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Abstract. In this paper, we introduce Speedith which is a diagrammatic
theorem prover for the language of spider diagrams. Spider diagrams are
a well-known logic for which there is a sound and complete set of infer-
ence rules. Speedith provides a way to input diagrams, transform them
via the diagrammatic inference rules, and prove diagrammatic theorems.
It is designed as a program that plugs into existing general purpose theo-
rem provers. This allows for seamless formal verification of diagrammatic
proof steps within established proof assistants such as Isabelle. We de-
scribe the general structure of Speedith, the diagrammatic language, the
automatic mechanism that draws the diagrams when inference rules are
applied on them, and how formal diagrammatic proofs are constructed.

1 Introduction

Diagrams have been used to prove theorems since ancient times. One can ar-
gue that diagrams often provide compelling and intuitive solutions to problems.
Despite this, diagrams have rarely been formalised in proof tools to be used for
reasoning. In this paper, we do just that: we present a new, formal diagrammatic
theorem prover Speedith. Speedith’s domain is the language of spider diagrams.
It allows us to apply diagrammatic inference rules on conjectures about spider
diagrams, and thus construct a proof. The entire proof construction process is
carried out visually. The derived proof is certified to be (logically) correct. Here
are the hypotheses we test and objectives we aim to achieve:

– We want to show that it is possible to design and implement a complete
formal diagrammatic reasoner in the general domain of monadic first-order
logic (MFOL) with equality, expressed using the language of spider diagrams.

– We aim to have the guarantee that the derived proofs are formally correct.
– We aim for our system to be standalone, yet also reasonably easily plugable

into external proof tools, thus providing alternative problem representation
and proof construction method for these tools.

Whilst there exist other purely diagrammatic theorem provers, such as Dia-
mond [1], Dr.Doodle [2], and Cinderella [3], they target different, more restricted
domains (e.g., a small subset of natural number arithmetic, a subset of real arith-
metic), and are hence able to prove only a limited class and number of theorems.
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They do not provide a provably sound and complete set of inference rules. They
are also not designed to be readily integrated into external proof tools.

There are theorem provers that were developed for spider diagrams, but
they worked only for fragments of the logic in this paper, and did not include
any logical connectives, or only a limited number of them [4]. In Speedith we
formalize the whole spider diagram logic, which is expressively equivalent to
MFOL with equality. We also develop a set of sound inference rules, representing
a conservative extension of the complete system in [5], which allow for more
intuitive proof steps.

Fig. 1: A proof of a spider-diagrammatic statement. The proof establishes that given
sets A and B, if there are two elements s1 and s2 and one is in both of A and B and the
other is either in only A or only B, then we can deduce that one element is in A and
the other is in B. In this proof, we applied the split spiders, add feet, and idempotency
inference rules. The rules are proved to be sound and their application in this proof is
verified by Speedith to be correct. Hence, the proof is certified to be correct.

Speedith is an interactive proof assistant for the language of spider diagrams
and allows its users to interactively apply diagrammatic (visual) inference rules
on spider-diagrammatic statements. It checks whether the inference rules are
used correctly and verifies that a spider-diagrammatic statement expresses a
true fact – it is a theorem. Thus, Speedith’s diagrammatic proofs are entirely
formal and certified to be correct. Fig. 1 shows an example of Speedith’s purely
diagrammatic proof. Here, d1 is a spider diagram which conveys some informa-
tion about the relationships between two elements and two sets and proves that
d6 follows logically.

Speedith provides a graphical user interface through which all the diagram-
matic proofs are constructed. It visually displays spider-diagrammatic state-
ments; allows the user to specify which inference rules should be applied on
what parts of the spider diagram; and displays the result of this visually.

Whilst Speedith is a standalone diagrammatic proof assistant, it is also de-
signed to easily plug into external proof tools. This has the advantage that
spider-diagrammatic proofs can be reconstructed in traditional logic, and thus
certified with, for example, LCF-style general purpose theorem provers [6].

To confirm our hypotheses above and achieve our aims, we designed Speedith
as a standalone system that incorporates the following components: full specifi-
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cation of Spider diagrams (Sec. 2) and their inference rules (Sec. 3), a reasoning
kernel that manages the state of the proofs, controls how inference steps are ap-
plied, and manages the communication with external general purpose theorem
provers (Sec. 4), and a visualisation component with input methods for construct-
ing diagrammatic statements and interactively applying inference rules (Sec. 5).
Lastly, we evaluate our prover (Sec. 6) and conclude with future directions and
general observations (Sec. 7).

2 Spider Diagrams: Syntax and Semantics

We now introduce spider diagrams (see [5] for more details and examples). Spider
diagrams use closed curves, called contours, to represent sets and assert relation-
ships between those sets. For instance, the enclosure of one contour by another
contour corresponds to a subset/superset relationship between the represented
sets. Contours are named with labels (in d1 in Fig. 1, the contour labels are A
and B). The set of contour labels used in a diagram d is denoted by L(d).

A zone is a region in a diagram that is inside some of the contours (possibly
no contours) and not inside the rest of them. Formally, a zone is a pair of fi-
nite, disjoint sets of contour labels, (in, out). Intuitively, (in, out) is inside every
contour of in, and outside every contour of out. So, in a diagram, the set of pos-
sible zones is formed by its contour labels (e.g., in d1, the zones are (∅, {A,B}),
({A}, {B}), ({B}, {A}), ({A,B}, ∅)). We denote the set of zones in a diagram d
by Z(d). The zones from Z(d) can be shaded, denoted ShZ(d), and this places
upper bounds on set cardinality: in a shaded zone, all elements are represented
by spiders.

Spiders are trees used in spider diagrams to assert the existence of elements;
they place lower bounds on set cardinalities (e.g., d1 contains two spiders called
s1 and s2 representing an element in only A or only B, and an element in A and
B; there may be other elements too). The nodes of the trees are called spider
feet, or simply feet (e.g., in d1 the spider s1 has two feet). The set of spiders in
d is denoted by S(d) and the function η:S(d) → PZ(d) − {∅} (here P denotes
the power set) returns the set of zones in which the spider is placed, called its
habitat (e.g., in Fig. 1, s1 is placed in the zones ({A},{B}) and ({B},{A})). To
avoid ambiguity when talking about the habitats of spiders in more than one
diagram, we write ηd(s) to mean the habitat of spider s in diagram d.

The diagrams considered so far are called unitary spider diagrams: they can
be defined by a tuple d = (L,Z, ShZ, S, η) as described above.4 Spider diagrams
can be negated and joined with binary connectives into compound diagrams: ¬
to denote ‘not’, ∧ to denote ‘and’, ∨ to denote ‘or’, ⇒ to denote ‘implies’ (e.g.,
in Fig. 1, d2 ∨ d3 forms a compound diagram), and ⇔ to denote ‘equivalent’.5

4 We define unitary diagrams differently to [5] where no mapping function for spiders
and their habitats was used. The mapping function provides a convenient translation
of spiders into formulae where each spider is a variable (see Sec. 4.3).

5 This extends the definition of compound diagrams in [5] which did not allow ¬ or ⇒.
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The semantics of spider diagrams are captured by interpretations, I = (U, Ψ),
where U is a universal set, and Ψ is an assignment of a subset of U to each contour
label. A zone, (in, out), represents the set:

Ψ(in, out) =
⋂
l∈in

Ψ(l) ∩
⋂

l∈out

(U − Ψ(l))

where Ψ(l) is the set assigned to contour label l. A set of zones represents the
set which is the union of the sets represented by the individual zones.

In order to identify when an interpretation agrees with the meaning of a
unitary diagram d we define missing zones, MZ(d) such that:

MZ(d) = {(in, L(d)− in) : in ⊆ L(d) ∧ (in, L(d)− in) 6∈ Z(d)}.

Intuitively, the missing zones are the zones that do not appear in the diagram
due to its particular configuration, but could be specified using the labels from
L(d) (e.g., consider d1 in Fig. 2 on page 5; nine zones can be specified, but do
not appear in d1, including ({A,C,D}, {B}) and ({A,B}, {C,D})). Briefly, we
say that an interpretation, I = (U, Ψ), is a model for unitary diagram d if there
exists a function ψ:S(d)→ U (interpreting the spiders as elements) that ensures:

1. the missing zones represent the empty set, that is, Ψ(MZ(d)) = ∅;
2. each spider s in d maps to an element ψ(s) of the set represented by the

spider’s habitat, that is, ψ(s) ∈ Ψ(η(s));
3. no two spiders map to the same element, that is, ψ(s1) = ψ(s2)⇒ s1 = s2;
4. the shaded zones contain only elements represented by spiders, that is,
Ψ(ShZ(d)) ⊆ {ψ(s) : s ∈ S(d)}.

The definition of a model extends in the obvious way to compound diagrams.

3 Speedith’s Inference Rules

We present some of Speedith’s inference rules for spider diagrams. We introduce
three new rules that conservatively extend the set of sound and complete rules
from [5]. Speedith can use all of them, but we only present the ones needed for
our examples. Our new rules are designed to allow making intuitive proof steps
and to substantially reduce proof length. All inference rules are proved to be
sound but, due to space restrictions, we omit the proofs in this paper.

Our first rule allows us to ‘copy’ a contour from one diagram into another
diagram: we argue that this is a natural deduction step. To illustrate, consider
the diagram d1 ∧ d2 in Fig. 2. In d2 we can see that C ⊆ E and E ⊆ A. We
can copy the contour E from d2 to d1 using this information and thus obtain
d′1. Here, E is completely inside A (since E ⊆ A) and C is completely inside
E (since C ⊆ E). We do not know anything about the relationship between E
and D, thus we ensure that E partially overlaps with D. The spider habitats
are updated in line with how the zones have changed. In general, all shading is
preserved in the same fashion.
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Fig. 2: Illustrating new inference rules: copying syntax.

To define the copy contour rule, we start by observing that each zone in the
diagram, d1, into which the contour is copied is either (a) completely outside the
new contour, (b) completely inside the new contour, or (c) split into two zones
by the new contour. In order to identify what happens to each zone, we need to
inspect the contours of d2.

Definition 1. Let d be a unitary diagram and let λ and λ′ be in L(d).
1. If (the contours labelled) λ and λ′ have disjoint interiors then λ and λ′ are

disjoint in d, denoted λ ∩d λ
′ = ∅.

2. If λ is in the interior of λ′ then λ is a contained by λ′ in d, denoted λ ⊆d λ
′.

For example, in Fig. 2, inspecting d2 we have the following relations involving
E: E ∩d2 F = ∅, E ⊆d2 A and C ⊆d2 E. Using these relations, we can determine
the effect of copying E from d2 to d1 on the zones. In particular, since E ⊆d2 A,
all zones that are not inside A will not be inside E; these zones are placed in a
set called ZOUT (OUT for ‘outside’).6 Since C ⊆d2 E, all zones that are inside
C will be inside E; these zones are placed in a set called ZIN (IN for ‘inside’).
The remaining zones will be split when E is copied into d1.

Definition 2. Let d1 and d2 be unitary diagrams and let λ be in L(d2)−L(d1).
We define three subsets of Z(d1) (ZOUT (λ, d2), ZIN (λ, d2), and ZSPLIT (λ, d2))
according to the following rules: let (in, out) ∈ Z(d1)

1. (in, out) ∈ ZOUT (λ, d2) provided there exists a contour label, λ′, in L(d2)
such that either
(a) λ′ ∈ in and λ ∩d2 λ

′ = ∅, or
(b) λ′ ∈ out and λ ⊆d2 λ

′,
2. (in, out) ∈ ZIN (λ, d2) provided there exists a contour label, λ′, in L(d2) such

that λ′ ∈ in and λ′ ⊆d2 λ,
3. finally, ZSPLIT (λ, d2) = Z(d1)− (ZIN (λ, d2) ∪ ZOUT (λ, d2)).

Rule 1 Copy a Contour Let d1 and d2 be unitary diagrams and let λ be in
L(d2)− L(d1). Let d′1 be the diagram whose components are defined as follows:

6 If F occurred in d1 then, since E ∩d2F = ∅ all zones inside F would also be outside E.
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1. the contour labels are L(d′1) = L(d1) ∪ {λ},
2. the zones are

Z(d′
1) = {(in, out ∪ {λ}) : (in, out) ∈ ZOUT (λ, d2) ∪ ZSPLIT (λ, d2)} ∪

{(in ∪ {λ}, out) : (in, out) ∈ ZIN (λ, d2) ∪ ZSPLIT (λ, d2)}

3. the shaded zones are

ShZ(d′
1) = {(in, out ∪ {λ}): (in, out)∈(ZOUT (λ, d2) ∪ ZSPLIT (λ, d2)) ∩ ShZ(d1)}

∪{(in ∪ {λ}, out): (in, out)∈(ZIN (λ, d2) ∪ ZSPLIT (λ, d2)) ∩ ShZ(d1)}

4. the spiders are S(d′1) = S(d1), and
5. the habitat of each spider, s′ ∈ S(d′1), is

ηd′
1
(s′) = {(in, out ∪ {λ}): (in, out) ∈ (ZOUT (λ, d2) ∪ ZSPLIT (λ, d2)) ∩ ηd1(s′)}

∪{(in ∪ {λ}, out): (in, out) ∈ (ZIN (λ, d2) ∪ ZSPLIT (λ, d2)) ∩ ηd1(s′)}.

Then d1 ∧ d2 is logically equivalent to d′1 ∧ d2.

As well as enabling ‘natural’ proof steps to be made in a single inference step,
our copy contour substantially reduces the number of proof steps required. In
Fig. 2, if we used only the inference rules from [5], a proof establishing d1 ∧ d2 `
d′1∧d2 would require hundreds of proof steps (in part because, using the inference
rules of [5], in proofs that d1 ∧ d2 ` d′1 ∧ d2 the number of spider feet increases
rapidly when contours are added and all of these spiders need to be split until
they have single feet).

If we consider d′1 ∧ d2 in Fig. 2, we can see that the shaded region that
comprises the zone ({A,E,C}, {F}) in d2 represents the set C (this is the only
zone inside C). There is a corresponding zone in d′1, namely ({A,C}, {B,D}),
that also represents the set C. Since these two zones contain the same spiders, we
can copy the shading from d2 over to d′1, as shown in d′′1∧d2. In order to define this
rule, we introduce some notation to denote the set of spiders whose habitat is a
subset of a given region r in a unitary diagram d: S(r, d) = {s ∈ S(d) : η(s) ⊆ r}.
In addition, it is possible to syntactically identify when two distinct regions,
r1 and r2, necessarily represent the same set [7]. Such regions are said to be
corresponding. To illustrate the idea, in Fig. 2 the region inside d1 that comprises
the four zones outside of A corresponds to the region that comprises the two
zones outside of A in d2.

Rule 2 Copy Shading Let d1 and d2 be unitary diagrams with corresponding
regions, r1 and r2 respectively, such that:

1. r1 contains at least one non-shaded zone in d1,
2. r2 is entirely shaded in d2,
3. in d1, all of the spiders that have a foot in r1 are also in S(r1, d1),
4. in d2, all of the spiders that have a foot in r2 are also in S(r2, d2), and
5. there is a habitat preserving bijection, σ, from S(r1, d1) to S(r2, d2) (i.e.,

ηd1(s) corresponds to ηd2(σ(s))).
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Let d′1 be a copy of d1 except that r1 is entirely shaded. Then d1 ∧ d2 is logically
equivalent to d′1 ∧ d2.

Our final new rule allows us to copy spiders from one diagram to another.
This is illustrated in Fig. 2, where we can copy a spider from d2 into d′′1 , to give
d′′′1 ∧ d2. The two spiders in d2 that inhabit the region outside of A tell us that
there are at least two elements in U − A, where U is the universal set. Since
there is only one spider in the corresponding region of d′′1 , that is, there is at
least one element in U −A, we can copy across the second spider.

Rule 3 Copy a Spider Let d1 and d2 be unitary diagrams with corresponding
regions, r1 and r2 respectively, such that:

1. r1 contains no shaded zones in d1,
2. in d1, all of the spiders that have a foot in r1 are also in S(r1, d1),
3. there exists a habitat preserving injective, but not surjective, map σ from

S(r1, d1) to S(r2, d2) (i.e., ηd1(s1) corresponds to ηd2(σr(s1))).

Choose a spider, s, that is in S(r2, d2) but is not in the image of σ such that
there exists a region, r′ in d1 that corresponds to ηd2(s). Let d′1 be a copy of d1

except d′1 contains s with habitat r′. Then d1∧d2 is logically equivalent to d′1∧d2.

Three other rules are used in our examples: add feet and split spiders (see both
in Fig. 1) and remove a contour (see Fig. 7); their formal definitions are in [5].

Rule 4 Add feet to a Spider Let d1 be a unitary diagram that contains a
spider, s, whose habitat does not include all of the zones in d1. Let d2 be a copy
of d1 except that s contains additional feet. Then d1 logically entails d2.

Rule 5 Split Spiders Let d be a unitary diagram containing a spider, s, with
habitat such that |η(s)| ≥ 2. Let η1 and η2 be a two-way partition of η(s). Let
d1 (d2) be the diagram obtained from d by changing the habitat of s to η1 (η2).
Then d and d1 ∨ d2 are logically equivalent.

Rule 6 Remove a Contour Let d1 be a unitary diagram and let λ ∈ L(d).
Let d2 be the diagram obtained from d1 by removing the contour, C, labelled λ,
so L(d2) = L(d1) − {λ}. If, on the removal of C, two zones combine to form
a single zone then spiders’ habitats are updated in the same way. With regard
to shading, if a shaded zone merges with a non-shaded zone then the shading is
removed. Otherwise the shading remains. Then d1 logically entails d2.

4 Architecture of Speedith

Speedith is the implementation of a diagrammatic theorem prover for spider di-
agrams described in Sec. 2, and the inference rules from Sec. 3 and [5]. It consists
of four main components:
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1. abstract representation of spider-diagrammatic statements (Sec. 4.1),
2. the reasoning kernel with proof infrastructure (Sec. 4.2),
3. verification of diagrammatic proofs, including input and output system for

importing and exporting formulae in many different formats (Sec. 4.3), and
4. visualisation of spider-diagrammatic statements (Sec. 5).

4.1 Abstract representation

Speedith uses an abstract spider diagram representation to express spider-di-
agrammatic formulae. This representation is captured by the class diagram in
Fig. 3. The null spider diagram is the unitary diagram containing only the zone
(∅, ∅), no spiders and no shading; it is used as the logical truth constant >. Uni-
tary spider diagrams contain the bulk of diagrammatic information. Finally, the
compound spider diagrams build up more complex formulae by connecting spider
diagrams through the usual logical connectives: conjunction, disjunction, impli-
cation, equivalence and negation. Thus, a compound spider diagram nests one
or more other spider diagrams, as indicated with the diamond notation in Fig. 3.

NullSpiderDiagram UnitarySpiderDiagram

S - spiders
η - habitats
SMZ - shaded + missing zones
VEZ - visible empty zones

getContours()

CompoundSpiderDiagram

operator : String
operands : SpiderDiagram

SpiderDiagram operands

1

1..*

Fig. 3: A class diagram of the abstract representation of spider diagrams in Speedith.

To optimize performance, Speedith’s abstract representation of spider dia-
grams removes some redundancies from the syntax in Sec. 2. In particular, Speed-
ith does not explicitly store the sets L(d) and Z(d). Moreover, the sets ShZ and
MZ are merged into SMZ, and the set VEZ lists all the zones that are shaded but
have no spider feet in them. This more closely matches the semantics of spider di-
agrams as the zones that convey no semantic information (i.e. zones with no spi-
der feet and no shading) are not explicitly stored. However, Speedith does store
the shaded zones, the missing zones, and the spiders with their habitats, which
is needed when converting diagrams to sentential form for verification. Note that
all sets from the tuple d = (L,Z, ShZ, S, η) in Sec. 2, can still be computed. The
set L(d) is obtained via the method getContours(), which takes an arbitrary
zone (in, out) and computes L(d) = in∪out. The set MZ(d) is obtained through
SMZ− (VEZ∪habitats). Finally, Z(d) = {(in, L(d)− in) : in ⊆ L(d)}−MZ(d).

An advantage of Speedith’s abstract representation is the simplicity of con-
verting spider-diagrammatic formulae to and from first-order logic formulae for
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the purposes of verification (see Sec.4.3). On the other hand, the user has no
control on how the diagrams are drawn – Speedith lays them out automatically.

4.2 The reasoning kernel

One of the central components of Speedith is the reasoning kernel. It is re-
sponsible for correctly applying the inference rules on particular parts of spider-
diagrammatic formulae. The kernel contains two types of inference rules: the
ones for logical connectives based on the well-known logical equivalences, and
purely spider-diagrammatic rules including the ones introduced in Sec. 3.

4.2.1 Proofs in Speedith A proof in Speedith starts with a spider-diagram-
matic formula D (the initial goal, i.e., the theorem we aim to prove), proceeds
by transforming D with applications of inference rules, and ends with an empty
set of goals. The specific rules and parts of the diagram on which they should
be applied are chosen by the user. Rules can be applied in both backward and
forward reasoning styles. Backward proof steps take a goal D and transform it
into a new goal D′, where D′ ` D. In forward proofs, D must be of the form
Di ⇒ Dj , and the rules transform Di into D′

i, where Di ` D′
i, resulting in the

new goal D′
i ⇒ Dj .7 The user can switch between backward and forward proof

styles due to the inference rule (> ⇒ D) ` D. Either way, since the inference
rules in both proof styles adhere to the entailment property for valid deductive
steps, the proofs are of the standard structure:

>
SD inference rule

...
SD inference rule

D’
SD inference rule

D

(1)

which together with the soundness of our rules justifies that D is a theorem.
Speedith stores and manages the proof as a sequence of goals and inference

rule applications. The diagram in Fig. 4 outlines the architecture for managing
proof state and goals. Multiple simultaneous goals are supported, and the proof
is finished only when all goals are converted to null diagrams.

Goals

Spider diagrams [1..n]

Proof

Initial goals
Applied inference rules [0..n]
sub-goals [0..n]

InferenceRule

applyOn(spider diagram) : Goals

11

10..*
1 0..*

Fig. 4: A simplified class diagram of the part of the reasoning kernel responsible for
tracking the proof state.

Once a spider-diagrammatic theorem Dt is proved, it is added to the database
of theorems available for reuse in other proofs. This is possible in both backward
7 Note that all our examples in Figs. 1, 6 and 7 use forward reasoning style.
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and forward proofs through the schematic inference rules > ` Dt and Dt ` >
respectively. In addition to theorems, Speedith allows the use of axioms: given
an axiom Da, it can be used in a proof through the inference rule > ` Da.

4.2.2 Transforming spider diagrams A compound spider diagram con-
nects multiple sub-diagrams with logical connectives. In the abstract represen-
tation, sub-diagrams are children nodes of a compound spider diagram. This
composition forms a tree structure. Every sub-diagram is assigned a sequen-
tial number – node indexes. The depth-first algorithm is used for assignment of
these indexes. An example of the tree structure of a compound spider diagrams
is shown in Fig. 5.

Fig. 5: The tree structure of the spider-diagrammatic formula (d1∨d2) ⇒ d3, where d1,
d2, and d3 refer to unitary spider diagrams, and the logical connectives ⇒ and ∨ refer
to compound spider diagrams. The circled numbers are the indexes of sub-diagrams.

When an inference rule is to be applied, the tree structure of a spider diagram
is traversed to a particular point where the relevant transformation takes place
and thus returns new spider diagrams. This point is chosen by the user and
supplied to the inference rule through the rule application arguments. The rule
application arguments differ from rule to rule. Some rules, like the split spider
rule, work on particular spiders in a unitary diagram. Thus, the split spider
rule requires the sub-diagram index of the unitary diagram, the name of the
spider, and also the region on which to split the spider’s habitat. If a rule cannot
be applied at a certain position, or if the sub-diagram does not satisfy all the
requirements needed for a safe and valid rule application, the rule will not be
applied and the user will be notified of this.

In the implementation of Speedith, the actual data structures of the abstract
representation of a spider diagram do not change during the rule application.
Rather, an entirely new spider diagram is constructed. For lower memory con-
sumption and for efficiency purposes, the new spider diagram shares all un-
changed sub-diagrams of the initial formula. This also improves the speed of
syntactic equality comparisons in Speedith, as there cannot exist two different
instances of syntactically identical spider diagrams.

4.3 Verification with external tools

Proofs in Speedith rely purely on the soundness of the individual inference rules
outlined in Sec. 3 and [5]. As proofs are derived by sequential application of
these rules, they are guaranteed to be correct by construction (see Sec. 4.2.1).
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However, the implementation of Speedith cannot be guaranteed to be bug-free.
Also, some users might trust Speedith more if its proofs are verified in other,
established, theorem provers. Thus, we designed Speedith to easily plug into,
and allow for seamless communication with external proof tools. This enables
Speedith to verify particular proof steps externally: namely, spider-diagrammatic
proofs can be reconstructed in traditional logic. To date, Speedith’s proofs can
be certified in the general purpose theorem prover Isabelle [8]. Other tools can be
supported by supplying a plug-in which implements the communication with the
new external tool. Conceptually, a proof step in Speedith can be proved correct
by verifying that conjunctively connected sub-goals Di imply the initial goal D
(see Formula (1) in Sec. 4.2.1). Thus, in order to verify its proof steps, Speedith
exports the following theorem which is to be proved by the external tool:

D1 ∧D2 ∧ · · · ∧Dn ⇒ D.

Apart from exporting, Speedith can also import formulae. This enables the
so-called heterogeneous reasoning, that is, constructing proofs that consist of
diagrammatic inferences and traditional sentential logical inferences. We use
it in our heterogeneous reasoning framework called Diabelli [8] that combines
diagrammatic theorem proving in Speedith with sentential theorem proving in
Isabelle [9].

4.3.1 Input and output formats Speedith supports different input and
output formulae formats for importing and exporting. The standard input for-
mat of Speedith is the native textual representation outlined in Sec. 4.3.2 below.
For export, on the other hand, Speedith uses formats that several other tools
understand. For example, one supported export format translates abstract rep-
resentations of spider diagrams into Isabelle/HOL formulae. Here is an example
of how the diagram d1 in Fig. 1 is translated to the Isabelle/HOL format:

∃ s1 s2. distinct[s1, s2] ∧ s1 ∈ A ∩ B ∧ s2 ∈ (A - B) ∪ (B - A)

A new output or input format can be specified by providing a translation
procedure that takes a set of spider diagrams in their abstract representation,
a proof trace, or an inference rule application, and translates it to a specific
textual format.

4.3.2 Textual representation In addition to the data structures and ob-
ject oriented model used in abstract representation, Speedith also provides a
textual form of spider diagrams. This form is Speedith’s default for exporting
and importing diagrammatic statements to and from external tools. It is used
when verifying particular steps in the diagrammatic proof, or verifying prop-
erties about spider-diagrammatic formulae in a sentential reasoner. Here is an
example of the textual form of diagram d1 in Fig. 1:

PrimarySD {
spiders = ["s1", "s2"],
habitats = [("s1", [(["A"], ["B"]), (["B"], ["A"])]),

("s2", [(["A", "B"], [])])],
sm_zones = [], ve_zones = []

}
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5 Diagram Visualisation

The visualization component of Speedith, called iCircles, builds on the Euler dia-
gram drawing software presented in [10]. We extended the drawing algorithm to
spider diagrams, enabling the layout of spiders as well as including functionality
to specify which zones are to be shaded.

The input to Speedith is a statement of the theorem. This can be entered
through drawing commands, first-order logic formulae,8 or the textual repre-
sentation (as described in Sec. 4.3.2). A future direction would be to support
additional input methods, such as free-hand drawing and shape recognition.

Next, the entered theorem is automatically drawn – Speedith uses the fol-
lowing drawing algorithm:

1. Draw the underlying Euler diagram, using the methods of [10]. This takes
the set of zones to be present and determines how to draw the diagram with
circles.

2. Next, shading is placed in the appropriate zones, using standard ‘region
shading’ methods.

3. Finally, the spiders are laid out. Given a particular spider, s, with habitat
η(s), a point is found in each zone in η(s). These points form the feet of
the spider. The feet are then joined by edges: we prioritize drawing edges
between feet in adjacent zones, until the feet form a tree. Care is taken to
ensure that edges do not pass through feet belonging to other spiders. This
is achieved by nudging the position of feet that lie on the path of a to-be-
drawn edge in eight principal directions until a suitable position is found. In
addition, when the initial points are found for spiders, we ensure that they
do not lie on already drawn edges.

Fig. 6 is an example of Speedith using iCircles to display spider-diagrammatic
formulae. The abstract representation of a spider-diagrammatic formula is con-
verted into iCircles and composed to form arbitrary compound spider diagrams.

Speedith translates the abstract representation of unitary spider diagrams
into a concrete description of the drawing. An important step of the translation
is determining which shaded zones contain spider feet and must thus be present
in the drawing. The decision on whether to display other shaded zones is left to
the iCircles drawing algorithm.

After all unitary spider diagrams of a compound statement are drawn, they
are laid out as operands of the logical connectives. Individual sub-diagrams are
finally enclosed with a bounding box, which separates them spatially for clearer
presentation and unambiguous nesting of operators.

Following the entry and drawing of the theorem, the user proceeds to apply
inference rules on specific parts of the diagram. The exact target of the rule
application is determined through a rule-specific sequence of clicking on select
elements in the diagram. The inference rule to apply is chosen from a list of
8 Speedith currently supports only a specific form of first-order logic formulae in the

Isabelle/HOL syntax.
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Fig. 6: Automatically drawing spider diagrams using iCircles.

all available rules; as we implement more inference rules in the future, we will
introduce a filter that shows only the rules applicable to the part of the diagram
that the user clicked on. Once the proof is completed, it is added to the suite of
unit tests.

6 Results and Related Work

Speedith is implemented in Java and is currently under active development. Its
sources are available from https://gitorious.org/speedith. With Speedith
we are able to prove all theorems of MFOL with equality, expressed using spider
diagrams – this is a significant range and depth of theorems.

We demonstrate the evaluation of Speedith’s functionality with two diagram-
matic proof examples. The first one was presented in Fig. 1. The proof makes use
of diagrammatic rules that transform spiders and a disjunction equivalence rule.
The second example, shown in Fig. 7, tests the inference rules which manipu-
late spiders, contours, shaded zones, and logical connectives. The proof in Fig. 7
essentially makes use of the information from the right conjunct to transform
the diagram representing the left conjunct through a series of copying rules: first
the contour D, then spider s1, followed by shading of the zone ({C}, {D}), and
finally eliminating the redundant right conjunct and removing contours A and
C to deduce the theorem’s conclusion.

One of Speedith’s main contributions is its representation of formulae and
proof steps. This differentiates it from interactive sentential theorem provers
(such as Isabelle) in that it provides a domain-specific, visual, and thus perhaps
more intuitive approach to proofs in MFOL with equality. Speedith’s inference
rules, which perform simple visual transformations of the diagrammatic state-
ment are succinct and ‘natural’ – they capture the notion of truthfulness that

https://gitorious.org/speedith
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Fig. 7: A proof of a spider-diagrammatic statement using inference rules that work
with spiders, contours, and shaded zones.

humans find easy to understand. In contrast, proofs of the same theorems in
sentential theorem provers consist of lower-level, more fine-grained proof steps
which make them longer and arguably harder to “see” the intuition behind the
proof. Comparing Speedith’s speed with other theorem proving tools remains
work for the future.

Other diagrammatic theorem provers most related to Speedith are Edith,
Diamond, and Cinderella. Whilst Edith is the closest to Speedith in terms of
the domain it targets, it does not support spiders nor compound diagrams with
logical connectives, and thus provides fewer inference rules. Edith also does not
support external verification of its proof steps. Diamond, on the other hand,
supports external verification, but the class of problems it tackles is different
and narrower compared to Speedith. Cinderella targets the domain of geometry
and uses a different approach to its diagrammatic proofs. The user gradually
constructs the geometric model of the theorem, while in the background an
automated theorem prover verifies that each construction step results in a valid
geometric diagram. Thus, the steps in Cinderella are not guaranteed to be sound,
and the proof process does not follow the standard inference rule application
pattern (as described in Sec. 4.2.1).

Finally, Speedith was designed with language extensions in mind. Spider di-
agrams could be extended with non-monadic relations, functions, and universal
quantification of spiders. Designing meaningful and complete diagrammatic in-
ference rules for such extended language is hard and remains work for the future.

7 Future Work and Conclusion

By developing Speedith, we demonstrated the feasibility of diagrammatic rea-
soning systems that utilise a rule-based deductive proof approach. This is similar
to the approach employed by general purpose proof assistants like Isabelle.

We also showed how to utilize existing state-of-the-art theorem provers to ver-
ify diagrammatic inference steps. Whilst we focused on spider diagrams, the ap-
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proach can be used for other diagrammatic logics, such as existential graphs [11]
or constraint diagrams [12].

Part of our future directions for Speedith includes extending the abstract rep-
resentation to better control how diagrams are drawn. Moreover, the diagrams
are currently laid out independently, and hence diagrams in consecutive proof
steps can look radically different from each other. Thus, we aim to improve lay-
out heuristics to take entire sequences of diagrammatic statements into account.
In addition to better diagram visualisation, we also envision extensions to the
language of spider diagrams, proof search automation, use of Speedith in prac-
tical settings [13,14], and a study of scalability of proofs and their visualisation
in Speedith.
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