
Can Deision Proedures be LearntAutomatially?Mateja Jamnik 1;2University of Cambridge Computer LaboratoryJ.J. Thomson Avenue, Cambridge, CB3 0FD, England, UKwww.l.am.a.uk/~mj201Predrag Jani�i� 3Faulty of Mathematis, University of Belgrade, Studentski trg 1611000 Belgrade, Serbia and Montenegrowww.matf.bg.a.yu/~janiiAbstratIn this paper we present an investigation into whether and how an deision proe-dures be learnt automatially. Our approah onsists of two stages. First, a re�nedbrute-fore searh proedure applies exhaustively a set of given elementary meth-ods to try to solve a orpus of onjetures generated by a stohasti ontext-freegrammar. The suessful proof traes are saved. In the seond stage, a learningalgorithm (by Jamnik et al.) tries to extrat a required supermethod (i.e., dei-sion proedure) from the given traes. In the paper, this tehnique is applied toelementary methods that enode the operations of the Fourier-Motzkin's deisionproedure for Presburger arithmeti on rational numbers. The results of our exper-iment are enouraging.1 IntrodutionLearning proof methods and programs is a hallenging task. Jamnik andolleagues [7℄ devised a framework for proof planning [4℄ systems where new1 The �rst author was supported by the EPSRC Advaned Researh Fellowship, and theseond author was supported by EPSRC grant GR/R52954/01 and by the Serbian Ministryof Siene researh grant 1379.2 Email: mateja.jamnik�l.am.a.uk3 Email: janii�matf.bg.a.yuPreprint submitted to Elsevier Preprint 15 May 2003

proof methods an be learnt automatially (the implementation of this frame-work is alled Learn
mati [8℄). In this approah, a proof planning systemis used to onstrut examples of proofs that use similar reasoning patterns.These proofs onsist of low level inferene steps or proof methods that areavailable to the system initially. The goal is to learn a proedure whih usesthese methods in some strutured and eÆient way. In order to learn suh aproedure, a series of example proofs is generated automatially. The traesof example proofs are then fed into the learning mehanism whih learns theso-alled method outline, whih aptures the pattern ommon to all of theexample proofs. Finally, the representation of a learnt method outline is en-rihed into a fully eshed proof method so that it an be used by a spei�proof planning system of hoie. Suh a learnt proof method is then used insubsequent proof planning attempts for other onjetures.In this paper, we disuss how the learning approah in Learn
mati (forbakground, see x2.1) an be extended and used for a wider range of domainsand proedures. In partiular, we apply Learn
mati to developing dei-sion proedures (for bakground, see x2.2). This is a hallenging task as thelearnt method should be terminating, sound and omplete. Learning deisionproedures automatially would be bene�ial for a reasoning system, espe-ially for user de�ned theories or when for some theory a deision proedureis not available. So, our main motivation is a mehanisation of learning anddisovery of new deision proedures (while learning existing deision proe-dures serves as an illustration of an important step towards the �nal goal).Learning new deision proedures automatially an redue the time requiredfor developing them, it an prevent human implementation aws, and presentsa generi approah (that is independent of the theory) to generating deisionproedures. We propose the programme and demonstrate how it an yield onespei� proedure | Fourier-Motzkin's deision proedure [12℄ (the proposedframework an, of ourse, be used for other proof methods as well).While our larger aim is to disover new proedures, we start by learning anexisting proedure. This is a diÆult task, sine even if the idea of the requiredproedure is know and all the building bloks are available, it is still veryhallenging to ombine them orretly into the require deision proedure. Ourframework does not provide full automation (or guarantees formal properties,suh as termination), however, it an be used as a very useful mehanisedassistant. The user needs to provide the neessary building bloks and alsosome guidane to re�ne the brute fore searh aording to the spei� theory,in order to onstrut examples for automati learning whih generates thedeision proedure.In the researh presented in this paper, we used the system Learn
mati [8℄,while all other disussed/used algorithms and modules were newly developed(and serve as an extension to Learn
mati).2

Our programme (whih also reets the struture of this paper) onsistsof the following steps (we illustrate our approah with the example of lineararithmeti and the Fourier-Motzkin's proedure):� the methods that an make up a deision proedure are provided (x3);� the examples of proofs using the given methods are onstruted (x4); thisrequires:� a number of onjetures is generated randomly (4.1);� implementing a simple prolog dedution system (whih essentially ar-ries out a brute fore searh) that applies the given methods (4.2);� grouping and ordering of methods to diret the brute fore searh andto prevent non-termination in the proess of generating proof examples(4.3);� all example proofs are divided into groups aording to a number of vari-ables; from eah group the most illustrative proofs are taken; all theseseleted proofs make the learning set (4.4).� the seleted example proofs are input into the learning mehanism whihlearns a proedure that aptures the pattern of reasoning employed in all ofthe example proofs (x5);� on the basis of the learnt pattern, a prolog mehanism automatiallygenerates a orresponding supermethod (also in prolog), whih is ourrequired deision proedure (x6);� the learnt proedure is tested on the original set of examples (x7).We �nish the paper with a brief disussion of related work in x8, andonlusions and future diretions in x9.2 Bakground2.1 Automati learningJamnik et al [7℄ devised a framework within whih a proof planning [4℄ sys-tem an learn frequently ourring patterns of reasoning automatially from anumber of typial examples, and then use them in proving new theorems [9℄.The availability of suh patterns, aptured as proof methods in a proof plan-ning system, redues searh and proof length. Jamnik et al implemented thislearning framework for the proof planner
mega [2℄ { they all the systemLearn
mati. The entire proess of learning and using new proof methodsin Learn
mati onsists of the following steps:(i) The user hooses informative examples and gives them to
mega to beautomatially proved. Traes of these proofs are stored.(ii) Proof traes of typial examples are given to the learning mehanismwhih automatially learns so-alled method outlines.3

(iii) Method outlines are automatially enrihed by adding to them additionalinformation and performing searh for information that annot be reon-struted in order to get fully eshed proof methods that
mega an usein proofs of new theorems.The methods Learn
mati aims to learn are omplex and are beyondthe omplexity that an typially be takled in the �eld of mahine learning.Therefore, Learn
mati learns method outlines, whih are expressed in thefollowing language L, where P is a set of known identi�ers of primitive methodsused in a method that is being learnt:� for any p 2 P , let p 2 L,� for any l1; l2 2 L, let [l1; l2℄ 2 L,� for any l1; l2 2 L, let [l1jl2℄ 2 L,� for any l 2 L, let l� 2 L, � for any l 2 L and n 2 N, let ln 2 L,� for any list suh that all li 2 list arealso li 2 L, let T (list) 2 L.\[" and \℄" are auxiliary symbols used to separate subexpressions, \," denotesa sequene, \j" denotes a disjuntion, \�" denotes a repetition of a subexpres-sion any number of times (inluding 0), n a �xed number of times, and T isa onstrutor for a branhing point (list is a list of branhes), i.e., for proofswhih are not sequenes but branh into a tree. For more information on theexpressiveness of this language, the reader is referred to [9℄.Our learning tehnique onsiders some typially small number of positiveexamples whih are represented in terms of sequenes of identi�ers for prim-itive methods, and generalises them so that the learnt pattern is in languageL. The pattern is of smallest size with respet to a de�ned heuristi measureof size [9℄, whih essentially ounts the number of primitives in an expression.The pattern is also most spei� (or equivalently, least general) with respetto the de�nition of spei�ity spe. spe is measured in terms of the numberof nestings for eah part of the generalisation [9℄. Again, this is a heuristimeasure.The algorithm is based on the generalisation of the simultaneous om-pression of well-hosen examples. Here is just an abstrat desription of thelearning algorithm, but the detailed steps with examples of how they are ap-plied an be found in [9℄:(i) Split every example trae into sublists of all possible lengths.(ii) If there is any branhing in the examples, then reursively repeat thisalgorithm on every element of the list of branhes.(iii) For eah sublist in eah example �nd onseutive repetitions, i.e., pat-terns, and ompress them using exponent representation.(iv) Find ompressed patterns that math in all examples.(v) If there are no mathes in the previous step, then generalise the examples4

by joining them disjuntively.(vi) For every math, generalise di�erent exponents to a Kleene star, and thesame exponents to a onstant.(vii) For every mathing pattern in all examples, repeat the algorithm on bothsides of the pattern.(viii) Choose the generalisations with the smallest size and largest spei�ity.The learning algorithm is implemented in SML of NJ v.110. Its inputsare the sequenes of methods extrated from proofs. Its output are methodoutlines.2.2 Deision proeduresA theory T is deidable if there is an algorithm (whih we all a deisionproedure) suh that for an input T -sentene F , it returns true if and onlyif F is valid in T (i.e., T j= F) and returns false otherwise. The role ofdeision proedures is often very important in theorem proving (e.g., see [10℄).Deision proedures an redue the searh spae of heuristi omponents ofa prover and inrease its abilities. Deision proedures an usually be muhmore eÆient than some other proving strategies (e.g., indution). Thereare many deision proedures in standard use, inluding deision proeduresfor fragments of arithmetis, theories of lists, theory of equality et. Due toits importane in hardware and software veri�ation, deision proedures forfragments of arithmeti (like pra | Presburger Rational Arithmeti) are ofpartiular interest.Instead of using basi inferene rules, deision proedures are usually builtfrom some higher-level building bloks. We start with methods in the spiritof Bundy's proof plans for normalisation [5℄.We look at the ideas from Fourier-Motzkin's deision proedure [12℄ (whihis essentially the same as the well known implementation of Hodes' deisionproedure for Presburger arithmeti [6℄). Fourier-Motzkin's algorithm is adeision proedure for rational numbers, but it is also often used (beause ofits better eÆieny) as sound (but inomplete) proedure for the universalfragment of pia { Presburger Integer Arithmeti (see, for instane, [3℄).3 Building bloksWe use a simple stand-alone prolog implementation of a dedution systembased on the proof{planning paradigm, but it is simpli�ed as it does notrequire preonditions and postonditions of methods.Deision proedures an be implemented as ompat, optimised proeduresor they an be built from separate methods (some of whih an be general-purpose methods, i.e., methods used also within other proedures). The lat-5

ter approah often leads to additional overhead proessing and is thus lesseÆient. However, it is muh more exible and gives easily understandablealgorithms, and hene we use it in our programme.We use the following sorts of normalisation methods (in the spirit ofBundy's proof plans for normalisations [5℄):Remove is a normalisation method used to eliminate a ertain funtionsymbol, prediate symbol or a quanti�er from a formula. For instane, we aneliminate a onnetion) by exhaustive appliation of the following rewriterule: f1) f2 �! :f1 _ f2.Stratify is a normalisation method used to stratify a lass of formulae intotwo (or more) syntatial layers ontaining just some spei� prediate sym-bols, funtion symbols or onnetives. For instane, stratify puts a formulainto prenex normal form, moves negations inside disjuntions and onjun-tions, moves onjuntions inside disjuntions et.Thin is a normalisation method that exhaustively applies thinning rewriterules, suh as elimination of multiple negations: ::f �! f or elimination ofmultiple unary minus symbols: �� t �! t.Redue is a method that redues the number of ourrenes (to at mostone) of a ertain funtion symbol, prediate symbol or a onnetive in a for-mula. For instane, it redues the number of symbols > and ? in a formulabeing proved.Left Assoiation is one of the normalisation methods for reorganisationwithin a lass. If a syntatial lass ontains only one funtion symbol and ifthat funtion symbol is both binary and assoiative, then members of this lassan be put into left assoiative form. For instane, we an use this methodfor left assoiation of addition and multipliation (given the needed rewriterules).Poly-form is a method whih we will use for putting a formula into poly-nomial normal form. It uses rewrite rules suh as: i1 � i2 �! i3 where i1; i2; i3represent numbers and i1 � i2 = i3.Reorder is one of the methods for reorganisation within one syntatiallass. If a lass ontains only one funtion and if that funtion is ommutativeand assoiative, this method is used to reorder arguments within a term (whihis supposed to be in left assoiative form). We an use it to reorder argumentsin a term whih is in polynomial normal form or in a formula in disjuntivenormal form. This transformation requires an ordering on variables as anadditional devie.Collet is a method whih we will use to redue multiple ourrenes ofsome variable in a term.Isolate is a method whih we use to isolate a spei� variable in an atomiformula.The methods desribed above are general ones. Clearly, some theories may6

require more spei� methods. 4 However, even if all the neessary methods(general or theory-spei�) are available, it may still be very hallenging toombine them orretly into a required deision proedure.4 Generating solved examplesWe generated a set of solved examples in several stages: we generated a orpus,grouped and ordered the methods, ran brute fore searh for proofs and hosesolved examples.4.1 Generating orpusWe generated 1000 Presburger arithmeti onjetures by using the stohastiontext-free grammar 5 given in Table 1. The probabilities used were ho-sen ad-ho (a similar stohasti grammar was used in [11℄). We believe thathoosing di�erent probabilities would give similar �nal results to the ones wegot in this study. For simpliity, we generated only quanti�er-free formulae, 6and then took their universal losure.4.2 Searh for proofsWe implemented (in prolog) a simple mehanism for brute-fore searh forproofs of the given onjetures. The mehanism works as follows:� if the urrent formula is equal to > or ?, then stop the searh;� if the urrent list of applied methods exeeds the given limit, then stop thesearh;� try to apply one of the available methods to the urrent formula; if themethod hanges the urrent formula, add that method to the list of appliedmethods and try to prove the obtained (now new urrent) formula.If a urrent formula is transformed to > or ?, we onsider it solved and weall a sequene of applied methods a proof trae. We put the limit (100) for thenumber of applied methods in order to prevent in�nite loops in this searh.Some of the generated formulae were huge (one of them had 409 funtions4 For example, in order to learn the Fourier-Motzkin's proedure, we need a method whihperforms ross-multiply and add step [12℄ (see also x4.3).5 A stohasti ontext{free grammar is a ontext{free grammar with a stohasti ompo-nent whih attahes a probability to eah of the prodution rules and ontrols its use.6 Note that losed formulae without redundant quanti�ers annot be generated by aontext-free grammar. However, this restrition is not ritial. Namely, most quanti-�er elimination proedures (inluding the Fourier-Motzkin's proedure) eliminate universalquanti�ers by reduing them to existential quanti�ers. So, the learning proess would be thesame if we onsidered full Presburger arithmeti. Moreover, the learnt proedure (presentedin x5) is a deision proedure for full Presburger arithmeti.7

Rule Probability1. hformulai := hatomi formulai 0.52. hformulai := (: hformulai) 0.1253. hformulai := (hformulai _ hformulai) 0.1254. hformulai := (hformulai ^ hformulai) 0.1255. hformulai := (hformulai) hformulai) 0.1256. hatomi formulai := (htermi = htermi) 0.207. hatomi formulai := (htermi < htermi) 0.208. hatomi formulai := (htermi � htermi) 0.209. hatomi formulai := (htermi > htermi) 0.2010. hatomi formulai := (htermi � htermi) 0.2011. htermi := (htermi+ htermi) 0.2012. htermi := 1 0.2013. htermi := 0 0.2014. htermi := var 0.4015. hvari := x 0.3016. hvari := y 0.2517. hvari := z 0.2018. hvari := u 0.1519. hvari := v 0.10Table 1A stohasti grammar for the quanti�er-free fragment of Presburger arithmeti.symbols, prediate symbols and onnetives) so we also put a time limit forsolving eah onjeture. We used the time limit of 1 minute. 74.3 Grouping methods and ordering of methodsOn the basis of the generi normalisation methods disussed in x3, we imple-mented (in prolog) a set of arithmeti-spei� methods. We also added themethod for elimination of an existentially quanti�ed (and isolated) variablebased on Fourier-Motzkin's ross-multiply and add step [12℄. For the sake ofsimpliity, we grouped some of these methods (in a natural, expeted way),yielding the following set of 9 methods (some of them ompound):M1: remove)7 All modules were implemented in SWI Prolog; experiments were ran on a 64Mb PC466Mhz. All soure �les are available upon request from the authors.8

M2: remove 6=; >;<;�M3: adjust the innermost quanti�er (transforms 8xF to :9x:F)M4: stratify :s beneath _s and ^s; thin :, remove :M5: delete the innermost redundant quanti�er (ross-multiply and add step)M6: isolate the innermost variable (provided it is isolated in eah atomiformula)M7: stratify � beneath +, left-asso �, left-asso +, poly-formM8: stratify ^s beneath _s and eliminate the innermost variableM9: redue > and ?Despite having only 9 methods after grouping, a simple depth �rst searhover them does not always produe proofs, beause 9 methods still give a largesearh spae 8 and, more importantly, some rules anel eah other out, whihan lead to non-termination. Namely, most of the available methods onsistof sets of rewrite rules. Even though eah set of these sets of rewrite rulesis terminating (but not always onuent), the union of sets is not neessarilyterminating. Therefore, our set of methods is not terminating. Hene, in orderto simplify and diret searh, we also had to hange the ordering of methods.The two strategies just desribed, i.e., grouping and ordering, involve somehuman knowledge based on experiments in this ontext, and present a ontrolinformation for searh for proofs.Methods are tried on given goals in the following order: M1, M2, M3, M4, M5,M6, M7, M8, M9. This ordering is ad-ho and in our experiments we tried severalorderings. We hose this as the most appropriate one. Notie that the order-ing and grouping phase is not expeted to provide the termination argumentfor the learnt proedure. It an be viewed as a heuristi whih direts and im-proves the brute fore searh. Moreover, ordering and grouping an be helpfulwhen onsidering the properties (suh as termination and ompleteness) ofthe generated proedure (see x5).4.4 Running brute fore searh and hoosing examplesWe ran the desribed searh engine on the set of 1000 generated onjetures/examples. 76.8% of onjetures were solved (proved or disproved) by this en-gine; results are given in Table 2. Table 2 also shows how the perentage ofsolved examples dereases as the number of variables inreases. This is reason-able as the searh spae is rather big and the brute-fore searh is pratiallylost on very omplex onjetures.Having 768 solved examples, we needed to hoose the subset of exampleswhih would be used in the learning proess (well-hosen examples are essential8 The situation is even worse if we onsider low level inferene rules, rather than higherlevel methods (sine the proofs would be muh longer, and the searh spae would be muhlarger). 9

of variables 0 1 2 3 4 5 totaltotal 121 340 249 118 77 95 1000solved 121 301 189 77 45 35 768% solved 100 88.5 75.9 65.2 58.4 36.8 76.8longest trae 5 10 15 18 23 30 N/A# of examples with longest traes 6 8 10 4 5 2 35Table 2Results of the brute fore methodfor this phase of the programme). Good examples are demonstrative examples,i.e., the ones that involve as many methods as possible that should be in thedeision proedure that we are learning. But these methods should be usedin a onise way in good examples. The searh for a proof (given our set andordering of methods) stops as soon it reahes > or ?. Thus, the availableproofs are the shortest ones that the brute fore engine an �nd. Amongstsuh proofs of di�erent onjetures, we selet as the most illustrative anddesriptive proofs the longest ones. Namely, in some ases some methods(that form some parts of the proedure we are learning) leave ertain formulaeunder onsideration unhanged, but in other ases they transform (rewrite)them. So, suh methods must be onsidered in order for the system to learna (general) deision proedure. To learn suh piees of our sought proedureit was sensible to hoose examples that use as many of the relevant methodsas possible (i.e., examples that are the most diÆult and demanding, and nottrivial or easy ones). In other words, in a sense we hoose the longest amongstthe shortest proofs.Sine the number of variables has a ritial role in proving Presburgerarithmeti onjetures (the same holds for almost all theories), we separatedall solved examples into groups aording to the number of variables. Weonsidered formulae with 0, 1, 2, 3, 4 and 5 variables. From eah group weseleted the longest proof traes (see Table 2).Within the groups of formulae with 0, 1, and 2 variables all onjetureswith the longest proof traes had the same traes (respetively):[M1, M2, M4, M7, M9℄[M1, M2, M3, M4, M6, M8, M5, M4, M7, M9℄[M1, M2, M3, M4, M6, M8, M5, M3, M4, M6, M8, M5, M4, M7, M9℄Within the groups of formulae with 3 and 4 variables there were 4 and5 onjetures with the longest proof traes, but these traes were not equal(within eah respetive group). Sine it is not lear whih amongst these arethe most desriptive ones, we did not use them for learning. 9 Within the9 Namely, onsidering a possibly very omplex proedure, it is not likely that within 100010

group of formulae with 5 variables there were 2 onjetures with the (same)longest proof trae. Finally, we took the longest traes for formulae with 0, 1and 2 variables and put them into the learning mehanism.5 Learning and generating supermethodsFrom the given sequenes, the learning mehanism (desribed in x2.1) learntthe following general pattern: 10[M1;M2; [M3;M4;M6;M8;M5℄�;M4;M7;M9℄:We notie that in eah run of the loop ([M3;M4;M6;M8;M5℄�), one quan-ti�er is eliminated. Sine their number is �nite in any onjeture, this pro-ess eventually terminates. Provided that all the used primitive methods aresound, the generated supermethod is also sound. Provided the methods areomplete, then eah onjeture is transformed by the above supermethod to? or >, and hene, the learnt proedure is a deision proedure for pra.Although our proposed programme does not provide a guarantee about theproperties of a learnt proedure (suh as termination, soundness and om-pleteness), often these properties an be easily proved (as we an see in theabove informal disussion).6 Automati programming for learnt methodsWe implemented (in prolog) a system for automati generation of prologprediates on the basis of sequenes provided from the learning mehanism.The system supports all onstrutions that the Learn
mati system anmake (see x2.1), and an generate orresponding prolog ode. Given thesequene [M1;M2; [M3;M4;M6;M8;M5℄�;M4;M7;M9℄, our system gener-ated the following prolog ode (whih we �nally applied to the original setof onjetures):pa(Fa,FF):-method('M1',Fa,Fb),method('M2',Fb,F),pb(F,Fd),method('M4',Fd,Fe),method('M7',Fe,Ff),method('M9',Ff,FF).pb(Fa,FF) :-formulae we will have onjetures with 3, 4, 5,... variables whose proofs ontain all theneeded steps of the proedure in all iterations. Larger orpus would perhaps ontain suhonjetures (but then we may want to onsider more variables, so the problem remains).10As expeted, it turns out that if examples with 5 variables were used for learning as well,then this learnt pattern would still be the same.11

method('M3',Fa,Fb),method('M4',Fb,F),method('M6',F,Fd),method('M8',Fd,Fe),method('M5',Fe,Ff),pb(Ff,FF),!.pb(F,F).7 EvaluationGiven the learnt method and the generated prolog program, we ran it on theoriginal set of 1000 generated onjetures. While the brute fore method solved768 onjetures (within the given time limit), the learnt deision proeduresolved 991 onjetures (see Table 3). Nine unsolved examples had hundredsof symbols and the method had not failed to solve them, but exeeded thetime limit. For eah onjeture solved by the brute fore searh, we measuredthe speed-up when using the newly generated proedure (see Table 3). Theoverall speed-up average was 1.0619. However, the main gain from the learntproedure is in 223 onjetures that were not solved at all by the brute foremethod. We an see in Table 3 that the speed-up inreases as the numberof variables inreases. The speed-up for 5-variable ase would probably behigher if we used a higher time limit.# of variables 0 1 2 3 4 5 totaltotal 121 340 249 118 77 95 1000solved 121 340 249 118 77 86 991% solved 100 100 100 100 100 90.5 99.1speed-up 1 1.0001 1.0287 1.0990 1.4394 1.4181 1.0619Table 3Results of the learnt method8 Related workThe work presented in this paper uses the learning mehanism of Learn
mati,whih is related to the least general generalisation, and to some more reentwork on learning regular expressions, grammar inferene and sequene learn-ing [13℄. For details, see [9℄.Our work is related to ideas from [5℄. In Bundy's programme a deisionproedure should be synthesised given all needed rewrite rules and severalgeneral patterns for normalising formulae. Considering automati derivation12

of deision proedures our work is also related to work presented in [1℄ whihis aimed at deriving deision proedures using superposition.9 Conlusions and future workOur onlusion is that learning deision proedures is not an easy task (evenwhen all the needed primitive methods are given), but it is possible. It isdiÆult to have the proess of learning a omplex deision proedure fully au-tomated, so at some stages human interation and human help is needed. Wepresented a methodology onsisting of a number of steps, tehniques and ideas(inluding a mehanism for generating a orpus of onjetures, a ontrolledbrute fore searh, strategies for hoosing examples, learning mehanism, andthe system for automati programming based on the learnt sequenes). Au-tomation in this �eld is important as it an prevent human aws in analysingdeision proedures or in implementing them. We believe that this method-ology (and learning deision proedures in general) an be useful, espeiallyfor new or user de�ned theories. Here are some of the main lessons we learntduring the development of the proposed programme:� Despite the fat that the implementation of deision proedures based onautonomous, independent methods is less eÆient, we �nd that this ap-proah is exible and suitable for both analysing and synthesising deisionproedures.� Given a set of methods suÆient to solve any onjeture of a given theory,it is still not a trivial task to build a deision proedure for that theory. Thebrute fore searh an solve a number of onjetures, but it is diÆult tomake a brute fore searh omplete, eÆient and terminating (even whenall the building bloks are terminating).� Even if the idea of the required proedure is known and all the neessarybuilding bloks are available, it may still be a non-trivial task to orretlyimplement the proedure. Automati assistane in this an be very impor-tant.� In order to make a brute fore searh more eÆient, it is useful to providesome sort of ontrol information. We used grouping and ordering of methods(where it was sensible to do so). This task requires human assistane.� Having a number of solved examples, it is essential to make a good seletionof examples to be used in the learning proess. Our strategy was the follow-ing: we seleted the longest proofs among the shortest proofs found by thebrute fore searh. The rationale is that the most demanding onjeturesare the most illustrative ones for learning.� Provided that we have good examples and a hoie of good methods, thelearning mehanism an learn a deision proedure from just a few example13

proofs.� A system an be made whih for a given learnt proof sequene generates aorresponding implementation.� The learnt method outperforms the brute fore searh both in the numberof onjetures solved and in the pu time spent.� We believe that the methodology presented in this study is very well suitedto the proof planning paradigm (or its simpli�ed version, as desribed here),and an be applied to other environments as well.It is diÆult to provide a haraterisation of theories for whih the proposedapproah is suessful, sine some very deep theory-spei� knowledge may berequired. However, we an give a haraterisation of deision proedures whihannot be learnt: the proposed framework annot learn proedures whih an-not be expressed with the language used in Learn
mati. All other proe-dures an potentially be learnt. At the moment, Learn
mati overs a widerange of languages, while further extensions are under onsideration. Learningproedures expressed in another language would require that we replae in ourframework Learn
mati's learning mehanism with another one that usesthe desired language, but the other modules of our framework (e.g., generatingexamples, automati generation of ode from the learnt pattern) an remainunhanged. We also plan to extend the learning approah and the realm ofovered languages so that the mehanism ould learn reursive methods, whihwould enable automati learning of a new range of deision proedures.Another limitation of our proposed programme is that it may require non-trivial human assistane (e.g., in ordering and grouping). We plan to furtherdevelop our methodology and to try to automate (at least to some extent) thesteps whih now need human interation.A omparison between a diret implementation of the deision proedureand a learnt deision proedure would be interesting for further work. But thisis out of the sope of the present paper, as we are interested in a larger pitureof disovering new deision proedures, rather than in eÆient implementa-tions of the existing ones. Mehanised learning of existing deision proeduresis an important step towards mehanised learning and disovery of deisionproedures. In this sense, the work presented in this paper is an enouragingpreliminary step towards disovery. Our hope is that suh a framework willbe used as a useful assistant in suh a proess, and moreover, it will lead toautomati disovery of new deision proedures.Referenes[1℄ A. Armando, S. Ranise, and M. Rusinowith. Uniform Derivation of DeisionProedures by Superposition. CSL 15, LNCS 2142. Springer, 2001.14

[2℄ C. Benzm�uller et al.
mega: Towards a mathematial assistant. CADE 14,LNCS 1249, Springer, 1997.[3℄ R. S. Boyer and J S. Moore. Integrating Deision Proedures into HeuristiTheorem Provers: A Case Study of Linear Arithmeti. Mahine Intelligene11, 1988.[4℄ A. Bundy. The use of expliit plans to guide indutive proofs. CADE 9, LNCS310, Springer.[5℄ A. Bundy. The use of proof plans for normalization. In Essays in Honor ofWoody Bledsoe, Kluwer, 1991.[6℄ L. Hodes. Solving problems by formula manipulation in logi and linearinequalities. IJCAI 2, William Kaufmann, 1971.[7℄ M. Jamnik, M. Kerber, and M. Pollet. Automati learning in proof planning.ECAI 15, 2002.[8℄ M. Jamnik, M. Kerber, and M. Pollet. Learn
mati: System desription.CADE 18, LNCS 2392, Springer, 2002.[9℄ M. Jamnik, M. Kerber, M. Pollet, and C. Benzm�uller. Automati learningof proof methods in proof planning. Tehnial Report CSRP-02-5, Shool ofComputer Siene, University of Birmingham, 2002. Submitted to Journal ofAI.[10℄ Predrag Jani�i� and Alan Bundy. A general setting for the exible ombiningand augmenting deision proedures. Journal of Automated Reasoning, 28(3),2002.[11℄ Predrag Jani�i�, Ian Green, and Alan Bundy. A omparison of deisionproedures in Presburger arithmeti. LIRA '97, Univ. of Novi Sad, 1997.[12℄ J.-L. Lassez and M.J. Maher. On Fourier's algorithm for linear arithmetionstraints. Journal of Automated Reasoning, 9(3), 1992.[13℄ Sun, R., Giles, L., eds.: Sequene Learning: Paradigms, Algorithms, andAppliations. LNAI 1828, Springer, 2000.

15

	Introduction
	Background
	Automatic learning
	Decision procedures

	Building blocks
	Generating solved examples
	Generating corpus
	Search for proofs
	Grouping methods and ordering of methods
	Running brute force search and choosing examples

	Learning and generating supermethods
	Automatic programming for learnt methods
	Evaluation
	Related work
	Conclusions and future work
	References

