Can Decision Procedures be Learnt
Automatically?

Mateja Jamnik !+2

University of Cambridge Computer Laboratory
J.J. Thomson Avenue, Cambridge, CB3 OFD, England, UK
www.cl.cam.ac.uk/"mj201

Predrag Janicié¢?

Faculty of Mathematics, University of Belgrade, Studentski trg 16
11000 Belgrade, Serbia and Montenegro
www.matf.bg.ac.yu/"janicic

Abstract

In this paper we present an investigation into whether and how can decision proce-
dures be learnt automatically. Our approach consists of two stages. First, a refined
brute-force search procedure applies exhaustively a set of given elementary meth-
ods to try to solve a corpus of conjectures generated by a stochastic context-free
grammar. The successful proof traces are saved. In the second stage, a learning
algorithm (by Jamnik et al.) tries to extract a required supermethod (i.e., deci-
sion procedure) from the given traces. In the paper, this technique is applied to
elementary methods that encode the operations of the Fourier-Motzkin’s decision
procedure for Presburger arithmetic on rational numbers. The results of our exper-
iment are encouraging.

1 Introduction

Learning proof methods and programs is a challenging task. Jamnik and
colleagues [7] devised a framework for proof planning [4] systems where new

! The first author was supported by the EPSRC Advanced Research Fellowship, and the
second author was supported by EPSRC grant GR/R52954/01 and by the Serbian Ministry
of Science research grant 1379.

2 Email: mateja.jamnik@cl.cam.ac.uk

3 Email: janicic@matf.bg.ac.yu

Preprint submitted to Elsevier Preprint 15 May 2003

proof methods can be learnt automatically (the implementation of this frame-
work is called LEARNQMATIC [8]). In this approach, a proof planning system
is used to construct examples of proofs that use similar reasoning patterns.
These proofs consist of low level inference steps or proof methods that are
available to the system initially. The goal is to learn a procedure which uses
these methods in some structured and efficient way. In order to learn such a
procedure, a series of example proofs is generated automatically. The traces
of example proofs are then fed into the learning mechanism which learns the
so-called method outline, which captures the pattern common to all of the
example proofs. Finally, the representation of a learnt method outline is en-
riched into a fully fleshed proof method so that it can be used by a specific
proof planning system of choice. Such a learnt proof method is then used in
subsequent proof planning attempts for other conjectures.

In this paper, we discuss how the learning approach in LEARNQMATIC (for
background, see §2.7) can be extended and used for a wider range of domains
and procedures. In particular, we apply LEARNQMATIC to developing deci-
sion procedures (for background, see §22). This is a challenging task as the
learnt method should be terminating, sound and complete. Learning decision
procedures automatically would be beneficial for a reasoning system, espe-
cially for user defined theories or when for some theory a decision procedure
is not available. So, our main motivation is a mechanisation of learning and
discovery of new decision procedures (while learning existing decision proce-
dures serves as an illustration of an important step towards the final goal).
Learning new decision procedures automatically can reduce the time required
for developing them, it can prevent human implementation flaws, and presents
a generic approach (that is independent of the theory) to generating decision
procedures. We propose the programme and demonstrate how it can yield one
specific procedure — Fourier-Motzkin’s decision procedure [I2] (the proposed
framework can, of course, be used for other proof methods as well).

While our larger aim is to discover new procedures, we start by learning an
existing procedure. This is a difficult task, since even if the idea of the required
procedure is know and all the building blocks are available, it is still very
challenging to combine them correctly into the require decision procedure. Our
framework does not provide full automation (or guarantees formal properties,
such as termination), however, it can be used as a very useful mechanised
assistant. The user needs to provide the necessary building blocks and also
some guidance to refine the brute force search according to the specific theory,
in order to construct examples for automatic learning which generates the
decision procedure.

In the research presented in this paper, we used the system LEARNQMATIC [§],
while all other discussed/used algorithms and modules were newly developed
(and serve as an extension to LEARNSQIMATIC).

Our programme (which also reflects the structure of this paper) consists
of the following steps (we illustrate our approach with the example of linear
arithmetic and the Fourier-Motzkin’s procedure):

¢ the methods that can make up a decision procedure are provided (§3]);

* the examples of proofs using the given methods are constructed (§l); this
requires:

- a number of conjectures is generated randomly (El);

- implementing a simple PROLOG deduction system (which essentially car-
ries out a brute force search) that applies the given methods (E2));

- grouping and ordering of methods to direct the brute force search and
to prevent non-termination in the process of generating proof examples
(E3);

- all example proofs are divided into groups according to a number of vari-
ables; from each group the most illustrative proofs are taken; all these
selected proofs make the learning set (4.

* the selected example proofs are input into the learning mechanism which
learns a procedure that captures the pattern of reasoning employed in all of
the example proofs (§H);

* on the basis of the learnt pattern, a PROLOG mechanism automatically
generates a corresponding supermethod (also in PROLOG), which is our
required decision procedure (§l);

* the learnt procedure is tested on the original set of examples (§).

We finish the paper with a brief discussion of related work in §8 and
conclusions and future directions in §0l

2 Background

2.1 Automatic learning

Jamnik et al [7] devised a framework within which a proof planning [sys-
tem can learn frequently occurring patterns of reasoning automatically from a
number of typical examples, and then use them in proving new theorems [9].
The availability of such patterns, captured as proof methods in a proof plan-
ning system, reduces search and proof length. Jamnik et al implemented this
learning framework for the proof planner QMEGA [2] — they call the system
LEARNQMATIC. The entire process of learning and using new proof methods
in LEARNQMATIC consists of the following steps:

(i) The user chooses informative examples and gives them to {2MEGA to be
automatically proved. Traces of these proofs are stored.

(ii) Proof traces of typical examples are given to the learning mechanism
which automatically learns so-called method outlines.

(iii) Method outlines are automatically enriched by adding to them additional
information and performing search for information that cannot be recon-
structed in order to get fully fleshed proof methods that QMEGA can use
in proofs of new theorems.

The methods LEARNQ2MATIC aims to learn are complex and are beyond
the complexity that can typically be tackled in the field of machine learning.
Therefore, LEARNQMATIC learns method outlines, which are expressed in the
following language L, where P is a set of known identifiers of primitive methods
used in a method that is being learnt:

o forany pe P, let p € L, e forany l € L and n € N, let [" € L,
o for any ly,ly € L, let [l1,15] € L, for any list such that all [; € list are
e for any I, ls € L, let [|ls] € L, also l; € L, let T(list) € L.

o forany l € L, let I* € L,

“I” and “]” are auxiliary symbols used to separate subexpressions, “,” denotes
a sequence, “|” denotes a disjunction, “x” denotes a repetition of a subexpres-
sion any number of times (including 0), n a fixed number of times, and T is
a constructor for a branching point (list is a list of branches), i.e., for proofs
which are not sequences but branch into a tree. For more information on the
expressiveness of this language, the reader is referred to [9].

Our learning technique considers some typically small number of positive
examples which are represented in terms of sequences of identifiers for prim-
itive methods, and generalises them so that the learnt pattern is in language
L. The pattern is of smallest size with respect to a defined heuristic measure
of size [9], which essentially counts the number of primitives in an expression.
The pattern is also most specific (or equivalently, least general) with respect
to the definition of specificity spec. spec is measured in terms of the number
of nestings for each part of the generalisation [9]. Again, this is a heuristic
measure.

The algorithm is based on the generalisation of the simultaneous com-
pression of well-chosen examples. Here is just an abstract description of the
learning algorithm, but the detailed steps with examples of how they are ap-
plied can be found in [9]:

(i) Split every example trace into sublists of all possible lengths.

(ii) If there is any branching in the examples, then recursively repeat this
algorithm on every element of the list of branches.

(iii) For each sublist in each example find consecutive repetitions, i.e., pat-
terns, and compress them using exponent representation.

(iv) Find compressed patterns that match in all examples.

(v) If there are no matches in the previous step, then generalise the examples

by joining them disjunctively.
(vi) For every match, generalise different exponents to a Kleene star, and the
same exponents to a constant.

(vii) For every matching pattern in all examples, repeat the algorithm on both
sides of the pattern.

(viii) Choose the generalisations with the smallest size and largest specificity.

The learning algorithm is implemented in SML of NJ v.110. Its inputs
are the sequences of methods extracted from proofs. Its output are method
outlines.

2.2 Decision procedures

A theory T is decidable if there is an algorithm (which we call a decision
procedure) such that for an input T-sentence F', it returns true if and only
if Fis valid in 7 (i.e., T | F) and returns false otherwise. The role of
decision procedures is often very important in theorem proving (e.g., see [I0]).
Decision procedures can reduce the search space of heuristic components of
a prover and increase its abilities. Decision procedures can usually be much
more efficient than some other proving strategies (e.g., induction). There
are many decision procedures in standard use, including decision procedures
for fragments of arithmetics, theories of lists, theory of equality etc. Due to
its importance in hardware and software verification, decision procedures for
fragments of arithmetic (like PRA — Presburger Rational Arithmetic) are of
particular interest.

Instead of using basic inference rules, decision procedures are usually built
from some higher-level building blocks. We start with methods in the spirit
of Bundy’s proof plans for normalisation [5].

We look at the ideas from Fourier-Motzkin’s decision procedure [12] (which
is essentially the same as the well known implementation of Hodes’ decision
procedure for Presburger arithmetic [6]). Fourier-Motzkin’s algorithm is a
decision procedure for rational numbers, but it is also often used (because of
its better efficiency) as sound (but incomplete) procedure for the universal
fragment of PIA — Presburger Integer Arithmetic (see, for instance, [3]).

3 Building blocks

We use a simple stand-alone PROLOG implementation of a deduction system
based on the proof-planning paradigm, but it is simplified as it does not
require preconditions and postconditions of methods.

Decision procedures can be implemented as compact, optimised procedures
or they can be built from separate methods (some of which can be general-
purpose methods, i.e., methods used also within other procedures). The lat-

ter approach often leads to additional overhead processing and is thus less
efficient. However, it is much more flexible and gives easily understandable
algorithms, and hence we use it in our programme.

We use the following sorts of normalisation methods (in the spirit of
Bundy’s proof plans for normalisations [5]):

Remove is a normalisation method used to eliminate a certain function
symbol, predicate symbol or a quantifier from a formula. For instance, we can
eliminate a connection = by exhaustive application of the following rewrite
rule: f1 = fQ — _|f1 V fQ.

Stratify is a normalisation method used to stratify a class of formulae into
two (or more) syntactical layers containing just some specific predicate sym-
bols, function symbols or connectives. For instance, stratify puts a formula
into prenex normal form, moves negations inside disjunctions and conjunc-
tions, moves conjunctions inside disjunctions etc.

Thin is a normalisation method that exhaustively applies thinning rewrite
rules, such as elimination of multiple negations: =—f — f or elimination of
multiple unary minus symbols: — — ¢ — t.

Reduce is a method that reduces the number of occurrences (to at most
one) of a certain function symbol, predicate symbol or a connective in a for-
mula. For instance, it reduces the number of symbols T and L in a formula
being proved.

Left Association is one of the normalisation methods for reorganisation
within a class. If a syntactical class contains only one function symbol and if
that function symbol is both binary and associative, then members of this class
can be put into left associative form. For instance, we can use this method
for left association of addition and multiplication (given the needed rewrite
rules).

Poly-form is a method which we will use for putting a formula into poly-
nomial normal form. It uses rewrite rules such as: i; - iy —> i3 where iy, 1o, i3
represent numbers and 7 - iy = 3.

Reorder is one of the methods for reorganisation within one syntactical
class. If a class contains only one function and if that function is commutative
and associative, this method is used to reorder arguments within a term (which
is supposed to be in left associative form). We can use it to reorder arguments
in a term which is in polynomial normal form or in a formula in disjunctive
normal form. This transformation requires an ordering on variables as an
additional device.

Collect is a method which we will use to reduce multiple occurrences of
some variable in a term.

Isolate is a method which we use to isolate a specific variable in an atomic
formula.

The methods described above are general ones. Clearly, some theories may

require more specific methods [4] However, even if all the necessary methods
(general or theory-specific) are available, it may still be very challenging to
combine them correctly into a required decision procedure.

4 Generating solved examples

We generated a set of solved examples in several stages: we generated a corpus,
grouped and ordered the methods, ran brute force search for proofs and chose
solved examples.

4.1 Generating corpus

We generated 1000 Presburger arithmetic conjectures by using the stochastic
context-free gramma given in Table [The probabilities used were cho-
sen ad-hoc (a similar stochastic grammar was used in [TT]). We believe that
choosing different probabilities would give similar final results to the ones we
got in this study. For simplicity, we generated only quantifier-free formulae@
and then took their universal closure.

4.2 Search for proofs

We implemented (in PROLOG) a simple mechanism for brute-force search for
proofs of the given conjectures. The mechanism works as follows:

e if the current formula is equal to T or L, then stop the search;

* if the current list of applied methods exceeds the given limit, then stop the
search;

* try to apply one of the available methods to the current formula; if the
method changes the current formula, add that method to the list of applied
methods and try to prove the obtained (now new current) formula.

If a current formula is transformed to T or L, we consider it solved and we
call a sequence of applied methods a proof trace. We put the limit (100) for the
number of applied methods in order to prevent infinite loops in this search.
Some of the generated formulae were huge (one of them had 409 functions

4 For example, in order to learn the Fourier-Motzkin’s procedure, we need a method which
performs cross-multiply and add step [12] (see also §3).

5 A stochastic context—free grammar is a context—free grammar with a stochastic compo-
nent which attaches a probability to each of the production rules and controls its use.

6 Note that closed formulae without redundant quantifiers cannot be generated by a
context-free grammar. However, this restriction is not critical. Namely, most quanti-
fier elimination procedures (including the Fourier-Motzkin’s procedure) eliminate universal
quantifiers by reducing them to existential quantifiers. So, the learning process would be the
same if we considered full Presburger arithmetic. Moreover, the learnt procedure (presented
in §f) is a decision procedure for full Presburger arithmetic.

| Rule Probability
1. | (formula) := (atomic formula) 0.5
2. | (formula) := (= (formula)) 0.125
3. | (formula) := ((formula) V (formula}) 0.125
4. | (formula) := ((formula) A (formula}) 0.125
5. | (formula) := ((formula) = (formula)) 0.125
6. | (atomic formula) := ({(term) = (term)) 0.20
7. | (atomic formula) := ({term) < (term)) 0.20
8. | (atomic formula) := ({term) < (term)) 0.20
9. | (atomic formula) := ((term) > (term)) 0.20
10. | (atomic formula) := ({term) > (term)) 0.20
11. | (term) := ((term) + (term)) 0.20
12. | (term) :=1 0.20
13. | (term) := 0.20
14. | (term) := var 0.40
15. | (var) := 0.30
16. | (var) := 0.25
17. | (var) := 0.20
18. | (var) := 0.15
19. | (var) := 0.10

Table 1
A stochastic grammar for the quantifier-free fragment of Presburger arithmetic.

symbols, predicate symbols and connectives) so we also put_a time limit for
solving each conjecture. We used the time limit of 1 minute[7]

4.3 Grouping methods and ordering of methods

On the basis of the generic normalisation methods discussed in §3, we imple-
mented (in PROLOG) a set of arithmetic-specific methods. We also added the
method for elimination of an existentially quantified (and isolated) variable
based on Fourier-Motzkin’s cross-multiply and add step [12]. For the sake of
simplicity, we grouped some of these methods (in a natural, expected way),
yielding the following set of 9 methods (some of them compound):

M1: remove =

7 All modules were implemented in SWI Prolog; experiments were ran on a 64Mb PC
466Mhz. All source files are available upon request from the authors.

M2: remove #,>, <, >

M3: adjust the innermost quantifier (transforms VzF' to ~3z—F)

M4: stratify —s beneath Vs and As; thin -, remove —

M5: delete the innermost redundant quantifier (cross-multiply and add step)

M6: isolate the innermost variable (provided it is isolated in each atomic
formula)

M7: stratify - beneath +, left-assoc -, left-assoc +, poly-form

M8: stratify As beneath Vs and eliminate the innermost variable

M9: reduce T and L

Despite having only 9 methods after grouping, a simple depth first search
over them does not always produce proofs, because 9 methods still give a large
search spac and, more importantly, some rules cancel each other out, which
can lead to non-termination. Namely, most of the available methods consist
of sets of rewrite rules. Even though each set of these sets of rewrite rules
is terminating (but not always confluent), the union of sets is not necessarily
terminating. Therefore, our set of methods is not terminating. Hence, in order
to simplify and direct search, we also had to change the ordering of methods.

The two strategies just described, i.e., grouping and ordering, involve some
human knowledge based on experiments in this context, and present a control
information for search for proofs.

Methods are tried on given goals in the following order: M1, M2, M3, M4, M5,
M6, M7, M8, M9. This ordering is ad-hoc and in our experiments we tried several
orderings. We chose this as the most appropriate one. Notice that the order-
ing and grouping phase is not expected to provide the termination argument
for the learnt procedure. It can be viewed as a heuristic which directs and im-
proves the brute force search. Moreover, ordering and grouping can be helpful
when considering the properties (such as termination and completeness) of
the generated procedure (see §Hl).

4.4 Running brute force search and choosing examples

We ran the described search engine on the set of 1000 generated conjectures/
examples. 76.8% of conjectures were solved (proved or disproved) by this en-
gine; results are given in Table Pl Table B also shows how the percentage of
solved examples decreases as the number of variables increases. This is reason-
able as the search space is rather big and the brute-force search is practically
lost on very complex conjectures.

Having 768 solved examples, we needed to choose the subset of examples
which would be used in the learning process (well-chosen examples are essential

8 The situation is even worse if we consider low level inference rules, rather than higher
level methods (since the proofs would be much longer, and the search space would be much
larger).

of variables 0 1 2 3 4 5 total

total 121 | 340 | 249 | 118 | 77 | 95 | 1000
solved 121 | 301 | 189 | 77 | 45 | 35 | 768

% solved 100 | 88.5 | 75.9 | 65.2 | 58.4 | 36.8 | 76.8
longest trace 5 10 15 18 23 30 | N/A

of examples with longest traces | 6 8 10 4 5 2 35

Table 2
Results of the brute force method

for this phase of the programme). Good examples are demonstrative examples,
i.e., the ones that involve as many methods as possible that should be in the
decision procedure that we are learning. But these methods should be used
in a concise way in good examples. The search for a proof (given our set and
ordering of methods) stops as soon it reaches T or L. Thus, the available
proofs are the shortest ones that the brute force engine can find. Amongst
such proofs of different conjectures, we select as the most illustrative and
descriptive proofs the longest ones. Namely, in some cases some methods
(that form some parts of the procedure we are learning) leave certain formulae
under consideration unchanged, but in other cases they transform (rewrite)
them. So, such methods must be considered in order for the system to learn
a (general) decision procedure. To learn such pieces of our sought procedure
it was sensible to choose examples that use as many of the relevant methods
as possible (i.e., examples that are the most difficult and demanding, and not
trivial or easy ones). In other words, in a sense we choose the longest amongst
the shortest proofs.

Since the number of variables has a critical role in proving Presburger
arithmetic conjectures (the same holds for almost all theories), we separated
all solved examples into groups according to the number of variables. We
considered formulae with 0, 1, 2, 3, 4 and 5 variables. From each group we
selected the longest proof traces (see Table B).

Within the groups of formulae with 0, 1, and 2 variables all conjectures
with the longest proof traces had the same traces (respectively):

M1, M2, M4, M7, M9]

(M1, M2, M3, M4, M6, M8, M5, M4, M7, M9]

[M1, M2, M3, M4, M6, M8, M5, M3, M4, M6, M8, M5, M4, M7, M9]

Within the groups of formulae with 3 and 4 variables there were 4 and
5 conjectures with the longest proof traces, but these traces were not equal
(within each respective group). Since it is not clear which amongst these are
the most descriptive ones, we did not use them for learningl’] Within the

9 Namely, considering a possibly very complex procedure, it is not likely that within 1000

10

group of formulae with 5 variables there were 2 conjectures with the (same)
longest proof trace. Finally, we took the longest traces for formulae with 0, 1
and 2 variables and put them into the learning mechanism.

5 Learning and generating supermethods

From the given sequences, the learning mechanism (described in §Z7I) learnt
the following general pattern:

(M1, M2,[M3, M4, M6, M8, M5]*, M4, M7, M9).

We notice that in each run of the loop ([M3, M4, M6, M8, M5]*), one quan-
tifier is eliminated. Since their number is finite in any conjecture, this pro-
cess eventually terminates. Provided that all the used primitive methods are
sound, the generated supermethod is also sound. Provided the methods are
complete, then each conjecture is transformed by the above supermethod to
1L or T, and hence, the learnt procedure is a decision procedure for PRA.
Although our proposed programme does not provide a guarantee about the
properties of a learnt procedure (such as termination, soundness and com-
pleteness), often these properties can be easily proved (as we can see in the
above informal discussion).

6 Automatic programming for learnt methods

We implemented (in PROLOG) a system for automatic generation of PROLOG
predicates on the basis of sequences provided from the learning mechanism.
The system supports all constructions that the LEARNQMATIC system can
make (see §ZTI), and can generate corresponding PROLOG code. Given the
sequence [M1, M2,[M3, M4, M6, M8, M5|*, M4, M7, M9], our system gener-
ated the following PROLOG code (which we finally applied to the original set
of conjectures):

pa(Fa,FF):-

method(’M1’,Fa,Fb),

method (’M2’,Fb,Fc),

pb(Fc,Fd),

method(’M4’ ,Fd,Fe),

method (’M7°’ ,Fe,Ff),

method (’M9’ ,Ff,FF).

pb(Fa,FF) :-

formulae we will have conjectures with 3, 4, 5,... variables whose proofs contain all the
needed steps of the procedure in all iterations. Larger corpus would perhaps contain such
conjectures (but then we may want to consider more variables, so the problem remains).
10 A5 expected, it turns out that if examples with 5 variables were used for learning as well,
then this learnt pattern would still be the same.

11

method (’M3’,Fa,Fb),
method(’M4’ ,Fb,Fc),
method (’M6’ ,Fc,Fd),
method (’M8’ ,Fd,Fe),
method (’M5’ ,Fe,Ff),
pb(F£,FF), !.
pb(F,F).

7 Evaluation

Given the learnt method and the generated PROLOG program, we ran it on the
original set of 1000 generated conjectures. While the brute force method solved
768 conjectures (within the given time limit), the learnt decision procedure
solved 991 conjectures (see Table Bl). Nine unsolved examples had hundreds
of symbols and the method had not failed to solve them, but exceeded the
time limit. For each conjecture solved by the brute force search, we measured
the speed-up when using the newly generated procedure (see Table Bl). The
overall speed-up average was 1.0619. However, the main gain from the learnt
procedure is in 223 conjectures that were not solved at all by the brute force
method. We can see in Table B that the speed-up increases as the number
of variables increases. The speed-up for 5-variable case would probably be
higher if we used a higher time limit.

of variables | 0 1 2 3 4 5 total
total 121 | 340 249 118 7 95 1000
solved 121 | 340 249 118 7 86 991

% solved 100 100 100 100 100 90.5 99.1
speed-up 1 1.0001 | 1.0287 | 1.0990 | 1.4394 | 1.4181 | 1.0619
Table 3

Results of the learnt method

8 Related work

The work presented in this paper uses the learning mechanism of LEARN{MATIC,
which is related to the least general generalisation, and to some more recent
work on learning regular expressions, grammar inference and sequence learn-
ing [13]. For details, see [9].

Our work is related to ideas from [B]. In Bundy’s programme a decision
procedure should be synthesised given all needed rewrite rules and several
general patterns for normalising formulae. Considering automatic derivation

12

of decision procedures our work is also related to work presented in [I] which
is aimed at deriving decision procedures using superposition.

9 Conclusions and future work

Our conclusion is that learning decision procedures is not an easy task (even
when all the needed primitive methods are given), but it is possible. It is
difficult to have the process of learning a complex decision procedure fully au-
tomated, so at some stages human interaction and human help is needed. We
presented a methodology consisting of a number of steps, techniques and ideas
(including a mechanism for generating a corpus of conjectures, a controlled
brute force search, strategies for choosing examples, learning mechanism, and
the system for automatic programming based on the learnt sequences). Au-
tomation in this field is important as it can prevent human flaws in analysing
decision procedures or in implementing them. We believe that this method-
ology (and learning decision procedures in general) can be useful, especially
for new or user defined theories. Here are some of the main lessons we learnt
during the development of the proposed programme:

e Despite the fact that the implementation of decision procedures based on
autonomous, independent methods is less efficient, we find that this ap-
proach is flexible and suitable for both analysing and synthesising decision
procedures.

» Given a set of methods sufficient to solve any conjecture of a given theory,
it is still not a trivial task to build a decision procedure for that theory. The
brute force search can solve a number of conjectures, but it is difficult to
make a brute force search complete, efficient and terminating (even when
all the building blocks are terminating).

e Even if the idea of the required procedure is known and all the necessary
building blocks are available, it may still be a non-trivial task to correctly
implement the procedure. Automatic assistance in this can be very impor-
tant.

e In order to make a brute force search more efficient, it is useful to provide
some sort of control information. We used grouping and ordering of methods
(where it was sensible to do so). This task requires human assistance.

* Having a number of solved examples, it is essential to make a good selection
of examples to be used in the learning process. Our strategy was the follow-
ing: we selected the longest proofs among the shortest proofs found by the
brute force search. The rationale is that the most demanding conjectures
are the most illustrative ones for learning.

* Provided that we have good examples and a choice of good methods, the
learning mechanism can learn a decision procedure from just a few example

13

proofs.

e A system can be made which for a given learnt proof sequence generates a
corresponding implementation.

e The learnt method outperforms the brute force search both in the number
of conjectures solved and in the CPU time spent.

* We believe that the methodology presented in this study is very well suited
to the proof planning paradigm (or its simplified version, as described here),
and can be applied to other environments as well.

It is difficult to provide a characterisation of theories for which the proposed
approach is successful, since some very deep theory-specific knowledge may be
required. However, we can give a characterisation of decision procedures which
cannot be learnt: the proposed framework cannot learn procedures which can-
not be expressed with the language used in LEARNQMATIC. All other proce-
dures can potentially be learnt. At the moment, LEARN{2MATIC covers a wide
range of languages, while further extensions are under consideration. Learning
procedures expressed in another language would require that we replace in our
framework LEARN(2MATIC’s learning mechanism with another one that uses
the desired language, but the other modules of our framework (e.g., generating
examples, automatic generation of code from the learnt pattern) can remain
unchanged. We also plan to extend the learning approach and the realm of
covered languages so that the mechanism could learn recursive methods, which
would enable automatic learning of a new range of decision procedures.

Another limitation of our proposed programme is that it may require non-
trivial human assistance (e.g., in ordering and grouping). We plan to further
develop our methodology and to try to automate (at least to some extent) the
steps which now need human interaction.

A comparison between a direct implementation of the decision procedure
and a learnt decision procedure would be interesting for further work. But this
is out of the scope of the present paper, as we are interested in a larger picture
of discovering new decision procedures, rather than in efficient implementa-
tions of the existing ones. Mechanised learning of existing decision procedures
is an important step towards mechanised learning and discovery of decision
procedures. In this sense, the work presented in this paper is an encouraging
preliminary step towards discovery. Our hope is that such a framework will
be used as a useful assistant in such a process, and moreover, it will lead to
automatic discovery of new decision procedures.

References

[1] A. Armando, S. Ranise, and M. Rusinowitch. Uniform Derivation of Decision
Procedures by Superposition. CSL 15, LNCS 2142. Springer, 2001.

14

[2] C. Benzmiiller et al. Q2MEGA: Towards a mathematical assistant. CADE 14,
LNCS 1249, Springer, 1997.

[3] R. S. Boyer and J S. Moore. Integrating Decision Procedures into Heuristic
Theorem Provers: A Case Study of Linear Arithmetic. Machine Intelligence
11, 1988.

[4] A. Bundy. The use of explicit plans to guide inductive proofs. CADE 9, LNCS
310, Springer.

[5] A. Bundy. The use of proof plans for normalization. In Essays in Honor of
Woody Bledsoe, Kluwer, 1991.

[6] L. Hodes. Solving problems by formula manipulation in logic and linear
inequalities. IJCAT 2, William Kaufmann, 1971.

[7] M. Jamnik, M. Kerber, and M. Pollet. Automatic learning in proof planning.
ECAI 15, 2002.

[8] M. Jamnik, M. Kerber, and M. Pollet. LEARNQMATIC: System description.
CADE 18, LNCS 2392, Springer, 2002.

[9] M. Jamnik, M. Kerber, M. Pollet, and C. Benzmiiller. Automatic learning
of proof methods in proof planning. Technical Report CSRP-02-5, School of
Computer Science, University of Birmingham, 2002. Submitted to Journal of
Al

[10] Predrag Jani¢i¢ and Alan Bundy. A general setting for the flexible combining
and augmenting decision procedures. Journal of Automated Reasoning, 28(3),
2002.

[11] Predrag Jani¢ié, Tan Green, and Alan Bundy. A comparison of decision
procedures in Presburger arithmetic. LIRA 97, Univ. of Novi Sad, 1997.

[12] J.-L. Lassez and M.J. Maher. On Fourier’s algorithm for linear arithmetic
constraints. Journal of Automated Reasoning, 9(3), 1992.

[13] Sun, R., Giles, L., eds.: Sequence Learning: Paradigms, Algorithms, and
Applications. LNAT 1828, Springer, 2000.

15

	Introduction
	Background
	Automatic learning
	Decision procedures

	Building blocks
	Generating solved examples
	Generating corpus
	Search for proofs
	Grouping methods and ordering of methods
	Running brute force search and choosing examples

	Learning and generating supermethods
	Automatic programming for learnt methods
	Evaluation
	Related work
	Conclusions and future work
	References

