
Automati Learning of ProofMethods in Proof PlanningMATEJA JAMNIK, University of Cambridge Computer Laboratory,J.J. Thomson Avenue, Cambridge CB3 0FD, England, UK.www.l.am.a.uk/~mj201MANFRED KERBER, Shool of Computer Siene, The University ofBirmingham, Birmingham B15 2TT, England, UK.www.s.bham.a.uk/~mmkMARTIN POLLET, Fahbereih Informatik, Universit�at desSaarlandes, 66041 Saarbr�uken, Germany.www.ags.uni-sb.de/~polletCHRISTOPH BENZM�ULLER, Fahbereih Informatik, Universit�at desSaarlandes, 66041 Saarbr�uken, Germany.www.ags.uni-sb.de/~hrisAbstratIn this paper we present an approah to automated learning within mathematial reasoning systems.In partiular, the approah enables proof planning systems to automatially learn new proof methodsfrom well-hosen examples of proofs whih use a similar reasoning pattern to prove related theorems.Our approah onsists of an abstrat representation for methods and a mahine learning tehniquewhih an learn methods using this representation formalism. We present an implementation of theapproah within the 
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2 Automati Learning of Proof Methods in Proof Planninginferene rules that make up a method [4, 20℄. The advantage is that searh withmethods an be muh better strutured aording to the partiular requirements ofmathematial domains.Proof planning also allows reuse of the same proof methods for di�erent proofs, and,moreover, generates proofs where the reasoning patterns of proofs are transparent.When methods are designed appropriately, the level of proof plans an apture thelevel of ommuniation of proofs amongst mathematiians. Hene proof plans ano�er an intuitive appeal to a human mathematiian.One of the ways to extend the power of a proof planning system is to enlarge the setof available proof methods. This is partiularly bene�ial when a lass of theoremsan be proved in a similar way, hene a new proof method an enapsulate the generalreasoning pattern of a proof for suh theorems. Methods are typially implementedand added by the developer of a system. The development and enoding of proofmethods by hand, however, is a laborious task. In this work, we show how a system anlearn new methods automatially given a number of well-hosen (positive) examplesof related proofs of theorems. This is a signi�ant improvement, sine examples (e.g.,in the form of lassroom example proofs) exist typially in abundane, while theextration of methods from these examples an be onsidered as a major bottlenekof the proof planning methodology.1 In this paper we therefore present a hybridproof planning system Learn
mati [14℄, whih ombines the existing proof planner
mega [1℄ with our own mahine learning system [13℄. This enhanes the 
megasystem with an automated apability to learn new proof methods.Automated learning by reasoning systems is a diÆult and ambitious problem. Ourwork demonstrates one way of starting to address this problem, and by doing so, itpresents several ontributions to the �eld.1. Although mahine learning tehniques have been around for a while, they havebeen relatively little used in reasoning systems. Making a reasoning system learnproof patterns from examples, muh like students learn to solve problems fromexamples demonstrated to them by the teaher, is hard. Our work makes animportant step in a speialised domain towards a proof planning system that anreason and learn.2. Proof methods have omplex strutures, and are hene very hard to learn by theexisting mahine learning tehniques. We approah this problem by abstratingas muh information from the proof method representation as needed, so that themahine learning tehniques an takle it. Later, after the reasoning pattern islearnt, the abstrated information is restored as muh as possible.3. Unlike in some of the existing related work (see Setion 5), we are not aiming toimprove ways of direting proof searh within a �xed set of primitives. Rather, weaim to learn the primitives themselves, and to investigate whether this improvesthe framework and redues the searh spae within the proof planning environ-ment. Instead of searhing amongst numerous low-level proof methods, a proofplanner an now searh with a newly learnt proof method whih enapsulatesseveral of these low-level primitive methods.1Note that in this paper, we do not provide a systemati and automated way of hoosing good examples {in our system, this is still the user's task, whih does require some expert knowledge. Choosing good examplesautomatially is disussed as future work in Setion 6.
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Fig. 1. Approah to learning proof methods.Figure 1 gives the struture of our approah to learning proof methods, and henean outline of the rest of this paper. In Setion 2 we examine what needs to be learntand give some examples of proofs that use a similar reasoning pattern. Then, inSetion 3, we present the entire learning proess. First, in Setion 3.1, we simplifythe method representation to ease the learning task. Seond, we present our mahinelearning algorithm in Setion 3.2. Third, in Setion 3.3 we revisit our method repre-sentation and enrih it so that the newly learnt methods an be used in the 
megaproof planner for proofs of other theorems. In order to assess the suess of our ap-proah, we go on in Setion 4 to present some results of the evaluation tests that weran on Learn
mati. Finally, we relate our work to that of others in Setion 5, andonlude with some future diretions in Setion 6.2 Motivation with ExamplesA proof method in proof planning onsists of a triple { preonditions, postonditionsand a tati.2 A tati is a program whih given that the preonditions are satis�ed,transforms an expression representing a subgoal in a way that the postonditions aresatis�ed by the transformed subgoal. If no method on an appropriate level is availablein a given planning state, then a number of lower-level methods (with inferene rulesorresponding to the lowest-level methods) have to be applied in order to prove agiven theorem. It often happens that a pattern of lower-level methods is applied timeand time again in proofs of di�erent problems. In this ase it is sensible and usefulto enapsulate this reasoning pattern in a new proof method. Suh a higher-levelproof method based on lower-level methods an be implemented and added to thesystem either by the user or by the developer of the system. However, this is a veryknowledge intensive task. Hene, we present an alternative, namely a framework inwhih these methods an be learnt by the system automatially.2This is an idealised view of a proof method. In pratise, postonditions of proof methods are typially determinedby exeuting the tati part of the methods. So, when we speak of postonditions, it would be more appropriateand preise to speak of the e�ets of a method.



4 Automati Learning of Proof Methods in Proof PlanningThe idea is that the system starts with learning simple proof methods. As thedatabase of available proof methods grows, the system an learn more omplex proofmethods. Inferene rules an be treated as methods by assigning to them pre- andpostonditions. Thus, from a learning perspetive we an have a uni�ed view ofinferene rules and methods as given sequenes of primitives from whih the systemis learning a pattern. We will refer to all the existing methods available for theonstrution of proofs as primitive methods. As new methods are learnt from primitivemethods, these too beome primitive methods from whih yet more new methods anbe learnt. Clearly, there is a trade-o� between the inreased searh spae due to alarger number of methods, and inreasingly better direted searh possibilities forsubproofs overed by the learnt methods. Namely, on the one hand, if there aremore methods, then the searh spae is potentially larger. On the other hand, theorganisation of a planning searh spae an be arranged so that the newly learnt,more omplex methods are searhed with �rst. If a learnt method is found to beappliable, then instead of a number of planning steps (that orrespond to the lower-level methods enapsulated by the learnt method), a proof planner needs to make onestep only. On the other hand, if a learnt method is appliable only seldom, then thismay have negative e�ets on some performane riteria of the system (e.g., run timebehaviour), but may not negatively a�et others (e.g., even in the worst ase, whena learnt method is not appliable or does not lead to a valid proof plan, the length ofthe generated proof plan does not inrease, but remains unhanged). Generally, proofplans onsisting of higher-level methods will be shorter than their orresponding plansthat onsist of lower-level methods. Hene, the searh for a omplete proof plan anbe expeted to be performed in a shallower, but also bushier searh spae. In order tomeasure this trade-o� between the inreased searh spae and better direted searh,an empirial study was arried out and is reported in Setion 4. Typially, shorterproofs have a general advantage, sine they are better suited for a user-adaptivepresentation. We disuss this in Setion 4.5.The methods that Learn
mati learns are on a higher-level than the existingones. Hene, the proofs onstruted using them are not overwhelmed with unintuitivelow-level proof steps, and an therefore be presented at a more abstrat level. In thissense, suh proofs reet a higher-level idea of the proof, and an therefore be viewedas more human-oriented.We demonstrate our ideas with examples that we used to develop and test Learn
-mati. Most of the example onjetures an be automatially planned for in 
megawith theMulti proof planner [19℄. However, they demonstrate our approah, namely,they show how a proof planner an learn new methods automatially.2.1 Group theory examplesThe proofs of our �rst set of examples onsist of simplifying an expression using anumber of primitive simpli�ation methods suh as both (left and right) axioms ofidentity, both axioms of inverse, and the axioms of assoiativity (where e is the iden-tity element, i is the inverse funtion, and LHS ) RHS stands for rewriting LHS toRHS).



Automati Learning of Proof Methods in Proof Planning 5(X Æ Y ) Æ Z ) X Æ (Y Æ Z) (asso-r)X Æ (Y Æ Z) ) (X Æ Y ) Æ Z (asso-l)e ÆX ) X (id-l) X Æ e ) X (id-r)X ÆX i ) e (inv-r)X i ÆX ) e (inv-l)Here are two examples of proof steps whih simplify given expressions and the infer-enes that are used:a Æ ((ai Æ ) Æ b)+ (asso-l)(a Æ (ai Æ )) Æ b+ (asso-l)((a Æ ai) Æ ) Æ b+ (inv-r)(e Æ ) Æ b+ (id-l) Æ b
ai Æ (a Æ b)+ (asso-l)(ai Æ a) Æ b+ (inv-l)e Æ b+ (id-l)bOther examples inlude proofs for theorems suh as (a Æ (((ai Æ b) Æ ( Æ d)) Æ f)) =(bÆ (Æd))Æf . These three examples an be summarised in the following proof traeswhih are lists of method identi�ers:1. [asso-l,asso-l,inv-r,id-l ℄,2. [asso-l,inv-l,id-l ℄,3. [asso-l,asso-l,asso-l,inv-r,id-l ℄.It is lear that all three examples have a similar struture whih ould be apturedin a new simpli�ation method. Informally, one appliation of suh a simpli�ationmethod ould be desribed as follows:Preondition: There are subterms in the initial term that are inverses of eah other,and that are not separated by other subterms, but only by brakets.Tati:1. Apply assoiativity (asso-l) for as many times as neessary (inluding 0 times)to bring the subterms whih are inverses of eah other together, and then2. apply inverse inferene rule (inv-r) or (inv-l) to redue the expression, and then3. apply the identity inferene rule (id-l).Postondition: The initial term is redued, i.e., it onsists of fewer subterms.The formal representation of the learnt method in our framework will be presentedin Setion 3.2.1.Note that this is not the most general simpli�ation method, beause it does notuse methods suh as (asso-r) and (id-r), but it is the one that is the least generalgeneralisation of the given examples above. Note also that the appliation of thismethod may fail if the preondition is not strong enough. For instane, two terms



6 Automati Learning of Proof Methods in Proof Planningmay have to be brought together by the appliation of the (asso-r) rule, whih isnot overed by the learnt method, sine no example of this type has been provided.Also, should we want our system to learn a repeated appliation of this simpli�ationmethod, then this an be ahieved in another round of learning with suitable examplesand methods. Alternatively, our set of initial examples that the system is learningfrom needs to inlude proofs of theorems suh as (Æ(bÆ(aiÆ(aÆbi))))Æ(((dÆa)Æai)Æf) = Æ (d Æ f) whih applies the above desribed simpli�ation method three times.2.2 Residue lasses onjeturesThere is a large lass of residue lass theorems in group theory that an be provedusing the same pattern of reasoning. Their use is well doumented in [18℄. Here areexamples of three residue lass theorems: (where ZZi is the residue lass of integersmodulo i)1. ommutative-under(ZZ2;+)2. assoiative-under(ZZ3;�)3. ommutative-under(ZZ3;+)The pattern of reasoning to prove them is as follows. First, the de�nitions (e.g.,ommutative-under, assoiative-under,) are expanded (defn-exp), and quanti�ers elim-inated (8i-sort). Then, all of the statements on residue lasses are rewritten intoorresponding statements on integers by transferring the residue lass set into a setof orresponding integers (onvert-reslass-to-num). Then, the proofs diverge: if thestatements are universally quanti�ed an exhaustive ase analysis over all elements ofthe set is arried out (using a ombination of elimination of disjunts (or-e-re), sim-pli�ation (simp-num-exp), and reexivity (reex)). If the statements are existentiallyquanti�ed, then all elements of the set are examined until one is found for whihthe statements hold (using a ombination of disjuntion introdution from left orright (ori-r, ori-l), simpli�ation and reexivity; see hoose method in Setion 3.2.1).Note that the three example theorems above are all universally quanti�ed, but theset of theorems used in the evaluation tests (see Setion 4) ontains the existentiallyquanti�ed theorems as well.The proof trae for the above three theorems onsist of a list of method identi�ersused in the proof plans:1. [defn-exp, 8i-sort, 8i-sort, onvert-reslass-to-num, or-e-re, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, reex, reex, reex, reex℄2. [defn-exp, 8i-sort, 8i-sort, 8i-sort, onvert-reslass-to-num, or-e-re, simp-num-exp,simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, reex, . . . , reex℄3. [defn-exp, 8i-sort, 8i-sort, onvert-reslass-to-num, defn-exp, or-e-re, simp-num-exp,simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, simp-num-exp, reex, reex, reex, reex, reex, reex,reex, reex, reex℄



Automati Learning of Proof Methods in Proof Planning 7The learnt generalisations for these proof traes are presented in Setion 3.2.1.2.3 Set theory onjeturesAnother problem domain that we experimented with inludes some theorems andnon-theorems from set theory:1. 8x; y; z (x [ y) \ z = (x \ z) [ (y \ z)2. 8x; y; z (x [ y) \ z = (x [ z) \ (y [ z)3. 8x; y; z (x \ y) \ z = xn(y [ z)Although these problems are not very hard for automated theorem provers if a suitablerepresentation is hosen, they may be hard to prove or disprove for existing automatedtheorem provers if attempted in a naive way. Their proofs onsist of eliminating (in-troduing, in bakwards reasoning) the universal quanti�ers (8i), then applying setextensionality (set-ex) and de�nition expansions (defni) in order to get propositionalor �rst order lauses (i.e., transforming statements about sets to statements aboutelements of sets), and then proving (with the Otter theorem prover, atp-otter) or dis-proving (with the Sathmo model generator, ounterex-sathmo) these lauses. Hereare the abstrated lists of method identi�ers that desribe these proofs:1. [8i;8i;8i; set-ext;8i; defni; defni; atp-otter℄2. [8i;8i;8i; set-ext;8i; defni; defni; ounterex-sathmo℄3. [8i;8i;8i; set-ext;8i; defni; defni; defni; ounterex-sathmo℄The learnt generalisations for these proof traes are presented in Setion 3.2.1.3 LearningThe representation of a problem is of ruial importane for the ability to solve it {a good representation of a problem often renders the searh for its solution easy [25℄.The diÆulty is in �nding a good representation. Our problem is to devise a meha-nism for learning methods. Hene, the representation of a method is important andshould make the learning proess easy enough that we an learn useful information.We start by presenting in Setion 3.1 a simple representation formalism whihabstrats away some detailed information in order to ease the learning proess. Then,in Setion 3.2 we desribe the learning algorithm. Finally, we show in Setion 3.3 howthe neessary information is restored as muh as possible so that the proof planneran use the newly learnt method. Some information may be irreoverably lost. Inthis ase, extra searh in the appliation of the newly learnt methods will typiallybe neessary.3.1 Method outline representationThe methods we aim to learn are omplex and are beyond the omplexity that antypially be takled in the �eld of mahine learning. Therefore, we �rst simplify theproblem and aim to learn (using a variation of an existing learning tehnique) the



8 Automati Learning of Proof Methods in Proof Planningso-alled method outlines, and seond, we reonstrut the full information as far aspossible. Method outlines are expressed in the language that we desribe here.Let us de�ne the following language L, where P is a set of known identi�ers ofprimitive methods used in a method that is being learnt:� for any p 2 P , let p 2 L,� for any l1; l2 2 L, let [l1; l2℄ 2 L,� for any l1; l2 2 L, let [l1jl2℄ 2 L,� for any l 2 L, let l� 2 L,� for any l 2 L and n 2 N, let ln 2 L,� for list = (l1; : : : ; lk) suh that li 2 L and 1 < i � k, let T (list) 2 L.\[" and \℄" are auxiliary symbols used to separate subexpressions, \," denotes asequene, \j" denotes a disjuntion, \�" denotes a repetition of a subexpression anynumber of times (inluding 0), n a �xed number of times, and T is a onstrutor fora branhing point (list is a list of branhes), i.e., for proofs whih are not sequenesbut branh into a tree.3 Let the set of primitives P be fasso-l, asso-r, inv-l, inv-r,id-l, id-rg. Using this language, the tati of our simpli�ation method desribed bythe three group theory examples above an be expressed as:simplify � �asso-l�; [inv-rjinv-l ℄; id-l �:We refer to expressions in language L whih desribe ompound methods as methodoutlines. simplify is a typial method outline that we aim our system to learn auto-matially.3.2 Mahine learning algorithmMethod outlines are abstrat methods whih have a simple representation that isamenable to learning. We now present an algorithm whih an learn method out-lines from a set of well-hosen examples. The algorithm is based on least generalgeneralisation [23, 24℄, and on the generalisation of the simultaneous ompression ofwell-hosen examples.As with ompression algorithms in general, we have to ompromise the expressivepower of the language used for ompression with the time and spae eÆieny of theompression proess. Optimal ompression { in the sense of Kolmogorov omplexity {an be ahieved by using a Turing-omplete programming language. However, optimalompression is not omputable in general, that is, there is no algorithm whih �ndsthe shortest program to represent any partiular string. As a ompromise we seletedregular expressions with expliit exponents and branhing points, whih seem to o�era framework that is on the one hand, general enough for our purpose, and on the other3Note the di�erene between the disjuntion and the tree onstrutors: for disjuntion the proofs overed by themethod outline onsist of applying either the left or the right disjunt { this is ommonly known as the OR branh.However, with the tree onstrutor every proof branhes at that partiular node to all the branhes in the list {this is ommonly known as the AND branh.Note also, that there is no need for an empty primitive as it an be enoded with the use of existing language. E.g.,let � be an empty primitive and we want to express [a; b; [�j℄; d℄. Then an equivalent representation without theempty primitive is [a; [bj[b; ℄℄; d℄. We avoid using the empty primitive as it introdues a large number of unwantedgeneralisation possibilities.



Automati Learning of Proof Methods in Proof Planning 9hand, (augmented with appropriate heuristis) suÆiently eÆient.4 There are somedisadvantages to our tehnique, mostly related to the run time speed of the algorithmrelative to the length of the examples onsidered for learning. The algorithm andeal with relatively small examples suh as those we presented without the use of anyheuristi.Our learning tehnique onsiders some number of positive examples5 whih arerepresented in terms of lists of identi�ers for primitive methods, and generalises themso that the learnt pattern is in language L. The pattern is of smallest size with respetto this de�ned measure of size, whih essentially ounts the number of primitives inan expression (where l1; l2; p 2 L, p 2 P , n 2 N for some �nite n, len is length of alist funtion, and list is a list of expressions from L).size([l1; l2℄) = size(l1) + size(l2)size([l1jl2℄) = size(l1) + size(l2)size(T (list)) = Plen(list)i=1 size(li) where li2 listsize(ln1 ) = size(l1)size(p) = 1size(l�1) = size(l1)This is a heuristi measure of size and the intuition for it is that a good generalisationis one that redues the sequenes of method identi�ers to the smallest number ofprimitives (e.g., [a2℄ is better than [a; a℄).The pattern is also most spei� (or equivalently, least general) with respet to thede�nition of spei�ity spe whih is measured in terms of the number of nestings foreah part of the generalisation.spe([l1; l2℄) = 1 + spe(l1) + spe(l2)spe([l1jl2℄) = 1 + spe(l1) + spe(l2)spe(T (list)) = 1 +Plen(list)i=1 spe(li) where li2 listspe(ln1 ) = 1 + spe(l1)spe(p) = 0spe(l�1) = 1 + spe(l1)Again, this is a heuristi measure. The intuition for this measure is that we givenested generalisations a priority sine they are more spei� and hene less likely toovergeneralise.In our experiments, we take both, the size �rst (hoose smallest size), and thespei�ity seond (hoose highest spei�ity) into aount when hoosing the gen-eralisation. If the generalisations onsidered have the same rating aording to the4Our hosen language L (see Setion 3.1) annot express all method outlines. For example, we annot expressan outline that a method m1 (e.g., de�nition unfolding) should be applied as often as possible, then a di�erentmethod m2 should be applied, and �nally a third method m3 (e.g., de�nition folding) should be applied exatlyas often as the �rst method m1. In our language we would have to overgeneralise this to [m�1 ; m2;m�3 ℄ (unless weknow the number of method appliations expliitly and this stays the same in all example proofs).5We use positive examples only, beause these are readily available. Negative examples are useful only if theyare \near-misses" of proof attempts whih unover important features of the proof. Construting and hoosinginformative negative examples is non-trivial, requires a lot of analysis and reasoning, and detrats from the maingoal of our researh. However, it would be an interesting topi for future researh.



10 Automati Learning of Proof Methods in Proof Planningtwo measures, then we return all of them. For example, onsider two possible gen-eralisations: [[a2℄�℄ and [a�℄. Aording to size, size([[a2℄�℄) = 1 and size([a�℄) = 1.However, aording to spei�ity, spe([[a2℄�℄) = 2 and spe([a�℄) = 1. Hene, thealgorithm hooses [[a2℄�℄.Note that there are other ways of seleting a generalisation and �nding a di�erentompromise between size (keeping learnt expressions small) and spei�ity (keepinglearnt expressions lose to the examples). For instane, one ould vary the value of thefollowing formula � � size(li) + (1� �) � spe(li) by hanging the value of � in order toselet a suitable generalisation li. The value of � ould depend on the degree to whihthe generalisation should be onise and general/spei� (e.g., sometimes it may bebene�ial to overgeneralise). Moreover, there are other possible heuristi measuresto selet a generalisation. We de�ned and hose size and spei�ity that are suitablemeasures in our problem domains and with our set of theorems. In the range betweenspei�ity and generality, we tend to (slightly) overgeneralise, but the test results inSetion 4 demonstrate that our hoie is a suitable one.Here is the learning algorithm. Given some number of examples ei (e.g., e1 =[a; a; a; a; b; ℄ and e2 = [a; a; a; b; ℄):1. For every example ei, split it into sublists of all possible lengths plus the rest ofthe list. We get a list of pattern lists pli, eah of whih ontains patterns pi.6 E.g.:� for e1: f[[a℄; [a℄; [a℄; [a℄; [b℄; [℄℄, [[a; a℄; [a; a℄; [b; ℄℄, [[a℄; [a; a℄, [a; b℄, [℄℄, [[a; a; a℄,[a; b; ℄℄, [[a℄; [a; a; a℄, [b; ℄℄; : : :g� for e2: f[[a℄; [a℄; [a℄; [b℄; [℄℄, [[a; a℄; [a; b℄; [℄℄, [[a℄, [a; a℄, [b; ℄℄, [[a; a; a℄, [b; ℄℄, [[a℄,[a; a; b℄; [℄℄; : : :g2. If there is any branhing in the examples, then reursively repeat this algorithmon every element of the list of branhes.3. For every example ei and for every pattern list pli �nd sequential repetitions of thesame patterns pi in the same example. Using an exponent denoting the numberof repetitions, ompress them into pi and hene pli . E.g.:� pl1 = f[[a℄4; [b℄; [℄℄; [[[a; a℄2℄; [b; ℄℄; : : :g� pl2 = f[[a℄3; [b℄; [℄℄; [[a℄; [a; a℄; [b; ℄℄; : : :g4. For every ompressed pattern pi 2 pli of every example ei, ompare it with pj inall other examples ej , and �nd mathing mk with the same onstituent pattern,whih may our a di�erent number of times. E.g.:� m1 = (pl11 ; pl12 ), due to [a℄4 and [a℄3� m2 = (pl21 ; pl22 ), due to [b; ℄ and [b; ℄, et.5. If there are no mathes mk in the previous step, then generalise the examples byjoining them disjuntively using the \j" onstrutor.6. For every pi in a mathing, generalise di�erent exponents to a \�" onstrutor,and the same exponents n to a onstant n, and hene obtain pg. E.g.:7� for m1: [a℄4 and [a℄3 are generalised to pg = [a℄�� for m2: [b; ℄ and [b; ℄ are generalised to pg = [b; ℄6Notie that there are n mod m ways of splitting an example of length n into di�erent sublists of length m.Namely, the sublists of length m an start in positions 1; 2; : : : ; n mod m.7Notie that here is a point where our generalisation tehnique an overgeneralise. For instane, when there is apattern in the exponents, e.g., all exponents are prime numbers, then this is ignored and just a � is seleted.



Automati Learning of Proof Methods in Proof Planning 117. For every pg of a math, transform the rest of the pattern list on the left and onthe right of pg bak to the example list, and reursively repeat the algorithm onthem. E.g.:� for m1 in e1: LHS= [ ℄, pg = [a℄�, repeat on RHS=[b; ℄� for m1 in e2: LHS= [ ℄, pg = [a℄�, repeat on RHS=[b; ℄� for m2 in e1: repeat on LHS= [a; a; a; a℄, pg = [b; ℄, RHS= [ ℄� for m2 in e2: repeat on LHS= [a; a; a℄, pg = [b; ℄, RHS= [ ℄.8. If there is more than one generalisation remaining at the end of the reursive steps,then pik the ones with the smallest size and among these the ones with the largestspei�ity. E.g.: after the algorithm is repeated on the rest of our examples, thelearnt method outline will be [[a℄�; [b; ℄℄.The learning algorithm is implemented in SML. Its inputs are the sequenes ofmethod identi�ers from proofs that were onstruted in 
mega. Its output aremethod outlines whih are passed bak to 
mega. The algorithm was tested onseveral examples of proofs and it suessfully produed the required method outlines.3.2.1 Learnt method outlines for the examplesFor the examples introdued in Setion 2 our learning algorithm generates the follow-ing method outlines:� Group theory: simplify � �asso-l�; [inv-rjinv-l ℄; id-l �:� Residue lasses:tryanderror � �defn-exp; [8i-sort℄�; onvert-reslass-to-num;[[or-e-re℄j[defn-exp, or-e-re℄℄; simp-num-exp�; reex��� Set theory:learnt-set � �[8i℄3; set-ext;8i; defni �; [atp-otterjounterex-sathmo℄�As mentioned before, the method outline simplify for the group theory examples isnot the most general one, as the examples that it was learnt from did not ontainthe use of the right identity method, for example. Furthermore, it is only a singleappliation of simpli�ation. However, we tested our learning algorithm also on ex-amples that use this single simplify method several times. As expeted, the learningmehanism learnt a method outline whih is a repeated appliation of simplify, namelyrep-simplify = simplify�. We also tested the learning mehanism on examples that usemethods suh as right identity and right assoiativity, and altogether learnt �ve newmethod outlines, some of whih are repeated appliations of others.In the domain of residue lasses, the learning mehanism also learnt another methodoutline alled hoose. When fully eshed into an 
mega method (see Setion 3.3),this method proves a subpart of proofs for theorems of residue lasses. Namely, givena theorem with an existential quanti�er, statements on integers are ombined using adisjuntion in a partiular normal form (from the right side). Then, eah disjunt hasto be heked until one is found that is true for the statement. Hene, the method



12 Automati Learning of Proof Methods in Proof Planninghoose starts inspeting the right disjunts until either the right (ori-r) or the left(ori-l) one is true, whih is then followed with the rest of the proof, in this ase withthe appliation of reexivity (reex). This proof pattern is learnt and aptured in themethod outline: hoose = �defn-exp, ori-r�; [reex j [ori-l, reex℄℄�The method orresponding to the third method outline learnt-set, i.e., for set theoryexamples, transforms a higher-order problem into a propositional logi one, whih ismuh easier to prove or disprove, sine it is a deidable problem. The method doesnot eliminate searh altogether, but makes it, in this ase, muh more tratable.Notie also, that the method outline learnt-set applies the elimination of the universalquanti�er (8i) only three times. This is onsistent with the examples from whih themethod outline was learnt, but in general the quanti�er elimination would be appliedany required number of times, whih ould be denoted with a star onstrut in themethod outline. This shows that the quality of a method outline learnt from theexamples depends on the quality of the input examples. Hene, it is important to usewell-hosen examples when learning new methods. Note, however, that sometimes aslight over-generalisation might be bene�ial. Also note that any learning an workonly if in the domain there is some struture or regularity whih an be exploited.3.2.2 PropertiesLet us look at some properties of our learning algorithm:Property 3.1Given a number of examples, the algorithm learns a generalisation whih is at leastas general as all examples.In order to see this property let a language expression r stand for the set of allexpressions that are just sequenes of primitive expressions. Then an expression r1 ismore general than another r2 if eah primitive expression of the set of sequenes forr2 is a proper subset of that for r1. In the algorithm only the steps (5) and (6) areritial sine all others do not hange the generality of the expressions. Only steps (5)and (6) perform a generalisation, (5) in form of a disjuntion, (6) in form of a star.Sine a disjuntion overs eah of its disjunts, and a star eah of its omponents aswell, the property follows.Property 3.2The learning algorithm is exponential.In terms of omputational omplexity, the algorithm is quadrati in step (1)8 andis exponential in step (7), sine we try every possible ombination here. All othersteps are linear. The omplexity of step (7) ould be improved by using the initiallyomputed information about all sublists of an example list, rather than reomputingit in every reursive step.8An example list of length n is split into all together n2 di�erent sublists: there are n sublists of length 1, n� 1sublists of length 2, n � 2 of length 3, n � k + 1 of length k and so on, and 1 sublist of length n. Hene, in total,there are n2 sublists of di�erent �xed lengths. Notie that there exist algorithms, e.g., suÆx trees, whih run thisstep in linear time.



Automati Learning of Proof Methods in Proof Planning 13Sine step (7) is exponential, our learning algorithm does not run eÆiently forlarge examples.9 In ase the algorithm needs to be used for very large examples,we implemented some heuristi optimisations. These prune the number of generatedmathes. Good heuristis are those whih selet mathes that make a big impaton the size of the �nal generalisations. For example, a good heuristi is to pik apattern math whose pattern of smallest size forms a maximal sublist of the originalexample. This enables the algorithm to deal with very large examples (e.g., listsof length 2000) whih are way beyond the length of examples that we expet forlearning our method outlines. Clearly, using suh heuristi learning may miss the bestgeneralisation (aording to the measures de�ned above). The user of our Learn
-mati system an hoose whether to use the heuristi optimisations in the learningmehanism or not. Users ould also de�ne their own heuristis, but this is left forfuture work.3.3 Using learnt methodsMethod outlines that have been learnt so far do not ontain all the information whihis needed for the proof planner to use them. For instane, they do not speify whatthe pre- and postonditions of methods are, they also do not speify how the numberof loop appliations of methods is instantiated when used to prove a theorem. In ourapproah, we restore the missing information by searh.In the partiular ase of our implementation in the 
mega proof planning system,important information whih is needed for the appliation of methods { but whih islost in the abstration proess { are parameters for the methods that onstitute thenewly learnt method. Conretely, the methods whih make up the new learnt methodin 
mega take some (or no) parameters. These an be in the form of positioninformation indiating where in the expression the method is applied, or a termnaming the onept for whih the de�nition should be expanded, or instantiating aterm used by the method, et. The parameters of a method are supplied by ontrol-rules to redue and to diret the searh performed by the proof planner. For example,the parameter in the de�nition expansion method defn-exp names the onept thatshould be expanded. The possible relevant ontrol-rules an be of the form `Expandonly de�nitions of the urrent theory' or `Prefer de�nition expansion of the headsymbol of the formula to be proved'.A set of methods together with a set of ontrol-rules de�nes a planning strategyof 
mega's multi-strategy proof planner Multi [19℄. Note that ontrol-rules of astrategy are used not only for determining the parameters of methods, but also toprefer or rejet methods aording to the urrent proof situation.For eah learnt method outline we automatially build a method. The preonditionof a learnt method employs searh that is guided and strutured by the methodoutline; that is, we perform searh guided by the method outlines in order to analysewhether the learnt method is appliable.The postondition introdues the new open goals and hypotheses resulting fromapplying the methods of the sequene to the urrent goal. We will all this kind ofmethod a learnt method.9However, we argue that proof methods that are being learnt typially do not onsist of a large number oflow-level methods. Indeed our algorithm runs eÆiently on all the tested examples.



14 Automati Learning of Proof Methods in Proof PlanningThe preondition of a learnt method annot be extrated from the pre- and post-onditions of the uninstantiated methods in the method outline, beause the formulaeintrodued by the postondition depend on the formulae that ful�l the preonditions.We atually have to apply a method to produe a proof situation for whih we antest the preonditions of the subsequent method in the method outline. That is, wehave to perform proof planning guided by the learnt pattern whih is aptured by themethod outline.10In detail, the appliability test is realised by the following algorithm:1. Copy the urrent proof situation. Initialise a stak with a pair (P0; ;), where P0is the initial learnt method outline and ; stands for the empty history.2. Take the �rst pair from the stak:(a) If this pair is ([[P1jP2℄; P 0℄;H), then put ([P1; P 0℄;H) and ([P2; P 0℄;H) bak onthe stak. For ([Pn; P 0℄;H) put ([P; Pn�1; P 0℄;H) on the stak. In the ase of([P �; P 0℄;H), return (P 0;H) and ([[P; P �℄; P 0℄;H).11(b) If the pair is ([m;P 0℄;H) where m is a method-name, then test the preonditionof m for all open goals (and for all possible instantiations of method parameters,if the method ontains parameters). Eah satis�ed test of preonditions resultsin a partial mathing �i of m for the orresponding goal (and parameter). Thepartial mathings ([�1; P 0℄;H); : : : ; ([�n; P 0℄;H) are put on the stak. If m is notappliable, then baktrak the di�erene between the urrent history H and thehistory of the next pair of the stak.() If the pair is ([�i; P 0℄;H) where �i is a partially instantiated method, then applythe postonditions of �i to the opied proof and put (P 0; (�i;H)) on the stak.(d) If the pair is ([ ℄;H) where [ ℄ denotes the empty outline, an instantiation ofthe learnt outline is found. That means, a partiular sequene of methods,orresponding to the method outline, has been suessfully applied and be foundin H.3. If the stak is empty, then it was not possible to apply the learnt method outline;otherwise ontinue with step (2).Notie that the appliation of the method introdues new open lines and new hy-potheses resulting from the appliation of methods in H into the proof.The learnt method may ontain other learnt methods. That is, the appliabilitytest in (2)(b) may reursively all this same algorithm again within the appliabilitytest of an embedded learnt method.Our implementation of the appliability test auses an overhead in the run timebehaviour of the system. This is beause the urrent proof is �rstly opied in step (1)of the appliability test of the learnt method, and seondly in ase of an appliation ofthe method the new open goals and hypotheses are opied bak into the original proof.These two opying steps are arried out in order to avoid an interferene between theplanning proess of Multi in the urrent proof situation, and the planning proess10One may suggest that our system learns tatis rather than methods as we have not mehanised the learning ofpreonditions. Suh a suggestion is not entirely orret, sine we an use the learnt methods in proof planning. It istrue, however, that beause of the inreasing omplexity of methods the originally lear di�erene between tatisand methods is getting inreasingly blurred { not only in our approah but in proof planning in general.11There is a ounter for the operator �, the evaluation of this operator is only performed until an upper bound isreahed. This guarantees the termination of the appliability test.



Automati Learning of Proof Methods in Proof Planning 15inside the appliability test of the method outline. The ineÆieny due to overheadould be avoided in a omplete re-implementation of the Multi proof planner.4 Evaluation and ExperimentsIn order to evaluate our approah, we arried out an empirial study in di�erentproblem domains. In partiular, we tested our framework on examples of grouptheory, residue lasses and set theory. The aim of these experiments was to investigateif the proof planner 
mega enhaned with the learnt methods an perform betterthan the standard 
mega planner. The learnt methods were added to the searhspae in onjuntion with a heuristi (ontrol-rule) speifying that their appliabilityis heked �rst, that is, before the existing standard methods.The measures that we onsider are:1. mathings { the number of all true and false attempts to math methods that areandidates for appliation in the proof plan;2. proof length { the number of steps in the proof plan;3. timing { the time it takes to prove a theorem;4. overage { the ability to prove theorems.In order to perform these tests we have built di�erent ounters in the program. Theountermathings ounts the suessful and unsuessful appliation tests of methods.It also ontains the method mathings heked by the searh engine in the appliabilitytests of learnt methods (see Setion 3.3). Mathings provides an important measure,sine on the one hand, it indiates how direted the searh for a proof is. On theother hand, heking the andidate methods that may be applied in the proof is byfar the most expensive part of the proof searh. Hene, mathings is a good measureto ompare the performane of the two approahes (i.e., with and without learntmethods) while it is also independent of potential implementation ineÆienies.The development set usually onsists of a small number of examples, in partiular,for the examples in the domains disussed in this paper it onsisted of three exampletheorems (see Setion 2). The test set onsists of a number of theorems, whih arenew, more omplex, and signi�antly diverse from the development set. It exludesthe proofs from whih the new methods were learnt.The size of our test sample was relatively small in group theory: we tested ourlearnt methods on 8 theorems, but large in other domains: we had 881 theorems ofresidue lasses and 120 onjetures of set theory.Moreover, we hose our test set to be harateristi of the problem domain ingeneral. Furthermore, notie that some evaluation measures, e.g., proof length andoverage are independent of the size of the test set. Namely, some inspetion of theapproah learly indiates that the proof plans that use learnt methods will be shorter,and from the domain of group theory, it is lear that new theorems are proved thatotherwise ould not be.Table 1 ompares the values of mathings and proof length for the three problemdomains. In eah problem domain we break down the results aording to the type oftheorems under onsideration (e.g., how omplex they are, what pattern of reasoningor proof methods their proofs may use, how many variables are in them). The tableompares the values for these measures when the planner searhes for the proof with



16 Automati Learning of Proof Methods in Proof PlanningDomain Type of Mathings LengthTheorems S L SL S L SLGroup theory simple 94.2 79.0 1.19 15.5 8.3 1.87omplex | 189.6 | | 9.8 |Residue Class hoose 691.0 656.0 1.05 39.3 33.0 1.19ZZ3 tryanderror 425.3 82.1 5.80 38.6 2.0 19.30both 552.9 323.2 1.71 39.7 19.0 2.09Residue Class hoose 751.2 713.8 1.05 35.2 29.1 1.21ZZ6 tryanderror 2309.5 402.9 5.73 218.2 2.0 109.10both 2807.8 1419.3 1.98 185.9 73.0 2.55Residue Class hoose 1996.1 1640.5 1.22 111.2 78.4 1.42ZZ9 tryanderror 4769.1 1132.2 4.21 453.1 2.0 226.55both 6931.6 3643.4 1.90 438.7 163.0 2.691 variable 26.9 42.0 0.64 6.6 6.6 1.00Set theory 3 variables 45.6 14.9 3.06 10.9 2.0 5.455 variables 48.1 28.7 1.68 12.7 4.0 3.17Table 1. Evaluation results.the standard set of available methods (olumn marked with S), and when in additionto these, there are also our newly learnt methods available to the planner (olumnmarked with L). \|" means that the planner ran out of resoures (i.e., four hours ofCPU time) and ould not �nd a proof plan.4.1 Group theory domainIn the group theory domain, our learning mehanism learnt �ve new methods, butsine some are repeated appliations of others, we only tested the planner by usingtwo newly learnt omplex ompound methods.12The methods simplify group theory expressions by applying assoiativity left andright methods, and then redue the expressions by applying appropriate inverse andidentity methods (see Setion 2.1). The entries in Table 1 refer to two types ofexamples. First, we give the average �gures for simple theorems that an be provedwith standard and with learnt methods. Seond, we give the average �gures foromplex theorems that an be proved only when the planner has our learnt methods.It is evident from Table 1 that the number of mathings is improved, but it is onlyredued by about 15%. We notied that the simpler the theorem, the smaller theimprovement. In fat, for some very simple theorems, a larger number of mathingsis required if the learnt methods are available in the searh spae. The reason forthis behaviour is that there are only a few standard methods available initially in thegroup theory domain. Hene, any additional learnt method will notieably inreasethe searh spae. Also, the appliation test for learnt methods may be expensive, es-peially when a learnt method is not appliable, but still all possible interpretations of12In general, it is a good heuristi to keep the size of the set of appliable methods small. This an be ahievedby subsuming speialised methods by more general ones. For example, as soon as the system has learnt repeatedappliation of simplify in group theory (rep-simplify = simplify�), we an remove the proof method simplify.



Automati Learning of Proof Methods in Proof Planning 17the learnt method outline have to be heked by the searh engine. However, for moreomplex examples, this is no longer the ase, and an improvement is notied. This isbeause the searh within the appliability test of the learnt method is more diretedompared to the searh performed by the proof planner. The improvement inreaseswhen a larger number of primitive methods is replaed by the learnt methods.As expeted, the proof length is redued by using learnt methods.On average, the time it took to prove simple theorems of group theory was ap-proximately 100% longer than without the learnt methods. Notie that this doesnot inlude the ase of omplex theorems, when the proof planner timed out without�nding the proof plans of the given theorems. The reason for bad timing in the aseof simple theorems is that the learnt methods are small and simple, and the proofsearh ontains the overhead due to the urrent implementation for the reuse of thelearnt methods (see Setion 3.3).On the other hand, in the ase of omplex group theory examples, the advantageof having learnt methods in the searh spae is evident from the fat, that when ourlearnt methods are not available to the planner, then it annot prove some omplextheorems. When trying to apply methods suh as assoiativity left or right, for whihthe planner has no ontrol knowledge about their appliation, then it annot �nda proof plan within the given resoures (i.e., four hours of CPU time). Our learntmethods, however, enapsulate typial patterns of reasoning about these theorems,hene they provide ontrol over the way the methods are applied in the proof andlead to suessful proof plans.4.2 Residue lass domainIn the domain of residue lasses, we gave our learning mehanism examples fromthe residue lass ZZ3 domain suh that it learnt two new methods: tryanderror (asdemonstrated in our examples in Setion 3.2), and hoose.We applied the standard set of methods and the set enhaned with the two learntmethods to randomly hosen theorems regarding the residue lass sets ZZ3, ZZ6 andZZ9. We subdivided the results in Table 1 aording to whether only one of thelearnt methods or both of them were appliable in the proof. The number of methodmathings is also represented in Figure 2 and the length of proofs in Figure 3. Thelabels in these �gures denote the lass of theorems, for example, \hoose L" standsfor theorems where the learnt method hoose was appliable and proved by a strategyontaining the learnt methods, while \hoose S" stands for the same lass of theoremsbut now proved with the standard strategy (i.e., without the learnt methods).There is an improvement in eah residue lass set when learnt methods are available.Sine hoose replaes only small subproofs, whereas tryanderror an prove the wholetheorem in one step, the latter has learly better results for proof length andmathings.The bene�t in the searh for proofs where both learnt methods are appliable liesbetween them.In addition to omparing the absolute values for our measures within the di�erentsub-domains of residue lass theorems (i.e., ZZ3, ZZ6 and ZZ9) in Table 1, we alsoompare the relative improvement between the di�erent sub-domains. This an bedone by examining the ratio between the number of mathings in the standard (S) andthe enhaned (L) sets of methods (and the same for proof length), and then omparing
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Fig. 2. Method mathings for residue lasses.the ratios for eah type of theorems aross sub-domains. Table 1 states these values.For example, the ratio for proof length in the ase of theorems that use tryanderrormethod in ZZ3 is 19:30. This means that the proofs when only standard methods areavailable are 19:30 times longer than when learnt methods are available as well.Table 1 learly shows that the ratios for proof length inrease aross sub-domains(e.g., in ase both learnt methods are used, the ratio inreases from 2:09 to 2:55 and2:69 aross sub-domains). This indiates that the more omplex the theorem (higherresidue lasses have longer and more omplex proofs), the better the improvementwhen learnt methods are available to the planner.In general, the same trend an be observed for the mathings ratios. An exeptionare the ratios for the type of theorems that an be proved using tryanderror method,whih only marginally derease aross sub-domains (but we would expet them toinrease as in the ase for theorems that are proved using hoose method). Thisan be explained by the fat that the theorems were randomly hosen aross sub-domains, rather than using the theorems for the same properties but di�erent residuelasses. Namely, the random di�erenes in the omplexity of theorems in di�erentsub-domains may be signi�ant, e.g., the properties randomly hosen in ZZ6 may bemore omplex to prove than the ones hosen in ZZ3.On average, the time it took to prove theorems of residue lasses with the newlylearnt methods was 50% shorter for proofs ontaining tryanderror than without suhmethods, 25% longer for both methods and 80% longer for hoose. The time or-responds to the measured mathings but su�ers from the overhead of the urrentimplementation, espeially for the smaller hoose method. Sine the learnt methodsare tried before the standard set of methods, this e�et inreases for longer proofs.
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b b bFig. 3. Proof length for residue lasses.4.3 Set theory domainThe examples in this domain were seleted to test the ost of learnt methods in thesearh proess when they are not appliable. To this end, we added to the set of avail-able methods the method learnt-set (see Setion 3.2) that was learnt from theoremsontaining three variables. Note that sine all the theorems in the development sethave three variables, the universal quanti�ation in learnt-set is eliminated (introduedin bakward reasoning) exatly three times. Our development set is hosen deliber-ately in this restrited way in order to test the e�et of a learnt method in situationswhere it is not appliable or appliable only in ombination with other methods. Inthis way, we wanted to �nd out to whih degree an learnt methods have a negativee�et on the searh spae. Note that if we hose `better examples' for learning, e.g.,theorems that have one, three and �ve variables, then our learnt method learnt-setwould be more powerful and appliable to all three types of theorems.In order to test the restrited method learnt-set we added to our test set two typesof theorems, namely, with one and with �ve variables. As expeted, learnt-set is notappliable in the proofs of theorems with one variable. In the proofs of theoremswith �ve variables learnt-set is appliable after two methods of the standard set areapplied.For theorems with three variables the proof searh performs best, that is, the num-ber of mathings is redued by a fator of three when the learnt method is available.proof length is redued by more than �ve times. The results for theorems with �vevariables are still better than without the learnt method, but as expeted, not asgood as with three variables. For theorems with one variable, where learnt-set is notappliable at all, the proof searh learly su�ers from the additionally available learnt



20 Automati Learning of Proof Methods in Proof Planningmethod, and hene the number of mathings is inreased. Of ourse, proof length isnot a�eted in this ase.The bene�ts and drawbaks of the availability of learnt methods an be seen verylearly in these evaluation results for the set theory examples. Namely, when a learntmethod is appliable, then its availability improves the performane of the proofplanner. However, when a learnt method is not appliable then the proof planner hasto test a larger set of methods, and this will harm its performane.On average, the time it took to prove or disprove onjetures in set theory withthe newly learnt methods was about 40% faster for theorems with three variables,approximately 5% faster for theorems with �ve variables, and nearly 20% slower fortheorems with one variable.4.4 Analysis of resultsAs it is evident from the disussion above, in general, the availability of newly learntmethods that apture general patterns of reasoning improves the performane of theproof planner. In partiular, the number of mathings (whih are the most expensivepart of the proof searh) is redued aross domains, as indiated in Table 1. Further-more, as expeted, learnt methods ause proofs to be shorter, sine they enapsulatea number of other methods. Also, the time is in general redued when using learntmethods. There are some overheads, and in some ases these are bigger than theimprovements. Sine the time should be related to the redued number of mathings,but it is not in all our ases (group theory), this indiates that our implementationof the exeution of learnt methods, as desribed in Setion 3.3, is not as eÆient asthat of the 
mega proof planner.In our experiments, the overage when using learnt methods is inreased, whih isalso indiated by the fat that using learnt methods, 
mega an prove theorems thatit annot prove otherwise. Sine in our experiments proof plans were either foundrelatively quikly or not at all, we did not notie a possible e�et where some proofplans that were found with the standard set of methods, now ould no longer befound, beause the learnt methods misled the proof searh and inreased planningtime beyond the four hour limit.The reason for the improvements desribed above is due to the fat that our learntmethods provide a struture aording to whih the existing methods an be applied,and hene they diret searh. This struture also gives better explanations why ertainmethods are best applied in partiular ombinations. For example, the simpli�ationmethod for group theory examples indiates how the methods of assoiativity, inverseand identity should be ombined together, rather than applied blindly in any possibleombination.A general performane problem of using learnt methods arises when a learnt methodis not appliable. A learnt method is not appliable when there is no instantiationof the learnt sequene so that the methods of this instantiation are appliable. Thismeans that every possible instantiation has to be tested and refuted. In the presentedexperiments, the learnt methods nearly always outperform the standard set of prim-itive methods. But there ould be worst ase senarios where the learnt method isvery general (ontains many star operations) and a large part of the learnt sequene isappliable but the whole sequene is not. This has not happened in our experiments.



Automati Learning of Proof Methods in Proof Planning 214.5 Analysis of general approahThe additional hierarhial struture of proofs onstruted with learnt methods analso be bene�ial for proof verbalisation and proof explanation tools like P.rex [8℄.The information hidden within our learnt methods an now likewise be hidden inverbalisations, and expanded if appropriate or requested by the user. Namely, learntmethods enapsulate bigger and more abstrat steps in proofs than smaller methodsthat make up our learnt methods. Hene, learnt methods provide a higher-levelexplanation of what is going on in the proof plan, and therefore they help to reet themain idea of a proof by masking and grouping details in the proof. In ombination,for instane, with the proof verbalisation tool P.rex it enables the proof planner
mega to automatially produe better explanations of the proofs whih an be ashigh-level or as low-level as needed.The preonditions of learnt methods are urrently generated by the searh enginefor the reuse of methods desribed in Setion 3.3. The engine searhes for the in-stantiation of the method outline whih is appliable in a given proof situation. Thismeans that a small amount of searh, whih is guided by the method outline, needsto be arried out in the appliability test of the learnt method. Note that in thestandard set of methods, i.e., not the learnt ones, the appliability test is arriedout by heking if the expliitly and delaratively stated preonditions for the methodhold or not in a given proof situation { similarly to the ase with our learnt methods,this may also require searh. The fat that the preonditions of the standard set ofmethods are delaratively stated, but the preonditions of our learnt methods need tobe omputed, does not hange how proof methods are treated in the planning proess.All methods, whether learnt or not, form part of the searh spae that the proof plan-ner traverses in the proess of �nding a proof plan. Indeed, one of our motivationsstated at the start of this paper was to devise a mehanism whih is able to learnnew primitives of the searh spae, rather than ontrol the searh within a �xed setof primitives. In the framework of proof planning the primitives of the searh spaeare proof methods whih we an now learn automatially. Even when some searhneeds to be arried out in order to ompute the appliability ondition of our learntmethods, this still is muh better, that is, searh is muh pruned, than when suhmethods are not available to the planner. This is supported by the results of ourevaluation demonstrated above in this setion.It is obvious that a new learnt method does not, in general, make some of the lowerlevel methods obsolete while sustaining some notion of ompleteness. On the otherhand, we annot rule out this possibility ompletely for speial ases. Determiningsuh situations is hallenging and requires proof theoreti methods based on derivabil-ity and admissibility riteria. This task an learly not be addressed automatially inour approah.We an see our approah as a mehanism that learns how to hierarhially struturethe searh through the searh spae. We built new methods that enapsulate guidedsearh over some more primitive methods, and then add these new elements as a kindof hunks of strutured searh to our system. This ontrasts with the idea of havingonly one global ontrol layer in proof planning, sine our learnt methods themselvesan be seen as little planning proesses onsisting of a set of internal methods andontrol information on how to searh with them.The mehanism for reusing learnt methods desribed in Setion 3.3 is spei� to
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mega proof methods. On the other hand, the learning algorithm presented in Se-tion 3.2 is general and an be used for learning in other automated reasoning systems,not just the 
mega proof planner (see Setion 6). The learning algorithm learnsmethod outlines whih with some enrihment ould be used in other systems as infer-ene rules, in 
mega as proof methods, in �Clam [27℄ as methodial expressions [26℄,et. In fat, in some systems, like �Clam, method outlines are exatly methodialexpressions that the planner an use diretly, so no enrihing of the method outlinerepresentation is required. In other systems, enrihed method outlines are just in-ferene rules. This may give rise to the question of what is the di�erene betweenmethods, methodial expressions and tatis. It seems that our method outlines o�era uni�ed view of all these strutures that are used in di�erent automated reason-ing system, e.g., inferening systems, tatial theorems provers, and proof planners.Depending on the system, a di�erent primitive of the searh spae is needed (e.g.,inferene rules, tatis, proof methods, methodial expressions). Hene, the enrihingof the learnt method outline representation so that the new primitive an be usedin the given system has to be arried out di�erently, or may indeed need no enrih-ing at all. Studying how this proess varies for di�erent systems may give us somelues about the similarities and di�erenes between suh strutures, but this is leftfor future work.5 Related WorkSome work has been done in the past on applying mahine learning tehniques to the-orem proving. Unfortunately, not muh work has onentrated on high-level learningof strutures of proofs and extending the reasoning primitives within an automatedtheorem prover.For example, Shulz's work in [29℄, whih is a ontinuation of previous work suhas by Fuhs and Fuhs [9℄ and Denzinger and Shulz [6℄, investigates learning ofheuristi ontrol knowledge in the ontext of mahine oriented theorem proving, morepreisely, equational or superposition based theorem proving. Knowledge gained fromthe analysis of the inferene proess is used to learn important searh deisions, whihare represented as abstrat lause patterns. These are employed in heuristi evaluationfuntions to better guide the searh when attaking new proof problems. The seletionof heuristi evaluation funtions for a new problem at hand is guided by meta-data.The main di�erene with our work is that the learnt information in Shulz's work isnot beoming a reasoning primitive, suh as our learnt methods. It rather guides thesearh amongst the existing primitives at the global searh layer instead of buildingup new, strutured hunks of enapsulated searh proesses.Silver [30℄ and Desimone [7℄ used preondition analysis whih learns new infereneshemas by evaluating the pre- and postonditions of eah inferene step used in theproof. A dependeny hart between these pre- and postonditions is reated, andonstitutes the pre- and postonditions of the newly learnt inferene shema. Theseshemas are syntatially omplete proof steps, whereas the 
mega methods ontainarbitrary funtion alls whih annot be determined by just evaluating the syntax ofthe inferene steps.Kolbe, Walther, Brauburger, Melis and Whittle have done related work on theuse of analogy [21℄ and proof reuse [17, 16℄, that is, a sort of learning to solve new



Automati Learning of Proof Methods in Proof Planning 23problems by using a similar existing problem. Their systems require a lot of reasoningwith one example to reonstrut the features whih an then be used to prove a newexample. The reonstrution e�ort needs to be spent in every new example for whihthe old proof is to be reused. In ontrast, we use several examples to learn a reasoningpattern from them, and then with a simple appliation, without any reonstrutionor additional reasoning, reuse the learnt proof method in any number of relevanttheorems. Ireland [12℄ extends the appliability of the proof planning approah bypathing failed proof plans by so-alled proof ritis.A piee of related work in ognitive siene is Furse's Mathematis Understander[10℄, MU, whih stores mathematial domain and proedural knowledge in a on-textual memory system, and tries to simulate how students learn mathematis fromtextbooks. MU builds up a uniform low-level data struture, while we build high-level hierarhial proof planning methods. Having expliit methods allows us to hekproofs for their orretness, while in MU inorret proof steps annot be distinguishedfrom orret ones. The hierarhial harater of our methods also allows for a user-adaptive proof presentation.In the �eld of mahine learning there is a huge amount of relevant work and wemention only some that we deem most related to our work. In terms of a learn-ing mehanism, more reent work on learning regular expressions, grammar infereneand sequene learning by Sun and Giles [31℄ is related. Learning regular expressionsis equivalent to learning �nite state automata, whih are also reognisers for regu-lar grammars. Muggleton has done related work on grammatial inferene methods[22℄ whih automatially onstrut �nite-state strutures from trae information. Hismethod IM1 is a general one and an desribe all other existing grammatial inferenemethods. IM1 onsists of �rst, generating a pre�x tree from example traes, seond,merging of states to get anonial aeptor states (whih still desribe only the ex-ample traes), and third, merging states whih essentially does the generalisation ofthe struture. The generalisation, i.e., merging, is determined by a partiular hosenheuristi measure. The existing state automata learning tehniques di�er depend-ing on the heuristi that they employ for generalisation. The main di�erene to ourwork is that these tehniques typially require a large number of examples in order tomake a reliable generalisation, or supervision or an orale whih on�rms when newexamples are representative of the inferred generalisation. Furthermore, the heuris-tis desribed by Muggleton do not seem to be suÆient for generalisation in ourase, as none of the states desribing our proof traes would be merged. It is unlearwhat other heuristi ould be employed to suÆe the generalisation of our examples.Moreover, these tehniques learn only sequenes, i.e., regular expressions. However,our language is larger than regular grammars as it inludes onstant repetitions ofexpressions and expressions represented as trees.There have been various approahes to inorporate learning in planning. In theProdigy system [32℄ a number of tehniques for learning are available. The goal of thelearning proess is either to get ontrol knowledge, that is, rules that desribe whihgoal to takle next and whih method to prefer at the deision points of the planningalgorithm, or learn planning operators from the hange of planning states by observingan expert agent. The learning mehanism of Learn
mati di�ers in both aspetsas its goal is to learn new operators that are learnt from other operators and ouldbe ompared to learning of maro operators of hunks [28℄. Another di�erene is that



24 Automati Learning of Proof Methods in Proof Planninglearning from an analysis of the domain theory, in our ase the set of methods, withoutthe generation of examples appears to be diÆult, sine proof planning methods areomplex and the postonditions are only available when a method is applied in aonrete proof situation. The abstration from the proof to method names that is theinput for the learning mehanism of Learn
mati is rather radial ompared withabstrations in other planning systems, see [15℄. There, a hierarhy of abstrationsan be established by analysing the prediates of the domain theory. Some ideas forabstrations in method learning that retain possibly useful information are disussedin the next setion.Related is also the work on pattern mathing in DNA sequenes [2℄, as in theGENOME projet, and some ideas underlying our learning mehanism have beeninspired by this work.6 Future WorkThere are several aspets of our learning framework whih need to be addressed inthe future. With respet to the representation formalism, we have mainly onsideredsequential rewriting proofs. Other styles (di�erent diretions of reasoning) should alsobe onsidered.Furthermore, we would like to apply our learning approah to other proof planners,suh as �Clam [27℄. Sine proof methods have a di�erent struture in di�erent proofplanners, this task would require using the same learning mehanism, but probably,instead of our appliability test, a di�erent reuse of methods approah than in thease of 
mega.The expressiveness of our language L for method outlines (see Setion 3.1) ouldbe studied further in order to determine if it should be extended. In partiular, weould look into what type of 
mega methods annot be expressed using the urrentlanguage L, and what other language onstruts we would need. Moreover, we ouldexamine if our language is suÆient to express primitives of the searh spae in otherautomated reasoning systems, like methodial expressions in �Clam or inferene rulesin other theorem provers.Regarding the learning algorithm itself, we need to examine what are good heuristisfor our generalisation and how suboptimal solutions an be improved. While thelearning mehanism is not eÆient, we argue that we do not need a highly ompliatedand eÆient tehnique for learning patterns, as in the GENOME projet, for example.If we moved to larger example sets we ould use a divide and onquer heuristi. Ourlearning algorithm without heuristis is suÆient for small patterns (e.g., less than50 steps). We did not enounter larger patterns in our examples and do not expetvery large ones for our appliation domain, sine we assume well-hosen examplesfor the learning part. Our approah reets the view that human mathematiianslearn omplex strutures not in one single step but ompose them step by step in ahierarhial way.An interesting aspet that ould be addressed in the future is whether a systemould automatially learn the information that is abstrated from the proof traes andthat has to be reonstruted by searh performed in the appliability test when reusinglearnt methods. What ould this additional information that desribes learnt methodsmore spei�ally be? When we take a look at the examples in group theory, it seems



Automati Learning of Proof Methods in Proof Planning 25obvious that the simpli�ation using assoiativity, inverse and identity methods aremeant to at on the same subformula. This information is lost during abstration, andhene, during the appliability test of the learnt method, assoiativity is applied atevery possible plae. So, the question is, ould the smallest subterm of an expressionto whih the newly learnt method should be applied, i.e., the fous for the method,be learnt automatially and how? Future investigations ould address suh questionsas well as identify additional piees of information that desribe learnt proof methodsmore spei�ally. In order to redue searh with the newly learnt methods it wouldalso be good to learn meta-level ontrol knowledge for them.Another interesting, but diÆult idea for future work is to haraterise well-hosenexamples more preisely, so that these ould be seleted automatially, rather thandepend on the user. It would be desirable to identify automatially the subparts ofproof traes in several examples of proofs that ontain the same reasoning pattern. Inour framework, this has to be done by the user of the system. Tehniques from datamining or algorithmi learning theory ould perhaps be useful to takle this diÆultproblem, however, they usually require very large data sets, whih in proof planningwe typially do not have. An idea is to apply our approah to mehanised theoremprovers (rather than proof planners), for whih we have large proof orpuses (e.g.,Mizar, Isabelle, Otter), and then use data mining tehniques in order to getgood examples from them.The extration of method sequenes from proofs is urrently implemented with re-spet to the hronologial order of method appliations during proof planning. Thereould be other orderings, e.g., the di�erent linearisations of the proof tree, some ofthem ould even result in more adequate learnt method outlines. For example, in asituation where the planner has more than one di�erent subgoal that an be losed bythe same sequene of method appliations [m1;m2℄, it depends on the searh behaviourof the proof planner whether the proofs will have a trae like [m1; : : : ;m1;m2; : : : ;m2℄or [m1;m2; : : : ;m1;m2℄. The learning mehanism will produe [m�1;m�2℄ in the �rstase and [m1;m2℄� in the seond ase. The latter will have a better searh behaviourin the appliability test of the learnt method beause only one instantiation for thestar operator has to be found.Finally, an idea for more long-term future researh is to model the powerful humanlearning apability in theorem proving more adequately. For this, it would be ne-essary to model how humans introdue new voabulary for new (emerging) onepts(e.g., representing assoiative expressions as lists of terms in the expressions, anno-tations in rippling [5, 11℄). With our approah, we annot do that, however. It is avery hallenging question left for future projets.7 ConlusionIn this paper we desribed a hybrid system Learn
mati, whih is based on the
mega proof planning system enhaned by automati learning of new proof methods.This is an important advane in addressing suh a diÆult problem, sine it makessigni�ant steps in the diretion of enabling systems to better their own reasoningpower. Proof methods an be either engineered or learnt. Engineering is expensive,sine every single new method has to be freshly engineered. Hene, it is better tolearn, whereby we have a general methodology that enables the system to automati-



26 Automati Learning of Proof Methods in Proof Planningally learn new methods. The hope is that ultimately, as the learning beomes moreomplex, the system will be able to �nd better or new proofs of theorems aross anumber of problem domains.A demonstration of Learn
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