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Abstract. We present an interactive heterogeneous theorem proving
framework, which performs formal reasoning by arbitrarily mixing dia-
grammatic and sentential proof steps.
We use Isabelle to enable formal reasoning with either traditional sen-
tences or spider diagrams. We provide a mechanisation of the theory of
abstract spider diagrams and establish a formal link between diagram-
matic concepts and the existing theories in Isabelle/HOL.

1 Introduction

Diagrams are often employed as illustrations in “pen and paper” reasoning. In
the past, they frequently formed essential parts of proofs. Eventually, with advent
of proof theory, their role became almost exclusively that of a visual help. Still,
the intuitive nature of diagrams motivated the design of formal diagrammatic
reasoning systems – for example, spider diagrams [6] and constraint diagrams [3].
Consequently, some purely diagrammatic theorem provers have been developed,
Diamond [8], Edith [10] and Dr.Doodle [13] are some examples.

Heterogeneous reasoning was the next step in the development of diagram-
matic reasoning systems. It merged the diagrammatic and sentential modes of
reasoning and allowed proof steps to be applied to either diagrammatic, senten-
tial or mixed formulae. In the paper Reasoning with Sentences and Diagrams [5],
Hammer laid the formal foundations for such heterogeneous reasoning systems.

Later, Barwise [2], Barker-Plummer [1] and Shin [9] investigated heteroge-
neous reasoning software. The result was a framework called Openproof [1],
which uses diagrammatic representation as an input method. The diagrammatic
part of the framework is not formalised within the logic of the sentential rea-
soner. Therefore, the diagrammatic and sentential components remain logically
separated.

Our goal is to enable formal interactive heterogeneous reasoning in a general
purpose theorem prover. We investigate three aspects of interactive heteroge-
neous reasoning: a) the direction of proofs (e.g., from a diagrammatic assump-
tion to a sentential conclusion and vice versa), b) expression of statements that
contain mixed sentential and diagrammatic terms, and c) mixed application of
diagrammatic, sentential, and heterogeneous inference steps.

Our key motivation is to provide different points of view on formulae and
to enable reasoning about diagrams sententially or vice versa. We believe that
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heterogeneous reasoning will not only serve as a pedagogical tool for introduc-
tion to logic, it may also improve intuitiveness and readability of formulae (and
proofs) in specific domains of verification – analogous to other domain specific
languages. Another motivation for heterogeneous reasoning is the ability to aug-
ment diagrams with sentential reasoning wherever diagrams fall short.

In contrast to the approach of Openproof our aim is not to keep the two
reasoning systems separated, but to integrate them using heterogeneous repre-
sentation and reasoning. In addition, we want to formalise diagrams and some of
their inference rules in the logic of an LCF-style [4] higher-order theorem prover.
With this we aim to enable certified proof reconstruction of heterogeneous proofs.

In order to build a heterogeneous reasoning framework, we first chose an
existing diagrammatic reasoning language called spider diagrams (see Section
2). The second part is the sentential reasoner, for which we chose Isabelle [12].

We formalised the theory of spider diagrams in Isabelle/HOL (see Section
3.1). This enabled sentential reasoning about diagrams and also simplified trans-
lation from spider diagrams to sentences (see Section 3.2). Translation from sen-
tences to diagrams, proof automation, and proof reconstruction, however, is still
work in progress. Diagrammatic reasoning will be done in Speedith, our own
external reasoner, which is currently in development (see Section 4).

2 The Diagrammatic Language

We have picked the language of spider diagrams [7] as the diagrammatic part of
our heterogeneous reasoner because it has a formally defined syntax and seman-
tics. Spider diagrams are equivalent to first-order monadic logic and are equipped
with a number of purely diagrammatic inference rules, which have been shown
to be sound1.

Spider diagrams consist of the following basic

Fig. 1: A spider diagram
featuring all the basic di-
agrammatic language ele-
ments.

elements (see Figure 1):

Contours represent named sets. They are drawn
as labelled circles (e.g., circles A, B and C in Figure
1).

Zones are also outlined areas and denote spe-
cific subsets of contours and their complements (Fig-
ure 1 contains 8 zones).

Spiders are single existentially quantified ele-
ments. One spider is a finite collection of dots that
are connected with lines. The dots are called feet, which indicate the zones in
which the spider may live.

Shaded zones indicate that a zone is a subset of its spiders (i.e., the set
this zone represents may contain only spiders with a foot in it).

Contours and zones are both outlined shapes representing sets. Contours are
labelled with alphabetical letters. Zones are not labelled and represent intersec-
tions and complements of contours.
1 For more detail see Spider Diagrams [7] by Howse et al, and The expressiveness of

spider diagrams augmented with constants [11] by Stapleton et al.
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Zones are defined as ordered pairs, say Z = (Γ, ∆). The first element of the
pair, Γ , is a set of contours which contain the zone. The second element, here ∆,
is a set of contours which do not contain the zone (the zone lies entirely outside
of these). The set described by the zone (Γ, ∆) is defined as

set of(Z) =
⋂
Ai∈Γ

set of(Ai) \
⋃
Bi∈∆

set of(Bi), (1)

where set of(Ai) is the set represented by countour Ai. For example, the spider
diagram in Figure 1 contains 8 zones (note that zone ({} , {A,B,C}) lies outside
all contours). However, not all zones have to be drawn. They may be omitted if
they play no role in the statement.

Spiders represent single elements. Spiders are dots which may optionally be
connected with a line. Dots are the feet of the spider and define its habitat.
As an example, Figure 1 contains three spiders: spiders s1 and s2 reside in zone
({B} , {A,C}), spider s3 resides in a region of three zones. Regions are collections
of zones, with corresponding sets defined as follows:

set of(R) =
⋃
Zi∈R

set of(Zi) (2)

The following is an illustration of the semantics of the diagram in Figure 1:

∃s1 s2 s3. distinct(s1, s2, s3) ∧ (s1 ∈ B \A ∪ C) ∧ (s2 ∈ B \A ∪ C) ∧
(s3 ∈ (A \ C) ∪ (A ∩B ∩ C)) ∧ (B \A ∪ C) ⊆ {s1, s2}

(3)

A compound spider diagram is a

Fig. 2: A diagrammatic statement in the
language of spider diagrams.

diagram that consists of spider dia-
grams, which are called unitary spi-
der diagrams, coupled with logical con-
nectives. Figure 2 is an example of a
compound spider diagram. Formula
4 illustrates the semantics of the di-

agram in Figure 2:

∃s1 s2. distinct(s1, s2) ∧ (s1 ∈ A ∪B \A ∩B) ∧ (s2 ∈ A ∩B)
→

∃s1 s2. (s1 ∈ A) ∧ (s2 ∈ B)
(4)

Note that spider names are local to unitary spider diagrams, whereas contour
names are global.

Figure 3 shows a purely diagrammatic proof of the example in Figure 2. Note
that the proof involves applications of three sound diagrammatic inference rules
(from [7]): split spiders (removes lines connecting feet of a spider and creates a
case-split for each foot), add feet (puts a new dot into a zone and connects it to
an existing spider in a foreign region), and idempotency. Our goal is to enable
mixing of these and other diagrammatic inference rules with sentential ones.
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Fig. 3: A purely diagrammatic proof of the example in Figure 2.

3 Sentential Reasoner

Our first step was to provide a formalisation of the theory of spider diagrams
within Isabelle/HOL (files available from http://gitorious.net/speedith).
This not only makes the translation between the two representations easier, but
also allows for direct proof reconstruction within Isabelle.

3.1 Formalisation of Diagrams in Isabelle/HOL

We formalise the basic elements of spider diagrams as follows:

Contours are identifiers of type contour = nat (natural numbers).
Zones are sets of contours (sets of natural numbers). Internally, zones are of

the following type: zone = contour set (or equivalently zone = nat set).
Regions are sets of zones: region = zone set (or equivalently region =

(nat set) set).
Spiders are identifiers of type spider = nat .

The interpretation of each of the above diagrammatic elements is provided by
their corresponding mapping functions. These functions take the above identifiers
and return sets (or elements – for spiders) that correspond to them. Figure 4
shows the map function for zones:

fun zmap :: "(’e, ’a) SD_scheme ⇒ zone ⇒ ’e set" where
"zmapd cs = (

T
c ∈ cs. cmapd c) - (

S
c ∈ (-cs). cmapd c)"

Fig. 4: The definition of the zone map which maps a zone to its set.

We also provide proofs for relevant lemmas of the theory of abstract spider
diagrams (from [7]), e.g.: disjointness of zones, additivity of the region map
over unions, intersections and complements. In addition to these, we have also
formalised the diagrammatic inference rules mentioned above (i.e., split spiders,
add feet and idempotency). Figure 5 shows the formalised add feet rule.

lemma add_feet: " [[ smap s ∈ rmap r; r ⊆ r’ ]] =⇒ smap s ∈ rmap r’"

Fig. 5: The sentential equivalent of the add feet diagrammatic inference rule.

http://gitorious.net/speedith
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3.2 Translation

The lemma in Figure 6 is the sentential translation of the diagrammatic state-
ment in Figure 2.

lemma: "(∃ s s’. s 6= s’ ∧ smap s’ ∈ rmap {{0}, {1}} ∧ smap s ∈ rmap {{ 0, 1 }}) −→
(∃ s s’. s 6= s’ ∧ smap s ∈ rmap {{0}, {0, 1}} ∧ smap s’ ∈ rmap {{1}, {0, 1}})"

Fig. 6: A sentential translation of the example in Figure 2.

Translation from diagrams to sentences currently generates n existentially
quantified first-order variables, a conjunction of n(n−1)

2 inequalities and n set-
inclusion predicates, where n is the number of spiders. Using the higher-order
quantification provided in Isabelle/HOL, we can existentially quantify over a
single set of spiders. With a single predicate, say distinct , we can also remove
the inequalities and make translation to diagrams easier. We aim to translate as
many MFOL formulae to diagrams as possible.

Heterogeneous proof automation, proof reconstruction, and translation of
sentences to diagrammatic representation is work in progress.

4 Heterogeneous Integration

Ultimately, we want to enable formal graphical reasoning as is depicted in Figure
7. Sentential expressions are drawn as diagrams if the translation is feasible. More
importantly, the external diagrammatic reasoner can be invoked in an interactive
mode within the proof body like any other tactic in Isabelle. These tactics will
invoke our diagrammatic reasoner, which in turn will return a proof trace for
proof reconstruction.

Fig. 7: A heterogeneous proof outline of the example in Figure 2.

We also want to enable visual and interactive diagram construction and ap-
plication of diagrammatic inference steps. For this purpose we will use Speedith
(sources available from http://gitorious.net/speedith) both as a standalone
reasoning tool as well as a visual add-on to Isabelle’s graphical user interfaces.

http://gitorious.net/speedith
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The user will be able to invoke the diagrammatic reasoner at any time during
the proof, with an option to do so in an interactive or fully automated mode.
Additionally, the currently active statement (lemma or proof obligation) will be
automatically visualised as a diagram in an embedded window of the GUI.

Discussion. We outline a work-in-progress of an integration of a diagrammatic
language with diagrammatic inference rules into a sentential theorem prover.
This enables formal heterogeneous reasoning with mixed diagrams and sentences.

We provide a formalisation of spider diagrams with translation to sentential
formulae. Heterogeneous proof automation, and a translation from first-order
monadic formulae to spider diagrams is still work in progress.

The goal of this project is to provide a proof of concept heterogeneous rea-
soner – to show that heterogeneous reasoning is feasible. Ultimately, we plan to
extend the heterogeneous framework to other domains with new diagrammatic
systems (e.g.: constraint diagrams, UML, diagram chasing etc.).

In summary, we believe that heterogeneous reasoning can improve the ease of
working with specific domains of verification in general purpose theorem provers.

Acknowledgments. We would like to thank Thomas Tuerk and Lawrence
Paulson for invaluable input.
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