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Abstract In this paper, we introduce Speedith which is an interactive diagrammatic
theorem prover for the well-known language of spider diagrams. Speedith provides a
way to input spider diagrams, transform them via the diagrammatic inference rules,
and prove diagrammatic theorems. Speedith’s inference rules are sound and complete,
extending previous research by including all the classical logic connectives. In addition
to being a stand-alone proof system, Speedith is also designed as a program that
plugs into existing general purpose theorem provers. This allows for other systems
to access diagrammatic reasoning via Speedith, as well as a formal verification of
diagrammatic proof steps within standard sentential proof assistants. We describe the
general structure of Speedith, the diagrammatic language, the automatic mechanism
that draws the diagrams when inference rules are applied on them, and how formal
diagrammatic proofs are constructed.
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1 Introduction

Diagrams are often employed as illustrations in pen-and-paper reasoning. In fact,
since ancient times they frequently formed essential parts of proofs.1 One can argue
that diagrams often provide compelling and intuitive solutions to problems. Despite
this, and with the advent of proof theory, the role of diagrams became that of an
informal visual aid—diagrams have rarely been formalised in proof tools to be used
for reasoning. In this paper, we do just that: we present a new, formal diagrammatic
theorem prover Speedith.2 Speedith’s domain is the language of spider diagrams. It
allows us to apply diagrammatic inference rules on conjectures about spider diagrams,
and thus construct a proof. The entire proof construction process is carried out visually.
The derived proof is certified to be (logically) correct. The hypotheses that we aim to
confirm in our work are:

– It is possible to design and implement a complete formal diagrammatic reasoner
in the general domain of monadic first-order logic with equality (or MFOLE for
short), expressed using the language of spider diagrams.

– The derived diagrammatic proofs can be guaranteed to be formally correct.
– A diagrammatic reasoner for spider diagrams can be standalone, yet also pluggable
into external proof tools—thus providing alternative problem representations and
proof construction methods for these tools.

The intuitive nature of diagrams recently motivated the design of some formal
diagrammatic reasoning systems. Some examples include Diamond (Jamnik et al.
1999), Dr. Doodle (Winterstein et al. 2004), and Cinderella (Kortenkamp and Richter-
Gebert 2004), but they target different, more restricted domains (e.g., a small subset
of natural number arithmetic, a subset of real arithmetic), and are hence able to prove
only a limited class and number of theorems. They do not provide a provably sound
and complete set of inference rules. They are also not designed to be readily integrated
into external proof tools.

There are theoremprovers that were developed for spider diagrams, but theyworked
only for fragments of the logic in this paper: they did not include any logical connec-
tives, or only a limited number of them (Stapleton et al. 2007). In Speedithwe formalise
the whole spider diagram logic (Sect. 2), which includes the full range of classical
logical connectives and is expressively equivalent toMFOLE.We also develop a set of
sound and complete inference rules (Sect. 3), representing an extension of the system
in Howse et al. (2005).3 Moreover, we argue that these inference rules allow the user
to construct more intuitive proof steps.

1 The use of diagrams as evidence, or as a tool for constructing proofs, predates modern efforts of for-
malisation of logic. An early example of the use of diagrams in proofs is Euclid’s Elements. In the past,
diagrams were used in the context of geometry, or geometrical representations of concepts from algebra,
number theory, analysis, topology and category theory.
2 We first introduced Speedith in Urbas et al. (2012). This paper gives a comprehensive account of Speedith,
its design and theoretical properties, and also its further developments regarding the selection of inference
rules, hand-drawing interface and pluggable infrastructure.
3 The system in Howse et al. (2005) is a proper fragment of that implemented in Speedith and was proved
complete in the absence of −→, ←→ and ¬. We enlarge the set of inference rules to obtain completeness
in this syntactically richer logic.
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Speedith: A Reasoner for Spider Diagrams 489

Fig. 1 A proof of a spider-diagrammatic statement. The proof establishes that given sets A and B, if there
are two elements s1 and s2 and one is in both of A and B and the other is either in only A or only B, then
we can deduce that one element is in A and the other is in B. In this proof, we applied the split spider on
s1, add feet, one to each of the four spiders, and idempotency inference rules. The rules are proved to be
sound and their application in this proof is verified by Speedith to be correct. Hence, the proof is certified
to be correct

Speedith is an interactive proof assistant for the language of spider diagrams
that allows its users to interactively apply diagrammatic (visual) inference rules on
spider-diagrammatic statements. It checks whether the inference rules are used cor-
rectly and verifies that a spider-diagrammatic statement expresses a true fact—it
is a theorem. Thus, Speedith’s diagrammatic proofs are entirely formal and certi-
fied to be correct. Figure1 shows an example of Speedith’s purely diagrammatic
proof. Here, d1 is a spider diagram which conveys some information about the rela-
tionships between two elements and two sets and proves that d6 follows logically.
In Sect. 4 we present the architecture of Speedith in detail, including a reason-
ing kernel that manages the state of the proofs, controls how inference steps are
applied, and manages the communication with external general purpose theorem
provers.

Speedith provides a graphical user interface through which all the diagrammatic
proofs are constructed—we describe this in detail in Sect. 4.4. The user can input the
theorem via hand-drawn diagrams or via a textual abstract representation of diagrams.
Speedith visually displays spider-diagrammatic statements; allows the user to specify
which inference rules should be applied on what parts of the spider diagram; and
displays the result of this visually. Figure 2 shows a screenshot of the proof presented
above in Fig. 1 as it is constructed in Speedith.

Whilst Speedith is a standalone diagrammatic proof assistant, it is also designed to
easily plug into external proof tools. This has the advantage that spider-diagrammatic
proofs can be reconstructed in traditional logic, and thus certified with, for example,
LCF-style general purpose theorem provers (Gordon et al. 1979).

We evaluate Speedith in Sect. 5 by comparing it to other related work, assessing
its generality and extensibility, and pointing out its limitations that indicate future
directions. Finally, in Sect. 6 we conclude with some general observations.
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490 M. Urbas et al.

Fig. 2 A screenshot of the proof from Fig.1 constructed in Speedith—due to scrolling there are two screens
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Speedith: A Reasoner for Spider Diagrams 491

2 Spider Diagrams

Spider diagrams have a formally defined syntax and semantics. The language of spi-
der diagrams resembles Venn and Euler diagrams. It uses closed curves to denote
sets, shading of areas to denote upper bounds on the cardinality of sets, and dots
connected with lines to denote existentially quantified elements. The syntax and
semantics of this language have been formally defined by Howse et al. (2005).
The language of spider diagrams is also accompanied by inference rules, which
results in the logic of spider diagrams. This logic is expressively equivalent to
monadic first-order logic with equality (MFOLE) (Stapleton et al. 2004). We also
developed a new set of sound inference rules, which represent an extensions of
the system in Howse et al. (2005) and prove them to be complete–for details, see
Sect. 3.

We firstly introduce the language and logic of spider diagrams, that is, its syntax
and semantics (Sect. 2), and inference rules (Sect. 3). After, we introduce Speedith
itself (Sect. 4).

2.1 Syntax

Sentences in the language of spider diagrams are capable of expressing assertions about
sets and their elements. Figure3 contains an example spider-diagrammatic sentence,
which is also a theorem.

Spider diagrams use labelled closed curves to represent named sets. These curves
are called contours. Their spatial and topological arrangement is used to assert rela-
tionships between the sets they represent. For instance, the enclosure of one contour
by another corresponds to a subset (and consequently a superset) relationship between
the represented sets. Contours are annotated with labels (in Fig. 3, the contour labels
are A, B and C). The set of contour labels used in a diagram d is denoted by L(d)

(this set may also be empty).

∃ s1, s2, s3. (distinct [s1, s2, s3] ∧ s3 ∈ (A \ C) ∪ (A ∩ B) ∧ s1 ∈ B \ (A ∪ C) ∧
∧ s2 ∈ B \ (A ∪ C) ∧ B \ (A ∪ C) ⊆ {s1, s2}) −→
∃ t1, t2, t3. (distinct [t1, t2, t3] ∧ t1 ∈ B ∧ t2 ∈ B)

Fig. 3 Top an assertion in the language of spider diagrams. Bottom an equivalent assertion as a sentential
formula in MFOLE
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492 M. Urbas et al.

All spider diagrams contain at least one zone. A zone is a region that is inside someor
none of the contours. Formally, a zone is a pair of finite, disjoint sets of contour labels,
(in, out). Intuitively, (in, out) is inside every contour of in, and outside every contour
of out . So, in a diagram, the set of possible zones is formed by its contour labels. For
example, in d1 of Fig. 3, the zones are (∅, {A, B, C}), ({A},{B, C}), ({B}, {A, C}),
({C}, {A, B}), ({A, B}, {C}), ({A, C}, {B}), ({B, C}, {A}), ({A, B, C},∅).We denote
the set of zones in a diagram d by Z(d). Any collection of zones is called a region.

Spiders denote the existence of elements within a region. Spiders are connected
acyclic graphswith at least one node. Each node of a spider, called a spider foot, resides
in a distinct and unique zone. The nodes are visually connectedwith lines, called spider
legs. The collection of zones, that is, the region in which all of a spider’s nodes reside is
called the spider’s habitat.4 In summary, a spider asserts that there exists an element
in the set denoted by its habitat. Furthermore, spiders represent distinct elements.
Consequently spiders place a lower bound on the cardinality of the set represented
by the spider’s habitat. The upper bound on the cardinality of a set is expressed with
shaded zones. The set of shaded zones is denoted with ShZ(d). The set of shaded zones
is a subset of the set Z(d). In a shaded zone, all elements are represented by spiders.

The set of spiders in a diagram d is denoted by S(d). A spider’s habitat is returned
by the following function:

ηd : S(d) → P(Z(d))\{∅}.

The range of the above function excludes the empty set—this reflects the fact that
spiders cannot have empty habitats.5 For example, Fig. 3 contains six spiders (denoted
with indexed letters s and t). The spider s3 has three feet and two legs. It’s habitat
consists of three zones: ({A}, {B, C}), ({A, B}, {C}) and ({A, C, B},∅).

A diagram consisting of only the above elements is called a unitary spider diagram
(we typically use the symbol du to denote them). Unitary spider diagrams are atomic
expressions in the language of spider diagrams.

Definition 1 A unitary spider diagram is an atomic element of the language of spider
diagrams. It is defined as a tuple of the following form:

du = (L , Z , ShZ, S, η), (1)

where L is the set of contour labels, Z is the set of zones in the diagram,6 ShZ is the set
of shaded zones (a subset of Z ), S is the set of spiders and η : S(du) → P(Z(du))\{∅}
is a function that returns the habitat of each spider.

4 Note that we use labels on spider feet in order to be able to refer to specific spiders. However, as can be
observed from the definition of spiders above, these labels do not form part of the syntax of spider diagrams.
They are a convenience, and can be arbitrarily and freshly chosen every time an inference rule is applied
on a diagram. This means that, for example, two drawn spider diagrams that are identical apart from the
spider labels have the same syntax.
5 A spider with an empty habitat is a contradiction, as it would imply that there exists an element that does
not belong to any set.
6 So, each zone (in, out) in Z ensures that in ∪ out = L .
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Speedith: A Reasoner for Spider Diagrams 493

Given a unitary spider diagram, du , we will write L(du), Z(du), Sh Z(du), S(du)

and ηdu for L , Z , Sh Z , S and η where necessary (e.g., when talking about more than
one unitary spider diagram). A sentence in the language of spider diagrams may be
a unitary spider diagram or a compound spider diagram. Compound spider diagrams
connect multiple unitary spider diagrams through logical connectives.

Definition 2 A sentence d in the language of spider diagrams may be either a com-
pound spider diagram or a unitary spider diagram.We define a general spider diagram
as a compound diagrams with recursive nesting of unitary or other compound spider
diagrams:

d =: :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d ←→ d Logical equivalence

d −→ d Implication

d ∨ d Disjunction

d ∧ d Conjunction

¬d Negation

du Unitary spider diagram

(2)

Note that the connectives ←→, −→, and ¬ were excluded from the sound and com-
plete spider diagram logic studied by Stapleton et al. (2004).

In Fig. 3, there are two unitary diagrams d1 and d2 which are connected with the
implication operator −→ into a compound spider diagram.

2.2 Semantics

We define the semantics of spider diagrams by interpretations and the interpretation
tuple:

I = (U, Φ), (3)

where U is the universal set (containing all elements of a particular interpretation),
and Φ is the function that maps contour labels to subsets of U :

Definition 3 Let C be a contour with label l in a spider diagram d [(i.e., there exists
a unitary spider diagram du within d such that l ∈ L(du)]. Then, for a specific inter-
pretation tuple (U, Φ), the function Φ maps the contour label l to a subset of U :

Φ(l) ⊆ U. (4)

In addition to the interpretation tuple we also define a spider map function �. This
function is analogous to the valuation function in Alfred Tarski’s definition of formal
semantic for first-order logic (Tarski 1944).

Definition 4 The spider map function Σdu ,U maps spiders from a unitary spider dia-
gram into the universal setU . Let s ∈ S(du) be a spider living in the unitary spider dia-
gram du , andU the universal set of a particular interpretation, thenΣdu ,U is defined by:

Σdu ,U (s) = x; where x ∈ U, (5)
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494 M. Urbas et al.

for which we use the shorthand Σ (s), where the universal set U and the unitary spi-
der diagram du are implicitly given and understood from the context. Note that � is
parametrised by both du and U , therefore Σdu ,U may differ for different du and U .

2.2.1 Truth in Spider Diagrams

A sentence in the language of spider diagrams is an assertion which may or may not
hold under a particular interpretation I and a particular spider map function �.

In order to formally define truth in the language of spider diagrams we firstly define
the interpretation functions for zones and spider habitats. These are required to define
the truth of a unitary spider diagram, which in turn is required in the definition of the
truth of a compound sentence in the language of spider diagrams.

Definition 5 Let z = (in, out) be a zone in the unitary spider diagram du , that is,
z ∈ Z(du), and let I = (U, Φ) be a particular interpretation. The set represented by
the zone z is then defined as follows:

ζI (z)
def=

[
⋂

l∈in

Φ(l)

]

∩
[

⋂

l∈out

U\Φ(l)

]

. (6)

The interpretation of a region, or a spider’s habitat, is the union of all zones within
the region:

Definition 6 Let h = ηdu (s), where h ⊆ P (Z(du)), be the habitat of the spider s in
the unitary spider diagram du , and let I = (U, Φ) be a particular interpretation. Then
the set represented by the habitat h is defined as follows:

χI (h)
def=

⋃

z∈h

ζI (z). (7)

Unlike zones and regions, unitary spider diagrams represent assertions of truth.
Therefore, the interpretation function of unitary spider diagrams maps to either the
truth or falsehood:

Definition 7 We use the notation �I,� du to denote that a unitary spider diagram
du = (L , Z , ShZ, S, η) is true under the interpretation I = (U, Φ) and spidermapping
�. Furthermore, let S = {s1, s2, . . . , sn} be the set of all spiders in du .

We say that �I,� du holds if xi = Σ (si ), for all i ∈ {1, . . . , n}, such that:

– distinct spiders map to distinct elements: j �= k −→ x j �= xk ,
– spiders live in their respective habitats: xi ∈ χI (η(si )),
– the shaded zones form a subset of the spider elements:

⋃
z∈ShZ ζI (z) ⊆

{x1, . . . , xn}, and
– the missing zones denote empty sets: ∀z ∈ MZ(du).ζI (z) = ∅,

where missing zones MZ(du) are the ones that are not in Z(du) but may still be
expressed with the labels in L(du). In particular, the set of MZ is defined as follows:

MZ(du) = {z |z = (in, L(du)\in) ∧ in ⊆ L(du) ∧ z /∈ Z(du) } .
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Fig. 4 A unitary spider diagram
with the missing zone
({A, B},∅)

Figure4 shows a unitary spider diagram with one missing zone. Intuitively, the
disjoint spatial positioning of contours A and B indicates that the intersection of sets
A and B is empty. Missing zones thus denote empty sets and are the result of spatially
disjoint positioning of contours.

Finally, the definition of truth for all sentences of the language of spider diagrams
is given:

Definition 8 Weuse the notation�I d to denote that the spider-diagrammatic sentence
is true under the interpretation I . We define �I d recursively by cases of the spider
diagrammatic syntax (as defined in Definition 2):

– �I d1 ←→ d2 is true iff �I d1 and �I d2 both are true or both are false.
– �I d1 −→ d2 is true iff �I d1 is false or �I d2 is true.
– �I d1 ∨ d2 is true iff �I d1 or �I d2 are true.
– �I d1 ∧ d2 is true iff �I d1 and �I d2 are true.
– �I ¬d1 is true iff �I d1 is false.
– �I du is true iff there exists a spider map � such that �I,� du is true (as per
Definition 7).

So far, we defined the truth of spider-diagrammatic sentences under a specific
interpretation I = (U, Φ) and the existence (or otherwise) of appropriate spider
mapping functions. Next, we define what it means for a spider-diagrammatic sentence
to be a theorem:

Definition 9 A spider diagram d is a theorem if �I d is true under all interpretations
I . We use the following notation to denote that the spider diagram d is a theorem:

� d (8)

Definition 10 We say that diagram d ′ logically entails diagram d, if and only if the
following holds:

� d ′ −→ d. (9)

To denote this, we use shorthand notation:

d ′ � d. (10)

Similarly, we say that d ′ and d are equivalent if they entail each other:

Definition 11 We say that diagram d is logically equivalent to diagram d ′, if and only
if both d � d ′ and d ′ � d hold. To denote this, we use shorthand:

d ′ ≡ d. (11)
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3 Inference Rules

Similarly to other traditional logical systems, spider diagrams are also equipped with
inference rules. The central role of inference rules is to enable stepwise verification of
the validity of a spider-diagrammatic sentence, that is, to determine whether a spider
diagram is a theorem.

The inference rules in spider diagrams are of three basic types:

1. Inference rules for logical connectives this category contains inference rules of
propositional logic (which act purely on logical connectives of compound spider
diagrams),

2. Purely diagrammatic inference rules rules of this type transform unitary spider
diagrams into logically entailed spider diagrams,

3. Compound inference rules these rules act both on unitary spider diagrams and
compound spider diagrams. Compound inference rules act on both the purely dia-
grammatic aspects of spider diagrams as well as the symbolic logical connectives
that bind them.

The inference rules we present here extend those in Howse et al. (2005) in three
ways, motivated by the desire for completeness and for more intuitive, elegant proofs.
With regard to completeness, all of the inference rules implemented in Speedith for the
logical connectives −→, ←→ and ¬ are new, as Howse et al. (2005) did not include
these connectives. We also introduce a further diagrammatic rule that is necessary
for completeness: NegationElimination. This rule allows negation to be entirely
eliminated from diagrams. With regard to intuitive and elegant proofs, we introduce
new diagrammatic rules that allow shorter and more natural proofs to be constructed.
These new rules are called CopyContours, CopyShading and CopySpider, and
are introduced below. Each operates on two unitary diagrams joined by ∧, copying
information from one diagram into the other. Previously, in Howse et al. (2005),
information typically had to be copied to reduce the diagrams into a particular normal
form, followed by applying the Combining rule. The normal form would then need to
be transformed back into the conjunction of the twomodified initial diagrams. Clearly,
this is a long, unnecessary and indirect process that reduces clarity of a proof—which
is the reason that we introduced our new inference rules.

3.1 Inference Rules for Logical Connectives

Rules for logical connectives in compound spider diagrams are based on the typical
inference rules for propositional logic:

1. double negation elimination and introduction,
2. conjunction elimination and introduction,
3. disjunction elimination and introduction,
4. biconditional introduction and elimination,
5. modus ponens,
6. modus tollens,
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Fig. 5 An example application of the AddFeet inference rule. Two feet are added to the spider s3. The
new feet are inserted into the zones ({A, B}, {C}) and ({A, B, C}, ∅)

7. tautologies and simplification rules, for example, d −→ d � �, d ∨ ¬d � �,
d ∧ ¬d � ⊥, and d ∧ ⊥ � ⊥; and

8. idempotency rules like d ∨ d � d and d ∧ d � d.

3.2 Purely Diagrammatic Inference Rules

Purely diagrammatic inference rules transform unitary spider diagrams exclusively.
We outline them here and provide some instances of their application on concrete
spider diagrams. For more detail and their formal definitions, see Howse et al. (2005).
Add Spider Feet Let d = (L , Z , ShZ, S, η) be a unitary spider diagram, s ∈ S be a
spider with the habitat η(s), and h be a region such that h ⊆ {z |z ∈ Z ∧ z /∈ η(s) }.
Then the AddFeet rule is applicable on d and produces a new unitary spider diagram
d ′ such that d � d ′ and d ′ = (L , Z , ShZ, S, η′) where:

η′(x) =
{

η(x) x �= s,

η(x) ∪ h x = s.

This inference rule is not information-preserving (it may not be applied in the other
direction). Figure5 shows an example application of the AddFeet inference rule.
Introduce a Contour Label Adds an additional contour (with a fresh label) to a unitary
spider diagram d resulting in a new diagram d ′. This rule introduces new zones, shaded
zones and spider feet into d ′. In particular, each zone (shaded or otherwise) is split
into two (one is outside of the new contour and the other is within). Additionally,
every spider is extended with new feet in the new zones that are the result of split
zones within the spiders’ original habitat. This inference rule may be applied in both
directions, as both d � d ′ aswell as d ′ � d hold. Figure6 shows an example application
of IntroContour inference rule.7

Erasure of a Spider Let d = (L , Z , ShZ, S, η) be a unitary spider diagram. A spider
s ∈ S with a habitat consisting of exclusively non-shaded zones (i.e., η(s) ⊆ Z\ShZ)
may be completely removed from the unitary spider diagram d. The result is a new
unitary spider diagram d ′ which is an exact copy of the diagram d except that d ′ is

7 Introducing a contour in abstract syntax is straightforward. However, drawing an additional contour may
be more complex, for example, it may not be drawable as a single circle. We use iCircle algorithm for laying
out spider diagrams—for details, see Sect. 4.4.2.
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Fig. 6 An example application of the IntroContour inference rule. The contour C is introduced to the
unitary spider diagram on the left-hand side

Fig. 7 An example application of the EraseSpider inference rule. The spider s1 is removed from the
left-hand unitary spider diagram

Fig. 8 An example application of the EraseContour inference rule. The contour label C is removed
from the left-hand unitary spider diagram

missing the spider s and η′ is undefined for this spider. The resulting diagram is thus:
d ′ = (L , Z , ShZ, S\{s}, η′). Figure7 is an example application of EraseSpider. This
inference rule does not preserve information.
Erasure of a Contour Label A contour label l ∈ L may be removed from a unitary
spider diagram d = (L , Z , ShZ, S, η). This results in a new diagram with modified
shading of zones and spider habitats d ′ = (L\{l}, Z ′, ShZ ′, S, η′). Zones zi = ({l} ∪
in, out) and zo = (in, {l} ∪ out), where at most one of them is shaded, collapse into
non-shaded zones z = (in, out). Otherwise, shading is preserved. Additionally, if a
spider s has at least one foot in zones that collapse into one, the spider will have a foot
in the collapsed zone in the new diagram. This rule is not an equivalence rule. Figure8
shows an example application of the EraseContour.
Introduce a Shaded Zone If a zone z is missing from a unitary spider diagram d =
(L , Z , ShZ, S, η), that is, if z ∈ MZ(d), then d can be replaced by d ′ = (L , Z ∪
{z}, ShZ ∪ {z}, S, η). Diagrams d and d ′ are semantically equivalent, that is, d ≡ d ′.
This rule can thus be applied in both directions (i.e., d can be replaced by d ′ and vice
versa). Figure9 shows an example application of IntroShadedZone.
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Fig. 9 An example application of the IntroShadedZone inference rule. The shaded zone ({B} , {A}) is
introduced into the right-hand unitary spider diagram

Fig. 10 An example application of the RemoveShading inference rule. Shading in the zone ({B}, {A})
in the unitary spider diagram on the left-hand side is removed

Remove Shading Any region consisting of exclusively shaded zones, say r ⊆ ShZ ,
in the unitary spider diagram d = (L , Z , ShZ, S, η) may be converted into a region
consisting of exclusively non-shaded zones. This results in a new unitary spider dia-
gram d ′ = (L , Z , ShZ\r, S, η). This rule is a weakening rule as it does not preserve
information. Figure10 illustrates the application of Remove- shading with a concrete
example.

3.3 Compound Inference Rules

Compound inference rules transform unitary spider diagrams that are connected
through a logical connective in a compound diagram. We enumerate the following
compound inference rules [others can be found in Howse et al. (2005) and Urbas et al.
(2012)]:
Splitting Spiders If a unitary diagram d contains a spider s with multiple feet, then the
SplitSpider rule can be applied to that spider. This rule takes as an argument a region r ,
which is a proper subset of the habitat of spider s: r ⊂ ηd(s) and |r | ≥ 1. The result
of the application of this rule is two disjunctively connected unitary diagrams dl and
dr that are identical to d except that the habitat of the spider s in diagram dl equals

Fig. 11 An example application of the SplitSpider inference rule. The SplitSpider rule is applied to the
spider s, which is split in the region marked with a dashed red outline. (Color figure online)
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Fig. 12 An example application of the ExcludedMiddle inference rule. The ExcludedMiddle rule is
applied to the region marked with a dashed red outline in the left-most unitary spider diagram. (Color figure
online)

ηd(s)\r and in dr it equals r . This rule preserves information and is an equivalence
rule. Figure11 shows an instance of the application of SplitSpider.
Excluded Middle A unitary spider diagram d containing a non-shaded region r can
be replaced by d1 ∨ d2 where d1 and d2 differ from d only in region r being shaded
in d1 and region r containing an extra spider in d2. The diagram d and d1 ∨ d2 are
semantically equivalent, therefore this rule can be applied in both directions (i.e.,
d1 ∨ d2 may also be replaced by d). Figure12 illustrates the application of this rule.
Combining This rule combines conjunctively connected unitary spider diagrams into
a single unitary diagram. Combining is applicable under complex assumptions. For
example, two conjunctively connected unitary diagrams may form a contradiction.
A contradiction, however, cannot be expressed in a single unitary spider diagram.
Therefore, in order to return a unitary diagram, combining needs to be carried out on
two conjunctively connected unitary spider diagrams that do not contain conflicting
information. Otherwise, the rule will return ⊥.8

More specifically, theCombining rule can be performed on unitary diagrams that have
the same sets of zones (and therefore missing zones) and all their spiders have single-
zone habitats. The diagrams are non-contradictory iff no shaded zone has fewer spiders
than its counterpart in the other diagram. In the non-contradictory case, Combining
creates a new unitary spider diagram with the same set of zones as the two original
unitary spider diagrams, but with shading in all zones that were shaded in at least one
of the original diagrams. Also, spiders of a particular zone are copied from the zone of
the original unitary diagram which contains the largest number of spiders. Otherwise,
we are in the contradictory case, so there is a shaded zone in one diagram that contains
more spiders in the other diagram and the rule returns ⊥. Figure13 shows an example
application of this rule in the non-contradictory case.

We now present four new inference rules that were not included in Howse et al.
(2005). The formalisations for all four rules, and their proofs of soundness can be
found in “Appendix 2”. Firstly, we add a rule that allows the elimination of negation
from spider diagrams.
Negation EliminationTheNegationElimination rulemay be applied to a negated unitary
diagram, ¬dn , where dn has no missing zones, contains one zone, zn , with n spiders
placed entirely within zn , no other spiders and if shading is present then it also occurs

8 In Speedith, ⊥ is equivalently represented by ¬�.
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Fig. 13 An example application of the Combining inference rule

Fig. 14 An example application of theNegationElimination inference rule. In this example,¬d2 asserts
that there are not exactly two elements in ({A}, {B}). This is equivalent to asserting that there are exactly
0, exactly 1 or at least three elements in ({A}, {B}), as seen in d0 ∨ d1 ∨ d3

only within zn . Such a diagram asserts that there are at least n elements in the set
represented by zn and, should zn be shaded, that there are no more elements. The
rule creates n copies of dn , giving diagrams d0, . . . , dn−1, where the zone zn contains
exactly i spiders in di along with shading. If zn is shaded in dn then a further copy of
dn is created, say dn+1, where zn contains n + 1 spiders but no shading. The result of
the rule NegationElimination is a disjunction9 of unitary diagrams, d0 ∨d1 ∨· · ·∨dn−1
when zn is not shaded in dn , otherwise d0 ∨ d1 ∨ · · · ∨ dn−1 ∨ dn+1. This rule is a
logical equivalence. Figure14 illustrates it with an example application.
Copy Contours10 The CopyContours rule may be applied to a compound diagram of
two conjunctively connected unitary diagrams d1 ∧ d2 with differing sets of contour
labels. A contour label l that is present in only one unitary diagram, say d1, may be
added into the other, say d2.

The result of this inference rule is a new compound diagram of two conjunctively
connected unitary diagrams, d1 ∧ d ′

2. The unitary diagram d ′
2 is a modified version

of d2 with the additional label l, new zones and extended spider habitats. Figure15
illustrates this rule with an example application.
Copy Shading10 The rule CopyShading may be applied to compound spider diagrams
of the form d1 ∧ d2, where d1 and d2 are unitary diagrams. The unitary diagrams must
contain regions r1 and r2 respectively, which must represent the same set.11 One of
the regions, say r1, must be entirely shaded while the other must contain at least one

9 Note that we assume an empty disjunction is ⊥.
10 This rule has been added in Urbas et al. (2012) and is not part of the original specification of spider
diagrams in Howse et al. (2005).
11 Regions in two unitary spider diagrams that represent the same set are called corresponding regions.
Corresponding regions can be identified syntactically and are therefore suitable as a proof-theoretic tool
for defining inference rules. This was first seen in Howse et al. (2002), where that work is generalized in
“Appendix 1” so that corresponding regions can be used for the formalization of inference rules.
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Fig. 15 An example application of the CopyContours inference rule. In this example, the contour D is
being copied from the unitary diagram d2 into the unitary diagram d1 to produce d3

Fig. 16 An example application of theCopyShading inference rule. The shading in the region A is copied
from d2 to d1 to produce d3

Fig. 17 An example application of the CopySpider inference rule where spider s is copied from d2 to d1
to produce d3

non-shaded zone. In addition, diagrams d1 and d2 must share the same spiders in these
two regions, all of which must have habitats that represent the same set.

The result of the application of the CopyShading rule on d1 ∧ d2 is the logically
equivalent d1 ∧ d ′

2, where d ′
2 is an exact copy of d2 except its region r2 is entirely

shaded. Figure16 contains an example application of this inference rule.
Copy a Spider10 The rule CopySpidermay be applied to d1 ∧ d2 if the unitary diagrams
d1 and d2 respectively contain regions r1 and r2 representing the same set, however,
r1 contains no shaded zones. In addition, all spiders that have a foot in region r1 must
also be present in d2 with habitats that represent the same set. Let there be a spider s
which lives in r2, but is not present in d1. Then, d ′

1 ∧ d2 is the result of the application
of this rule on d1 ∧ d2 where d ′

1 now contains the new spider s in the region r1. The
compound diagram d ′

1 ∧ d2 is logically equivalent to d1 ∧ d2. Figure17 illustrates the
application of CopySpider on a concrete example.

The above inference rules are used in spider-diagrammatic proofs such as the two
examples in Fig. 1 on page 3 and Fig. 18. These two proofs demonstrate the use
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Fig. 18 A spider-diagrammatic proof employing inference rules that copy information from the unitary
spider diagram to the right of the conjunction to the unitary spider diagram to the left of the conjunction.
First, contour D is copied, followed by copying spider s1. Next the shading in region ({C}, {D}) is copied
over. This makes the right conjunct redundant, so it can be eliminated. Finally, obsolete contours A and C
can be erased

of all three different types of inference rules within a single proof: diagrammatic
inference rules (AddFeet and RemoveContour), compound inference rules (SplitSpider,
CopyContours, CopySpider and CopyShading), and inference rules for logical connectives
(Idempotency and ConjunctionElimination).

3.4 Properties

We now establish two desirable properties of the spider diagram logic. First, all our
inference rules are sound:

Theorem 1 The spider diagram logic is sound.

Proof The proof relies on the individual inference rules being sound. “Appendix 2”
contains soundness proofs for the individual rules. Since proofs are constructed by
repeated application of the inference rules, the logic is sound.

Second, we can establish that the spider diagram logic which we have extended to
include −→, ←→ and ¬ is complete:

Theorem 2 The spider diagram logic is complete.

Proof The proof is given in “Appendix 3”.

4 Architecture and Implementation

Speedith is our stand-alone interactive diagrammatic theorem prover for the logic
of spider diagrams (Urbas et al. 2012). Moreover, it was also designed to be easily
pluggable into other proof-assisting software. For example, statements and proofs in
the language of spider diagrams can be exported to sentential first-order logic for-
mulae which, in turn, may be imported into sentential theorem provers. It is also
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possible to import sentential formulae into Speedith by translating them into spider
diagrams. This pluggable feature of Speedith was exploited via the MixR frame-
work (Urbas and Jamnik 2014) where Speedith was integrated with a sentential
theorem prover Isabelle to result in the Urbas and Jamnik (2012) heterogeneous rea-
soning system (i.e., a mixture of diagrammatic and sentential inference steps make the
statements and the proof of a theorem)—for more information, see Urbas and Jamnik
(2014).

We now present the implementation of Speedith through the design of its architec-
ture, the representations for spider diagrams that it uses, its reasoning engine and how
it enables the construction of proofs, and finally its user interface.

4.1 Architecture

Speedith consists of four main components:

1. Abstract representation of spider diagrams (Speedith’s internal representation of
spider-diagrammatic statements);

2. Reasoning kernel that provides Speedith with its proof infrastructure (it contains
a collection of spider-diagrammatic inference rules, handles the application of
inference rules, and manages proofs);

3. External communication system which includes input and output mechanisms for
spider-diagrammatic and sentential formulae—this system enables external veri-
fication through existing general-purpose theorem provers; and

4. Graphical user interface which includes spider diagram visualisation (using iCir-
cles visualisation algorithm for unitary spider diagrams and SpiderDrawer for pen
input of hand drawn spider diagrams), user interaction with spider-diagrammatic
elements, graphical user interface panels for interactive proof management and
interactive application of inference rules.

We separated these four components into four libraries: Speedith Core, iCircles,
SpiderDrawer and Speedith GUI. Speedith Core contains the first three components
(the abstract representation, the reasoning kernel, and the external communication sys-
tem). The iCircles library12 contains only unitary (but not compound) spider diagram
visualisation. Therefore, we added support for compound spider diagrams in Speedith
(on top of iCircles, rather than extending iCircles). Note that Speedith Core and iCir-
cles may be used independently of each other. This enables the use of Speedith as a
reasoning kernel without the user interface. The Speedith GUI library depends on both
Speedith Core and iCircles. The SpiderDrawer library enables the user to input spider
diagrams via a pen input interface. These four libraries together make up Speedith.
Figure19 shows an outline of Speedith’s architecture.

12 iCircles was originally created by Stapleton et al. (2012) to draw Euler diagrams (spider diagrams
without any spiders in them). Flower then extended iCircles to include the visualisation of spiders, so
iCircles supports the visualisation of unitary spider diagrams only, but not compound spider diagrams.
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Fig. 19 Speedith consists of four libraries: Speedith Core, iCircles, SpiderDrawer and Speedith GUI.
Speedith Core consists of three components: the abstract representation of spider diagrams, the reasoning
kernel and external communication. Visualisation of unitary spider diagrams is performed with iCircles.
Visualisation of compound spider diagrams and user interaction is provided by Speedith GUI. Spider
diagrams can be input by hand via a pen interface SpiderDrawer

Fig. 20 The structure of the abstract representation for all spider diagrams in Speedith

4.2 Abstract Representation

Speedith uses an abstract representation, called SAR, to store and manipulate spider-
diagrammatic sentences. The representation is of the form of an expression tree whose
nodes are spider diagrams, which can be of the following three types (see Fig. 20):

1. Unitary spider diagram nodeContains a full description of a unitary spider diagram
(as defined in Definition 1).

2. Compound spider diagram node Connects one or two spider diagram nodes with
a logical connective.

3. Null spider diagram node Which denotes tautology and is also a short-hand for an
empty unitary spider diagram.13

In Speedith, unitary spider diagrams are captured in a different, but equivalent,
way to their presentation in Definition 1. In particular, Speedith modifies or omits
some of the sets present in the unitary spider diagram tuple. Specifically, Speedith
does not store the sets L and Z (the sets of all contour labels and the set of present

13 An empty unitary spider diagram is the tuple d = (∅, {(∅, ∅)}, ∅, ∅, ∅).
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zones). In addition, Speedith merges the sets ShZ and MZ (from Definition 7) into
SMZ . The set SMZ thus contains zones that are either shaded or are missing in the
unitary spider diagram. Finally, Speedith also uses the set VEZ which contains zones
that are shaded and are not part of any spider’s habitat (contain no spiders)—called
empty zones—but are still visible in the unitary spider diagram. Speedith uses this
structure in order to match the semantics of spider diagrams more closely. In fact,
zones that convey no semantic information are not stored (i.e., zones with no spider
feet or shading). This also removes data redundancy, optimises memory consumption,
and lowers the complexity of spider diagram maintenance and manipulation as it
removes the possibility of a spider having a foot in a missing zone.

Note that all sets from the tuple du = (L , Z , ShZ, S, η) (see Definition 1) may still
be obtained from Speedith’s representation. The set of all contour labels L is obtained
via thegetContours()method (which takes an arbitrary zone (in, out) and returns
the union in∪out , which equals L). The setMZ equals SMZ\(VEZ∪habitats), where
habitats is the set of all zone where any spider has a foot. Lastly, the set of all zones
Z equals:

{(in, L − in) | in ⊆ L } \MZ.

The structure for compound spider diagrams in Speedith is an implementation of
the compound spider diagram syntax as specified in Definition 2. Speedith provides
support for compounding spider diagrams with all connectives, that is, logical equiv-
alence, implication, disjunction, conjunction and negation of spider diagrams.

When creating unitary, compound, or null spider diagrams, Speedithwill ensure that
there is always only one instance of that diagram available (without duplicates). For
example, the compound spider diagram da∨da connects the same instance of the spider
diagram da through the logical connective ∨. In fact, Speedith makes it impossible
that there are two distinct syntactically equal spider diagrams used anywhere in a
spider-diagrammatic statement.

Definition 12 We say that two spider diagrams, say d1 and d2, are syntactically equal
if they fall under one of the following:

1. Both d1 and d2 are null spider diagrams.
2. Both d1 and d2 are unitary spider diagrams and their sets S, SMZ , and VEZ are

equal and so is their map of habitats η.
3. Both d1 and d2 are compound spider diagrams of the forms d1 = dl

⊗
dr and

d2 = d ′
l

⊕
d ′

r where
⊗

and
⊕

are the same logical connective, dl syntactically
equals d ′

l , and dr syntactically equals d ′
r .

To denote syntactical equality between two diagrams d1 and d2, we use the equality
sign d1 = d2.

This method is used to preserve memory (by not creating multiple instances of
any spider diagram) and, more importantly, for faster syntactical equality comparison.
We ensure no two syntactically equal diagrams are stored by maintaining a pool of
currently instantiated spider diagrams. Whenever a new spider diagram is created, it
is checked whether the same spider diagram already exists. If one already exists the
new one is deleted and the old one is returned.
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BinarySD {
operator = ”op −−>”,
arg1 = PrimarySD {

s p i d e r s = [ ” s1 ” , ” s2 ” ] ,
hab i t a t s = [

(” s1 ” , [ ( [ ”A” ] , [ ”B” ] ) , ( [ ”B” ] , [ ”A” ] ) ] ) ,
(” s2 ” , [ ( [ ”A” , ”B” ] , [ ] ) ] )

] ,
sh zones = [ ]

} ,
arg2 = PrimarySD {

s p i d e r s = [ ” s1 ” , ” s2 ” ] ,
hab i t a t s = [

(” s1 ” , [ ( [ ”A” ] , [ ”B” ] ) , ( [ ”A” , ”B” ] , [ ] ) ] ) ,
(” s2 ” , [ ( [ ”A” , ”B” ] , [ ] ) , ( [ ”B” ] , [ ”A” ] ) ] )

] ,
sh zones = [ ]

}
}

Fig. 21 A spider diagram expressed in the SDT format. This SDT example expresses the spider diagram
d1 −→ d6 from Fig. 1 on page 3

An advantage of Speedith’s abstract representation is the ease of transformation of
spider diagrams into sentential first-order logic [for more information, see Urbas and
Jamnik (2014)]. This representation is also designed with the aim for quick manipula-
tions of spider diagrams through the application of inference rules (to make reasoning
as efficient as possible).

4.2.1 Text Format

Speedith specifies a textual format of the abstract representation of spider diagrams.
This textual representation is called short for spider diagrams text (SDT), and is
capable of expressing any valid spider diagram.

Speedith contains a parser capable of reading spider diagrams in the SDT format
and producing the corresponding abstract representation. Figure21 shows an example
spider diagram in the SDT format.

4.3 The Reasoning Kernel

Internally, reasoning in Speedith is performed via the reasoning kernel. The reasoning
kernel checks whether the inference rules are used correctly. In case the user chooses
an inference rule which is not applicable to the current spider diagram, the reasoning
kernel will report this mistake and abort the application. Speedith applies only valid
inference rules. Speedith thus produces proofs whose correctness relies on the sound-
ness and completeness of spider diagrams, proved by Howse et al. (2005), and the
correctness of our implementation.
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Fig. 22 A simplified class diagram of the Speedith’s proof management infrastructure

4.3.1 Proofs in Speedith

The reasoning kernel manages the entire proof of a spider-diagrammatic theo-
rem. Speedith’s proof management infrastructure consists of the Proof, Goals,
and InferenceRule data structures. Figure22 shows a class diagram of the
proof-management infrastructure within Speedith. Figure22 uses the unified mod-
elling language (UML) class diagram notation. For example, the line connecting
Proof and InferenceRule indicates that a single Proof contains zero or
more InferenceRule components. The Goals data structure contains a list of
spider diagrams in their abstract representations. These are, for example, the spider-
diagrammatic statements we set out to prove. A single goal is simply a spider diagram.
The InferenceRule component identifies a Speedith’s inference rule. It is respon-
sible for performing the actual transformation on a spider-diagrammatic goal. Speedith
contains a number of specific implementations of the InferenceRule component,
each of which represents an inference rule outlined in Sect. 3. Finally, the Proof data
structure stores the entire proof. It contains the initial goals (i.e., the statement that we
set out to prove), a list of inference rules that were successfully applied to the initial
goals and the resulting list of sub-goals. Proofs in Speedith are thus sequences of goals
and inference rule applications. A proof starts with initial goals, here denoted with
�, which is a set of spider diagrams that we want to prove are theorems. The proof
then proceeds by applying an inference rule to a spider diagram D, where D ∈ �.
The result of the inference rule application is a spider diagram D′, where D′ logically
entails D (i.e., D′ � D).

An application of an inference rule is called an inference step. We use the following
notation to denoted an inference step where the inference rule Rule is applied to the
set of goals �:

�′
Rule,

�
(12)

where�′ = (�\{D})∪{D′}. A proof may consist of an arbitrary number of inference
steps. Formula 13 outlines the structure of all Speedith’s proofs (using the traditional
inference step bar notation, where the proof is performed starting from the bottom and
progressing upwards):

�
Rulen

...
Rule2

�′
Rule1

�

(13)

The proof is finished once only null spider diagrams are left in the set of goals (in
Formula 13, this is denoted by the symbol �).
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Speedith supports application of both forward-style and backward-style inference
steps. Forward rules take a spider diagram d and produce a new spider diagram d ′
such that d � d ′. In Speedith forward rules are applied to goals of the following form:
d1 −→ d2. Particularly, forward inference rules transform the left-hand side of the
implication, here denoted with d1. Thus, a forward inference step in Speedith takes
the following form:

d ′
1 −→ d2,�

ForwardRule.
d1 −→ d2,�

(14)

On the other hand, backward inference steps in Speedith are performed directly with
inference rules that take a diagram d and produce a new diagram d ′ such that d ′ � d.
In this case no implication is needed in a goal. Thus, a backward inference rule takes
the following form:

d ′,�
BackwardRule.

d,�
(15)

4.3.2 Targeting and Transformation of Spider Diagrams

Every spider diagram in Speedith is a tree, called an abstract syntax tree. Every sub-
tree in the abstract syntax tree is again a spider diagram. Unitary and null spider
diagrams are leaves of the tree, while compound spider diagrams are inner nodes with
one or two child-nodes. Speedith’s inference rules perform transformations on these
abstract syntax trees. For example, the Combining rule (see Fig. 13 on page 16) replaces
a compound spider diagram node with a unitary spider diagram node. Speedith’s
inference rules are therefore tree-transformers, implemented with the visitor pattern.
The visitor pattern traverses every node of the tree in a particular order until the target
of the inference rule application is reached. Once the inference rule has visited the
target node, it performs the transformation of the node. The transformation produces
a new tree, that is, a new spider diagram, instead of applying the change on the visited
tree directly.

Users can select highly specific elements of a spider diagram as the targets of the
inference rules. This is performed via a graphical point-and-click mechanism (see
Fig. 28 on page 30). For example, the SplitSpider rule (see Fig. 11 on page 14) acts on
a sub-habitat of a specific spider that lives within a particular unitary spider diagram.
This differs from inference rules in sentential theorem provers, where inferences are
typically applied to the outermost connective or the inference automatically selects
the first suitable target of the transformation. Therefore, Speedith requires an exact
addressing mechanism.

Speedith defines an addressing mechanism at the level of the abstract syntax tree.
It numbers the nodes in an abstract syntax tree with a left-to-right pre-order traversal.
Figure23 shows a numbering example of a hypothetical spider-diagram abstract rep-
resentation. The numbering starts with 0 at the root node and continues recursively,
starting with the left sub-node and then the right sub-node. As a result, every sub-
diagram has an associated number, called its sub-diagram index. This index is used
to uniquely identify the sub-diagram on which an inference rule should be applied.
However, this does not fully satisfy the targeting requirements of spider-diagrammatic
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Fig. 23 Node numbering of a compound spider diagram

Fig. 24 Speedith’s initial state. The complete set of inference rules is shown in the list on the right. The
large grey area on the left is the proof management panel, which currently contains no goals

inference rules. Speedith also allows to target arbitrary elements of a unitary spider
diagram: sets of zones, sets of spiders, spider feet, and sets of contour labels. Thus,
sub-diagram indices and the ability to target particular elements of unitary spider dia-
grams allow for exact targeting of any element within any unitary spider diagram,
regardless of where it is nested within a surrounding compound spider diagram. Inter-
active selection of the target for a specific inference rule is covered in more detail
next.

4.4 User Interface

Speedith’s user interface allows users to enter spider diagrams and perform spider-
diagrammatic proofs interactively. For example, users can choose arbitrary elements
of a spider diagram directly from Speedith’s visualisation of a spider diagram. At start-
up, Speedith’s window contains a blank surface that is used to display and manage
spider-diagrammatic proofs. Figure24 shows the initial state of the user interface.
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Fig. 25 The dialogue for entering spider diagrams in the textual form

4.4.1 Diagrams Input

Speedith supports two modes of input of spider diagrams: the SDT textual input and
the hand drawn spider diagrams via SpiderDrawer.

SDT Textual Input The textual input method allows entry of any valid spider diagram:
Fig. 25 shows an example. The dialogue in Fig. 25 can be activated with the key
combination Ctrl + T.

The user-entered SDT is loaded into the Speedith’s parser. The parser converts
the SDT representation into an abstract syntax tree. Finally, the abstract syntax tree
becomes the initial goal of the current proof, which is immediately visualised in the
proof panel.

SpiderDrawer Pen Input Instead of typing the SDT representation of spider diagrams,
the user can alternatively quickly and easily draw spider diagrams via a pen input inter-
face SpiderDrawer (Bashford-Chuchla 2014). Speedith accesses SpiderDrawer via an
input canvas windowwhere the user draws the diagrams by hand with a stylus. Spider-
Drawer is implemented in Java and is platform independent.14 It uses theRATA(Chang
et al. 2012) library for shape recognition, and the Tesseract (Smith 2007) library for
text and connectives recognition.15

RATA is a shape recognition program that uses data mining analysis to recognise
single stroke drawings. It is used to recognise 5 out of 7 shapes that make up spider
diagrams. In particular, circles, rectangles, spider feet, spider legs, and shading are
recognised. RATA first collects data (from a set of training examples) and then uses

14 Hand-drawn input support for spider diagrams similar to SpiderDrawer is currently being developed by
Wang et al. (2011) within the SketchSet tool. But unlike SpiderDrawer and Speedith, SketchSet is platform
dependent and requires proprietary Windows libraries. Since this would seriously limit Speedith’s reach to
users, we instead developed SpiderDrawer.
15 https://code.google.com/p/tessaract-ocr/.
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Fig. 26 The SpiderDrawer window for hand-drawing spider diagrams using a stylus. Each part of the
free-form hand-drawn diagram is snapped into precise formal drawing for consistency and ease of reading

machine learning techniques to classify the shapes. The other two shapes, labels and
logical connectives, are handled separately byTesseractwhich is anopen source optical
character recognition program.

SpiderDrawer automatically coverts the recognised shapes, text and connectives
from hand-drawn free-form and redraws them to precise formal drawings. Spider-
Drawer recognises the relations between all the elements and checks them against
the valid spider diagram representation. If the drawing is not a valid spider diagram,
SpiderDrawer will not allow the user to proceed to the next, reasoning stage of the
proof. If the drawing is a valid spider diagram, then SpiderDrawer allows the user to
proceed with the proof and passes the drawn spider diagram’s abstract representation
to Speedith. Figure26 shows the final SpiderDrawer’s pen drawing of the same spider
diagram as in Fig. 25.

Speedith then makes this the initial goal of the current proof, which is immediately
visualised16 in the proof panel. Figure27 shows Speedith’s proof panel with an initial
goal. It shows the spider diagram from Figs. 25 and 26.

Now, the user may apply inference rules (enumerated in a list located to the right
side of the proof panel). Double-clicking on an inference rule opens a window for
selecting the target of the application: Fig. 28 shows an example. In this particular
example the user has to select a set of spider feet for the SplitSpider inference rule. The
proof is finished after all proof goals are reduced to null spider diagrams. Figure2 on
page 4 shows an instance of a finished proof in Speedith.

16 Embedding SpiderDrawer’s canvas directly within Speedith’s proof panel (rather than using it as a
separate pop-up window) is work that we plan for the future.
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Fig. 27 The visualisation of the spider diagram as input via the text input dialogue in Fig. 25 or input via
the SpiderDrawer pen input interface in Fig. 26. This is also Speedith’s visualisation of the diagram in Fig. 3

Fig. 28 Speedith’s window for interactively selecting the exact target for any inference rule. Speedith
guides the user stepwise during the target selection. The label in the lower-left corner (above the “Finish”
button) displays the instruction for every target selection step. This label also displays errors in the case
when the user tries to select an invalid combination of targets

4.4.2 Diagrams Display

Speedith uses iCircles (Stapleton et al. 2012) library and algorithm for drawing uni-
tary spider diagrams, and extends it with compound spider diagrams visualisation.
Speedith also provides user interaction on top of the iCircles drawing surface. This
allows the user to highlight and select specific parts of compound and unitary spider
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Fig. 29 The visualisation of the diagram that was proved in Fig. 18. This example demonstrates Speedith’s
and iCircles’ capability of drawing diagrams with missing zones

diagrams. Speedith uses this extended algorithm to display all spider-diagrammatic
statements. Figures2, 27, 28, and 29 shows Speedith’s visualisations of compound
spider diagrams. Figure28 also captures user interaction with the spider diagram. In
this particular figure a spider’s foot and leg are highlighted to indicate that the user
may click on them and thereby select the foot as the target of an inference rule.

Algorithm Outline Here is the iCircles algorithm (Stapleton et al. 2012), extended by
Flower, for visualising unitary spider diagrams:

1. Thefirst step takes a set of visible zones and draws thembyplacing labelled contour
circles onto the drawing panel. Note that iCircle only uses circles for contours. In
complex diagrams with numerous contours and relations, it may not be possible
to draw a contour using a single circle, so multiple circles are used. The algorithm
then stores the concrete zones in an enumerable collection. The result of the first
step is an Euler diagram. The diagram at this stage already contains shading, but it
does not yet contain spiders. The algorithm will try to use missing zones wherever
possible. If a missing zone cannot be used to denote empty sets, then the algorithm
will use shaded zones instead.

2. Shading is applied to the set of shaded zones. The algorithmfinds the corresponding
concrete zone (using the collection constructed in the first step) and fills it with
grey colour.

3. In the last step, spider feet and legs are drawn. This step expects as input a set of
spiders S with their habitats

{h |h = η(s) ∧ s ∈ S } .

For each spider and each zone z in its habitat a point p is found in the zone z. These
points are locations near which the spider’s feet will be drawn. The legs connect
the points p by giving priority to points that are located within adjacent zones. The
algorithm checks if any of the legs pass through any of the other spiders’ feet. If
so, the offending feet are nudged. Nudging is applied repeatedly in eight principal
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directions until a suitable position is found. Note that during the nudging step the
legs are adjusted accordingly. As a consequence, all spider diagrams needed in
any proof can be automatically displayed.

To visualise compound spider diagrams Speedith extends this algorithm in the standard
way by drawing connectives and nested unitary spider diagrams.

5 Discussion

We evaluate our work in terms of how it compares to similar existing work; and also
in terms of expressiveness, extensibility, and usability; finally we point out a few
limitations of Speedith. Speedith is implemented in Java. Its sources are available
from https://github.com/urbas/speedith.

5.1 Related Work

Here we concentrate on relating aspects of Speedith to other diagrammatic reasoning
systems, to similar diagrammatic logics, and to other sketching interfaces.

5.1.1 Diagrammatic Systems

Other diagrammatic theorem provers most related to Speedith are the prover by
Flower (2004), Edith (Stapleton et al. 2007), Diamond (Jamnik et al. 1999), and
Cinderella (Kortenkamp and Richter-Gebert 2004).

The system developed by Flower (2004) works, unlike Speedith, with unitary spider
diagrams only, and is fully automated. Edith is an interactive diagrammatic theorem
prover for Euler diagrams that finds the shortest and readable proof for only a subset
of the spider diagrammatic language we are targeting. Whilst Edith is the closest to
Speedith in terms of the domain it targets, it does not support spiders nor compound
diagrams with logical connectives, and thus provides fewer inference rules and proves
a much smaller class of theorems. These theorems only include diagrams that express
subset and disjointness relationships with no information on set cardinality, except for
when sets are empty.

Speedith differs from both, Flower et al.’s system and Edith, in that it works with the
complete spider-diagrammatic language as defined in Sect. 2. Moreover, unlike these
two systems, Speedith provides fully interactive proofs. Also, Speedith’s proofs are
guaranteed to be sound and correct. In addition, they can be verified with another
external symbolic theorem prover, Isabelle, via a MixR heterogeneous reasoning
framework—for details, see Urbas and Jamnik (2014).

Diamond, on the other hand, supports external verification, but the class of prob-
lems it tackles is inductive theorems of natural numbers. By contrast, Speedith targets
theorems about set constraints. Thus these two diagrammatic systems target different
domains.

Cinderella targets the domain of geometry and uses a different approach to its dia-
grammatic proofs. The user gradually constructs the geometric model of the theorem,
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while in the background an automated theorem prover verifies that each construction
step results in a valid geometric diagram. Thus, the steps in Cinderella are not guar-
anteed to be sound, and the proof process does not follow the standard inference rule
application pattern.

Finally, Speedith was designed with language extensions in mind. Spider diagrams
could be extended with non-monadic relations, functions, and universal quantification
of elements. Designing meaningful and complete diagrammatic inference rules for
such extended language is hard and remains work for the future.

5.1.2 Diagrammatic Logics

There is a variety of diagrammatic logics that are similar to spider diagrams. Of
particular interest is the Euler diagram fragment of spider diagrams. Hammer was
perhaps the first to devise a formal logic for unitary Euler diagrams (Hammer 1995).
This has since been extended to include the classical logical connectives ∧, ∨ and ¬
for which soundness and completeness have been established (Stapleton andMasthoff
2007); it is a trivial matter to extend the inference rules in order to obtain completeness
when the connectives−→ and←→ are added to the syntax of this Euler diagram logic.
Thus, Speedith automatically provides theorem proving support for these systems—
since they are fragments of the spider diagram system—and can be easily extended to
include inference rules developed specifically for those logics.

There exist different formalisations of Euler diagram logics, such as Stapleton and
Masthoff (2007), Takemura (2013), and Shin’s seminal work on Venn-I and Venn-
II (Shin 2009) extends Venn diagrams to include syntax to assert the non-emptiness of
sets. Since Speedith allows for ready implementation of new rules, it would be possible
to tailor Speedith to these other logics.Also related to spider diagrams are Swoboda and
Allwein’s Euler/Venn diagrams (Swoboda and Allwein 2005). Euler/Venn diagrams
incorporate constants to represent specific individuals, as opposed to the existence of
elements in spider diagrams. Thus, Speedith also provides a basis for theorem proving
technology implemented for Euler/Venn diagrams.

5.1.3 Sketching Interface

Speedith builds on results on user interaction work that focuses on converting sketches
into beautified diagrams. Numerous sketch tools have been proposed for visual lan-
guages including concept maps (Jiang et al. 2011), graphs (Plimmer and Freeman
2007), UML class diagrams (Damm et al. 2000; Hammond and Davis 2002) and Euler
diagrams (Wang et al. 2011). Of particular relevance to Speedith is SketchSet which
provides sketch recognition and conversion of some components of unitary spider dia-
grams (Stapleton et al. 2004); SketchSet extends SketchNode which was developed
for graphs in isolation (Plimmer et al. 2010). Similarly to SketchSet, Speedith can
recognise closed cures, their labels, and spiders. Moreover, Speedith takes drawn spi-
der diagram recognition much further than SketchSet in that it can recognise shading,
rectangles that form the boundaries of unitary diagrams, and the logical connectives,
∧, ∨, −→ and ←→. Thus, unlike any other sketch tool, Speedith is capable of recog-
nising all of the syntax of spider diagrams.
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5.2 Properties

5.2.1 Expressiveness

In terms of the theorems that can be proved using Speedith, spider diagrams have the
expressiveness of MFOLE (Stapleton et al. 2009). This means that spider diagrams
can express theorems about set constraints (Bachmair et al. 1992). These constraints
include subset and disjointness relationships as well as both upper and lower (finite)
bounds on cardinality. Since the logic is sound and complete, Speedith can also,
therefore, prove all theorems about set constraints. That is, Speedith is able to prove
all theorems of MFOLE, expressed using spider diagrams—this is a significant range
and depth of theorems. The fact that spider diagrammatic logic is monadic means
that with Speedith we cannot prove more complex theorems involving arbitrary n-ary
relations, where n > 1.

5.2.2 Extensibility

Extending Speedith with new inference rules is straightforward and only requires
the addition of a single class. Implementation source code of inference rules is short
and typically consist of about 100 lines of Java code (or 70 lines of Scala code).
A significant part of that code is used for the preamble containing the name of the
inference rule, its description, and instructions on how to use it. The remainder of
the code is the actual logic of the inference rule. For example, the Combining rule and
NegationElimination rule consist of 40 lines and 20 lines of logic code respectively.
Speedith is also equipped with helpful libraries (e.g., the habitat builder, the region
builder, set manipulation and spider manipulation libraries) that further simplify the
implementation of the logic of new inference rules. Moreover, these libraries can also
be used to write automated unit tests with which the implementer can improve the
correctness of the implementation of the new inference rule. Clearly, soundness and
completeness of the now new extended set of inference rules need to be proved again.

5.2.3 Usability

One of Speedith’s main contributions is its representation of formulae and proof steps.
This differentiates it from interactive sentential theorem provers (such as Isabelle) in
that it provides a domain-specific, visual, and thus perhaps more intuitive approach to
proofs in MFOLE. Speedith’s inference rules, which perform simple visual transfor-
mations of the diagrammatic statement are succinct and ‘natural’—they capture the
notion of truthfulness that humans find easy to understand. In contrast, proofs of the
same theorems in sentential theorem provers consist of lower-level, more fine-grained
proof steps which make them longer and arguably harder to “see” the intuition behind
the proof.

Figure30 shows Isabelle’s sentential proof of the same theorem that is proved
diagrammatically in Fig. 1 on page 3 (the screenshot of its proof in Speedith is in
Fig. 2).We suggest that it is perhaps clearer in the diagrammatic proofwhy the theorem
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Fig. 30 The same theorem as the one proved diagrammatically in Fig. 1 on page 3 (the screenshot of its
proof in Speedith is in Fig. 2) is proved here sententially with Isabelle. Which one is easier to understand?

holds and how the proof is constructed. However, psychological validity tests would
have to be carried out on users to confirm this.

5.3 Speedith’s Limitations and Future Directions

The layout and drawing mechanism of Speedith currently draws the diagrams of
each step of the proof (after each inference step was applied) independently of the
previous steps. For example, a proof step in Speedith may change relative positions of
contours and zones. A proof step may also relocate spider labels, feet and legs without
consideration for any other diagrams in the proof. Thus, diagrams in consecutive proof
steps can look radically different from each other. For future work, we aim to improve
layout heuristics to take entire sequences of diagrammatic statements into account.

In addition, Speedith and iCircles do not provide a way for the user to manually
specify positions of contours or spider feet. The complete spider diagram (compound
or unitary) is laid out entirely automatically, whether input using the abstract sentential
representation or drawn via SpiderDrawer. Although the iCircles algorithm contains
heuristics to improve diagram readability it does not always succeed. Therefore, a
future direction of research is to provide a way for users to manually influence and
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manipulate the diagram layout, and develop better heuristics to improve the automated
layout.

SpiderDrawer is currently used only as a hand-drawn diagram input mechanism.
Inference steps are selected from the list in the side menu, rather than with pen interac-
tion on the diagrams. The entire pen-input SpiderDrawer canvas needs to be integrated
as Speedith’s primary interaction input and display canvas.

Lastly, Speedith is an interactive proof assistant. In particular, it does not provide
reasoning automation. Extending Speedith to include automated proof search tech-
niques is part of our future tasks.

6 Conclusion

By developing Speedith, we demonstrated the feasibility of diagrammatic reason-
ing systems that utilise a rule-based deductive proof approach. This is similar to the
approach employed by general purpose proof assistants like Isabelle.

We also showed how to utilise existing state-of-the-art theorem provers to verify
diagrammatic inference steps. Whilst we focused on spider diagrams, the approach
can be used for other diagrammatic logics, such as existential graphs (Dau 2007) or
constraint diagrams (Kent 1997).

Part of our future directions for Speedith includes extending the abstract representa-
tion to better control how diagrams are drawn. Moreover, we also envision extensions
to the language of spider diagrams, proof search automation, use of Speedith in prac-
tical settings (Keslter et al. 2008; Chiara et al. 2005), and a study of scalability of
proofs and their visualisation in Speedith.

Speedith may be used on its own as a stand-alone spider-diagrammatic theorem
prover. It is, as of yet, the only interactive theorem prover for the language of spider
diagrams with our extensions (such as the new logical operators of implication and
negation in compound diagrams, and new inference rules). We believe Speedith can
contribute to the development of the language and logic of spider diagrams. A possible
future direction of research could be to use Speedith in order to extend the language
of spider diagrams with new language features or to implement related diagrammatic
logics.

Acknowledgments We thank Jean Flower for her help with iCircles extension, and Charlie Bashford-
Chuchla for his implementation of SpiderDrawer as part of hisMPhil project in the University of Cambridge
Computer Laboratory.

Appendix 1: Corresponding Regions

This section sets out the theory required to compare syntactically different regions
at a semantic level. So-called corresponding regions are not necessarily syntactically
identical, but they do represent the same set under any interpretation. Similar notions
of corresponding sub-regions and super-regions will also be defined in this section.
To identify corresponding regions, we need access to the missing zones and the empty
zones in a unitary diagram, d. To simplify notation, we generalise the notion of an
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Fig. 31 Using empty zones to make deductions

empty zone from earlier in the paper (recall, the set VEZ contains the zones which are
shaded in d yet contain no spider feet). We define the set of empty zones to be M Z(d)

together with VEZ:

Definition 13 Let d be a unitary diagram. The empty zones of d are elements of the
set

EZ(d) = MZ(d) ∪ {(in, out) ∈ ShZ(d) : ∀s ∈ S(d) (in, out) /∈ ηd(s)} .

Lemma 1 Let d be a unitary diagram and let I = (U, Φ) be a model for d. Then the
empty zones represent the empty set, that is

∀z ∈ EZ(d) ζI (z) = ∅.

We use the concept of empty zones when defining inference rules: if we have two
unitary diagrams taken in conjunction, and a zone, z, is empty in one of them, then
we can use that information to determine how we apply inference rules on the other
diagram, for example. To illustrate, in Fig. 31, in d2 the zone ({B}, {A, C}) is empty
so we can add shading to this zone in d1, as shown in d ′

1.
The notion of corresponding regions was introduced in Howse et al. (2002) for

Euler diagrams, where a syntactic definition was provided that established when two
regions represented the same set. Here, we give a definition of corresponding regions
that is effective for unitary spider diagrams taken in conjunction: we prove that our
definition captures when two regions, one from d1 and the other from d2, necessarily
represent the same set in all models for d1 ∧ d2. We also define the notion of a
corresponding sub-region and a corresponding super-region, relating to subset and
superset respectively.

To illustrate, r1 = {({A, D}, {B}), ({A}, {B, D})} and r2 = {({A, C}, {B}), ({A},
{B, C})} both represent the same set and are corresponding; informally, they both
represent the set A\B. In this example, we can be confident that r1 and r2 represent
the same set in any interpretation:

χI (r1) = ζI (({A, D}, {B})) ∪ ζI (({A}, {B, D}))
= ζI ({A, D, C}, {B})) ∪ ζI (({A, C}, {B, D})) ∪ ζI (({A, D}, {B, C}))

∪ζI (({A}, {B, D, C}))
= ζI (({A, C}, {B})) ∪ ζI (({A}, {B, C}))
= χI (r2) .
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Fig. 32 Corresponding regions

Given d1 and d2 as in Fig. 32, the region

r3 = {({A, D}, {B}), ({A}, {B, D}), ({B}, {A, D})}

also represents the same set as r2 (and r1) in any model for d1 ∧ d2, since the zone
({B}, {A, D}) represents the empty set:

χI (r3) = ζI (({A, D}, {B})) ∪ ζI (({A}, {B, D})) ∪ ζI (({B}, {A, D}))
= ζI (({A, D}, {B})) ∪ ζI (({A}, {B, D}))
= χI (r2) .

The region r3 corresponds to r2. In order to syntactically identify whether two regions,
r and r ′, are corresponding, we need to transform them, altering the zones by adding
labels. The transformation is based on the observation that given any zone, (in, out),
and a label, l, not used in the zone,

ζI ((in, out)) = ζI ((in ∪ {l}, out)) ∪ ζI ((in, out ∪ {l})).

The zone (in, out) can, thus, be transformed into the two zones (in ∪ {l}, out) and
(in, out ∪ {l}). We use this insight to define the notion of an expansion of a region,
which given some set of labels iteratively ‘splits’ zones in thismanner. Inwhat follows,
we denote the set of labels used in a region, r , by L(r), so

L(r) =
⋃

(in,out)∈r

(in ∪ out).

Definition 14 Let r be a region such that all of the zones, (in, out), in r ensure that
in ∪ out = L(r). Let L ′ be a finite set of labels such that L(r) ⊆ L ′. An expansion of
r given L ′, denoted exp(r, L ′), is the region defined as follows:

1. If L ′ = L(r) then exp(r, L ′) = r .
2. If |L ′\L(r)| = 1 then

exp
(
r, L ′) = {

(in ∪ (
L ′\L(r)

)
, out) : (in, out) ∈ r

}

∪ {
(in, out ∪ (

L ′\L(r))
) : (in, out) ∈ r

}
.

3. If |L ′\L(r)| > 1 then

exp
(
r, L ′) = exp

(
r ′, L ′)
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where

r ′ = exp
(
r, L ′′)

and L ′′ = L(r) ∪ {λ} for some label λ ∈ L ′\L(r).

For example, given r = {({A}, {B}), ({B}, {A})} and L ′ = {A, B, C, D}, we have

exp
(
r, L ′) = exp

(
exp (r, {A, B, C}) , L ′)

= exp
({({A, C}, {B}), ({A}, {B, C}), ({B, C}, {A}), ({B}, {A, C})}, L ′)

= {({A, C, D}, {B}), ({A, C}, {B, D}), ({A, D}, {B, C}), ({A}, {B, C, D}),
({B, C, D}, {A}), ({B, C}, {A, D}), ({B, D}, {A, C}), ({B}, {A, C, D}) }.

The order in which the labels are introduced during the expansion does not matter.
Moreover, we do not change the represented set:

Lemma 2 Let r be a region such that all of the zones, (in, out), in r ensure that
in ∪ out = L(r). Let L ′ be a set of labels such that L(r) ⊆ L ′. In any interpretation,
I = (U, Φ),

χI (r) = χI
(
exp

(
r, L ′)) .

Proof (Sketch) The proof proceeds by induction on the cardinality of L ′\L(r).

Definition 15 Let d1 and d2 be unitary diagrams. Let r1 and r2 be regions in Z(d1) ∪
M Z(d1) and Z(d2)∪M Z(d2) respectively. Then r1 and r2 are corresponding, denoted
r1 ≡c r2, provided that

exp(r1, L) ∪ exp (EZ(d1), L) ∪ exp(EZ(d2), L)

= exp(r2, L) ∪ exp(EZ(d1), L) ∪ exp(EZ(d2), L)

where L = L(d1) ∪ L(d2). Furthermore, r1 is a corresponding sub-region of r2,
denoted r1 ⊆c r2, provided that

exp(r1, L) ∪ exp(EZ(d1), L) ∪ exp(EZ(d2), L)

=⊆ exp(r2, L) ∪ exp(EZ(d1), L) ∪ exp(EZ(d2), L).

If r1 is a corresponding sub-region of r2 then r2 is a corresponding super-region of
r1, denoted r2 ⊇c r1.

In Fig. 32, we have r4 ⊆c r5 where r4 = {({A}, {B, D})} and r5 = {({A}, {B, C}),
({A, C}, {B}), ({A, B, C},∅)}. Intuitively, r4 represents the set A\(B ∪ D) and r5
represents A, and we see that in any model, I = (U, Φ), for d1 ∧ d2 that χI (r4) ⊆
χI (r5). The following theorem establishes that our syntactic correspondence relations
respect the semantics as intended:
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Theorem 3 Let d1 and d2 be unitary diagrams and let r1 and r2 be regions in Z(d1)∪
M Z(d1) and Z(d2) ∪ M Z(d2) respectively.

1. If r1 ≡c r2 then for all models I = (U, Φ) for d1 ∧ d2, χI (r1) = χI (r2).
2. If r1 ⊆c r2 then for all models I = (U, Φ) for d1 ∧ d2, χI (r1) ⊆ χI (r2).
3. If r1 ⊇c r2 then for all models I = (U, Φ) for d1 ∧ d2, χI (r1) ⊇ χI (r2).

Proof Suppose that r1 ≡c r2. Then, by definition,

exp(r1, L) ∪ exp(EZ(d1), L) ∪ exp(EZ(d2), L)

= exp(r2, L) ∪ exp(EZ(d1), L) ∪ exp(EZ(d2), L)

where L = L(d1) ∪ L(d2). By Lemma 2, given any interpretation, I = (U, Φ), we
know that:

1. χI (ri ) = χI (exp(ri , L)), and
2. χI (E Z(di )) = χI (exp(EZ(di ), L))

for each i ∈ {1, 2}. Therefore, in any model for di , χI (exp(EZ(di ), L)) = ∅ since
χI (E Z(di )) = ∅ by Lemma 1. Thus, in any model for d1 ∧ d2,

χI (r1) = χI (exp(r1, L))

= χI (exp(r1, L)) ∪ χI (exp(EZ(d1), L)) ∪ χI (exp(EZ(d2), L))

= χI (exp(r1, L) ∪ exp(EZ(d1), L) ∪ exp(EZ(d2), L))

= χI (exp(r2, L) ∪ exp(EZ(d1), L) ∪ exp(EZ(d2), L)) (*)

= χI (r2)

as required. The remainder of the proof is similar, noting that the line (∗) is, instead,
a subset (superset) relation in the case of ⊆c (resp. ⊇c).

Appendix 2: Formalised Inference Rules and Proofs of Soundness

First, we observe that all of the rules inherited from Howse et al. (2005) and, trivially,
all of the rules for logical connectives are sound.

Theorem 4 The inference rules for the logical connectives are all sound, as are
AddFeet, IntroContour, EraseSpider, EraseContour, IntroShadedZone, RemoveShading,
SplitSpider, EcludedMiddle, and Combining.

Here we include formalisations and soundness proofs for the diagrammatic
inference rules that are new [i.e., those not included in Howse et al. (2005)]:
NegationElimination, CopyContours, CopyShading and CopySpider. These rules are all
equivalences, so we must show that their application preserves semantics. In what
follows, we need to use the function �d,U that maps spiders to elements. Given an
interpretation, I = (U, Φ), and a unitary diagram d, �d,U maps the spiders of d to
the elements of U . Frequently, we will be considering a single interpretation and the
spiders of more than one diagram. As such, rather than writing �d,U , we more simply
write �d . We now formalise and prove the soundness of NegationElimination.
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Negation Elimination

Let dn be a unitary diagram with exactly n spiders, no missing zones (so dn is in
Venn-form) where all spiders have single feet, and there is at most one zone, zn , that
contains spiders or shading. Let di , for 0 ≤ i < n, be the unitary diagram where zn

contains exactly i spiders and shading. More precisely, di has components that are
defined as follows:

1. the contour labels are L(di ) = L(dn),
2. the zones are Z(di ) = Z(dn),
3. the shaded zones are Sh Z(di ) = {zn},
4. the spiders are S(di ) = {s j : 1 ≤ j ≤ i}, and
5. the habitat of each spider, s j ∈ S(di ), is ηdi (s j ) = {zn}.
Let dn+1 be a unitary diagram where zn contains n +1 spiders and no shading, that is:

1. the contour labels are L(dn+1) = L(dn),
2. the zones are Z(dn+1) = Z(dn),
3. the shaded zones are Sh Z(dn+1) = {zn},
4. the spiders are S(dn+1) = {s j : 1 ≤ j ≤ n + 1}, and
5. the habitat of each spider, s j ∈ S(dn+1), is ηdn+1(s j ) = {zn}.
The NegationElimination rule can be applied in the following way to ¬d1:

1. if no zone in dn contains spiders or shading then ¬dn is logically equivalent to ⊥,
2. if zn contains spiders but no shading in dn then ¬dn is logically equivalent to∨

1≤i<n di ,
3. otherwise zn contains spiders and shading in dn and we have that ¬dn is logically

equivalent to
∨

1≤i<n di ∨ dn+1.

Theorem 5 NegationElimination is sound.

Proof Given dn as in the formalisation of the NegationElimination inference rule, we
must show that

1. if no zone in dn contains spiders or shading then ¬dn is logically equivalent to ⊥,
2. if zn contains spiders but no shading in dn then ¬dn is logically equivalent to∨

1≤i<n di ,
3. otherwise zn contains spiders and shading in dn and we have that ¬dn is logically

equivalent to
∨

1≤i<n di ∨ dn+1.

Let I = (U, Φ) be an interpretation. We consider the three cases in turn.

1. Case 1: if no zone in dn contains spiders or shading then¬dn is logically equivalent
to ⊥. We first show that dn is modelled by I . Trivially, as dn has no missing zones,
χI (Z(dn)) = U . As there are no spiders, we also see that there exists a function,
Σdn : S(dn) → U , such that
(a) ∀s ∈ S(dn)(Σdn (s) ∈ χI (ηdn (s))), and
(b) ∀z ∈ ShZ(dn)(ζI (z) ⊆ im(Σdn )),
where im(Σdn ) is the image of the function Σdn (i.e., the set of elements in U to
which Σdn maps spiders). As there are no shaded zones in dn , it is trivial that for
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all shaded zones in dn , ζI (z) ⊆ im(Σdn ). Hence I models dn . As I was arbitrary,
it follows that every interpretation models dn . Therefore, ¬dn has no models and
is logically equivalent to ⊥, as required.

2. Case 2: if zn contains spiders but no shading in dn then ¬dn is logically equivalent
to

∨
1≤i<n di . Suppose that I models ¬dn . We show I models

∨
1≤i<n di . Now,

given I models ¬dn , I does not model dn . The only way I can fail to model dn ,
since there is no shading and there are no missing zones, is if there are insufficient
elements in ζI (zn) to which the spiders can map injectively. From this it follows
that |ζI (zn)| < n. Therefore, |ζI (zn)| = i for some i < n.
We show I models di . Since di has no missing zones, again we see that
χI (Z(dn)) = U . Choose the i elements in U that are in ζI (zn), say u1, . . . , ui ,
and further define Σdi

(
s j

) = u j . Then, by construction, Σdi is injective and
maps spiders to elements in their habitat (recall, there are no other spiders in
di ). Furthermore, there is only one shaded zone, namely zn , in di and we know
ζI (zn) = {u1, . . . , ui }. Therefore,

ζI (zn) ⊆ {u1, . . . , ui },
as required. Hence, I models di and, consequently, I models

∨
1≤i<n di .

For the converse, suppose that I models
∨

1≤i<n di . Then I models one of the
disjuncts, say d j . We show that I does not model dn . Since I models d j , there is
a spider map, Σd j , which ensures that ζI (zn) ⊆ {u1, . . . , u j }, where u1, . . . , u j

are the elements mapped to by the j spiders in zn in d j . From this, it follows
that ζI (zn) < n, since j < n. Therefore, as there are n spiders in zn in dn , there
cannot exist an injective mapping of spiders in dn , namely Σdn , which ensures
that all spiders represents elements in ζI (zn). Hence I cannot model dn . Therefore
I models ¬dn . Thus, we see that ¬dn is logically equivalent to

∨
1≤i<n di , as

required.
3. Case 3: zn contains spiders and shading in dn and we have that ¬dn is logically

equivalent to
∨

1≤i<n di ∨ dn+1.
Suppose that I models ¬dn . We show I models

∨
1≤i<n di ∨ dn+1. Now, given I

models ¬dn , I does not model dn . The only way I can fail to be a model for dn is
if there are not exactly n elements in ζI (zn). From this it follows that |ζI (zn)| < n
or |ζI (zn)| > n. Therefore, |ζI (zn)| = i for some i < n or i > n. In the former
case, we have I models di for some i < n, as in Case 2. When i > n, choose
n + 1 elements, say u1, . . . , un+1, in ζI (zn), define Σdn+1 by Σ

(
s j

) = u j and
one can readily proceed to show I models dn+1 in much the same way, noting
the details are more straightforward since zn is not shaded in dn+1. Therefore I
models

∨
1≤i<n di ∨ dn+1.

For the converse, suppose I models
∨

1≤i<n di ∨dn+1. Then I models di for some
1 ≤ i < n or I models dn+1. If I models such a di then to show I models ¬dn the
proof proceeds similarly to case 2. If I models dn+1 then it can readily be shown
that there are at least n + 1 elements, say u1, . . . , un, un+1, in ζI (zn). But then
I does not model dn , since dn requires |ζI (zn)| = n. Therefore, I models ¬dn .
Thus, we see that ¬dn is logically equivalent to

∨
1≤i<n di ∨ dn+1, as required.

Hence NegationElimination is sound.
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Recall that the CopyContours inference rule applies to d1 ∧ d2, copying a contour
l2 from d2 into d1, yielding d ′

1 ∧ d2. In order to formalise CopyContours, we need to
specify syntactically how the addition of the new contour, l2, impacts on the existing
zones in d1. Zones can either be completely inside, completely outside or split by the
new contour, for which we require three parameters. These parameters will be defined
using Zi (l2, d2), Zo(l2, d2), and Zs(l2, d2) which we will shortly define. Zones that
are in Zi (l2, d2)will necessarily represent subsets ofΦ(l2) in models for d1∧d2; these
zones will be inside l2 in d ′

1. Similarly, zones that are in Zo(l2, d2) will necessarily
represent sets disjoint fromΦ(l2) andwill be outside l2. If zones are neither necessarily
subsets of nor disjoint from Φ(l2) then they will be split into two new zones by l2, one
inside and the other outside l2.

To give further insight into the definition below, we observe that in any model for
d2, the following hold:

1. Φ(l2) = χI ({(in2, out2) ∈ Z(d2) : l2 ∈ in2}) , and
2. Φ(l2) ∩ χI ({(in2, out2) ∈ Z(d2) : l2 ∈ out2}) = ∅.

Definition 16 Let d1 and d2 be unitary diagrams and let l2 be in L(d2)\L(d1).
We define three subsets of Z(d1)\E Z(d1), namely Zi(l2, d2), Zo(l2, d2), and
Zs(l2, d2), according to the following rules: let (in1, out1) ∈ Z(d1)\E Z(d1) such
that {(in1, out1)} �c E Z(d2), then

1. (in1, out1) ∈ Zi (l2, d2) provided

{(in1, out1)} ⊆c {(in2, out2) ∈ Z(d2) : l2 ∈ in2},

2. (in1, out1) ∈ Zo(l2, d2) provided

{(in1, out1)} ⊆c {(in2, out2) ∈ Z(d2) : l2 ∈ out2},

3. (in1, out1) ∈ Zs(l2, d2) provided

(in1, out1) /∈ Zi ∪ Zo.

We now establish some properties of the sets Zi(l2, d2), Zo(l2, d2), and Zs(l2, d2).

Lemma 3 Let d1 and d2 be unitary diagrams and let l2 be in L(d2)\L(d1). Then

1. Zi(l2, d2), Zo(l2, d2), and Zs(l2, d2) are pairwise disjoint, and
2. Z(d1)\(Zi(l2, d2) ∪ Zo(l2, d2) ∪ Zs(l2, d2) ∪ EZ(d1)) ≡c EZ(d2).

Proof First we show that Zi(l2, d2), Zo(l2, d2), and Zs(l2, d2) are pairwise disjoint.
Trivially, Zs(l2, d2) is disjoint from both Zi(l2, d2) and Zo(l2, d2). Let (in1, out1) be a
zone in Zi(l2, d2). We must show that (in1, out1) is not in Zo(l2, d2). Since (in1, out1)
is a zone in Zi(l2, d2) we know that

{(in1, out1)} ⊆c {(in2, out2) ∈ Z(d2) : l2 ∈ in2} .
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By the definition of ⊆c,

exp ({(in1, out1), L}) ∪ exp (EZ(d1), L) ∪ exp (EZ(d2), L)

⊆ exp ({(in2, out2) ∈ Z(d2) : l2 ∈ in2} , L) ∪ exp (EZ(d1), L)

∪ exp(EZ(d2), L) (1)

where L = L(d1) ∪ L(d2). If (in1, out1) was in Zo(l2, d2) then we would also have

exp ({(in1, out1), L}) ∪ exp(EZ(d1), L) ∪ exp(EZ(d2), L)

⊆ exp ({(in2, out2) ∈ Z(d2) : l2 ∈ out2} , L) ∪ exp(EZ(d1), L)

∪ exp(EZ(d2), L) (2)

We show that there is a zone in the LHS of (1) and (2), namely

exp ({(in1, out1) , L}) ∪ exp (EZ(d1), L) ∪ exp (EZ(d2), L)

that is not in the RHS of (2), namely

exp ({(in2, out2) ∈ Z(d2) : l2 ∈ out2} , L) ∪ exp (EZ(d1), L) ∪ exp (EZ(d2), L)

Since (in1, out1) is in Zi , we know that

(in1, out1) �c EZ(d2)

This implies, by the definition of ⊆c, that

exp ({(in1, out1) , L}) ∪ exp (EZ(d1), L) ∪ exp (EZ(d2), L) � exp (EZ(d1), L)

∪exp (EZ(d2), L) .

Choose a zone, (in, out), such that

(in, out) ∈ exp ({(in1, out1) , L}) \ (exp(EZ(d1), L) ∪ exp(EZ(d2), L)) .

If l2 /∈ out then (in, out) is not in the RHS of (2) but it is in the LHS of (1) and we
are done. Alternatively, l2 ∈ out, in which case l2 /∈ in. But then (in, out) is not in
the RHS of (1) but it is in the LHS of (1), which is a contradiction. Hence, the LHS
of (1) is not a subset of the RHS of (2), as required. Therefore, (in1, out1) is not in
Zo(l2, d2). Thus, the sets Zi(l2, d2) and Zo(l2, d2) are also disjoint, completing the
first part of the proof.

For the last part of the proof we need to establish that

Z(d1)\ (Zi(l2, d2) ∪ Zo(l2, d2) ∪ Zs(l2, d2) ∪ EZ(d1)) ≡c EZ(d2).
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Let (in1, out1) be a zone such that

(in1, out1) ∈ Z(d1)\ (Zi(l2, d2) ∪ Zo(l2, d2) ∪ Zs(l2, d2) ∪ EZ(d1)) .

Trivially, since (in1, out1) is not in any one of Zi(l2, d2), Zo(l2, d2) Zs(l2, d2), we see
that

{(in1, out1)} ⊆c EZ(d2).

From this the result immediately follows.

We now formalise the CopyContours inference rule.

Copy Contours

Let d1 and d2 be unitary diagrams and let l2 be in L(d2)\L(d1). Let ZIN , ZOUT and
ZSPLIT be a three-way partition of Z(d1) such that

1. Zi (l2, d2) ⊆ Z I N ,
2. Zo(l2, d2) ⊆ Z OU T , and
3. Zs(l2, d2) ⊆ ZS P L I T .

Let d ′
1 be the diagram whose components are defined as follows:

1. the contour labels are L(d ′
1) = L(d1) ∪ {l2},

2. the zones are

Z(d ′
1) = {(in ∪ {l2}, out) : (in, out) ∈ Z I N ∪ ZS P L I T }

∪ {(in, out ∪ {l2}) : (in, out) ∈ Z OU T ∪ ZS P L I T } ,

3. the shaded zones are

Z
(
d ′
1

) = {(in ∪ {l2}, out) : (in, out) ∈ (Z I N ∪ ZS P L I T ) ∩ ShZ(d1)}
∪ {(in, out ∪ {l2}) : (in, out) ∈ (Z OU T ∪ ZS P L I T ) ∩ ShZ(d1)} ,

4. the spiders are S(d ′
1) = S(d1), and

5. the habitat of each spider, s′ ∈ S(d ′
1), is

ηd ′
1

(
s′) = {

(in ∪ {l2}, out) : (in, out) ∈ (Z I N ∪ ZS P L I T ) ∩ ηd1(s)
}

∪ {
(in, out ∪ {l2}) : (in, out) ∈ (Z OU T ∪ ZS P L I T ) ∩ ηd1(s)

}
.

The CopyContours rule can be applied to show d1∧d2 is logically equivalent to d ′
1∧d2.

Theorem 6 CopyContours is sound.
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Proof Let d1, d2 and d ′
1 be spider diagrams, let l2 be a contour label and let ZIN , ZOUT

and ZSPLIT be a three way partition of Z(d1) as in the definition of the CopyContours

inference rule. We must show that d1 ∧ d2 ≡ d ′
1 ∧ d2. Let I = (U, Φ) be an inter-

pretation and suppose that I models d ′
1 ∧ d2. Trivially, d ′

1 � d1, by Theorem 4, since
d1 can be obtained from d ′

1 by applying the EraseContour inference rule (deleting the
contour labelled l2 from d ′

1). Therefore, d ′
1 ∧ d2 � d1 ∧ d2.

For the converse, suppose that I models d1 ∧ d2. We must first show that
χI (Z(d ′

1)) = U . Trivially, χI (Z(d ′
1)) ⊆ U . Let e ∈ U . We show that there exists

a zone, (in′
1, out′1) ∈ Z(d ′

1), such that e ∈ ζI (in′
1, out′1). We know that

e ∈ ζI ((in1, out1))

for some zone (in1, out1) ∈ Z(d1), since χI (Z(d1)) = U . There are three cases to
consider, relating to the three-way partition, ZIN , ZOUT and ZSPLIT , of Z(d1).

1. Case 1: (in1, out1) ∈ ZIN . We show that e ∈ ζI (in1 ∪ {l2}, out1). Since
(in1, out1) ∈ ZIN , we know, by Lemma 3, that either (in1, out1) ∈ Zi or
(in1, out1) ∈ E Z(d1), or (in1, out1) ⊆c E Z(d2). In the latter two subcases,
ζI (in1, out1) = ∅, by Lemma 1 and so does not contain e. Thus, it can only be
that (in1, out1) ∈ Zi . We, therefore, know that

{(in1, out1)} ⊆c {(in2, out2) ∈ Z(d2) : l2 ∈ in2}

by the definition of Zi . This implies that

e ∈ ζI (in1, out1) ⊆ χI ({(in2, out2) ∈ Z(d2) : l2 ∈ in2}) (1)

by Theorem 3. Since all zones, (in′
2, out′2), in {(in2, out2) ∈ Z(d2) : l2 ∈ in2}

have the property that l2 ∈ in′
2 it follows that

χI ({(in2, out2) ∈ Z(d2) : l2 ∈ in2}) ⊆ Φ(l2).

By (1), we deduce that

e ∈ ζI ((in1, out1)) ⊆ Φ(l2).

Therefore

e ∈ ζI ((in1, out1)) ∩ Φ(l2) ⊆ Φ(l2)

and we know that

ζI ((in1, out1)) ∩ Φ(l2) = ζI ((in1 ∪ {l2}, out1)).

Hence

e ∈ ζI ((in1 ∪ {l2}, out1)).
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By the definition of d ′
1, the zone (in1 ∪ {l2}, out1) is in Z(d ′

1).
2. Case 2: (in1, out1) ∈ ZOUT .We show that e ∈ (in1, out1∪{l2}). This case is similar

to Case 1, noting that all zones, (in′
2, out′2), in {(in2, out2) ∈ Z(d2) : l2 ∈ out2}

have the property that l2 ∈ out′2. From this, it follows that

χI ({(in2, out2) ∈ Z(d2) : l2 ∈ out2}) ⊆ U\Φ(l2).

3. Case 3: (in1, out1) ∈ ZSPILT . Trivially,

e ∈ ζI ((in1 ∪ {l2}, out1)) ∪ ζI ((in1, out1 ∪ {l2}))

and both the zones (in1 ∪ {l2}, out1) and (in1, out1) ∪ {l2}) are in Z(d ′
1) and we

are done.

Hence for every element, e, in U there exists a zone, (in′
1, out′1) in Z(d ′

1) such that
e ∈ ζI ((in′

1, out′1)). Thus χI (Z(d1)) = U , as required. That is, between them the
zones of d ′

1 represent the universal set.
We must now show that the condition for I to model d ′

1 relating to spiders holds.
For d1 there exists a function, Σd1 : S(d1) → U , such that

1. ∀s ∈ S(d1)(Σd1 (s) ∈ χI
(
ηd1(s)

)
), and

2. ∀z ∈ ShZ(d1)(ζI (zn) ⊆ im(Σd1)).

Choose such a Σd1 . We must show that a similar Σd ′
1
: S(d ′

1) → U exists for d ′
1. We

define Σd ′
1

= Σd1 .
We now show that Σd ′

1
ensures that the spiders map to elements in the sets repre-

sented by their habitats. Let s′ be a spider in S(d ′
1). Then, by the definition of d ′

1,

ηd ′
1
(s′) = {

(in ∪ {l2}, out) : (in, out) ∈ (Z I N ∪ ZS P L I T ) ∩ ηd1(s)
}

∪ {
(in, out ∪ {l2}) : (in, out) ∈ (Z OU T ∪ ZS P L I T ) ∩ ηd1(s)

}
.

We know that Σd1 (s) ∈ χI (ηd1(s)). Choose the zone (in1, out1) ∈ ηd1(s) such that

Σd1 (s) ∈ ζI ((in1, out1)).

Then (in1, out1) /∈ EZ(d1) and (in1, out1) �c EZ(d2). This implies that either
(in1, out1) ∈ Zi , (in1, out1) ∈ Zo, or (in1, out1) ∈ Zs . Similarly to previous parts of
the proof, we make the following three deductions.

1. If (in1, out1) ∈ Zi then

Σd1 (s) ∈ ζI ((in1, out1)) = ζI ((in1 ∪ {l2}, out1)).

The zone (in1 ∪ {l2}, out1) is in ηd ′
1
(s) and, since Σd1 (s) = Σd ′

1
(s), we have

Σd ′
1
(s) ∈ ζI ((in1 ∪ {l2}, out1)).
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2. If (in1, out1) ∈ Zo then

Σd1 (s) ∈ ζI ((in1, out1)) = ζI ((in1, out1 ∪ {l2})).

The zone (in1, out1 ∪ {l2}) is in ηd ′
1
(s) and, since Σd1 (s) = Σd ′

1
(s), we have

Σd ′
1
(s) ∈ ζI ((in1, out1 ∪ {l2})).

3. If (in1, out1) ∈ Zs then

Σd1 (s) ∈ ζI ((in1, out1)) = ζI ((in1 ∪ {l2}, out1)) ∪ ζI ((in1, out1 ∪ {l2})).

The zones (in1 ∪ {l2}, out1) and (in1, out1 ∪ {l2}) are both in ηd ′
1
(s) and, since

Σd1 (s) = Σd ′
1
(s), we have

Σd ′
1
(s) ∈ ζI ((in1 ∪ {l2}, out1)) ∪ ζI ((in1, out1 ∪ {l2})).

In all three cases, we have shown that Σd ′
1
(s) ∈ χI (ηd ′

1
(s)), as required. That is, each

spider in d ′
1 represents an element in the set represented by its habitat in d ′

1.
Finally, we consider the shaded zones. Let z be a shaded zone in d ′

1, in which case

z ∈ {(in ∪ {l2}, out) : (in, out) ∈ (Z I N ∪ ZS P L I T ) ∩ ShZ(d1)}
∪ {(in, out ∪ {l2}) : (in, out) ∈ (Z OU T ∪ ZS P L I T ) ∩ ShZ(d1)} .

Therefore, given that z = (in ∪ {l2}, out) or (in, out ∪ {l2}} for some zone (in, out) ∈
ShZ(d1), we know that

ζI (z) ⊆ im(Σd1) = im
(
Σd ′

1

)

since

ζI (z) ⊆ ζI ((in, out)) ⊆ im(Σd1).

Therefore, for all shaded zones, z, in d ′
1, ζI (z) ⊆ im(Σd ′

1
) as required. That is, each

shaded zone in d ′
1 represents a set containing only elements represented by spiders.

Hence I is a model for d ′
1. Since, by assumption, I models d2 it follows that I models

d ′
1 ∧ d2. Thus, d1 ∧ d2 � d ′

1 ∧ d2. Hence d1 ∧ d2 ≡ d ′
1 ∧ d2, that is, copyContour is

sound.

We now formalise CopyShading and prove that it is sound. To formalise the rule,
we need to identify spiders whose habitats have certain properties, given a diagram
d1 ∧ d2. In particular, these spiders are in d1 and have a foot in a particular region, say
r1. Moreover, all zones of the habitat outside of r1 represent empty sets, which can be
deduced from d2.

123



532 M. Urbas et al.

Definition 17 Let d1 and d2 be unitary diagrams. We define

S(r1, d1, d2) = {
s ∈ S(d1) : ηd1(s) ∩ r1 �= ∅ ∧ ηd1(s)\r1 ⊆c EZ(d2)

}
.

Copy Shading

Let d1 and d2 be unitary diagrams with regions, r1 and r2 respectively, such that:

1. r1 ≡c r2,
2. r1 contains at least one non-shaded zone in d1, that is r1\ShZ(d1) �= ∅,
3. r2 is entirely shaded in d2, that is, r2 ⊆ ShZ(d2),
4. in d1, each spider, s, whose habitat includes a zone of r1, that is, ηd1(s) ∩ r1 �= ∅,

is also in S(r1, d1, d2),
5. in d2, each spider, s, whose habitat includes a zone of r2, that is, ηd2(s) ∩ r2 �= ∅,

is also in S(r2, d2, d1), and
6. there is a bijection, σ : S(r1, d1, d2) → S(r2, d2, d1) such that for each spider, s,

ηd1(s) ≡c ηd2(σ (s)).

Let d ′
1 be the diagram whose components are defined as follows:

1. the contour labels are L(d ′
1) = L(d1),

2. the zones are Z(d ′
1) = Z(d1),

3. the shaded zones are ShZ(d ′
1) = ShZ(d1) ∪ r1,

4. the spiders are S(d ′
1) = S(d1),

5. the habitat of each spider, s, in S(d ′
1) is ηd ′

1
(s) = ηd1(s).

The CopyShading rule can be applied to show d1 ∧ d2 is logically equivalent to d ′
1 ∧ d2.

Theorem 7 CopyShading is sound.

Proof Let d1, d2 and d ′
1 be spider diagrams and let r1 and r2 be regions as in the

definition of the CopyShading inference rule. We must show that d1 ∧ d2 ≡ d ′
1 ∧ d ′

2.
Let I = (U, Φ) be an interpretation and suppose that I models d ′

1 ∧ d2. Trivially,
d ′
1 � d1, byTheorem4, sinced1 can be obtained fromd ′

1 by applying theRemoveShading
inference rule (deleting the shading from the region r1\ShZ(d1)). Therefore, d ′

1∧d2 �
d1 ∧ d2.

For the converse, suppose that I models d1 ∧ d2. First, since Z(d ′
1) = Z(d1) and

since I models d1, we immediately see that χI (Z(d ′
1)) = U, because χI (Z(d1)) =

U , as required. That is, between them the zones of d ′
1 represent the universal

set.
We must now show that the condition for I to model d ′

1 relating to spiders holds.
For d1 there exists a function, Σd1 : S(d1) → U , such that
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1. ∀s ∈ S(d1)(Σd1 (s) ∈ χI (ηd1(s))), and
2. ∀z ∈ ShZ(d1)(ζI (z) ⊆ im(Σd1)).

Choose such a Σd1 . Similarly, choose such a Σd2 for d2. We must show that a similar
Σd ′

1
: S(d ′

1) → U exists for d ′
1. We define Σd1 : S(d ′

1) → U by

Σd ′
1
(s) =

{
Σd1 (s) if s ∈ S(d1)\S(r1, d1, d2)
Σd2 (σ (s)) otherwise.

Our first obligation is to show that Σd ′
1
is injective. Clearly, Σd ′

1
|S(d1)\S(r1,d1,d2)

and Σd ′
1
|S(r1,d1,d2) are both injective, since Σd1 and Σd2 , respectively, are injective.

Let s1 ∈ S(d1)\S(r1, d1, d2) and let s2 ∈ S(r1, d1, d2) and suppose that Σd ′
1
(s1) =

Σd ′
1
(s2). Since

d ′
1s1 = Σd1 (s1) ∈ χI

(
ηd1(s1)

) = χI

(
ηd ′

1
(s1)

) (
because ηd1(s1) = ηd ′

1
(s1)

)

and

Σd ′
1
(s2) = Σd2 (σ (s2))) ∈ χI

(
ηd2(σ (s2))

) = χI

(
ηd ′

1
(s2)

)

×
(
because ηd2(σ (s2)) ≡c ηd ′

1
(s2)

)
,

we know that

χI

(
ηd ′

1
(s1)

)
∩ χI

(
ηd ′

1
(s2)

)
�= ∅.

Since distinct zones in any unitary diagram represent disjoint sets, it follows that

ηd ′
1
(s1) ∩ ηd ′

1
(s2) �= ∅,

that is, the spiders s1 and s2 have a common zone, z say, in their habitats in d ′
1.

Moreover, s2 ∈ S(r1, d1, d2) implies χI (ηd1(s2)\r1) = ∅, by Lemma 2 which, in
turn, implies that z ∈ r1. Therefore, since z ∈ ηd ′

1
(s1) = ηd1(s1), we see that s1 is a

spider in d1 whose habitat includes a zone r1. Hence s1 ∈ S(r1, d1, d2), contradicting
our assumption that s1 ∈ S(d1)\S(r1, d1, d2). Hence Σd ′

1
(s1) �= Σd ′

1
(s2), so Σd ′

1
is

injective.
We now show that Σd ′

1
ensures that the spiders map to elements in the sets rep-

resented by their habitats. Let s be a spider in S(d ′
1). Then, by the definition of d ′

1,
ηd ′

1
(s) = ηd(s). If s ∈ S(d1)\S(r1, d1, d2) then Σd ′

1
(s) = Σd1 (s) ∈ χI (ηd(s)) =

χI (ηd ′
1
(s)), as required. Otherwise, s ∈ S(r1, d1, d2). In this case,

Σd ′
1
(s) = Σd2 (σ (s)) ∈ χI

(
ηd2 (σ (s))

)
.
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Since ηd2(σ (s)) ≡c ηd1(s) = ηd ′
1
(s), by Theorem 3 we deduce

χI
(
ηd2(σ (s))

) = χI
(
ηd1(s)

) = χI

(
ηd ′

1
(s)

)
.

Hence

Σd ′
1
(s) ∈ χI

(
ηd ′

1
(s)

)
,

as required. That is, each spider in d ′
1 represents an element in the set represented by

its habitat in d ′
1.

Finally, we consider the shaded zones. Let z be a shaded zone in d ′
1. There are two

cases: z ∈ ShZ(d ′
1)\r1 and z ∈ ShZ(d ′

1) ∩ r1. If z ∈ ShZ(d ′
1)\r1 then z ∈ ShZ(d1), so

ζI (z) ⊆ im(Σd1) (1)

Let e ∈ ζI (z). We show that e is represented by a spider in S(d1) that is not in
S(r1, d1, d2). Choose the spider, s, in S(d1) such thatΣd1 (s) = e [such a spider exists
by (1)]. Then Σd1 (s) ∈ χI

(
ηd1(s)

)
which implies that z ∈ ηd1(s). Since z /∈ r1, there

is a zone in the habitat of s that is not in r1. This implies that s /∈ S(r1, d1, d2) because
all of the spiders whose habitats includes a zone of r1 represent elements in χI (r1)
(from the fact that for all s′ ∈ S(r1, d1, d2), χI

(
ηd1(s)\r1

) = ∅ in models for d1∧d2).
Since e was an arbitrary element in ζI (z) it follows that

ζI (z) ⊆ im(Σd1)\
{
Σd1 (s1) : s1 ∈ S (r1, d1, d2)

} ⊆ im
(
Σd ′

1

)

as required.
For the second case, z ∈ ShZ(d ′

1) ∩ r1. We show that ζI (z) ⊆ im(Σd ′
1
) ∩ im(Σd2).

Let e ∈ ζI (z). We show that e is represented by a spider in S(d2) that is also in
S(r2, d2, d1). Choose the spider, s, in S(d2) such thatΣd2 (s) = e; such a spider exists
because ζI (z) ⊆ χI (r1) = χI (r2) ⊆ im(Σd2), by Theorem 3, since r1 ≡c r2. In
particular, we see that

Σd2 (s) ∈ χI (r2) .

Furthermore, we know that

Σd2 (s) ∈ χI
(
ηd2(s)

)

implying that χI (r2) ∩ χI (ηd2(s)) �= ∅. Since distinct zones in a unitary diagram
represent disjoint sets, we deduce that r2 ∩ ηd2(s) �= ∅. That is, the habitat of s in d2
includes a zone of r2. Therefore, s ∈ S(r2, d2, d1), as required. From this, since e was
an arbitrary element in ζI (z), it follows that

ζI (z) ⊆ {Σd2 (s2)) : s2 ∈ S(r2, d2, d1)} (2)
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Since σ : S(r1, d2, d1) → S(r2, d2, d1) is a bijection and, for all spiders, s ∈
S(r1, d2, d1), Σd ′

1
(s) = Σd2 (σ (s)) we then see that

{
Σd2 (s2) : s2 ∈ S (r2, d2, d1)

} = im
(
Σd ′

1

)
∩ im(Σd2).

Hence, by (2), ζI (z) ⊆ im(Σd ′
1
). Therefore, for all shaded zones, z, in d ′

1, ζI (z) ⊆
im(Σd ′

1
) as required. That is, each shaded zone in d ′

1 represents a set containing only
elements represented by spiders. Hence I is a model for d ′

1. Since, by assumption,
I models d2 it follows that I models d ′

1 ∧ d2. Thus, d1 ∧ d2 � d ′
1 ∧ d2. Hence

d1 ∧ d2 ≡ d ′
1 ∧ d2, that is, CopyShading is sound.

Lastly, we formalise the CopySpider inference rule and establish its soundness.

Copy a Spider

Let d1 and d2 be unitary diagrams with regions r1 and r2 respectively, such that:

1. r1 ≡c r2,
2. r1 contains no shaded zones in d1, that is, r1 ∩ ShZ(d1) = ∅,
3. in d1, each spider, s, whose habitat includes a zone of r1, that is, ηd1(s) ∩ r1 �= ∅,

is also in S(r1, d1, d2),
4. there exists an injective, but not surjective, function σ : S(r1, d1, d2) →

S(r2, d2, d1) such that
5. for each spider s, ηd1(s) ≡c ηd2(σ (s)), and
6. there exists a spider, s2, that is in S(r2, d2, d1) but is not mapped to by σ , such

that ηd2(s2) ⊆c r1.

Let s1 be a fresh spider. Let d ′
1 be the diagram whose components are defined as

follows:

1. the contour labels are L(d ′
1) = L(d1),

2. the zones are Z(d ′
1) = Z(d1),

3. the shaded zones are ShZ(d ′
1) = ShZ(d1),

4. the spiders are S(d ′
1) = S(d1) ∪ {s1},

5. the habitat of each spider, s′, in S(d ′
1) is

ηd ′
1

(
s′) =

{
ηd1

(
s′) if s′ ∈ S(d1)

r1 otherwise.

The CopySpider rule can be applied to show d1∧d2 is logically equivalent to d ′
1∧d2.

Theorem 8 CopySpider is sound.

Proof Let d1, d2 and d ′
1 be spider diagrams, and let r1 and r2 be regions, and let s1

be a spider as in the definition of the CopySpider inference rule. We must show that
d1 ∧ d2 ≡ d ′

1 ∧ d ′
2. Let I = (U, Φ) be an interpretation and suppose that I models

d ′
1∧d2. Trivially, d ′

1 � d1, by Theorem 4, since d1 can be obtained from d ′
1 by applying
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the EraseSpider inference rule (deleting the spider s1, since its habitat is r1 and this
region contains no shaded zones). Therefore, d ′

1 ∧ d2 � d1 ∧ d2.
For the converse, suppose that I models d1 ∧ d2. First, since Z(d ′

1) = Z(d1) and
since I models d1, we immediately see thatχI (Z(d ′

1)) = U, becauseχI (Z(d1)) = U ,
as required. That is, between them the zones of d ′

1 represent the universal set.
We must now show that the condition for I to model d ′

1 relating to spiders holds.
For d1 there exists a function, Σd1 : S(d1) → U , such that

1. ∀s ∈ S(d1)(Σd1 (s) ∈ χI
(
ηd1(s)

)
), and

2. ∀z ∈ ShZ(d1)(ζI (z) ⊆ im(Σd1)).

Choose such aΣd1 . Similarly, choose such aΣd2 for d2.Wemust show that a similar
Σd ′

1
: S(d ′

1) → U exists for d ′
1. Now, since σ : S(r1, d1, d2) → S(r2, d2, d1) ensures

that there exists a spider, s2, that is in S(r2, d2, d1) but is not mapped to by σ where
ηd2(s2) ⊆c r1,we extendσ toσ : S(r1, d ′

1, d2) → S(r2, d2, d ′
1)bydefiningσ(s1) = s2

(noting that S(r1, d ′
1, d2) = S(r1, d ′

1, d2) ∪ {s1}). We define Σd ′
1
: S(d ′

1) → U by

Σd ′
1
(s) =

{
Σd1 (s) if s ∈ S(d1)\S(r1, d1, d2)
Σd2 (σ (s)) otherwise.

Our first obligation is to show thatΣd ′
1
is injective. Clearly,Σd ′

1
|S(d1)\S(r1,d1,d2) and

Σd ′
1
|S(r1,d1,d2)∪{s1} are both injective, since Σd1 and Σd2 , respectively, are injective.

Let s′
1 ∈ S(d1)\S(r1, d1, d2) and let s′

2 ∈ S(r1, d1, d1) ∪ {s1} = S(r1, d ′
1, d2) and

suppose that Σd ′
1
(s′

1) = Σd ′
1
(s′

2). Since

Σd ′
1

(
s′
1

) ∈ χI
(
ηd1

(
s′
1

)) = χI

(
ηd ′

1

(
s′
1

)) (
because ηd1

(
s′
1

) = ηd ′
1

(
s′
1

))

and

Σd ′
1

(
s′
2

) = Σd2

(
s′
2

) ∈ χI
(
ηd2

(
σ

(
s′
2

))) ⊆ χI

(
ηd ′

1

(
s′
2

))

×
(
because ηd2

(
σ

(
s′
2

)) ⊆c ηd ′
1

(
s′
2

))

we know that

χI

(
ηd ′

1

(
s′
1

)) ∩ χI

(
ηd ′

1

(
s′
2

)) �= ∅.

Since distinct zones in any unitary diagram represent disjoint sets, it follows that

ηd ′
1

(
s′
1

)
) ∩ ηd ′

1

(
s′
2

) �= ∅,

that is, the spiders s′
1 and s′

2 have a common zone, z say, in their habitats in d ′
1 that

represents a non-empty set. By definition, the only zones of ηd ′
1
(s′

2) that represent
non-empty sets are in r1. But then s′

1 would be a spider in d1 that includes a zone, z,
of r1 but is not in S(r1, d2), which is a contradiction. Hence Σd ′

1
(s′

1) �= Σd ′
1
(s′

2), so
Σd ′

1
is injective.
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We now show that Σd ′
1
ensures that the spiders map to elements in the sets rep-

resented by their habitats. Let s′ be a spider in S(d ′
1). Then, by the definition of d ′

1,
ηd ′

1
(s′) = ηd(s′) or, when s′ = s1, ηd ′

1
(s′) = r1 [in this latter case, s′ ∈ S(r1, d ′

1, d2)].
If s′ ∈ S(d1)\S(r1, d1, d2) then Σd ′

1
(s′) = Σd ′

1
(s′) ∈ χI (ηd1(s

′)) = χI (ηd ′
1
(s′)), as

required. Otherwise, s′ ∈ S(r1, d1, d2) ∪ {s1} = S(r1, d ′
1, d2). In this case,

Σd ′
1

(
s′) = Σd2

(
s′) ∈ χI

(
ηd2

(
σ

(
s′))) .

Since, when s′ �= s1, ηd2(σ (s′)) ≡c ηd1(s
′) = ηd ′

1
(s′) and, when s′ = s1,

ηd2(σ (s′)) ⊆c r1 = ηd ′
1
(s′), by Theorem 3 we deduce

χI
(
ηd2

(
σ

(
s′))) ⊆ χI

(
ηd ′

1

(
s′)) .

Hence

Σd ′
1

(
s′) ∈ χI

(
ηd ′

1
(s)

)
,

as required. That is, each spider in d ′
1 represents an element in the set represented by

its habitat in d ′
1.

Finally, we consider the shaded zones. Let z be a shaded zone in d ′
1, in which case

z is shaded in d1. Let e ∈ ζI (z). We show that there is a spider, s, in d ′
1 that maps to e.

Now, since z is shaded, z /∈ r1, by the definition of the inference rule. Then no spider
in d1 whose habitat includes a zone of r1 maps to e. This is because any spider, s′,
whose habitat includes a zone of r1, is in S(r1, d1, d2) and, thus, all zones in ηd1(s)\r1
represent empty sets. Therefore, any spider that maps to e cannot include zones of r1
in its habitat. Since z is shaded, there exists a spider s that maps to e. Therefore, s
is not in S(r1, d1, d2), so Σd ′

1
(s) = Σd1 (s). Since e is an arbitrary element in ζI (z)

we deduce that ζI (z) ⊆ im(Σd ′
1
). That is, each shaded zone in d ′

1 represents a set
containing only elements represented by spiders. Hence I is a model for d ′

1. Since, by
assumption, I models d2 it follows that I models d ′

1 ∧ d2. Thus, d1 ∧ d2 � d ′
1 ∧ d2.

Hence d1 ∧ d2 ≡ d ′
1 ∧ d2, so CopySpider is sound.

Appendix 3: Proof of Completeness

We now establish that the spider diagram logic, extended to include implication, bi-
implication and negation, is complete. To achieve completeness, we added new logical
rules for these connectives along with NegationElimination; the other new rules
we introduced for constructing more readable proofs and whose soundness we just
proved in “Appendix 2” are not necessary for completeness. To prove completeness,
we extend the proof given for spider diagrams in Howse et al. (2005), which relies
on the absence of −→, ←→ and ¬. If we can establish that every spider diagram is
syntactically equivalent to a diagramwith no occurrences of−→,←→ and¬ then we
have established completeness for the extended spider diagram system implemented
in Speedith.
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It is trivial to eliminate −→ and ←→ using standard logical inference rules. We
now show how to eliminate negation. If we have a negated unitary diagram where all
spiders have single feet then it is possible to eliminate the negation using three rules:
IntroShadedZone,Combining andNegationElimination. TheNegationElim-
ination inference rule can only be applied to diagrams with information about at most
one zone. Thus, it is useful to define this property:

Definition 18 Let d be a unitary diagram where all spiders have a single foot. Then
d is in zone-minimal form if it has no missing zones and all zones except, perhaps a
single zone, do not contain any spiders or shading.

Lemma 4 Let d be a unitary diagram with zone set Z = {z1, . . . , zn} such that all
spiders have single feet. Then d is syntactically equivalent to

∧

1≤i≤n

di

where di is zone-minimal and has

1. zone set Z, together with any missing zones,
2. the same number of spiders in zi as in d,
3. shading in zi , provided zi was shaded in d,
4. no other spiders or shading.

Proof We start by adding all missing zones to d, using IntroShadedZone. Noting
that the Combining rule is an equivalence, it can be applied to turn d into

∧
1≤i≤n di ,

as follows. First, turn d into d1 ∧ d ′, where d ′ is a copy of d except that it contains
no spiders or shading in z1. Repeat this process, iterating through all of the zones, to
give

∧
1≤i≤n di . Thus, d is syntactically equivalent to

∧
1≤i≤n di .

Theorem 9 Let d be a spider diagram. Then there exists a syntactically equivalent
spider diagram, d ′, where d ′ does not contain any of −→, ←→, and ¬.

Proof We begin by using the logical inference rules to eliminate −→, ←→. Next,
apply SplitSpider until all spiders have single feet. Then replace each non-⊥ unitary
part of the resulting diagramwith

∧
1≤i≤n di as in Lemma 4. To eliminate negation, the

next step is to push all negation symbols to the leaves, using standard logical inference
rules. Since all non-⊥ unitary parts are zone-minimal and all spiders have single feet,
theNegationElimination rule can be applied to eliminate all negation symbols. The
resulting diagram does not contain any of −→, ←→, and ¬. Since all rules used are
equivalences, this completes the proof.

Since all diagrams can be reduced to syntactically equivalent diagrams without
using any of−→,←→, and¬, we can then use the completeness theorem fromHowse
et al. (2005) to establish completeness for this extended system.

Theorem 10 (Completeness) Let d1 and d2 be spider diagrams such that d1 � d2.
Then d1 � d2.
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Proof Suppose that d1 � d2. ByTheorem9, there exists d ′
1 and d ′

2 that are syntactically
equivalent to d1 and d2 respectively, where d ′

1 and d ′
2 do not contain any of−→,←→,

and ¬. Since the spider diagram logic in Howse et al. (2005) did not include −→,
←→, and ¬ and is complete, we have established completeness for our extended
spider diagram logic.
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