
Designing Inference Rules for Spider Diagrams

Gem Stapleton
University of Brighton

Email: g.e.stapleton@brighton.ac.uk

Mateja Jamnik and Matej Urbas
University of Cambridge

Email: {mateja.jamnik,matej.urbas}@cl.cam.ac.uk

Abstract—Diagrammatic modes of communication have long
been recognized for their accessible representations of informa-
tion. One area in which they have been developed is that of
logical reasoning, where symbolic notations are perceived by
many as difficult to use. Significant progress has been made on
formalizing diagrammatic logics and proving formal properties
of their inference rules. To-date, most inference rules for dia-
grammatic logics have been designed from the perspective of a
logician, aiming for the essential and, thus, desirable properties of
soundness and completeness. However, this approach overlooks a
fundamental goal of providing diagrammatic logics: to overcome
barriers posed by symbolic logics to non-mathematicians. Even
if the diagrams themselves are accessible, having inference rules
that result in unwieldy proofs will fail to fulfil this fundamental
goal. Thus, the time is ripe to fully address this goal and show how
to design inference rules that give rise to more natural proofs.
In this paper we take significant steps towards this ambitious
target by devising new inference rules for spider diagrams. We
demonstrate that they allow substantially shorter proofs to be
written and, we argue, the resulting proofs are more natural.

I. INTRODUCTION

The diagrams community has a longstanding aim to make
modelling and inference easier for people, particularly for
those who do not have mathematical training. Unlike alter-
native representations, such as symbolic or linguistic, the use
of diagrams as external representations of information can give
people a substantially increased ability to produce appropriate
scientific ideas [1]. In the case of diagrammatic logics, it has
been shown that Euler diagrams lead to better understanding
and ability to carry out inference tasks than symbolic ap-
proaches [2]. This supports the ambition to make diagrams
a suitable notation for modelling and inference, and addresses
the problem that symbolic formalisms, such as predicate and
description logics, are “difficult for most people” [3].

Diagrammatic logics are visual languages that have a set of
inference rules. The last two decades have seen many of them
successfully developed. In seminal work, Shin [4] produced the
first sound and complete diagrammatic logic for a system based
on Venn diagrams augmented with Peirce’s x-sequences [5]
with the expressiveness of monadic first-order logic. Around
the same time, Hammer devised a sound and complete Euler
diagram logic which had just three inference rules [6]. Other
key examples include Peirce’s existential graphs [5], further
developed by both Shin [7] and Dau [8].

Our knowledge about how to formalize diagrammatic log-
ics has, since those early days, considerably advanced. Typi-
cally, they are formally defined via an abstract syntax [9] and
given a model theoretic semantics. Using an abstract syntax
was found to overcome problems associated with attempting
to reason about the logic at the concrete syntax level [10]

(i.e., reasoning with the actual drawn diagrams) [11]. This
approach can be seen in Kent’s constraint diagrams [12],
[13], Euler diagrams [14], Swoboda and Allwein’s Euler/Venn
logic [15] and, most relevant to this paper, Gil et al.’s spider
diagrams [16].

These logics have had their inference rules developed by
aiming for the existence of properties such as soundness and
completeness. Whilst soundness is essential and completeness
is highly desirable, little attention has been paid to the impact
of inference rule choice on proof length or readability. One
exception is the work on Euler diagrams in [17], where
different sets of sound and complete inference rules were
developed with the aim of finding rules that made automated
proof search more efficient. A consequence was that some sets
of inference rules produced shorter proofs than others.

Given that a primary motivation for developing diagram-
matic modes of inference is to overcome the communication
barriers presented by symbolic logics, the time is right for
devising inference rules that address this aim. In this paper we
do just that: we present new inference rules for spider diagrams
that, we argue, allow for more natural proof steps to be made
whilst ensuring soundness. Section II presents basic definitions
needed throughout the paper. Motivation for developing new
rules is given in section III. Section IV develops a theory of
corresponding regions for spider diagrams that is necessary for
the definitions of the new inference rules which are presented
in section V. Section VI briefly describes their impact on proof
length. Finally, we conclude in section VII.

II. PRELIMINARY DEFINITIONS

We now present core definitions relating to spider dia-
grams, introduced in [16] and further developed in [18]. The
spider diagram in Fig. 1 comprises two unitary diagrams, d1
and d2, joined with the ∧ logical operator. The diagram d1
expresses that the sets A and B are disjoint: the two contours
(closed curves) labelled A and B have disjoint interiors. There
are two elements in the set A; this is achieved through the
use of spiders (the nodes which, in general, are trees) drawn
inside the contour labelled A. There is exactly one element in
B; this is achieved through the use of the spider, representing
the existence of an element, together with the shading which
tells us that no more elements exist. The diagram d2 expresses
C ⊆ A, since the contour labelled C is inside A. In these
diagrams, the regions formed from the contours are called
zones; d2 has three zones, one of which is inside A but outside
C and can, therefore, be identified by the pair ({A}, {C}).

We now define the abstract syntax of spider diagrams
together with a model theoretic semantics. The labels used are
drawn from a set L. A zone, the set of which is denoted Z , is

2013 IEEE Symposium on Visual Languages and Human-Centric Computing

978-1-4799-0369-6/13/$31.00 ©2013 IEEE 19

Fig. 1. A spider diagram formed of two unitary diagrams.

a pair of finite, disjoint sets, (in, out), such that in∪out ⊆ L.
A region is a set of zones. Spiders are drawn from a countably
infinite set, S . In the following, P denotes power set.

Definition 1: A unitary spider diagram is a tuple, d =
(L,Z,ShZ , S, η), where

1) L = L(d) is a subset of L;
2) Z = Z(d) is a set of zones such that each zone,

(in, out), in Z(d) forms a partition of L(d);
3) ShZ = ShZ (d) is a set of shaded zones in d such

that ShZ (d) ⊆ Z(d);
4) S = S(d) is a subset of S;
5) η = ηd is a function, ηd : S(d) → PZ(d)− {∅}, that

returns the habitat of each spider.

A spider diagram is defined as follows:

1) Every unitary spider diagram is a spider diagram.
2) The symbol ⊥ is a spider diagram.
3) If d1 and d2 are spider diagrams then so are d1 ∧ d2

and d1 ∨ d2.

The definition that we have given of a spider diagram is
different from that in [18]. Our approach for unitary diagrams
uses a set of spiders together with a function mapping them to
their habitats. By contrast, [18] just recorded how many spiders
are placed in each region. For our purposes, it is helpful to have
access to actual spiders, since we need to compare them when
defining inference rules. Having defined the syntax, we can
now define the semantics of spider diagrams.

Definition 2: An interpretation is a pair, I = (U,Ψ),
where U is a set and Ψ : L → PU assigns a subset of U
to each label. An extension of Ψ to zones and regions is as
follows. For each zone, (in, out),

Ψ(in, out) =
⋂

l∈in

Ψ(l) ∩
⋂

l∈out

(U −Ψ(l)).

For each region, r, Ψ(r) =
⋃
z∈r

Ψ(z).

Whenever we have an interpretation, we assume that we
have access to the extension to zones and regions. We now
define when an interpretation is a model for a diagram. Our
approach again differs in presentation from that in [18], in part
because of the way we handle spiders at the syntactic level,
but both approaches are equivalent: the same interpretations
are identified as models. In the following definition the image
of the function ψ is denoted im(ψ).

Definition 3: Let I = (U,Ψ) be an interpretation. Let d
be a spider diagram. We say that I is a model for d under
the following circumstances. If d is a unitary diagram then
I is a model whenever the zones, between them, represent
the universal set, that is Ψ(Z(d)) = U, and there exists an
injection, ψ : S(d) → U , such that each spider, s, represents

an element in the set represented by its habitat, that is, ψ(s) ∈
Ψ(ηd(s)), and each shaded zone, z, represents a set containing
only elements represented by spiders, that is, Ψ(z) ⊆ im(ψ).
If d is not unitary then the definition of a model extends in
the obvious inductive manner, where ⊥ has no models.

For example, the interpretation I = (U,Ψ) partially defined
by U = {1, 2, 3, 4}, Ψ(A) = {1, 2, 3}, Ψ(B) = {4} and
Ψ(C) = {2, 4} is a model for d1 in Fig. 1 but not for d2.
Therefore I is not a model for d1 ∧ d2 as depicted in the
figure but instead, I is a model for d1 ∨ d2.

III. LIMITATIONS OF CURRENT INFERENCE RULES

Here we highlight inadequacies with the existing inference
rules for spider diagrams and thus other logics based on Euler
diagrams. We present a proof written using the spider diagram
inference rules given in [18]. We argue that these inference
rules result in unwieldy proofs.

In Fig. 2, d1 ∧ d2 is semantically equivalent to d′1 ∧ d2.
From d1 we can see that A ∩ B = ∅ and that B − C = ∅.
From d2, we can see D ⊆ B. We can deduce that D ⊆ (B ∩
C)−A, shown in d′1. In d1, the spider inside both B and C can
represent an element, e, where e ∈ D or e ̸∈ D, reflected by
its new habitat in d′1. We argue that a natural proof step would
allow us to ‘copy’ D into d1 to give d′1, since we can ‘see’
information about D in d2. The question arises as to how we
can use inference rules to prove that d1 ∧ d2 is semantically
equivalent to d′1 ∧ d2. We now demonstrate how to use the
sound and complete inference rules for spider diagrams given
in [18] to prove this equivalence. We start by showing that
d1∧d2 logically entails d′1∧d2, that is, d1∧d2 ⊢ d′1∧d2. The
proof that d′1 ∧ d2 ⊢ d1 ∧ d2 is much more straightforward.

There is only a small difference between d1 and d′1 and the
proof task requires us to transform d1 into d′1. In particular, d′1
is a copy of d1 but with D added to reflect the information we
have about D. It is surprisingly complicated to establish logical
entailment. We start by observing that the only inference rule
in [18] that allows the addition of a contour is the following:

Rule 1: (Add a contour) Let d1 be a unitary diagram and
let l be a contour label not used in d1. Let d2 be a copy of d1
except that there is a new contour labelled l in d2, added so
that all zones are split by the new contour and that each zone
in any spider’s habitat becomes two zones in the new habitat
in the obvious way (so each spider has twice as many feet as
in the original diagram). Then d1 is logically equivalent to d2.

Fig. 2. A proof task.

Fig. 3. Adding the contour D to d1.

20

Fig. 4. Applying the excluded middle rule to d3.

Fig. 5. Applying the splitting spiders rule to d5.

Adding contour D to d1 results in d3, Fig. 3, giving the
first step in a proof that d1 ∧ d2 ⊢ d′1 ∧ d2. Our task now is to
show that we can move D so it is inside both B and C. This
process begins by applying the excluded middle rule to d3∧d2
giving (d4 ∨ d5) ∧ d2, Fig. 4, giving our second proof step.
This rule adds a spider to a region, r, shown in d4, and shades
the same region, shown in d5: either there is an element in
the set represented by r that is not represented by a spider (so
we can add a spider to r) or all elements are represented by
spiders (so we can shade r). Informally, the rule is:

Rule 2: (Excluded Middle) Let d be a unitary diagram and
let r be a region in d that is completely non-shaded. Let d1
and d2 be copies of d except that a new spider, s, has habitat
r in d1 and r is shaded in d2. Then d is logically equivalent
to d1 ∨ d2.

Examining Fig. 4, we can intuitively see that d4 and d2
are in contradiction: d4 asserts that D − B ̸= ∅ whereas d2
asserts D ⊆ B (so D−B = ∅); we return to the contradiction
later. Moreover, d5 can be transformed into d′1 by removing
the two nodes of the spider that are inside D but outside
B and removing some of the shaded zones. The removal of
these spider nodes first requires an application of the so-called
splitting spiders inference rule from [18]:

Rule 3: (Splitting Spiders) Let d be a unitary diagram and
let s be a spider whose habitat, ηd(s) can be partitioned into
two disjoint, non-empty regions, r1 and r2 say. Let d1 and d2
by copies of d except that s has habitat r1 in d1 and r2 in d2.
Then d is logically equivalent to d1 ∨ d2.

The result of applying the splitting spiders rule can be seen
in Fig. 5, and this is the third step in our proof. The diagram
d6 can readily be transformed into d′1 using an inference rule
that allows shaded zones which do not contain spiders to be
removed: five applications of this rule give d′1. The result of
applying this inference rule 5 times can be seen in Fig. 6, so
the proof we are constructing is now 8 steps long.

The question remains as to how to remove d4 and d7 from
the diagram (d4 ∨ d′1 ∨ d7) ∧ d2. Intuitively, d4 and d7 are
both in contradiction with d2, since they assert that there is
an element in D that is not in B. There is only one inference
rule in [18] that enables us to identify contradictions between
two unitary diagrams. It requires (a) the zone sets to be made
identical and (b) all of the spiders to have single zone habitats.
To make the zone sets equal, the contour sets must first be
equalized. In this example, we can remove contours, without

Fig. 6. Removing five zones from d6.

Fig. 7. Removing contours and equalizing zones.

losing the contradictory information. This contour removal has
the added advantage that it reduces the size of spider habitats,
necessary for (b). Informally, the rule to remove contours is:

Rule 4: (Erasure of a Contour) Let d1 be a unitary diagram
and let c be a contour in d1. Let d2 be a copy of d except that
c has been erased. If two zones combine to form a single
zone then (a) if at most one of these zones is shaded then the
resulting zone is not shaded, otherwise the resulting zone is
shaded, and (b) any spider whose habitat included at least one
of these zones has a new habitat that includes the resulting
zone. Then d1 logically entails d2.

Notice that this inference rule is not, in general, a logical
equivalence. In our running example, we can remove A and
C from both d4 and d7 and remove A and E from a copy
of d2 without losing the contradictory information. It takes 8
proof steps to transform the diagram in Fig. 6 to the diagram in
Fig. 7: transform (d4∨d′1∨d7)∧d2 first into ((d4∨d7)∧d2)∨
(d′1∧d2), then remove contours (6 proof steps) and equalize the
zone sets (1 proof step, using a rule that allows shaded zones
to be added) to give the diagram ((d8 ∨d9)∧d10)∨ (d′1 ∧d2).
We have now used 16 proof steps in total. We must now finish
addressing (b), in that two of the diagrams involved in the
contradiction still have spiders with multiple zone habitats.
The fewest proof steps needed to resolve this, without losing
the contradictory information, use the erasure of a spider rule:

Rule 5: (Erasure of a Spider) Let d1 be a unitary diagram
and let s be a spider whose habitat, ηd1(s), does not contain
any shaded zones. Let d2 be a copy of d1 except that s has
been erased. Then d1 logically entails d2.

We can apply this rule three times to Fig. 7, followed by
distributivity, to give (d11 ∧ d10) ∨ (d12 ∧ d10) ∨ (d′1 ∧ d2) in
Fig. 8; so far, we have used a total of 20 proof steps. The
so-called combining rule (omitted for space reasons) identifies
that d11 ∧ d10 and d12 ∧ d10 are both inconsistent and replace
them with the symbol ⊥ (the ‘false’ spider diagram), thus
adding a further two steps to our proof. Lastly, we can use
two applications of the logic rule ’⊥ ∨d entails d’ to deduce
d′1∧d2. This proof, which is the shortest we have been able to

21

Fig. 8. Removing spiders and applying distributivity.

find, establishes that d1 ∧ d2 ⊢ d′1 ∧ d2, and has taken a total
of 24 steps. Showing that d′1 ∧ d2 ⊢ d1 ∧ d2 is much more
straightforward: simply use the erasure of a contour label rule
to remove D from d′1 to give d1. Thus, to establish logical
equivalence we can write two proofs, one requiring 24 steps
and the other requiring just a single step.

In conclusion, we argue that requiring 24 proof steps to
make an obvious deduction is unwieldy, and does not best
reflect the primary motivation for using diagrams which is
to overcome communication barriers presented by symbolic
logics and to make inference tasks easier for people to under-
take. Thus, we propose a new set of inference rules that allow
obvious proof steps to be made.

IV. CORRESPONDING REGIONS

Considering the example in Fig. 2, we could see how to
add D to d1 to give d′1. Intuitively, we could observe that D
is a subset of B and, thus, draw D inside B in d′1. However,
at a formal level, we only have access to the sets of zones
in the two diagrams and it is not immediately obvious that
the zone in d1 into which D is drawn, namely ({B,C}, {A}),
represents a superset of D. We need some way, at the abstract
syntax level, of identifying when regions represent the same
sets, or when one represents a subset of another.

We define three syntactic correspondence relations, identi-
fying when two regions represent the same set, a subset or a
superset of each other. To achieve this, it is helpful to define
various syntactic concepts. For instance, the zones that are not
present in a unitary diagram, d, but which could be given the
label set L(d), are missing. Such zones represent the empty
set in models for d. Moreover, shaded zones that do not form
part of any spider’s habitat in d also represent the empty set.

Definition 4: Let d be a unitary diagram. The missing
zones of d are those in the set

MZ (d) = {(in, out) ∈ Z : in ∪ out = L(d)}− Z(d).

The empty zones of d are elements of the set

EZ (d) = MZ (d) ∪ {z ∈ ShZ (d) : ∀s ∈ S(d) z ̸∈ ηd(s)}.

Lemma 1: Let d be a unitary diagram and let I = (U,Ψ)
be a model for d. Then the empty zones represent the empty
set, that is, if z ∈ EZ (d) then Ψ(z) = ∅.

We use the concept of empty zones when defining inference
rules: if we have two unitary diagrams taken in conjunction
and a zone, z, is empty in one of them then we can use that
information to determine, in part, how we apply inference rules

Fig. 9. Using empty zones to make deductions.

on the other diagram, for example. To illustrate, in Fig. 9, in
d2 the zone ({B}, {A,C}) is empty so we can add shading
to this zone in d1, as shown in d′1.

The notion of corresponding regions was introduced in [19]
for Euler diagrams, where a syntactic definition was provided
that established when two regions represented the same set.
Here, we give a definition of corresponding regions that is
effective for unitary spider diagrams taken in conjunction:
we prove that our definition captures when two regions, one
from d1 and the other from d2, necessarily represent the same
set in models for d1 ∧ d2. We also define the notion of a
corresponding sub-region and a corresponding super-region,
relating to subset and superset respectively. To illustrate, the
two regions r1 = {({A,D}, {B}), ({A}, {B,D})} and r2 =
{({A,C}, {B}), ({A}, {B,C})} both represent the same set
and are corresponding; informally, they both represent the set
A − B. In this example, we can be confident that r1 and r2
represent the same set in any interpretation:

Ψ(r1) = Ψ({A,D}, {B}) ∪Ψ({A}, {B,D})
= Ψ({A,D,C}, {B}) ∪Ψ({A,C}, {B,D}) ∪

Ψ({A,D}, {B,C}) ∪Ψ({A}, {B,D,C})
= Ψ({A,C}, {B}) ∪Ψ({A}, {B,C})
= Ψ(r2).

Given d1 and d2 as in Fig. 10, the region

r3 = {({A,D}, {B}), ({A}, {B,D}), ({B}, {A,D})}

also represents the same set as r2 (and r1) in any model for
d1 ∧ d2, since the zone ({B}, {A,D}) is empty:
Ψ(r3) = Ψ({A,D}, {B}) ∪Ψ({A}, {B,D}) ∪Ψ({B}, {A,D})

= Ψ({A,D}, {B}) ∪Ψ({A}, {B,D})
= Ψ(r2).

The region r3 corresponds to r2. In order to syntactically
identify whether two regions, r and r′ are corresponding we
need to transform them, altering their zones by adding labels.
The transformation is based on the observation that given any
zone, (in, out), and a label, l, not used in the zone, we have

Ψ(in, out) = Ψ(in ∪ {l}, out) ∪Ψ(in, out ∪ {l}).

The zone (in, out) can, thus, be transformed into the two zones
(in∪{l}, out) and (in, out∪{l}). We use this insight to define
the notion of an expansion of a region, which iteratively ‘splits’

Fig. 10. Corresponding regions.

22

zones in this manner, given some set of labels. In what follows,
we denote the set of labels used in a region, r, by L(r), so

L(r) =
⋃

(in,out)∈r

(in ∪ out).

If r is a region in a unitary diagram then L(r) = L(d).

Definition 5: Let r be a region such that all of the zones in
r partition L(r). Let L′ be a set of labels such that L(r) ⊆ L′.
An expansion of r given L′, denoted exp(r, L′), is the region
defined as follows:

1) If |L′ − L(r)| = 1 then

exp(r, L′) = {(in ∪ (L′ − L(r)), out) : (in, out) ∈ r} ∪
{(in, out ∪ (L′ − L(r))) : (in, out) ∈ r}.

2) If |L′ − L(r)| > 1 then exp(r, L′) = exp(r′, L′)
where r′ = exp(r, L(r) ∪ {λ}) for some label λ ∈
L′ − L(r).

For example, given r = {({B}, {A})} and L′ =
{A,B,C,D}, we have

exp(r, L′) = exp(exp(r, {A,B,C}), L′)

= ({B,C,D}, {A}), ({B,C}, {A,D}),
({B,D}, {A,C}), ({B}, {A,C,D})}.

It is obvious that the order in which the labels are introduced
during the expansion does not matter. Moreover, we do not
change the represented set:

Lemma 2: Let r be a region such that all of the zones in r
partition L(r). Let L′ be a set of labels such that L(r) ⊆ L′.
In any interpretation, I = (U,Ψ), Ψ(r) = Ψ(exp(r, L′)).

Definition 6: Let d1 and d2 be unitary diagrams. Let r1
and r2 be regions in Z(d1) ∪MZ(d1) and Z(d2) ∪MZ(d2)
respectively. Then r1 and r2 are corresponding, denoted r1 ≡c

r2, provided that
exp(r1, L) ∪ exp(EZ (d1), L) ∪ exp(EZ (d2), L) =

exp(r2, L) ∪ exp(EZ (d1), L) ∪ exp(EZ (d2), L).

where L = L(d1)∪L(d2). Furthermore, r1 is a corresponding
sub-region of r2, denoted r1 ⊆c r2, provided that

exp(r1, L) ∪ exp(EZ (d1), L) ∪ exp(EZ (d2), L) ⊆
exp(r2, L) ∪ exp(EZ (d1), L) ∪ exp(EZ (d2), L).

If r1 ⊆c r2 then r2 is a corresponding super-region of r1,
denoted r2 ⊇c r1.

In Fig. 10, we have r4 ⊆c r5 where r4 = {({A}, {B,D})}
and r5 = {({A}, {B,C}), ({A,C}, {B}), ({A,B,C}, ∅)}.
Intuitively, r4 represents the set A− (B∪D) and r5 represent
A and we see that in any model, I = (U,Ψ), for d1 ∧ d2
that Ψ(r4) ⊆ Ψ(r5). The following theorem establishes that
our syntactic correspondence relations respect the semantics
as intended:

Theorem 1: Let d1 and d2 be unitary diagrams and let r1
and r2 be regions in Z(d1) ∪MZ(d1) and Z(d2) ∪MZ(d2)
respectively. Let I = (U,Ψ) be a model for d1 ∧ d2.

1) If r1 ≡c r2 then Ψ(r1) = Ψ(r2).
2) If r1 ⊆c r2 then Ψ(r1) ⊆ Ψ(r2).
3) If r1 ⊇c r2 then Ψ(r1) ⊇ Ψ(r2).

V. INFERENCE RULES

We now present new inference rules for spider diagrams,
extending the sound and complete set in [18] conservatively
(so we still have completeness), further developed in [17], [21].
Proving that all of our new rules are sound is relatively straight-
forward; soundness proofs are omitted for space reasons.

Our new rules are designed to allow intuitive proof steps
to be made and to substantially reduce proof length and
are all logical equivalences. We focus on defining rules for
two unitary diagrams taken in conjunction, say d1 ∧ d2,
and demonstrate how to alter the information in d1 without
changing the informational content of the conjunction. We can
alter the syntax of d1 in five ways, impacting on the contours,
regions, shading, spiders, and spider habitats, giving rise to five
new rules; to derive our new inference rules, for each of these
syntactic elements, we asked ‘under what conditions can we
alter this element in d1, to yield d′1 ∧ d2, without altering the
information. We adopt the standard approach of defining the
inference rules at the abstract syntax level and, as is normal,
the intention is that they are applied at the concrete syntax
level, for which tool support, described below, is important.

The new rules make similar alterations to the syntax of
d1 as some of the information weakening rules that apply to
unitary diagrams in [18]. For example, a previously existing
rule that applies to a unitary diagram allows zones to be added
to a spider’s habitat, losing information, whereas our new ‘add
zones to a spider’s habitat’ rule below applies to a compound
diagram and preserves information.

Our first new rule allows us to copy a contour from one
diagram into another diagram; we argue that this is a natural
inference step. To illustrate, we can copy D from d2 in the
diagram d1∧d2 in Fig. 2 to d1, as shown in d′1∧d2. To define
the copy contour rule, we start by observing that each zone
in the diagram, d1, is either (a) completely outside the copied
contour, (b) completely inside the copied contour, or (c) split
into two zones by the copied contour. The effect of copying
the contour with label l on each zone is determined by the
information available. In particular, for each non-empty zone,
z, in d1 that is not a corresponding sub-region of the empty
zones in d2:

1) z is completely inside the copied contour if it rep-
resents a subset of l (captured by a corresponding
sub-region relation); in Def. 7 below these zones are
in Zi;

2) z is completely outside the copied contour if it repre-
sents a subset of U − l (captured by a corresponding
sub-region relation); these zones are in Zo; and

3) z is split into two zones otherwise; these zones are
in Zs.

Zones which are empty in d1 or are corresponding sub-regions
of empty zones of d2, can either be inside, outside or split.
This is reflected in the definition of the copy contour rule,
which extends the much more restricted copy contour inference
rule given in [21] that only considered pairwise relationships
between contours and used no notion of corresponding regions.

Definition 7: Let d1 and d2 be unitary diagrams and let l be
in L(d2)−L(d1). We define three subsets of Z(d1)−EZ(d1),
namely Zi(l, d2), Zo(l, d2), and Zs(l, d2), according to the

23

following rules. Let z ∈ Z(d1) − EZ(d1) such that {z} ̸⊆c

EZ(d2).
1) If {z} ⊆c {(in2, out2) ∈ Z(d2) : l ∈ in2} then

z ∈ Zi(l, d2).
2) If {z} ⊆c {(in2, out2) ∈ Z(d2) : l ∈ out2} then

z ∈ Zo(l, d2).
3) If z ̸∈ Zi(l, d2) ∪ Zo(l, d2) then z ∈ Zs(l, d2).

Rule 6 (Copy a Contour): Let d1 and d2 be unitary dia-
grams and let l2 be in L(d2) − L(d1). Let ZIN , ZOUT and
ZSPLIT be a 3-way partition of Z(d1) such that

1) Zi(l2, d2) ⊆ ZIN ,
2) Zo(l2, d2) ⊆ ZOUT , and
3) Zs(l2, d2) ⊆ ZSPLIT .

Let d′1 be the diagram defined as follows:

1) the contour labels are L(d′1) = L(d1) ∪ {l2},
2) the zones are

Z(d′1) = {(in ∪ {l2}, out) : (in, out) ∈ ZIN ∪ ZSPLIT } ∪
{(in, out ∪ {l2}) : (in, out) ∈ ZOUT ∪ ZSPLIT },

3) the shaded zones are

ShZ (d′1) = {(in ∪ {l2}, out) : (in, out) ∈ (ZIN ∪ ZSPLIT)

∩ShZ (d1)} ∪ {(in, out ∪ {l2}) : (in, out) ∈
(ZOUT ∪ ZSPLIT) ∩ ShZ (d1)},

4) the spiders are S(d′1) = S(d1), and
5) the habitat of each spider, s′ ∈ S(d′1), is

ηd′1(s
′) = {(in ∪ {l2}, out) : (in, out) ∈ (ZIN ∪ ZSPLIT)

∩ηd1(s)} ∪ {(in, out ∪ {l2}) : (in, out) ∈
(ZOUT ∪ ZSPLIT) ∩ ηd1(s)}.

Then d1 ∧ d2 is logically equivalent to d′1 ∧ d2.

Fig. 11. The add a region inference rule.

When we have two unitary diagrams, d1 and d2, taken
in conjunction there are circumstances under which we can
enlarge the zone set (but not the shaded zone set) of one
diagram without altering the semantics of the conjunction. This
occurs when there is a set of zones, r, missing from d1 that
is a corresponding sub-region of the empty zones in d2. Since
d2 implies that r represents ∅, we can remove this information
from d1 (by introducing the missing zones in r) without losing
the information from d1 ∧ d2. This inference rule is illustrated
in Fig. 11, where both d1 and d2 express that A ∩ B = ∅.
This information is removed from d1 to give d′1, but it is still
present in the diagram d′1 ∧ d2.

Rule 7 (Add a Region): Let d1 and d2 be unitary dia-
grams. Let r1 be a subset of MZ (d1) such that r1 ⊆c EZ(d2).
Let d′1 be the diagram identical to d1 except that Z(d′1) =
Z(d1) ∪ r1. Then d1 ∧ d2 is logically equivalent to d′1 ∧ d2.

For the copy shading inference rule, consider as an example
d1 ∧ d2 in Fig. 12. Here, the region r1 comprising all zones

inside B in d1 can be shaded, given the information in
d1 ∧ d2. In particular, r1 corresponds to the entirely shaded
region r2 comprising all zones inside B in d2 and we can
also ‘match’ the spiders in these regions: s1,i matches s2,i
where ηd1(s1,i) ⊇c ηd2(s2,i). By match, we mean that there
is a bijection, σ, between the relevant spiders (captured in
Def. 8 below) that ensures the habitat of each spider, s, in
r1 is a corresponding super-region of the habitat of σ(s). This
matching ensures that whichever element is represented by s2,i
it can also be represented by s1,i, which is important to ensure
the rule’s soundness. The result of adding shading to B in d1
can be seen in d′1. If s1,1 was not in d1 then d′1 would assert
|B| = 1 which cannot be deduced from d1 ∧ d2.

Fig. 12. The copy shading inference rule.

In order to define this rule, we introduce some notation to
denote the set of spiders whose habitat includes zones of a
region r in a unitary diagram d and the habitat outside of r
corresponds to empty zones of d2.

Definition 8: Let d1 and d2 be unitary diagrams and r be
a region in d1. We define

S(r, d1, d2) = {s ∈ S(d1) : ηd1(s)∩r ̸= ∅∧ηd1(s)−r ⊆c EZ (d2)}.

Rule 8 (Copy Shading): Let d1 and d2 be unitary diagrams
with regions r1 and r2 respectively such that:

1) r1 ⊆c r2,
2) r1 contains at least one non-shaded zone in d1, that

is r1 − ShZ (d1) ̸= ∅,
3) r2 is entirely shaded in d2, that is, r2 ⊆ ShZ (d2),
4) in d1, each spider, s, whose habitat includes a zone

of r1, that is, ηd1(s)∩r1 ̸= ∅, is also in S(r1, d1, d2),
5) in d2, all of the spiders whose habitat includes a zone

of r2, that is, ηd2(s)∩r2 ̸= ∅, is also in S(r2, d2, d1),
and

6) there is a bijection, σ : S(r1, d1, d2) → S(r2, d2, d1),
such that for each spider, s, ηd1(s) ⊇c ηd2(σ(s)).

Let d′1 be the diagram identical to d1 except that ShZ (d′1) =
ShZ (d1)∪ r1. Then d1 ∧ d2 is logically equivalent to d′1 ∧ d2.

The next new rule allows us to copy a spider from one
diagram to another. This is illustrated in Fig. 13, where we
can copy a spider from d2 into d1. From d2 we can see that
there are at least three elements in A, one of which is also in
D. The diagram d1 tells us that there is an element in A, so
we can copy a spider from d2 into d1. In this case, we copy
the spider inside D in d2, as shown in d′1.

Fig. 13. The copy a spider inference rule.

24

Rule 9 (Copy a Spider): Let d1 and d2 be unitary dia-
grams with regions r1 and r2 respectively, and a region r′ ⊆ r1
in d1 such that:

1) r1 ⊆c r2,
2) r′ contains no shaded zones in d1, that is, r′ ∩

ShZ (d1) = ∅,
3) in d1, each spider, s, whose habitat includes a zone

of r1, that is, ηd1(s)∩r1 ̸= ∅, is also in S(r1, d1, d2),
4) there exists an injective, but not surjective, function

σ : S(r1, d1, d2) → S(r2, d2, d1) such that
a) for each spider s, ηd2(σ(s)) ⊆c ηd1(s), and
b) there exists a spider, s2, that is in

S(r2, d2, d1) but is not mapped to by σ, such
that ηd2(s2) ⊆c r′.

Let s1 be a fresh spider. Let d′1 be the diagram identical to
d1 except that S(d′1) = S(d1) ∪ {s1} and the habitat of each
spider, s′, in S(d′1) is

ηd′
1
(s′) =

{
ηd1(s

′) if s′ ∈ S(d1)
r′ otherwise.

Then d1 ∧ d2 is logically equivalent to d′1 ∧ d2.

For the inference rule pertaining to spider’s habitats, we
begin by observing that if we add zones to a spider’s habitat
in d1 that correspond to empty zones in d2 then we have not
changed the informational content of d1∧d2. This is illustrated
in Fig. 14, where the zone ({A}, {D}) represents the empty
set, asserted by d2, so adding spider feet to the corresponding
region in d1, as shown in d′1, does not change the semantics.

Fig. 14. The add zones to a spider’s habitat.

Rule 10 (Add Zones to a Spider’s Habitat): Let d1 and d2
be unitary diagrams with a spider, s1, in S(d1) such that there
exists a region r′ where

1) r′ ∩ ηd1(s1) = ∅, and
2) exp(r′, L(d1) ∪ L(d2)) ⊆ exp(EZ (d2), L(d1) ∪

L(d2)).

Let d′1 be the diagram identical to d1 except that the habitat
of each spider, s′, in S(d′1) is

ηd′
1
(s′) =

{
ηd1(s

′) if s′ ∈ S(d1)− {s1}
ηd1(s

′) ∪ r′ otherwise.

Then d1 ∧ d2 is logically equivalent to d′1 ∧ d2.

Focusing now on tool support, our theorem prover Speed-
ith [21] supports reasoning with spider diagrams. Speedith
consists of five main components: an abstract representation of
spider diagrams; a reasoning kernel which provides Speedith
with its proof infrastructure that contains a collection of
spider diagram inference rules, handles their application, and
manages proofs; an external communication system which
includes input and output mechanisms for spider diagrams
and sentential formulae to enable external verification through

existing general-purpose theorem provers; an ‘iCircles’ visu-
alization algorithm for automatically drawing unitary spider
diagrams when inference rules are applied, extending [20];
and a graphical user interface, which includes compound
spider diagram visualization, user interaction with spider dia-
gram elements, graphical user interface panels for interactive
proof management and interactive application of inference
rules. Speedith supports both forward-style and backward-style
proofs.

The user interface allows the entry of spider diagrams
and the construction of spider diagram proofs interactively.
The user-led application of inference rules is performed at the
concrete syntax level, whereby the user selects the rule to apply
and the appropriate part of the diagram that is to be altered
by the rule. For example, to apply ‘add zones to a spider’s
habitat’, the user would select the rule (called ‘add feet’ in
Speedith for brevity), select the spider and select the zones
which are to be added via the concrete diagram. Speedith then
applies the rule at the abstract syntax level and automatically
draws the resulting diagram.

VI. IMPACT ON PROOF LENGTH

To evaluate the impact of our inference rules we can take a
number of approaches. These include conducting user studies
to ascertain whether our ‘new’ proofs are more understandable
than the ‘old’ proofs, asking people whether the proofs are
seemingly more natural, or ascertaining the impact on proof
length. Designing appropriate empirical studies is difficult, due
to the need to train participants in spider diagrams and logical
reasoning. Whether a proof appears natural is subjective to
the reader and any study attempting to ascertain the relative
‘naturalness’ of the proofs would need to use experts who
are not available in large numbers. Finally, producing shorter
proofs does not always result in more natural, or ‘better’,
proofs. However, impact on proof length is not at all subjective
and can be computed. Moreover, as we have conservatively
extended the set of inference rules, the shortest proof with
the new set of rules will never be longer than with the old set:
proofs never get longer. Therefore, we have chosen to establish
the impact on proof length as a method of evaluating our new
inference rules.

We conjecture that savings in proof length are likely to
be more significant when the proof task (i.e., premise and
conclusion diagram) contain more syntax, particularly spiders
with large habitats. Thus, by choosing simple examples to
demonstrate savings in proof length, any bias in the evaluation
is likely to favour the original inference rule set. It is, though,
unfortunate that no standard corpus of examples exists to
evaluate proof length in a truly unbiased way. Having access
to a standard corpus of examples would also provide insight
concerning the frequency with which the new rules reduce
proof lengths.

We already demonstrated in section III that the inference
rules for spider diagrams given in [18] result in overly long
proofs, even in cases where the diagram to be proved (the
theorem) obviously follows from the diagram assumed to be
true (the assumption). We now briefly look at the impact on
proof length for the examples given in the paper to illustrate
the benefits of our new inference rules. For each example, the

25

lengths of the shortest proofs that we have been able to find in
order to show d1∧d2 ⊢ d′1∧d2 and d′1∧d2 ⊢ d1∧d2 are given
in Table I. Using our new rules, establishing the equivalence
takes just one step (and needs only one proof). It is possible
to use the inference rules in [18] that are logical equivalences
to establish the semantic equivalence of d1 ∧ d2 and d′1 ∧ d2
in all of these examples, thus yielding just a single proof, but
the number of proof steps required to do so is considerably
larger than the total number required to write two proofs. In
any case, we can see that even in these simple examples the
number of steps required in proofs using the rules of [18] is
at least ten times as many as we now need. It is not hard
to construct example proof tasks that are only slightly more
complex than the simple examples we have given where the
saving in proof length is substantially greater.

Task d1 ∧ d2 ⊢ d′
1 ∧ d2 d′

1 ∧ d2 ⊢ d1 ∧ d2 Saving
Fig. 2 24 1 24
Fig. 11 3 11 13
Fig. 12 10 1 10
Fig. 13 9 1 9
Fig. 14 1 11 11

TABLE I. SAVINGS IN PROOF LENGTH

VII. CONCLUSION

We have demonstrated that existing inference rules for
spider diagrams can result in unnatural, overly long proofs.
A particular consequence of unnatural proofs can be an obfus-
cation of proof strategy. To achieve a fundamental goal of the
diagrams community, of making inference more accessible, it
is not only important to provide diagrams that are effective
modes of communication but that are also equipped with
inference rules that result in accessible proofs. To this end, we
presented five new rules for spider diagrams, all of which are
sound, and allow seemingly natural proof steps to be made.
In order to define these new rules, we had to provide an
understanding of when syntactically different regions represent
sets that are equal or in a subset relationship. In short, the novel
contributions of this paper are the provision of the syntactically
defined correspondence relations on regions, and new inference
rules that allow substantially shorter proofs to be written.

In fact, the notion of corresponding regions was central to
our approach of defining inference rules. The correspondence
relations, whilst defined at the abstract syntax level, allowed
us to readily capture information that is visually obvious in
concrete (drawn) diagrams and which people can see to be
true (such as curve containment reflecting a subset/superset re-
lation between the represented sets). We argue that developing
diagrammatic inference rules that allow the use of information
that is visually displayed in diagrams is paramount to being
able to make obvious proof steps. This is related to the notion
of observation devised by Swoboda and Allwein, who consid-
ered when information conveyed in symbolic logic sentence
was semantically entailed by Euler/Venn diagrams [22]. We
believe that utilising such an approach to defining inference
rules (i.e., using visually displayed information) takes us a step
closer to realizing the full potential of diagrammatic logics. We
hope to see similar approaches adopted for other notations.

Looking to the future, we plan to define more new inference
rules that operate on diagrams taken in disjunction, as well as
enlarging the set of logical operators to include ¬, ⇒ and ⇔,

which were not considered in the sound and complete spider
diagram logic in [18]. Secondly, it may well be beneficial to
attempt more rigorous evaluations using, perhaps, cognitive
dimensions or other approaches as outlined in section VI, to
establish the accessibility of the new inference rules in contrast
with the proofs produced by the original rule set. Lastly, a
major goal is to devise strategies that guide inference rule
choice in order to produce proofs that are accessible to people.

ACKNOWLEDGMENT

This work was supported by EPSRC Advanced Research
Fellowship GR/R76783 (Jamnik), EPSRC Doctoral Train-
ing Grant and Computer Laboratory Premium Research Stu-
dentship (Urbas).

REFERENCES

[1] S. Oviatt, A. Cohen, A. Miller, A. Mann, “The impact of interface affor-
dances on human ideation, problem solving, and inferential reasoning,”
ACM Trans. on Computer-Human Interaction, 19(3) 2012.

[2] Y. Sato, K. Mineshima, R. Takemura, “The efficacy of Euler and Venn
diagrams in deductive reasoning: Empirical findings,” in Diagrams.
Springer, 2010, pp. 6–22.

[3] A. Rector et al., “OWL pizzas: Practical experience of teaching OWL-
DL: Common errors and common patterns,” in Engineering Knowledge
in the Age of the Semantic Web. Springer, 2004, pp. 63–81.

[4] S.-J. Shin, The Logical Status of Diagrams. CUP, 1994.
[5] C. Peirce., Collected Papers. Harvard University Press, 1933, vol. 4.
[6] E. Hammer, Logic and Visual Information. CSLI Publications, 1995.
[7] S.-J. Shin, The Iconic Logic of Peirce’s Graphs. Bradford Book, 2002.
[8] F. Dau, “Constants and functions in Peirce’s existential graphs,” in

Conceptual Structures, 2007, pp. 429–442.
[9] M. Erwig, “Abstract syntax and semantics of visual languages,” Journal

of Visual Languages and Computing, vol. 9, p. 461483, 1998.
[10] J. Howse, F. Molina, S.-J. Shin, J. Taylor, “Type-syntax and token-

syntax in diagrammatic systems,” in 2nd Int. Conference on Formal
Ontology in Information Systems. ACM Press, 2001, pp. 174–185.

[11] P. S. di Luzio, “Patching up a logic of Venn diagrams,” in 6th CSLI
Workshop on Logic, Language and Computation. CSLI, 2000.

[12] S. Kent, “Constraint diagrams: Visualizing invariants in object oriented
models,” in Proc. OOPSLA97. ACM, 1997, pp. 327–341.

[13] A. Fish, J. Flower, J. Howse, “The semantics of augmented constraint
diagrams,” J. of Visual Languages and Computing, 16:541–573, 2005.

[14] K. Mineshima, M. Okada, R. Takemura, “A diagrammatic inference
system with Euler circles,” J. of Logic, Language and Information,
21(3):365–391, 2012.

[15] N. Swoboda, G. Allwein, “Using DAG transformations to verify Eu-
ler/Venn homogeneous and Euler/Venn FOL heterogeneous rules of
inference,” J. on Software and System Modeling, 3(2):136–149, 2004.

[16] J. Gil, J. Howse, S. Kent, “Formalising spider diagrams,” in IEEE
Symposium on Visual Languages. IEEE, 1999, pp. 130–137.

[17] G. Stapleton, J. Masthoff, J. Flower, A. Fish, J. Southern, “Automated
theorem proving in Euler diagrams systems,” J. of Automated Reason-
ing, 39:431–470, 2007.

[18] J. Howse, G. Stapleton, J. Taylor., “Spider diagrams,” LMS Journal of
Computation and Mathematics, 8:145–194, 2005.

[19] J. Howse, G. Stapleton, J. Flower, J. Taylor, “Corresponding regions in
Euler diagrams,” in Diagrams. Springer, 2002, pp. 76–90.

[20] G. Stapleton, J. Flower, P. Rodgers, J. Howse, , “Automatically Draw-
ing Euler Diagrams with Circles,” Journal of Visual Languages and
Computing, 23(3):164-193, 2012.

[21] M. Urbas, M. Jamnik, G. Stapleton, J. Flower, “Speedith: A diagram-
matic reasoner for spider diagrams,” in Diagrams. Springer, 2012, pp.
163–177.

[22] N. Swoboda and G. Allwein, “Modeling heterogeneous systems,” in
Diagrams. Springer, 2002, pp. 131–145.

26

