
e sear
h forproofs of the given 
onje
tures. The me
hanism works as follows:� if the 
urrent formula is equal to > or ?, then stop the sear
h;� if the 
urrent list of applied methods ex
eeds the given limit, then stop thesear
h;� try to apply one of the available methods to the 
urrent formula; if themethod 
hanges the 
urrent formula, add that method to the list of appliedmethods and try to prove the obtained (now new 
urrent) formula.If a 
urrent formula is transformed to > or ?, we 
onsider it solved and we
all a sequen
e of applied methods a proof tra
e. We put the limit (100) for thenumber of applied methods in order to prevent in�nite loops in this sear
h.Some of the generated formulae were huge (one of them had 409 fun
tions4 For example, in order to learn the Fourier-Motzkin's pro
edure, we need a method whi
hperforms 
ross-multiply and add step [12℄ (see also x4.3).5 A sto
hasti
 
ontext{free grammar is a 
ontext{free grammar with a sto
hasti
 
ompo-nent whi
h atta
hes a probability to ea
h of the produ
tion rules and 
ontrols its use.6 Note that 
losed formulae without redundant quanti�ers 
annot be generated by a
ontext-free grammar. However, this restri
tion is not 
riti
al. Namely, most quanti-�er elimination pro
edures (in
luding the Fourier-Motzkin's pro
edure) eliminate universalquanti�ers by redu
ing them to existential quanti�ers. So, the learning pro
ess would be thesame if we 
onsidered full Presburger arithmeti
. Moreover, the learnt pro
edure (presentedin x5) is a de
ision pro
edure for full Presburger arithmeti
.7



# Rule Probability1. hformulai := hatomi
 formulai 0.52. hformulai := (: hformulai) 0.1253. hformulai := (hformulai _ hformulai) 0.1254. hformulai := (hformulai ^ hformulai) 0.1255. hformulai := (hformulai ) hformulai) 0.1256. hatomi
 formulai := (htermi = htermi) 0.207. hatomi
 formulai := (htermi < htermi) 0.208. hatomi
 formulai := (htermi � htermi) 0.209. hatomi
 formulai := (htermi > htermi) 0.2010. hatomi
 formulai := (htermi � htermi) 0.2011. htermi := (htermi+ htermi) 0.2012. htermi := 1 0.2013. htermi := 0 0.2014. htermi := var 0.4015. hvari := x 0.3016. hvari := y 0.2517. hvari := z 0.2018. hvari := u 0.1519. hvari := v 0.10Table 1A sto
hasti
 grammar for the quanti�er-free fragment of Presburger arithmeti
.symbols, predi
ate symbols and 
onne
tives) so we also put a time limit forsolving ea
h 
onje
ture. We used the time limit of 1 minute. 74.3 Grouping methods and ordering of methodsOn the basis of the generi
 normalisation methods dis
ussed in x3, we imple-mented (in prolog) a set of arithmeti
-spe
i�
 methods. We also added themethod for elimination of an existentially quanti�ed (and isolated) variablebased on Fourier-Motzkin's 
ross-multiply and add step [12℄. For the sake ofsimpli
ity, we grouped some of these methods (in a natural, expe
ted way),yielding the following set of 9 methods (some of them 
ompound):M1: remove )7 All modules were implemented in SWI Prolog; experiments were ran on a 64Mb PC466Mhz. All sour
e �les are available upon request from the authors.8



M2: remove 6=; >;<;�M3: adjust the innermost quanti�er (transforms 8xF to :9x:F )M4: stratify :s beneath _s and ^s; thin :, remove :M5: delete the innermost redundant quanti�er (
ross-multiply and add step)M6: isolate the innermost variable (provided it is isolated in ea
h atomi
formula)M7: stratify � beneath +, left-asso
 �, left-asso
 +, poly-formM8: stratify ^s beneath _s and eliminate the innermost variableM9: redu
e > and ?Despite having only 9 methods after grouping, a simple depth �rst sear
hover them does not always produ
e proofs, be
ause 9 methods still give a largesear
h spa
e 8 and, more importantly, some rules 
an
el ea
h other out, whi
h
an lead to non-termination. Namely, most of the available methods 
onsistof sets of rewrite rules. Even though ea
h set of these sets of rewrite rulesis terminating (but not always 
on
uent), the union of sets is not ne
essarilyterminating. Therefore, our set of methods is not terminating. Hen
e, in orderto simplify and dire
t sear
h, we also had to 
hange the ordering of methods.The two strategies just des
ribed, i.e., grouping and ordering, involve somehuman knowledge based on experiments in this 
ontext, and present a 
ontrolinformation for sear
h for proofs.Methods are tried on given goals in the following order: M1, M2, M3, M4, M5,M6, M7, M8, M9. This ordering is ad-ho
 and in our experiments we tried severalorderings. We 
hose this as the most appropriate one. Noti
e that the order-ing and grouping phase is not expe
ted to provide the termination argumentfor the learnt pro
edure. It 
an be viewed as a heuristi
 whi
h dire
ts and im-proves the brute for
e sear
h. Moreover, ordering and grouping 
an be helpfulwhen 
onsidering the properties (su
h as termination and 
ompleteness) ofthe generated pro
edure (see x5).4.4 Running brute for
e sear
h and 
hoosing examplesWe ran the des
ribed sear
h engine on the set of 1000 generated 
onje
tures/examples. 76.8% of 
onje
tures were solved (proved or disproved) by this en-gine; results are given in Table 2. Table 2 also shows how the per
entage ofsolved examples de
reases as the number of variables in
reases. This is reason-able as the sear
h spa
e is rather big and the brute-for
e sear
h is pra
ti
allylost on very 
omplex 
onje
tures.Having 768 solved examples, we needed to 
hoose the subset of exampleswhi
h would be used in the learning pro
ess (well-
hosen examples are essential8 The situation is even worse if we 
onsider low level inferen
e rules, rather than higherlevel methods (sin
e the proofs would be mu
h longer, and the sear
h spa
e would be mu
hlarger). 9



# of variables 0 1 2 3 4 5 totaltotal 121 340 249 118 77 95 1000solved 121 301 189 77 45 35 768% solved 100 88.5 75.9 65.2 58.4 36.8 76.8longest tra
e 5 10 15 18 23 30 N/A# of examples with longest tra
es 6 8 10 4 5 2 35Table 2Results of the brute for
e methodfor this phase of the programme). Good examples are demonstrative examples,i.e., the ones that involve as many methods as possible that should be in thede
ision pro
edure that we are learning. But these methods should be usedin a 
on
ise way in good examples. The sear
h for a proof (given our set andordering of methods) stops as soon it rea
hes > or ?. Thus, the availableproofs are the shortest ones that the brute for
e engine 
an �nd. Amongstsu
h proofs of di�erent 
onje
tures, we sele
t as the most illustrative anddes
riptive proofs the longest ones. Namely, in some 
ases some methods(that form some parts of the pro
edure we are learning) leave 
ertain formulaeunder 
onsideration un
hanged, but in other 
ases they transform (rewrite)them. So, su
h methods must be 
onsidered in order for the system to learna (general) de
ision pro
edure. To learn su
h pie
es of our sought pro
edureit was sensible to 
hoose examples that use as many of the relevant methodsas possible (i.e., examples that are the most diÆ
ult and demanding, and nottrivial or easy ones). In other words, in a sense we 
hoose the longest amongstthe shortest proofs.Sin
e the number of variables has a 
riti
al role in proving Presburgerarithmeti
 
onje
tures (the same holds for almost all theories), we separatedall solved examples into groups a

ording to the number of variables. We
onsidered formulae with 0, 1, 2, 3, 4 and 5 variables. From ea
h group wesele
ted the longest proof tra
es (see Table 2).Within the groups of formulae with 0, 1, and 2 variables all 
onje
tureswith the longest proof tra
es had the same tra
es (respe
tively):[M1, M2, M4, M7, M9℄[M1, M2, M3, M4, M6, M8, M5, M4, M7, M9℄[M1, M2, M3, M4, M6, M8, M5, M3, M4, M6, M8, M5, M4, M7, M9℄Within the groups of formulae with 3 and 4 variables there were 4 and5 
onje
tures with the longest proof tra
es, but these tra
es were not equal(within ea
h respe
tive group). Sin
e it is not 
lear whi
h amongst these arethe most des
riptive ones, we did not use them for learning. 9 Within the9 Namely, 
onsidering a possibly very 
omplex pro
edure, it is not likely that within 100010



group of formulae with 5 variables there were 2 
onje
tures with the (same)longest proof tra
e. Finally, we took the longest tra
es for formulae with 0, 1and 2 variables and put them into the learning me
hanism.5 Learning and generating supermethodsFrom the given sequen
es, the learning me
hanism (des
ribed in x2.1) learntthe following general pattern: 10[M1;M2; [M3;M4;M6;M8;M5℄�;M4;M7;M9℄:We noti
e that in ea
h run of the loop ([M3;M4;M6;M8;M5℄�), one quan-ti�er is eliminated. Sin
e their number is �nite in any 
onje
ture, this pro-
ess eventually terminates. Provided that all the used primitive methods aresound, the generated supermethod is also sound. Provided the methods are
omplete, then ea
h 
onje
ture is transformed by the above supermethod to? or >, and hen
e, the learnt pro
edure is a de
ision pro
edure for pra.Although our proposed programme does not provide a guarantee about theproperties of a learnt pro
edure (su
h as termination, soundness and 
om-pleteness), often these properties 
an be easily proved (as we 
an see in theabove informal dis
ussion).6 Automati
 programming for learnt methodsWe implemented (in prolog) a system for automati
 generation of prologpredi
ates on the basis of sequen
es provided from the learning me
hanism.The system supports all 
onstru
tions that the Learn
mati
 system 
anmake (see x2.1), and 
an generate 
orresponding prolog 
ode. Given thesequen
e [M1;M2; [M3;M4;M6;M8;M5℄�;M4;M7;M9℄, our system gener-ated the following prolog 
ode (whi
h we �nally applied to the original setof 
onje
tures):pa(Fa,FF):-method('M1',Fa,Fb),method('M2',Fb,F
),pb(F
,Fd),method('M4',Fd,Fe),method('M7',Fe,Ff),method('M9',Ff,FF).pb(Fa,FF) :-formulae we will have 
onje
tures with 3, 4, 5,... variables whose proofs 
ontain all theneeded steps of the pro
edure in all iterations. Larger 
orpus would perhaps 
ontain su
h
onje
tures (but then we may want to 
onsider more variables, so the problem remains).10As expe
ted, it turns out that if examples with 5 variables were used for learning as well,then this learnt pattern would still be the same.11



method('M3',Fa,Fb),method('M4',Fb,F
),method('M6',F
,Fd),method('M8',Fd,Fe),method('M5',Fe,Ff),pb(Ff,FF),!.pb(F,F).7 EvaluationGiven the learnt method and the generated prolog program, we ran it on theoriginal set of 1000 generated 
onje
tures. While the brute for
e method solved768 
onje
tures (within the given time limit), the learnt de
ision pro
eduresolved 991 
onje
tures (see Table 3). Nine unsolved examples had hundredsof symbols and the method had not failed to solve them, but ex
eeded thetime limit. For ea
h 
onje
ture solved by the brute for
e sear
h, we measuredthe speed-up when using the newly generated pro
edure (see Table 3). Theoverall speed-up average was 1.0619. However, the main gain from the learntpro
edure is in 223 
onje
tures that were not solved at all by the brute for
emethod. We 
an see in Table 3 that the speed-up in
reases as the numberof variables in
reases. The speed-up for 5-variable 
ase would probably behigher if we used a higher time limit.# of variables 0 1 2 3 4 5 totaltotal 121 340 249 118 77 95 1000solved 121 340 249 118 77 86 991% solved 100 100 100 100 100 90.5 99.1speed-up 1 1.0001 1.0287 1.0990 1.4394 1.4181 1.0619Table 3Results of the learnt method8 Related workThe work presented in this paper uses the learning me
hanism of Learn
mati
,whi
h is related to the least general generalisation, and to some more re
entwork on learning regular expressions, grammar inferen
e and sequen
e learn-ing [13℄. For details, see [9℄.Our work is related to ideas from [5℄. In Bundy's programme a de
isionpro
edure should be synthesised given all needed rewrite rules and severalgeneral patterns for normalising formulae. Considering automati
 derivation12



of de
ision pro
edures our work is also related to work presented in [1℄ whi
his aimed at deriving de
ision pro
edures using superposition.9 Con
lusions and future workOur 
on
lusion is that learning de
ision pro
edures is not an easy task (evenwhen all the needed primitive methods are given), but it is possible. It isdiÆ
ult to have the pro
ess of learning a 
omplex de
ision pro
edure fully au-tomated, so at some stages human intera
tion and human help is needed. Wepresented a methodology 
onsisting of a number of steps, te
hniques and ideas(in
luding a me
hanism for generating a 
orpus of 
onje
tures, a 
ontrolledbrute for
e sear
h, strategies for 
hoosing examples, learning me
hanism, andthe system for automati
 programming based on the learnt sequen
es). Au-tomation in this �eld is important as it 
an prevent human 
aws in analysingde
ision pro
edures or in implementing them. We believe that this method-ology (and learning de
ision pro
edures in general) 
an be useful, espe
iallyfor new or user de�ned theories. Here are some of the main lessons we learntduring the development of the proposed programme:� Despite the fa
t that the implementation of de
ision pro
edures based onautonomous, independent methods is less eÆ
ient, we �nd that this ap-proa
h is 
exible and suitable for both analysing and synthesising de
isionpro
edures.� Given a set of methods suÆ
ient to solve any 
onje
ture of a given theory,it is still not a trivial task to build a de
ision pro
edure for that theory. Thebrute for
e sear
h 
an solve a number of 
onje
tures, but it is diÆ
ult tomake a brute for
e sear
h 
omplete, eÆ
ient and terminating (even whenall the building blo
ks are terminating).� Even if the idea of the required pro
edure is known and all the ne
essarybuilding blo
ks are available, it may still be a non-trivial task to 
orre
tlyimplement the pro
edure. Automati
 assistan
e in this 
an be very impor-tant.� In order to make a brute for
e sear
h more eÆ
ient, it is useful to providesome sort of 
ontrol information. We used grouping and ordering of methods(where it was sensible to do so). This task requires human assistan
e.� Having a number of solved examples, it is essential to make a good sele
tionof examples to be used in the learning pro
ess. Our strategy was the follow-ing: we sele
ted the longest proofs among the shortest proofs found by thebrute for
e sear
h. The rationale is that the most demanding 
onje
turesare the most illustrative ones for learning.� Provided that we have good examples and a 
hoi
e of good methods, thelearning me
hanism 
an learn a de
ision pro
edure from just a few example13



proofs.� A system 
an be made whi
h for a given learnt proof sequen
e generates a
orresponding implementation.� The learnt method outperforms the brute for
e sear
h both in the numberof 
onje
tures solved and in the 
pu time spent.� We believe that the methodology presented in this study is very well suitedto the proof planning paradigm (or its simpli�ed version, as des
ribed here),and 
an be applied to other environments as well.It is diÆ
ult to provide a 
hara
terisation of theories for whi
h the proposedapproa
h is su

essful, sin
e some very deep theory-spe
i�
 knowledge may berequired. However, we 
an give a 
hara
terisation of de
ision pro
edures whi
h
annot be learnt: the proposed framework 
annot learn pro
edures whi
h 
an-not be expressed with the language used in Learn
mati
. All other pro
e-dures 
an potentially be learnt. At the moment, Learn
mati
 
overs a widerange of languages, while further extensions are under 
onsideration. Learningpro
edures expressed in another language would require that we repla
e in ourframework Learn
mati
's learning me
hanism with another one that usesthe desired language, but the other modules of our framework (e.g., generatingexamples, automati
 generation of 
ode from the learnt pattern) 
an remainun
hanged. We also plan to extend the learning approa
h and the realm of
overed languages so that the me
hanism 
ould learn re
ursive methods, whi
hwould enable automati
 learning of a new range of de
ision pro
edures.Another limitation of our proposed programme is that it may require non-trivial human assistan
e (e.g., in ordering and grouping). We plan to furtherdevelop our methodology and to try to automate (at least to some extent) thesteps whi
h now need human intera
tion.A 
omparison between a dire
t implementation of the de
ision pro
edureand a learnt de
ision pro
edure would be interesting for further work. But thisis out of the s
ope of the present paper, as we are interested in a larger pi
tureof dis
overing new de
ision pro
edures, rather than in eÆ
ient implementa-tions of the existing ones. Me
hanised learning of existing de
ision pro
eduresis an important step towards me
hanised learning and dis
overy of de
isionpro
edures. In this sense, the work presented in this paper is an en
ouragingpreliminary step towards dis
overy. Our hope is that su
h a framework willbe used as a useful assistant in su
h a pro
ess, and moreover, it will lead toautomati
 dis
overy of new de
ision pro
edures.Referen
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