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Abstract. This paper discusses experiments with an agent oriented ap-
proach to automated and interactive reasoning. The approach combines
ideas from two subfields of AI (theorem proving/proof planning and
multi-agent systems) and makes use of state of the art distribution tech-
niques to decentralise and spread its reasoning agents over the internet.
It particularly supports cooperative proofs between reasoning systems
which are strong in different application areas, e.g., higher-order and
first-order theorem provers and computer algebra systems.

1 Introduction

The last decade has seen a development of various reasoning systems which
are specialised in specific problem domains. Theorem proving contests, such as
the annual CASC! competition, have shown that these systems typically perform
well in particular niches but often do poorly in others. First-order provers, for in-
stance, are not even applicable to higher-order problem formulations. Computer
algebra systems and deduction systems typically have orthogonal strengths.
Whereas many hard-wired integrations of reasoning systems have been shown to
be fruitful, rather few architectures have been discussed so far that try to extend
the application range of reasoning systems by a flexible integration of a variety
of specialist systems.

This paper discusses the implementation of experiments with an agent ori-
ented reasoning approach, which has been presented as a first idea in [BJKS99).
The system combines different reasoning components such as specialised higher-
order and first-order theorem provers, model generators, and computer algebra
systems. It employs a classical natural deduction calculus in the background to
bridge gaps between sub-proofs of the single components as well as to guarantee
correctness of constructed proofs. The long term goal is to widen the range of
mechanisable mathematics by allowing a flexible cooperation between specialist
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systems. This seems to be best achieved by an agent-based approach for a number
of reasons. Firstly, from a software engineering point of view it offers a flexible
way to integrate systems. Secondly, and more importantly, the agent-oriented
approach enables a flexible proof search. This means that each single system —
in form of a pro-active (software) agent — can focus on parts of the problem it is
good at, without the need to specify a priori a hierarchy of calls. Currently we
still work with a centralised approach and focus on the construction of a single
proof object. This means all agents pick up and investigate the central proof
object, given in higher-order natural deduction style with additional facilities
to abstract from pure calculus layer [CS00]. In case they find that they are ap-
plicable in the current proof context they fulfill their task by invoking a tactic
by, for instance, calling the external system they encapsulate. After consuming
the available resources they come back and make bids in terms of (probably)
modified proof objects. Based on heuristic criteria? one bid is accepted and exe-
cuted by the central system while the remaining ones are stored for backtracking
purposes. In this sense global cooperation and communication is established in
our approach via a central proof object. The benefit is that we have to care
only about translations into one single proof representation language, which re-
duces the proof theoretical and logical issues to be addressed. Furthermore, our
central proof object makes use of a human oriented natural deduction format
which eases user interaction. For human oriented proof presentation we employ
the graphical user interface Lout [SHB*99] and the proof verbalisation system
P.rex [Fie01].

However, extensive communication amongst the agents is currently also a
weakness of our system, since too much of the resources are spent on communi-
cation. Hence, a future goal is to subsequently reduce this overhead by extending
the agents’ reasoning capabilities and also by decentralising the approach. A dis-
cussion of particular agenthood aspects of our agents will be given in Section 4.

Using the agent paradigm enables us to overcome many limitations of static
and hard-wired integrations. Furthermore, the agent based framework helps us
to desequentialise and distribute conceptually independent reasoning processes
as much as possible. An advantage over hard-wired integrations or even re-
implementations of specialised reasoners is that it makes the reuse of existing
systems possible (even without the need for a local installation of these systems).
Accessing external systems is orchestrated by packages like MATHWEB [FHJT99]
or the logic broker architecture [AZ01]. From the perspective of these infrastruc-
ture packages our work can be seen as an attempt to make strong use of their
system distribution features.

Our system currently uses about one hundred agents. They are split in sev-
eral agent societies where each society is associated with one natural deduction
rule/tactic of the base calculus. This agent set is extended by further agents
encapsulating external reasoners. The encapsulation may be a direct one in case
of locally installed external systems, or an indirect one via the MATHWEB frame-
work, which facilitates their distribution over the internet. Employing numerous

2 For instance, bids with closed (sub)goals are preferred over partial results, and big
steps in the search space are preferred over calculus level steps.
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Fig. 1. System architecture.

agents, amongst them powerful theorem provers which are computationally ex-
pensive, requires sufficient computation resources. Hence, it is crucial to build
the whole system in a customisable and resource adaptive way. The former is
achieved by providing a declarative agent specification language and mechanisms
supporting the definition, addition, or deletion of reasoning agents (as well as
some other proof search critical components and heuristics) even at run-time.
For the latter, the agents in our framework can monitor their own performance,
can adapt their capabilities, and can communicate to the rest of the system
their corresponding resource information. This enables explicit (albeit currently
still rudimentary) resource reasoning, facilitated by a specialised resource agent,
and provides the basic structures for resource adaptive theorem proving. Further
details on the resource and adaptation aspects are addressed in [BS99].

The rest of the paper is structured as follows: Section 2 presents the main
components of the system architecture. Experiments with the architecture are
sketched in Section 3. In Section 4 we provide an overview of the features of our
approach and discuss related work. A conclusion/outlook is given in Section 5.

2 System Architecture

The architecture of our system is depicted in Fig. 1. The core of the system
is written in Allegro Common Lisp and employs its multi-processing facilities.
The choice of Common Lisp is due the fact that OMEGA, our base system, is
implemented in this programming language; conceptually it can be implemented
in any multi-processing framework.

Initial problems, partial proofs as well as completed proofs are represented
in the Proof Data Structure [CS00] and the natural deduction infrastructure
provided by the core system, OMEGA [BCFT97].

Our approach builds on the Reactive Suggestion Mechanism OANTS
[BSO1] as a reactive, resource adaptive basis layer of our framework. Triggered



by changes in the proof data structure this mechanism dynamically computes
applicable commands with their particular parameter instantiations and calls
external reasoners into the current proof state. An important aspect is that all
agent computations in this mechanism are de-sequentialised and distributed.
The idea of this reactive layer is to receive results of inexpensive computations
(e.g., the applicability of natural deduction rules) quickly while external rea-
soners search for their respective proof steps within the limits of their available
resources, until a suggested command is selected and executed. A special re-
source agent receives performance data from the agents, which monitor their
own performance, in order to adjust the system at run time. Heuristic criteria
are used to dynamically filter and sort the list of generated suggestions. They are
then passed to the selector and/or the user. We give here some sensible heuristic
criteria. Does a suggestion close a subgoal? Is a subgoal reduced to an essen-
tially simpler context (e.g., reduction of higher-order problems to first-order or
propositional logic)? Does a suggestion represent a big step in the search tree
(proof tactics/methods) or a small step (base calculus rules)? Is the suggestion
goal directed? How many new subgoals are introduced?

Agents as well as heuristic criteria can be added/deleted/modified at run
time. Due to lack of space OANTS cannot be described here in detail; for this we
refer the reader to [BS01].

OANTS provides agents that do computations on the basic natural deduction
calculus. It also provides agents that invoke additional proof tactics/methods
and external reasoning systems. The external reasoning systems are called by the
agent-shells indirectly via the MATHWEB system. That is, the agents themselves
are realised as concurrent Lisp processes in the core system. These processes ac-
tivate themselves and make calls to MATHWEB services when their applicability
criteria are fulfilled (this contrasts calls by human users to external systems in
interactive proof environments).

We extended the approach from [BS01] in the context of our work to integrate
partial proofs as results from the external reasoning systems into the overall proof
as well as to store different alternative subproofs simultaneously. Moreover, we
extended OMEGA’s graphical user interface LOUI to be able to display different
subproofs of external reasoners as choices for the user.

The Mathweb system realises calls to external reasoners which may be dis-
tributed over the internet. In our most recent experiments we extensively tested
the new ONE-MATHWEB system which is based on a multi-broker architecture.
Each broker has knowledge about its directly accessible reasoning systems, and
also about urls to other ONE-MATHWEB brokers on the internet. For example,
in our experiments the reasoning agents gained access to the computer alge-
bra system MAPLE running in Saarbriicken. For this we simply had to inform
the Birmingham MATHWEB broker (which for license reasons cannot offer a
MAPLE service locally) about the existence and url of the Saarbriicken broker.
The Saarbriicken broker then connects the Birmingham broker (which receives
and answers to the requests of the reasoning agents) with the MAPLE service.
Currently our system links up with the computer algebra systems MAPLE and
GAP running in Saarbriicken, and locally with the higher-order theorem provers
Leo and Tps, the first-order theorem prover OTTER (employed also as our



propositional logic specialist), and SATCHMO (employed as a model generator).
MATHWEB is described in detail in [FHJT99].

Once the reactive suggestion mechanism dynamically updates and heuris-
tically sorts the list of suggestions, which are commands together with their
particular parameter instantiations, it passes the list on to the selector. Its
main task is to automatically execute the heuristically preferred command, and
hence, initiate an update of the proof data structure. Furthermore, the selector
stores the non-optimal, alternative command suggestions in a special store. The
information in this store is used when backtracking to a previous state in the
proof data structure becomes necessary. Instead of a complete initialisation the
reactive suggestion mechanism is then simply initialised with the already com-
puted backtracking information for the current proof context. Backtracking is
caused when the reactive layer produces no suggestions or when a user defined
maximal depth? in the proof data structure is reached.

The backtrack store maintains backtracking information for the proof data
structure. This information includes representations of the suggestion computa-
tions that have been previously computed but not executed. Additionally the
store maintains the results of external system calls modulo their translation in
the core natural deduction calculus. That is, the immediate translation of exter-
nal system results is also done by the reactive suggestion layer, and the results
of these computations are memorised for backtracking purposes as well. If the
system or the user selects to apply the result of an external system, the proof
data structure is updated with the translated proof object. Future work will in-
clude investigating whether the backtrack store should be merged with the proof
data structure. The idea is that each single node in a proof directly maintains
its backtracking alternatives instead of using an indirect maintenance via the
backtracking store.

The tasks of the user interface in our framework are:

1. To visualise the current proof data structure and to ease interactive proof
construction. For this purpose we employ OMEGA’s graphical user interface
Lour [SHBT99].

2. To dynamically present to the user the set of suggestions, which pop up
from the reactive layer to the user, and to provide support for analysing
or executing them. This is realised by structured and dynamically updated
pop-up windows in LOUIL

3. To provide graphical support for analysing the results of external systems,
that is, to display their results after translation/representation in the proof
data structure. We achieve this by extending LoUI so that it can switch
between the global proof data structure and locally offered results by external
systems.

4. To support the user in interacting with the automated mechanism and in
customising agent societies at run-time.

From an abstract perspective, our system realises proof construction by going
through a cycle which consists of assessing the state of the proof search process,

3 Tterative deepening proof search wrt. to the maximal depth is conceptually feasible
but not realised yet.



evaluating the progress, choosing a promising direction for further search and
redistributing the available resources accordingly. If the current search direction
becomes increasingly less promising then backtracking to previous points in the
search space is possible. Only successful or promising proof attempts are allowed
to continue searching for a proof. This process is repeated until a proof is found,
or some other terminating condition is reached.

3 Experiments

In this section we report on experiments we conducted with our system to demon-
strate the usefulness of a flexible combination of different specialised reasoning
systems. Among others we examined different problem classes:

1. Set examples which demonstrate a cooperation between higher-order and
first-order theorem provers. For instance, prove:

Ve,y,z(z=yUz) & (yCaxAzCaxAVo(yCvAzCwv)= (2 Co)

2. Set equations whose validity/invalidity is decided in an interplay of a natu-
ral deduction calculus with a propositional logic theorem prover and model
generator. For instance, prove or refute:

(a) Va,y,z.(zUy)Nz=(zNz)U(yNz)
(b) Vz,y,2-(xUy)Nz=(xUz)N(yUz)

3. Concrete examples about sets over naturals where a cooperation with a
computer algebra system is required. For instance (ged and lem stand for
the ‘greatest common divisor’ and the ‘least common multiple’):

{z|z > gcd(10,8) Az < lem(10,8)} = {z|z < 40} N {z|z > 2}
This set is represented by the lambda expression
(Az.z > gcd(10,8) Az < lem(10,8)) = (Azaz < 40) N Az > 2)

4. Examples from group theory and algebra for which a goal directed natural
deduction proof search is employed in cooperation with higher-order and
first-order specialists to prove equivalence and uniqueness statements. These
are for instance of the form
[Fo.Group(G,o)] & [3*« Monoid(M,*) A Inverses(M,x, Unit(M,*))]
Here Group and Monoid refers to a definition of a group and a monoid,
respectively. Inverses(M,*, Unit(M,*)) is a predicate stating that every
element of M has an inverse element with respect to the operation x and
the identity Unit(M,«). Unit(M,«) itself is a way to refer to that unique
element of M that has the identity property.

We will sketch in the following how the problem classes are tackled in our system
in general and how the proofs of the concrete examples work in particular.

3.1 Set examples

The first type of examples is motivated by the shortcomings of existing higher-
order theorem provers in first-order reasoning. For our experiments we used
the LEO system [BK98], a higher-order resolution prover, which specialises in
extensionality reasoning and is particularly successful in reasoning about sets.
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Fig. 2. Agent based cooperation between LEO and OTTER.

Initialised with a set problem LEO tries to apply extensionality reasoning in
a goal directed way. On an initial set of higher-order clauses, it often quickly
derives a corresponding set of essentially first-order clauses.* Depending on the
number of generated first-order and other higher-order clauses LEO may get
stuck in its reasoning process, although the subset of first-order clauses could be
easily refuted by a first-order specialist.

For our examples the cooperation between LEO and the first-order specialist
OTTER works as depicted in Fig. 2. The initial problem representation in the
proof data structure is described in Part 1 of Fig. 2. The initialisation triggers
the agents of the reactive suggestion layer which start their computations in
order to produce suggestions for the next proof step.

The agent working for LEO first checks if there is any information from the
resource agent that indicates that LEO should stay passive. If not, it checks
whether the goal C is suitable for LEO by testing if it is a higher-order problem.
In case the problem is higher-order the agent passes the initial problem consisting
of the goal C' and the assumptions Py,..., P, to LEo. While working on the
input problem (as indicated by the shaded oval in Part 2 of Fig. 2) LEO derives
(among others) various essentially first-order clauses (e.g., FO;...FO,). For
the particular type of cooperation described here, it is important that after a
while this subset becomes large enough to be independently refutable. If after
consuming all the resources made available by the reactive suggestion layer LEO
still fails to deliver a completed proof, it then offers a partial proof consisting of
a subset of first-order and essentially first-order clauses (after translation into
prenex normal form, e.g., VZ.FO} A...AFO!,, where the FO! are disjunctions of
the literals of FO; and T stands for the sequence of all free variables in the scope).
In case LEO’s suggestion wins over the suggestions computed by other agents,
its partial result is represented in the proof data structure and the reactive
suggestion mechanism is immediately triggered again to compute a suggestion
for the next possible proof step. Since LEO’s partial result is now the new subgoal
of the partial proof, first-order agents, like the one working for OTTER, can pick
it up and ask OTTER to prove it (see Part 3 of Fig. 2). If OTTER signals a

1 By essentially first-order we mean a clause set that can be tackled by first-order
methods. It may still contain higher-order variables, though.



successful proof attempt before consuming all its given resources, its resolution
proof is passed to the natural deduction translation module TRAMP [Mei00],
which transforms it into a proper natural deduction proof on an assertion level.?

We experimented with 121 simple examples, that is, examples that can be
automatically proved by LEO alone. The results showed that the command execu-
tion interval chosen by the selector is crucial, since it determines the computation
time ¢t made available to the external systems.

— If ct is sufficiently high, then the problem is automatically proved by LEO
(in case of simple examples that can be solved by LEO alone).

— If ¢t is not sufficient for LEO to come up with a proof, but still enough to pro-
duce a refutable subset of essentially first-order clauses, then a cooperative
proof is constructed as described above.

— If ¢t is not sufficient to even guarantee a subset of refutable essentially first-
order clauses, then the problem is tackled purely on natural deduction level,
however not necessarily successfully.

We also solved several examples which cannot be solved with LEO alone. One
of them is the concrete example given above, which, to our knowledge, cannot
be easily solved by a single automated theorem prover. In our experiments,
LEO alone ran out of memory for the above problem formulation, and OTTER
alone could not find a proof after running 24 hours in auto mode on a first-
order formulation of the problem. Of course, an appropriate reformulation of the
problem can make it simple for systems like OTTERto prove this new formulation.

3.2 Set equations

The second type of set examples illustrates a cooperation between automated
natural deduction agents, a propositional prover and a model generator. The
proofs follow a well-known set theoretic proof principle: they are constructed first
by application of simple natural deduction agents that reduce the set equations
by applying set extensionality and definition expansion to a propositional logic
statement. This statement is then picked up by an agent working for a propo-
sitional logic prover (here we again use OTTER encapsulated in another agent
shell with a slightly modified applicability check and a different representation
translation approach) and a counter-example agent which employs SATCHMO.
The logic statement is then either proved or refuted. Thus, valid and invalid
statements are tackled analogously in all but the last step.

In case (2a) of our concrete examples several Vi (universal quantification
introduction in backward reasoning) applications introduce (aUb)Ne = (aNe)U
(bNe¢) as new open subgoal. Set extensionality gives us Vunu € (aUb)Nc & u €
((anc)U(bne)). A further V; application and subsequent definition expansions
(where aUb:=Az.(z€a)V(z€b),anb:=Xa(z€a)A(z€b),and u € a:=
a(u)) reduce this goal finally to (a(d) vV b(d)) Ac(d) = (a(d) Ac(d)) V (b(d) A c(d))

® While TRAMP already supports the transformation of various machine oriented first-
order proof formats, further work will include its extension to higher-order logic, such
that also the proof step justified in Fig. 2 with ‘LEO-derivation’ can be properly
expanded into a verifiable natural deduction proof.



which contains no variables and which is a trivial task for any propositional
logic prover. In case (2b) we analogously derive (a(d) V b(d)) A ¢(d) = (a(d) vV
e(d)) A (b(d) V ¢(d)), but now a model generator agents presents the counter-
model a(d),b(d), ~¢(d). That is, it points to the set of all d such that d € a,
d € b, but d ¢ c. Hence, the model generator comes up with a counter-example
to the expression in (2b).

We have experimented with an automatically and systematically generated
testbed consisting of possible set equations involving N, U, set-minus operations
up to nesting depth of 5 in maximally 5 variables. We classified 10000 examples
with our system discovering 988 correct and 9012 false statements. Naturally,
the correct statements are probably also solvable with the cooperation of LEO
and OTTER.

3.3 Examples with computer algebra

The next type of examples has cross-domain character and requires a combi-
nation of domain specific systems. In order to tackle them we added a sim-
plification agent which links the computer algebra system MAPLE to our core
system. As an application condition this agent checks whether the current sub-
goal contains certain simplifiable expressions. If so, then it simplifies the sub-
goal by sending the simplifiable subterms (e.g., z > ¢cd(10,8)) via MATH-
WEB to MAPLE and replaces them with the corresponding simplified terms
(e.g., * > 40). Hence, the new subgoal suggested by the simplification agent
is: (Azaz > 2 A2 < 40) = (Azaz < 40) N (Azwz > 2). Since no other agent
comes up with a better alternative, this suggestion is immediately selected and
executed. Subsequently, the LEO agent successfully attacks the new goal after
expanding the definition of N. We have successfully solved 50 problems of the
given type and intend to generate a large testbed next.

3.4 Group theory and algebra examples

The group theory and algebra examples we examined are rather easy from a
mathematical viewpoint, however, can become non-trivial when painstakingly
formalised. An example are proofs in which particular elements of one math-
ematical structure have to be identified by their properties and transferred to
their appropriate counterparts in an enriched structure. The equivalence state-
ment given above in (4) where the unit element of the monoid has to be identified
with the appropriate element of the group are in this category. In higher-order
this can be done most elegantly using the description operator ¢ (cf. [And72]
for description in higher-order logics) by assigning to the element in the group
the unique element in the monoid that has exactly the same properties. In the
context of our examples we employed description to encode concepts like the
(unique) unit element of a group by a single term that locally embodies the par-
ticular properties of the encoded concept itself. If properties of the unit element
are required in a proof then the description operator has to be unfolded (by
applying a tactic in the system) and a uniqueness subproof has to carried out.



However, an open problem is to avoid unnecessary unfoldings of the description
operator as this may overwhelm the proof context with unneeded information.

The idea of the proofs is to divide the problems into smaller chunks that
can be solved by automated theorems provers and if necessary to deal with for-
mulae involving description. The ND search procedure implemented in OANTS
has the task to successively simplify the given formulae by expanding defini-
tions and applying ND inferences. After each proof step the provers try to solve
the introduced subproblems. If they all fail within the given time bound the
system proceeds with the alternative ND inferences. The quantifier rules intro-
duce Skolem variables and functions when eliminating quantifications. These
are constrained either by the application of a generalised Weaken rule, using
higher-order unification, or by the successful solution of subproblems by one
of the provers, which gives us the necessary instantiation. Problems involving
higher-order variables (for which real higher-order instantiations are required)
can generally not be solved (in this representation) by first-order provers. How-
ever, once an appropriate instantiation for the variables has been computed a
first-order prover can be applied to solve the remaining subproblems. Substitu-
tions for introduced Skolem variables are added only as constraints to the proof,
which can be backtracked if necessary.

When a point is reached during the proof where neither applicable rules nor
solutions from the provers are available, but the description operator still occurs
in the considered problem, two theorems are applied to eliminate description.
This results in generally very large formulae, which can then again be tackled
with the ND rules and the theorem provers.

In our experiments with algebra problems we have successfully solved 20
examples of the described type.

Our experiments show that the cooperation between different kinds of reason-
ing systems can fruitfully combine their different strengths and even out their
respective weaknesses. In particular, we were able to successfully employ LEO’s
extensionality reasoning with OTTER’s strength in refuting large sets of first-
order clauses. Likewise, our distributed architecture enables us to exploit the
computational strength of MAPLE in our examples remotely over the internet.
As particularly demonstrated by the last example class the strengths of external
systems can be sensibly combined with domain specific tactics and methods, and
natural deduction proof search.

Note that our approach does not only allow the combination of heterogeneous
systems to prove a problem, but it also enables the use of systems with opposing
goals in the same framework. In our examples the theorem prover and the model
generator work in parallel to decide the validity of the current (propositional)
goal.

Although many of our examples deal with problems in set theory they already
show that the cooperation of differently specialised reasoning systems enhances
the strengths of automated reasoning. The results also encourage the applica-
tion of our system to other areas in mathematics in the future. However, there
is a bottleneck for obtaining large proofs, namely the translation between the
different systems involved, in particular, in the presence of large clause sets.



4

Discussion

Our work is related to blackboard and multi-agent systems in general, and to
approaches to distributed proof search and agent-oriented theorem proving in
particular. Consequently, the list of related work is rather long and we can men-
tion only some of it. We first summarise different facets of our approach which
we then use to clarify the differences to other approaches and to motivate our
system design objectives. Our system:

(1)

aims to provide a cognitively adequate assistant tool to interactively and/or
automatically develop mathematical proofs;

supports interaction and automation simultaneously and integrates reactive
and deliberative proof search;

maintains a global proof object in an expressive higher-order language in
which results of external systems can be represented;

employs tools as Lout [SHB199] or P.rex [Fie01] to visualise and verbalise
proofs, i.e., communicate them on a human oriented representation layer;
couples heterogeneous external systems with domain specific tactics and
methods and natural deduction proof search; i.e., our notion of heterogene-
ity comprises machine oriented theorem proving as well as tactical theorem
proving/proof planning, model generation, and symbolic computation;
reuses existing reasoning systems and distributes them via MATHWEB (In or-
der to add a new system provided by MATHWEB the user has to: a) provide
an abstract inference step/command modelling a call to the external rea-
soner, b) define the parameter agents working for it, and ¢) (optional) adapt
the heuristic criteria employed by the system to rank suggestions. Due to
the declarative agent and heuristics specification framework these steps can
be performed at run time.);

supports competition (e.g., proof versus countermodel search) as well as
cooperation (e.g., exchange of partial results);

follows a skeptical approach and generally assumes that results of exter-
nal reasoning system are translated in the central proof object (by employ-
ing transformation tools such as TRAMP [Mei00]) where they can be proof-
checked;

employs resource management techniques for guidance;

supports user adaptation by enabling users to specify/modify their own con-
figurations of reasoning agents at run-time, and to add new domain specific
tactics and methods when examining new mathematical problem domains;
stores interesting suboptimal suggestions in a backtracking stack and sup-
ports backtracking to previously dismissed search directions;

supports parallelisation of reasoning processes on different layers: term-level
parallelisation is achieved by various parameter agents of the commands/
abstract inferences, inference-level parallelisation is supported by the ability
to define new powerful abstract inferences which replace several low level in-
ferences by a single step (a feature inherited from the integrated tactical the-
orem proving paradigm), and proof-search-level parallelisation is supported
by the competing reasoning systems.



Taken individually none of the above ideas is completely new and for each
of these aspects there exists related work in the literature. However, it is the
combination of the above ideas that makes our project unique and ambitious.

A taxonomy of parallel and distributed (first-order) theorem proving systems
is given in [Bon01]. As stated in (12), our approach addresses all three classi-
fication criteria introduced there: parallelisation on term, inference, and search
level. However, full or-parallelisation is not addressed in our approach yet. This
will be future work.

A very related system is the TECHS approach [DF99] which realises a cooper-
ation between a set of heterogeneous first-order theorem provers. Partial results
in this approach are exchanged between the different theorem provers in form of
clauses, and different referees filter the communication at the sender and receiver
side. This system clearly demonstrates that the capabilities of the joint system
are bigger than those of the individual systems. TECHS’ notion of heterogeneous
systems, cf. (5) above, however, is restricted to a first-order context only. Also
symbolic computation is not addressed. TECHS [DF99] and its even less heteroge-
neous predecessors TEAMWORK [DK96] and D1SCOUNT [ADF95] are much more
machine oriented and less ambitious in the sense of aspects (1)-(4). However,
the degree of exchanged information (single clauses) in all these approaches is
higher than in our centralised approach. Unlike in the above mentioned systems,
our interest in cooperation, however, is in the first place not at clause level, but
on subproblem level, where the subproblem structure is maintained by the cen-
tral natural deduction proof object. Future work includes investigating to what
extend our approach can be decentralised, for instance, in the sense of TECHS,
while preserving a central global proof object.

In contrast to many other approaches we are interested in a fully skeptical
approach, cf. (8) and the results of some external reasoners (e.g., for OTTER
TPps, and partially for computer algebra systems) can already be expanded and
proof checked by translation in the core natural deduction calculus. However, for
some external systems (e.g., LEO) the respective transformation tools still have
to be provided. While they are missing, the results of these system, modelled as
abstract inferences in natural deduction style, cannot be expanded.

Interaction and automation are addressed by the combination of ILF &
TEcHS [DD98]. With respect to aspects (6)—(12), especially (10), there are vari-
ous essential differences in our approach. The design objectives of our system are
strongly influenced by the idea to maintain a central proof object which is ma-
nipulated by the cooperating and competing reasoning agents, and mirrors the
proof progress. This central natural deduction proof object especially eases user
interaction on a human oriented layer, cf. (3) and (4), and supports skepticism
as described above. In some sense, external systems are modelled as new proof
tactics. Extending the background calculus and communication between them
is currently only supported via the system of blackboards associated with the
current focus of the central proof object. This relieves us from addressing logical
issues in the combination of reasoning systems at the proof search layer. They
are subordinated and only come into play when establishing the soundness of
contributions of external reasoners by expanding their results on natural deduc-
tion layer. A centralised approach has advantages in the sense that it keeps the



integration of n heterogeneous systems, with probably different logical contexts,
simple and it only requires n different proof (or result) transformation tools
to natural deduction arguments. In particular the overall proof construction is
controlled purely at the natural deduction layer.

However, experiments indicated that aside from these advantages, the bottle-
neck of the system currently is the inefficiency in the cooperation of some external
systems, especially of homogeneous systems specialised in resolution style prov-
ing which cannot directly communicate with each other. Future work therefore
includes investigating whether the approach can be further decentralised with-
out giving up much of the simplicity and transparency of the current centralised
approach.

With the centralisation idea, we adopted a blackboard architecture and our
reasoning agents are knowledge sources of it. In the terminology of [Wei99] our
reasoning agents can be classified as reactive, autonomous, pro-active, coop-
erative and competitive, resource adapted, and distributed entities. They, for
instance, still lack fully deliberative planning layers and social abilities such
as means of explicit negotiation (e.g., agent societies are defined by the user
in OANTS and, as yet, not formed dynamically at run-time [BS01]). In this
sense, they are more closely related to the HAsp [NFAR82] or POLIGON [Ric89]
knowledge sources than to advanced layered agent architectures like INTER-
RAP [Mil97]. However, in future developments a more decentralised proof search
will make it necessary to extend the agenthood aspects in order to enable agents
to dynamically form clusters for cooperation and to negotiate about efficient
communication languages.

5 Conclusion

In this paper we presented our agent-based reasoning system. Our framework is
based on concurrent suggestion agents working for natural deduction rules, tac-
tics, methods, and specialised external reasoning systems. The suggestions by the
agents are evaluated after they are translated into a uniform data representa-
tion, and the most promising direction is chosen for execution. The alternatives
are stored for backtracking. The system supports customisation and resource
adapted and adaptive proof search behaviour.

The main motivation is to develop a powerful and extendible system for
tackling, for instance, cross domain examples, which require a combination of
reasoning techniques with strengths in individual domains. However, our moti-
vation is not to outperform specialised systems in their particular niches. The
agent paradigm was chosen to enable a more flexible integration approach, and
to overcome some of the limitations of hardwired integrations (for instance, the
brittleness of traditional proof planning where external systems are typically
called within the body of proof methods and typically do not cooperate very
flexibly).

A cognitive motivation for a flexible integration framework presented in this
paper is given from the perspective of mathematics and engineering. Depending
on the specific nature of a challenging problem, different specialists may have
to cooperate and bring in their expertise to fruitfully tackle a problem. Even



a single mathematician possesses a large repertoire of often very specialised
reasoning and problem solving techniques. But instead of applying them in a
fixed structure, a mathematician uses own experience and intuition to flexibly
combine them in an appropriate way.

The experience of the project points to different lines of future research.
Firstly, the agent approach offers an interesting framework for combining auto-
mated and interactive theorem proving on a user-oriented representation level
(and in this sense it differs a lot from the mainly machine-oriented related work).
This approach can be further improved by developing a more distributed view
of proof construction and a dynamic configuration of cooperating agents. Sec-
ondly, in order to concurrently follow different lines of search (or-parallelism), a
more sophisticated resource handling should be added to the system. Thirdly,
the communication overhead for obtaining large proofs is the main performance
bottleneck. More efficient communication facilities between the different systems
involved have to be developed. Contrasting the idea of having filters as suggested
in [DF99] we also want to investigate whether in our context (expressive higher-
order language) abstraction techniques can be employed to compress the ex-
changed information (humans do not exchange clauses) during the construction
of proofs.

Further future work includes improving several technical aspects of the cur-
rent OMEGA environment and the prototype implementation of our system that
have been uncovered during our experiments. We would also like to test the
system in a real multi-processor environment, where even the agent-shells for
external reasoners can be physically distributed — currently, the agent-shells,
which are local, make indirect calls (via MATHWEB) to the external systems.
Furthermore, we will integrate additional systems and provide further repre-
sentation translation packages. The agents’ self-monitoring and self-evaluation
criteria, and the system’s resource adjustment capabilities will be improved in
the future. We would also like to employ counter-example agents as indicators
for early backtracking. Finally, we need to examine whether our system could
benefit from a dynamic agent grouping approach as described in [FW95], or from
an integration of proof critics as discussed in [IB95].
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