
Ele
troni
 Notes in Theoreti
al Computer S
ien
e 86 No. 1 (2003)URL: http://www.elsevier.nl/lo
ate/ent
s/volume86.html 16 pagesLearning Strategies for Me
hanised Building ofDe
ision Pro
eduresMateja Jamnik 1;2University of Cambridge Computer LaboratoryJ.J. Thomson Avenue, Cambridge, CB3 0FD, England, UKwww.
l.
am.a
.uk/~mj201Predrag Jani�
i�
 1;3Fa
ulty of Mathemati
s, University of Belgrade, Studentski trg 1611000 Belgrade, Serbia and Montenegrowww.matf.bg.a
.yu/~jani
i
Abstra
tIn this paper we present an investigation into whether and how de
ision pro
e-dures
an be learnt and built automati
ally. Our approa
h
onsists of two stages.First, a re�ned brute-for
e sear
h pro
edure applies exhaustively a set of given ele-mentary methods to try to solve a
orpus of
onje
tures generated by a sto
hasti

ontext-free grammar. The su

essful proof tra
es are saved. In the se
ond stage, alearning algorithm (by Jamnik et al.) tries to extra
t a required supermethod (i.e.,de
ision pro
edure) from the given tra
es. In the paper, this te
hnique is appliedto elementary methods that en
ode the operations of the Fourier-Motzkin's de
i-sion pro
edure for Presburger arithmeti
 on rational numbers. The results of ourexperiment are en
ouraging.1 Introdu
tionLearning proof methods and programs is a
hallenging task. Jamnik and
ol-leagues [7℄ devised a framework for proof planning [4℄ systems where new proofmethods
an be learnt automati
ally (the implementation of this framework is
alled Learn
mati
 [8℄). In this approa
h, a proof planning system is used to1 The �rst author was supported by the EPSRC Advan
ed Resear
h Fellowship, and these
ond author was supported partly by EPSRC grant GR/R52954/01 and partly by theSerbian Ministry of S
ien
e resear
h grant 1379.2 Email: mateja.jamnik�
l.
am.a
.uk3 Email: jani
i
�matf.bg.a
.yu

2003 Published by Elsevier S
ien
e B. V.

Mateja Jamnik and Predrag Jani�
i�

onstru
t examples of proofs that use similar reasoning patterns. These proofs
onsist of low level inferen
e steps or proof methods that are available to thesystem initially. The goal is to learn a pro
edure whi
h uses these methods insome stru
tured and eÆ
ient way. In order to learn su
h a pro
edure, a seriesof example proofs is generated automati
ally. The tra
es of example proofsare then fed into the learning me
hanism whi
h learns the so-
alled methodoutline, whi
h
aptures the pattern
ommon to all of the example proofs. Fi-nally, the representation of a learnt method outline is enri
hed into a fullyspe
i�ed proof method so that it
an be used by a spe
i�
 proof planningsystem of
hoi
e. Su
h a learnt proof method is then used in subsequent proofplanning attempts for other
onje
tures.In this paper, we dis
uss how the learning approa
h in Learn
mati
 (forba
kground, see x2.1)
an be extended and used for a wider range of domainsand pro
edures. In parti
ular, we apply Learn
mati
 to developing de
isionpro
edures (for ba
kground, see x2.2). This is a
hallenging task as the learntmethod should be terminating, sound and
omplete. Building de
ision pro-
edures automati
ally would be bene�
ial for a reasoning system, espe
iallyfor user de�ned theories or when for some theory a de
ision pro
edure is notavailable. So, our main motivation is a me
hanisation of building and dis-
overy of new de
ision pro
edures (while learning existing de
ision pro
eduresserves as an illustration of an important step towards the �nal goal). Learn-ing new de
ision pro
edures automati
ally
an redu
e the time required fordeveloping them, it
an prevent human implementation
aws, and presents ageneri
 approa
h (that is independent of the theory) to generating de
isionpro
edures. We propose the programme and demonstrate how it
an yield onespe
i�
 pro
edure | Fourier-Motzkin's de
ision pro
edure [12℄ (the proposedframework
an, of
ourse, be used for other proof methods as well).While our larger aim is to dis
over new pro
edures, we start by learningan existing pro
edure. This is a diÆ
ult task, sin
e even if the idea of therequired pro
edure is known and all the building blo
ks are available, it isstill very
hallenging to
ombine them
orre
tly into the required de
isionpro
edure. Our framework does not provide full automation (or guaranteedformal properties, su
h as termination, soundness and
ompleteness), however,it
an be used as a very useful me
hanised assistant. The user needs to providethe ne
essary building blo
ks and also some guidan
e to re�ne the brute for
esear
h a

ording to the spe
i�
 theory, in order to
onstru
t examples forlearning me
hanism whi
h generates the de
ision pro
edure.In the resear
h presented in this paper, we used the system Learn
mati
 [8℄,while all other dis
ussed/used algorithms and modules were newly developed(and serve as an extension to Learn
mati
).Our programme (whi
h also re
e
ts the stru
ture of this paper)
onsistsof the following steps (we illustrate our approa
h with the example of lineararithmeti
 and the Fourier-Motzkin's pro
edure):� the methods that
an make up a de
ision pro
edure are provided (x3);2

Mateja Jamnik and Predrag Jani�
i�
� the examples of proofs using the given methods are
onstru
ted (x4); thisrequires:� a number of
onje
tures is generated randomly (4.1);� implementing a simple prolog dedu
tion system (whi
h essentially
arriesout a brute for
e sear
h) that applies the given methods (4.2);� grouping and ordering of methods to dire
t the brute for
e sear
h andto prevent non-termination in the pro
ess of generating proof examples(4.3);� all example proofs are divided into groups a

ording to a number of vari-ables; from ea
h group the most illustrative proofs are taken; all thesesele
ted proofs make the learning set (4.4).� the sele
ted example proofs are input into the learning me
hanism whi
hlearns a pro
edure that
aptures the pattern of reasoning employed in all ofthe example proofs (x5);� on the basis of the learnt pattern, a prolog me
hanism automati
ally gen-erates a
orresponding supermethod (also in prolog), whi
h should be ourrequired de
ision pro
edure (x6);� the learnt pro
edure is tested on the original set of examples (x7).We �nish the paper with a brief dis
ussion of related work in x8, and
on
lusions and future dire
tions in x9.2 Ba
kground2.1 Automati
 learningJamnik et al. [7℄ devised a framework within whi
h a proof planning [4℄ sys-tem
an learn frequently o

urring patterns of reasoning automati
ally from anumber of typi
al examples, and then use them in proving new theorems [9℄.The availability of su
h patterns,
aptured as proof methods in a proof plan-ning system, redu
es sear
h and proof length. Jamnik et al. implemented thislearning framework for the proof planner
mega [2℄ | they
all the systemLearn
mati
. The entire pro
ess of learning and using new proof methods inLearn
mati

onsists of the following steps:(i) The user
hooses informative examples and gives them to
mega to beautomati
ally proved. Tra
es of these proofs are stored.(ii) Proof tra
es of typi
al examples are given to the learning me
hanismwhi
h automati
ally learns so-
alled method outlines.(iii) Method outlines are automati
ally enri
hed by adding to them additionalinformation and performing sear
h for information that
annot be re
on-stru
ted in order to get fully spe
i�ed proof methods that
mega
an usein proofs of new theorems. 44 Here we refer to the me
hanism of transforming a method outline (the expression learnt3

Mateja Jamnik and Predrag Jani�
i�
The methods Learn
mati
 aims to learn are
omplex and are beyond the
omplexity that
an typi
ally be ta
kled in the �eld of ma
hine learning. 5Therefore, Learn
mati
 learns method outlines, whi
h are expressed in thefollowing language L, where P is a set of known identi�ers of primitive methodsused in a method that is being learnt:� for any p 2 P , let p 2 L,� for any l1; l2 2 L, let [l1; l2℄ 2 L,� for any l1; l2 2 L, let [l1jl2℄ 2 L,� for any l 2 L, let l� 2 L, � for any l 2 L and n 2 N, let ln 2 L,� for any list su
h that all li 2 list arealso li 2 L, let T (list) 2 L.\[" and \℄" are auxiliary symbols used to separate subexpressions, \," denotesa sequen
e, \j" denotes a disjun
tion, \�" denotes a repetition of a subexpres-sion any number of times (in
luding 0), n a �xed number of times, and T isa
onstru
tor for a bran
hing point (list is a list of bran
hes), i.e., for proofswhi
h are not sequen
es but bran
h into a tree. For more information on theexpressiveness of this language, the reader is referred to [9℄.Our learning te
hnique
onsiders some typi
ally small number of positiveexamples whi
h are represented in terms of sequen
es of identi�ers for prim-itive methods, and generalises them so that the learnt pattern is in languageL. The pattern is of smallest size with respe
t to a de�ned heuristi
 measureof size [9℄, whi
h essentially
ounts the number of primitives in an expression.The pattern is also most spe
i�
 (or equivalently, least general) with respe
tto the de�nition of spe
i�
ity spe
. spe
 is measured in terms of the numberof nestings for ea
h part of the generalisation [9℄. Again, this is a heuristi
measure.The algorithm is based on the generalisation of the simultaneous
om-pression of well-
hosen examples. Here is just an abstra
t des
ription of thelearning algorithm, but the detailed steps with examples of how they are ap-plied
an be found in [9℄:(i) Split every example tra
e into sublists of all possible lengths.(ii) If there is any bran
hing in the examples, then re
ursively repeat thisalgorithm on every element of the list of bran
hes.by Learn
mati
 and expressed in the spe
i�
 language L, de�ned subsequently) into themethod that
an be used by a proof planner, in Learn
mati
's
ase
mega. We do notdes
ribe this me
hanism in this paper, as it is
mega spe
i�
 in Learn
mati
. In ourframework, this step
orresponds to the step that automati
ally generates prolog
odefrom the learnt method outline (see x6).5 Learn
mati
's methods (i.e., in the language used by
mega) are typi
ally
omplexand re
ursive, with pre
onditions and parameters, et
. Basi
ally, they are programs. Syn-thesising programs is a well-known
hallenging problem, and so is ma
hine learning of
om-plex pro
edures without mu
h human provided ba
kground knowledge. Hen
e, there areno o�-the-shelf ma
hine learning algorithms that we
ould use. Rather, we help ourselvesby reasonably simplifying the problem as mu
h as possible (e.g., by learning expressions inlanguage L, des
ribed next, rather than fully spe
i�ed methods).4

Mateja Jamnik and Predrag Jani�
i�
(iii) For ea
h sublist in ea
h example �nd
onse
utive repetitions, i.e., pat-terns, and
ompress them using exponent representation.(iv) Find
ompressed patterns that mat
h in all examples.(v) If there are no mat
hes in the previous step, then generalise the examplesby joining them disjun
tively.(vi) For every mat
h, generalise di�erent exponents to a Kleene star, and thesame exponents to a
onstant.(vii) For every mat
hing pattern in all examples, repeat the algorithm on bothsides of the pattern.(viii) Choose the generalisations with the smallest size and largest spe
i�
ity.The learning algorithm is implemented in SML of NJ v.110. Its inputsare the sequen
es of methods extra
ted from proofs. Its output are methodoutlines.2.2 De
ision pro
eduresA theory T is de
idable if there is an algorithm (whi
h we
all a de
ision pro-
edure) su
h that for an input senten
e (i.e., a
losed formula) F of the theoryT , it returns true if and only if F is valid in T (i.e., T j= F) and returns falseotherwise. The role of de
ision pro
edures is often very important in theoremproving (e.g., see [10℄). De
ision pro
edures
an redu
e the sear
h spa
e ofheuristi

omponents of a prover and in
rease its abilities. De
ision pro
e-dures
an usually be mu
h more eÆ
ient than some other proving strategies(e.g., indu
tion). There are many de
ision pro
edures in standard use, in
lud-ing de
ision pro
edures for fragments of arithmeti
s, theories of lists, theoryof equality et
. Due to their importan
e in hardware and software veri�
a-tion, de
ision pro
edures for fragments of arithmeti
 (like pra | PresburgerRational Arithmeti
) are of parti
ular interest.Instead of using basi
 inferen
e rules, de
ision pro
edures are usually builtfrom some higher-level building blo
ks. We start with methods in the spiritof Bundy's proof plans for normalisation [5℄.We look at the ideas from Fourier-Motzkin's de
ision pro
edure [12℄ (whi
his essentially the same as the well-known implementation of Hodes' de
isionpro
edure for Presburger arithmeti
 [6℄). Fourier-Motzkin's algorithm is ade
ision pro
edure for rational numbers, but it is also often used (be
ause ofits better eÆ
ien
y) as a sound (but in
omplete) pro
edure for the universalfragment of pia | Presburger Integer Arithmeti
 (see, for instan
e, [3℄).3 Building blo
ksWe use a simple stand-alone prolog implementation of a dedu
tion systembased on the proof-planning paradigm, but it is simpli�ed as it does not requirepre
onditions and post
onditions of methods.5

Mateja Jamnik and Predrag Jani�
i�
De
ision pro
edures
an be implemented as
ompa
t, optimised pro
eduresor they
an be built from separate methods (some of whi
h
an be general-purpose methods, i.e., methods used also within other pro
edures). The lat-ter approa
h often leads to additional overhead pro
essing and is thus lesseÆ
ient. However, it is mu
h more
exible and gives easily understandablealgorithms, and hen
e we use it in our programme.We use the following sorts of normalisation methods (in the spirit ofBundy's proof plans for normalisations [5℄):Remove is a normalisation method used to eliminate a
ertain fun
tionsymbol, predi
ate symbol or a quanti�er from a formula. For instan
e, we
aneliminate a
onne
tion) by exhaustive appli
ation of the following rewriterule: f1) f2 �! :f1 _ f2.Stratify is a normalisation method used to stratify a
lass of formulae intotwo (or more) synta
ti
al layers
ontaining just some spe
i�
 predi
ate sym-bols, fun
tion symbols or
onne
tives. For instan
e, stratify puts a formulainto prenex normal form, moves negations inside disjun
tions and
onjun
-tions, moves
onjun
tions inside disjun
tions et
.Thin is a normalisation method that exhaustively applies thinning rewriterules, su
h as elimination of multiple negations: ::f �! f or elimination ofmultiple unary minus symbols: �� t �! t.Redu
e is a method that redu
es the number of o

urren
es (to at mostone) of a
ertain fun
tion symbol, predi
ate symbol or a
onne
tive in a for-mula. For instan
e, it redu
es the number of symbols > and ? in a formulabeing proved.Left Asso
iation is one of the normalisation methods for reorganisationwithin a
lass. If a synta
ti
al
lass
ontains only one fun
tion symbol and ifthat fun
tion symbol is both binary and asso
iative, then members of this
lass
an be put into left asso
iative form. For instan
e, we
an use this methodfor left asso
iation of addition and multipli
ation (given the needed rewriterules).Poly-form is a method whi
h we will use for putting a formula into poly-nomial normal form. It uses rewrite rules su
h as: i1 � i2 �! i3 where i1; i2; i3represent numbers and i1 � i2 = i3.Reorder is one of the methods for reorganisation within one synta
ti
al
lass. If a
lass
ontains only one fun
tion and if that fun
tion is
ommutativeand asso
iative, this method is used to reorder arguments within a term (whi
his supposed to be in left asso
iative form). We
an use it to reorder argumentsin a term whi
h is in polynomial normal form or in a formula in disjun
tivenormal form. This transformation requires an ordering on variables as anadditional devi
e.Colle
t is a method whi
h we will use to redu
e multiple o

urren
es ofsome variable in a term.Isolate is a method whi
h we use to isolate a spe
i�
 variable in an atomi
formula. 6

Mateja Jamnik and Predrag Jani�
i�
The normalisation methods (or, more pre
isely, families of normalisationmethods) des
ribed above are general ones. They
an be useful and usedfor proof methods for a range of theories. These methods (together withsome other general-purpose methods)
an make a
atalogue of methods that
an be used for building di�erent proof pro
edures for di�erent theories (andso there is no need for inventing all building blo
ks ea
h time). Of
ourse,some theories may require
ertain spe
i�
 methods. 6 Note that even if all thene
essary methods (general or theory-spe
i�
) are available, it may still bevery
hallenging to
ombine them
orre
tly into a required de
ision pro
edure.On
e the building blo
ks (general-purpose and spe
ial-purpose) are given,our learning me
hanism
an use them uniformly and without any
onsiderationof their nature (they
an be arbitrarily simple or
omplex, they
an be atomi
or
ompound, et
.).4 Generating solved examplesWe generated a set of solved examples in several stages: we generated a
orpus,grouped and ordered the methods, ran brute for
e sear
h for proofs and
hosesolved examples.4.1 Generating
orpusWe generated 1000 Presburger arithmeti

onje
tures by using the sto
hasti

ontext-free grammar 7 given in Table 1. The probabilities used were
hosenwithout some stri
t formal argument (a similar sto
hasti
 grammar was usedin [11℄). We believe that
hoosing di�erent (positive) probabilities would givevery similar �nal results to the ones we got in this study. Namely, any formulathat
an be des
ribed by the given
ontext-free grammar
an be generated(with some positive probability) by any
orresponding sto
hasti
 grammarwith positive sto
hasti

omponents. So, sets of formulae generated in thedes
ribed way are, in that sense, representative.For simpli
ity, we generated only quanti�er-free formulae, and then tooktheir universal
losure. 86 For example, in order to build the Fourier-Motzkin's pro
edure, we need a method whi
hperforms
ross-multiply and add step [12℄ (see also x4.3).7 A sto
hasti

ontext-free grammar is a
ontext-free grammar with a sto
hasti

omponentwhi
h atta
hes a probability to ea
h of the produ
tion rules and
ontrols its use.8 Note that
losed formulae without redundant quanti�ers
annot be generated by a
ontext-free grammar. However, this restri
tion in our set of formulae is not
riti
al.Namely, most quanti�er elimination pro
edures (in
luding the Fourier-Motzkin's pro
e-dure) eliminate universal quanti�ers by redu
ing them to existential quanti�ers. So, thelearning pro
ess would be about the same if we
onsidered full Presburger arithmeti
 and(somehow) generated formulae with both, universal and existential quanti�ers. Moreover,the learnt pro
edure (presented in x5) is indeed a de
ision pro
edure for full Presburgerarithmeti
. 7

Mateja Jamnik and Predrag Jani�
i�
Rule Probability1. hformulai := hatomi
 formulai 0.52. hformulai := (: hformulai) 0.1253. hformulai := (hformulai _ hformulai) 0.1254. hformulai := (hformulai ^ hformulai) 0.1255. hformulai := (hformulai) hformulai) 0.1256. hatomi
 formulai := (htermi = htermi) 0.207. hatomi
 formulai := (htermi < htermi) 0.208. hatomi
 formulai := (htermi � htermi) 0.209. hatomi
 formulai := (htermi > htermi) 0.2010. hatomi
 formulai := (htermi � htermi) 0.2011. htermi := (htermi+ htermi) 0.2012. htermi := 1 0.2013. htermi := 0 0.2014. htermi := var 0.4015. hvari := x 0.3016. hvari := y 0.2517. hvari := z 0.2018. hvari := u 0.1519. hvari := v 0.10Table 1A sto
hasti
 grammar for the quanti�er-free fragment of Presburger arithmeti
.4.2 Sear
h for proofsWe implemented (in prolog) a simple me
hanism for brute-for
e sear
h forproofs of the given
onje
tures. The me
hanism works as follows:� if the
urrent formula is equal to > or ?, then stop the sear
h;� if the
urrent list of applied methods ex
eeds the given limit, then stop thesear
h;� try to apply one of the available methods to the
urrent formula; if themethod
hanges the
urrent formula, add that method to the list of appliedmethods and try to prove the obtained (now new
urrent) formula (theordering in whi
h the methods are tried is dis
ussed in x4.3).If a
urrent formula is transformed to > or ?, we
onsider it solved andwe
all a sequen
e of applied methods a proof tra
e. 9 We put the limit (100)9 If the underlying theory is
omplete (and linear arithmeti
 is), then ea
h formula of thetheory is logi
ally equivalent either to > or ? (modulo that theory). For in
omplete (yet8

Mateja Jamnik and Predrag Jani�
i�
for the number of applied methods in order to prevent in�nite loops in thissear
h. Some of the generated formulae were huge (one of them had 409fun
tions symbols, predi
ate symbols and
onne
tives) so we also put a timelimit for solving ea
h
onje
ture. We used the time limit of 1 minute. 104.3 Grouping methods and ordering of methodsOn the basis of the generi
 normalisation methods dis
ussed in x3, we imple-mented (in prolog) a set of
on
rete methods. We also added the methodfor elimination of an existentially quanti�ed (and isolated) variable based onFourier-Motzkin's
ross-multiply and add step [12℄. For the sake of simpli
ity,we grouped some of these methods (in a natural, expe
ted way), yielding thefollowing set of 9 methods (some of them
ompound):M1: remove)M2: remove 6=; >;<;�M3: adjust the innermost quanti�er (transforms 8xF to :9x:F)M4: stratify :s beneath _s and ^s; thin :, remove :M5: delete the innermost redundant quanti�er (
ross-multiply and add step)M6: isolate the innermost variable (provided it is isolated in ea
h atomi
formula)M7: stratify � beneath +, left-asso
 �, left-asso
 +, poly-formM8: stratify ^s beneath _s and eliminate the innermost variableM9: redu
e > and ?Despite having only 9 methods after grouping, a simple depth �rst sear
hover them does not always produ
e proofs, be
ause 9 methods still give a largesear
h spa
e 11 and, more importantly, some rules
an
el ea
h other out, whi
h
an lead to non-termination. Namely, most of the available methods
onsistof sets of rewrite rules. Even though ea
h set of these sets of rewrite rulesis terminating (but not always
on
uent), the union of sets is not ne
essarilyterminating. Therefore, our set of methods is not terminating. Hen
e, in orderto simplify and dire
t sear
h, we also had to
hange the ordering of methods.Methods are tried on given goals in the following order: M1, M2, M3, M4, M5,M6, M7, M8, M9. In our experiments we tried several orderings and we
hosethis as the most appropriate one.The two strategies just des
ribed, i.e., grouping and ordering, involve somehuman knowledge based on experiments in this
ontext, and present a
ontrolinformation for sear
h for proofs. Noti
e that the ordering and grouping phaseis not expe
ted to provide the termination argument for the learnt pro
edure.de
idable) theories, the above approa
h
annot be used.10All modules were implemented in SWI Prolog; experiments were ran on a 64Mb PC466Mhz. All sour
e �les are available upon request from the authors.11The situation is even worse if we
onsider low level inferen
e rules, rather than higherlevel methods (sin
e the proofs would be mu
h longer, and the sear
h spa
e would be mu
hlarger). 9

Mateja Jamnik and Predrag Jani�
i�
It
an be viewed as a heuristi
 whi
h dire
ts and improves the brute for
esear
h. Moreover, ordering and grouping
an be helpful when
onsidering theproperties (su
h as termination and
ompleteness) of the generated pro
edure(see x5).4.4 Running brute for
e sear
h and
hoosing examplesWe ran the des
ribed sear
h engine on the set of 1000 generated
onje
tures/examples. 76.8% of
onje
tures were solved (proved or disproved) by this en-gine; results are given in Table 2. Table 2 also shows how the per
entage ofsolved examples de
reases as the number of variables in
reases. This is reason-able as the sear
h spa
e is rather big and the brute-for
e sear
h is pra
ti
allylost on very
omplex
onje
tures.# of variables 0 1 2 3 4 5 totaltotal 121 340 249 118 77 95 1000solved 121 301 189 77 45 35 768% solved 100 88.5 75.9 65.2 58.4 36.8 76.8longest tra
e 5 10 15 18 23 30 N/A# of examples with longest tra
es 6 8 10 4 5 2 35Table 2Results of the brute for
e method.Having 768 solved examples, we needed to
hoose the subset of exampleswhi
h would be used in the learning pro
ess (well-
hosen examples are essentialfor this phase of the program). Good examples are demonstrative examples,i.e., the ones that involve as many methods as possible that should be inthe de
ision pro
edure that we are learning. But these methods should beused in a
on
ise way in good examples. The sear
h for a proof (given ourset and ordering of methods) stops as soon it rea
hes > or ?. Thus, theavailable proofs are the shortest ones that the brute for
e engine
an �nd.Amongst su
h proofs of di�erent
onje
tures, we sele
t as the most illustrativeand des
riptive proofs the longest ones. Namely, in some
ases some methods(that form some parts of the pro
edure we are learning) leave
ertain formulaeunder
onsideration un
hanged, but in other
ases they transform (rewrite)them. So, su
h methods must be
onsidered in order for the system to learna general de
ision pro
edure. To learn su
h pie
es of our sought pro
edureit was sensible to
hoose examples that use as many of the relevant methodsas possible (i.e., examples that are the most diÆ
ult and demanding, andnot trivial or easy ones). In other words, we
hoose, in a sense, the longestamongst the shortest proofs.Sin
e the number of variables has a
riti
al role in proving Presburgerarithmeti

onje
tures (the same holds for almost all theories), we separated10

Mateja Jamnik and Predrag Jani�
i�
all solved examples into groups a

ording to the number of variables. We
onsidered formulae with 0, 1, 2, 3, 4 and 5 variables. From ea
h group wesele
ted the longest proof tra
es (see Table 2).Within the groups of formulae with 0, 1, and 2 variables all
onje
tureswith the longest proof tra
es had the same tra
es (respe
tively):[M1, M2, M4, M7, M9℄[M1, M2, M3, M4, M6, M8, M5, M4, M7, M9℄[M1, M2, M3, M4, M6, M8, M5, M3, M4, M6, M8, M5, M4, M7, M9℄Within the groups of formulae with 3 and 4 variables there were 4 and5
onje
tures with the longest proof tra
es, but these tra
es were not equal(within ea
h respe
tive group). Sin
e it is not
lear whi
h amongst these arethe most des
riptive ones, we did not use them for learning. 12 Within thegroup of formulae with 5 variables there were 2
onje
tures with the (same)longest proof tra
e. Finally, we took the longest tra
es for formulae with 0, 1and 2 variables and put them into the learning me
hanism.5 Learning and generating supermethodsFrom the given sequen
es, the learning me
hanism (des
ribed in x2.1) learntthe following general pattern: 13[M1;M2; [M3;M4;M6;M8;M5℄�;M4;M7;M9℄:We noti
e that in ea
h run of the loop ([M3;M4;M6;M8;M5℄�), one quan-ti�er is eliminated. Sin
e their number is �nite in any
onje
ture, this pro-
ess eventually terminates. Provided that all the used primitive methods aresound, the generated supermethod is also sound. Provided the methods are
omplete, then ea
h
onje
ture is transformed by the above supermethod to ?or>, and hen
e, the learnt pro
edure is a de
ision pro
edure for pra. Althoughour proposed programme does not provide a guarantee about the properties ofa learnt pro
edure (su
h as termination, soundness and
ompleteness), oftenthese properties
an be easily proved (as we
an see in the above informaldis
ussion).6 Automati
 programming for learnt methodsWe implemented (in prolog) a system for automati
 generation of prologpredi
ates on the basis of sequen
es provided from the learning me
hanism.The system supports all
onstru
tions that the Learn
mati
 system
an make12 Namely,
onsidering a possibly very
omplex pro
edure, it is not likely that within 1000formulae we will have
onje
tures with 3, 4, 5,... variables whose proofs
ontain all theneeded steps of the pro
edure in all iterations. Larger
orpus would perhaps
ontain su
h
onje
tures (but then we may want to
onsider more variables, so the problem remains).13As expe
ted, it turns out that if examples with 5 variables were used for learning as well,then this learnt pattern would still be the same.11

Mateja Jamnik and Predrag Jani�
i�
(see x2.1), and
an generate
orresponding prolog
ode. Given the sequen
e[M1;M2; [M3;M4;M6;M8;M5℄�;M4;M7;M9℄, our system generated thefollowing prolog
ode (whi
h we �nally applied to the original set of
on-je
tures):pa(Fa,FF) :-method('M1',Fa,Fb),method('M2',Fb,F
),pb(F
,Fd),method('M4',Fd,Fe),method('M7',Fe,Ff),method('M9',Ff,FF).pb(Fa,FF) :-method('M3',Fa,Fb),method('M4',Fb,F
),method('M6',F
,Fd),method('M8',Fd,Fe),method('M5',Fe,Ff),pb(Ff,FF),!.pb(F,F).The generated pro
edure is pra
ti
ally the same as Hodes' implementationof Fourier-Motzkin's pro
edure [6℄. On the other hand, a pro
edure made by ahuman
an be implemented also by some tightly integrated methods, or by us-ing some spe
ial data stru
tures. In this
ase, our generated pro
edure wouldprobably show poorer performan
e. However, at this stage we are more
on-
erned with building easily understandable and
exible de
ision pro
edures,rather than with eÆ
ien
y issues.7 EvaluationGiven the learnt method and the generated prolog program, we ran it on theoriginal set of 1000 generated
onje
tures. While the brute for
e method solved768
onje
tures (within the given time limit), the learnt de
ision pro
eduresolved 991
onje
tures (see Table 3). Nine unsolved examples had hundredsof symbols and the method had not failed to solve them, but ex
eeded thetime limit. For ea
h
onje
ture solved by the brute for
e sear
h, we measuredthe speed-up when using the newly generated pro
edure (see Table 3). Theoverall speed-up average was 1.0619. However, the main gain from the learntpro
edure is in 223
onje
tures that were not solved at all by the brute for
emethod. We
an see in Table 3 that the speed-up in
reases as the number ofvariables in
reases. The speed-up for 5-variable
ase would probably be mu
hhigher if we used a higher time limit.This evaluation was performed on the original set of formulae (the setused for learning). Sin
e this set
an be
onsidered representative (see x4),we
onsider this evaluation relevant. We believe that similar results would beobtained for other sets of formulae as well.12

Mateja Jamnik and Predrag Jani�
i�
of variables 0 1 2 3 4 5 totaltotal 121 340 249 118 77 95 1000solved 121 340 249 118 77 86 991% solved 100 100 100 100 100 90.5 99.1speed-up 1 1.0001 1.0287 1.0990 1.4394 1.4181 1.0619Table 3Results of the learnt method.8 Related workThe work presented in this paper uses the learning me
hanism of Learn
mati
,whi
h is related to the least general generalisation, and to some more re
entwork on learning regular expressions, grammar inferen
e and sequen
e learning[13℄. For details, see [9℄.Our work is related to ideas from [5℄. In Bundy's programme a de
isionpro
edure should be synthesised given all needed rewrite rules and severalgeneral patterns for normalising formulae. Considering automati
 derivationof de
ision pro
edures our work is also related to work presented in [1℄ whi
his aimed at deriving de
ision pro
edures using superposition.9 Con
lusions and future workOur
on
lusion is that automati
 building of de
ision pro
edures is not aneasy task (even when all the needed primitive methods are given), but it ispossible. It is diÆ
ult to have the pro
ess of learning a
omplex de
isionpro
edure fully automated, so at some stages human intera
tion and humanhelp is needed. We presented a methodology
onsisting of a number of steps,te
hniques and ideas (in
luding a me
hanism for generating a
orpus of
on-je
tures, a
ontrolled brute for
e sear
h, strategies for
hoosing examples, thelearning me
hanism, and the system for automati
 programming based on thelearnt sequen
es). Automation in this �eld is important as it
an preventhuman
aws in analysing de
ision pro
edures or in implementing them. Webelieve that this methodology (and learning de
ision pro
edures in general)
an be useful, espe
ially for new or user de�ned theories. Here are some of themain lessons we learnt during the development of the proposed programme:� Despite the fa
t that the implementation of de
ision pro
edures based onautonomous, independent building blo
ks (i.e., methods) is less eÆ
ient,we �nd that this approa
h is
exible and suitable for both, analysing andsynthesising de
ision pro
edures.� The same building blo
ks (i.e., methods)
an be used for di�erent proofpro
edures and for di�erent theories. Su
h methods
an make a
atalogueof methods whi
h
an serve as a main sour
e of methods for building proof13

Mateja Jamnik and Predrag Jani�
i�
pro
edures for di�erent theories.� Even if the key idea of the required pro
edure is known, and a set of methodssuÆ
ient to solve any
onje
ture of a sele
ted theory is given, it is still notan easy task to build a de
ision pro
edure for that theory. Brute for
esear
h
an solve a number of
onje
tures, but it is diÆ
ult to make brutefor
e sear
h
omplete, eÆ
ient and terminating (even when all the buildingblo
ks are terminating). Automati
 assistan
e in this
an be very important.� In order to make brute for
e sear
h more eÆ
ient, it is useful to providesome sort of
ontrol information. We used grouping and ordering of methods(where it was sensible to do so). This task requires human assistan
e (butallows also some automation, see further).� Having a number of solved examples, it is essential to make a good sele
tionof examples to be used in the learning pro
ess. Our strategy was the fol-lowing: we sele
ted the longest proofs among the shortest proofs that werefound by the brute for
e sear
h. The rationale is that the most demanding
onje
tures are the most illustrative ones for learning.� Provided that we have good examples and a
hoi
e of good methods, thelearning me
hanism
an learn a de
ision pro
edure from just a few exampleproofs.� A system
an be made whi
h for a given learnt proof sequen
e generates a
orresponding implementation.� The learnt method outperforms the brute for
e sear
h both in the numberof
onje
tures solved and in the
pu time spent.� We believe that the methodology presented in this study is very well suitedto the proof planning paradigm (or its simpli�ed version, as des
ribed here),and
an be applied to other environments as well.It is diÆ
ult to provide a
hara
terisation of theories for whi
h the proposedapproa
h is su

essful, sin
e some very deep theory-spe
i�
 knowledge may berequired. However, we
an give a
hara
terisation of de
ision pro
edures whi
h
annot be learnt: the proposed framework
annot learn pro
edures whi
h
an-not be expressed with the language used in Learn
mati
 (unless we used adi�erent learning algorithm). All other pro
edures
an potentially be learnt.In other words, our system
an only learn what Learn
mati
's language L ex-presses and Learn
mati
's learning algorithm
an learn. This is by no meanseverything. We believe that other expressions
ould be learnt as well (but
urrently Learn
mati
's learning algorithm
annot learn them). At the mo-ment, Learn
mati

overs a wide range of languages, while further extensionsare under
onsideration. Learning pro
edures expressed in another languagewould require that we repla
e in our framework Learn
mati
's learning me
h-anism with another one that uses the desired language, but the other modulesof our framework (e.g., generating examples, automati
 generation of
odefrom the learnt pattern)
an remain un
hanged. We also plan to extend the14

Mateja Jamnik and Predrag Jani�
i�
learning approa
h and the realm of
overed languages so that the me
hanism
ould learn re
ursive methods, whi
h would enable automati
 learning of anew range of de
ision pro
edures.Another limitation of our proposed programme is that it may require non-trivial human assistan
e (e.g., in ordering and grouping). We plan to furtherdevelop our methodology and to try to automate (at least to some extent) thesteps whi
h now need human intera
tion. Instead of
hoosing suitable order-ings of methods for brute for
e sear
h, in some
ases it may be possible (givena

eptable time) to systemati
ally try all possible orderings or, instead, toperform breadth �rst sear
h within our brute for
e sear
h engine. Althoughsu
h extensions would be very time
onsuming, this may not be
riti
al asa proof pro
edure
an be learnt/built o�-line and only on
e. Another dire
-tion for further automation is automated dealing with methods that
an serveas (general-purpose) building blo
ks: on the one hand, we will try to auto-mati
ally learn/build some general building blo
ks by using the methodologydes
ribed here (e.g., build normalisation methods out of rewrite rules); andon the other hand, we will try to make a system that
an use a
atalogue ofgeneral methods and
hoose suitable building blo
ks for spe
i�
 theories.A
omparison between a dire
t implementation of the de
ision pro
edureand a learnt de
ision pro
edure would be interesting for further work. But thisis out of the s
ope of the present paper, as we are interested in a larger pi
tureof dis
overing new de
ision pro
edures, rather than in eÆ
ient implementa-tions of the existing ones. Me
hanised learning of existing de
ision pro
eduresis an important step towards me
hanised learning and dis
overy of de
isionpro
edures. In this sense, the work presented in this paper is an en
ouragingpreliminary step towards dis
overy. Our hope is that su
h a framework willbe used as a useful assistant in su
h a pro
ess, and moreover, it will lead toautomati
 dis
overy of new de
ision pro
edures.A
knowledgementsWe are grateful to Silvio Ranise, Alan Bundy, Alessandro Armando, andanonymous ftp 2003 reviewers for a number of valuable
omments and sug-gestions on the earlier version of this paper.Referen
es[1℄ A. Armando, S. Ranise, and M. Rusinowit
h. Uniform Derivation of De
isionPro
edures by Superposition. CSL 15, LNCS 2142. Springer, 2001.[2℄ C. Benzm�uller et al.
mega: Towards a mathemati
al assistant. CADE 14,LNCS 1249, Springer, 1997.[3℄ R. S. Boyer and J S. Moore. Integrating De
ision Pro
edures into Heuristi
Theorem Provers: A Case Study of Linear Arithmeti
. Ma
hine Intelligen
e11, 1988. 15

Mateja Jamnik and Predrag Jani�
i�
[4℄ A. Bundy. The use of expli
it plans to guide indu
tive proofs. CADE 9, LNCS310, Springer.[5℄ A. Bundy. The use of proof plans for normalization. In Essays in Honor ofWoody Bledsoe, Kluwer, 1991.[6℄ L. Hodes. Solving problems by formula manipulation in logi
 and linearinequalities. IJCAI 2, William Kaufmann, 1971.[7℄ M. Jamnik, M. Kerber, and M. Pollet. Automati
 learning in proof planning.ECAI 15, 2002.[8℄ M. Jamnik, M. Kerber, and M. Pollet. Learn
mati
: System des
ription.CADE 18, LNCS 2392, Springer, 2002.[9℄ M. Jamnik, M. Kerber, M. Pollet, and C. Benzm�uller. Automati
 learningof proof methods in proof planning. Te
hni
al Report CSRP-02-5, S
hool ofComputer S
ien
e, University of Birmingham, 2002. Submitted to Journal ofAI.[10℄ Predrag Jani�
i�
 and Alan Bundy. A general setting for the
exible
ombiningand augmenting de
ision pro
edures. Journal of Automated Reasoning, 28(3),2002.[11℄ Predrag Jani�
i�
, Ian Green, and Alan Bundy. A
omparison of de
isionpro
edures in Presburger arithmeti
. LIRA '97, Univ. of Novi Sad, 1997.[12℄ J.-L. Lassez and M.J. Maher. On Fourier's algorithm for linear arithmeti

onstraints. Journal of Automated Reasoning, 9(3), 1992.[13℄ Sun, R., Giles, L., eds.: Sequen
e Learning: Paradigms, Algorithms, andAppli
ations. LNAI 1828, Springer, 2000.

16

	Introduction
	Background
	Automatic learning
	Decision procedures

	Building blocks
	Generating solved examples
	Generating corpus
	Search for proofs
	Grouping methods and ordering of methods
	Running brute force search and choosing examples

	Learning and generating supermethods
	Automatic programming for learnt methods
	Evaluation
	Related work
	Conclusions and future work
	References

