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Abstract. Diagrams often complement sentential proofs in mathemat-
ics. However, diagrams are rarely used as standalone reasoning tools.
Thus we propose to integrate diagrammatic reasoning with an existing
sentential theorem prover, thus enabling so-called heterogeneous reason-
ing, particularly in real arithmetic. We will study a set of diagrammatic
proof examples from which we will construct a diagrammatic language,
inference rules and communication procedures between the diagrammatic
and sentential reasoners. The resulting framework will allow the use of
diagrammatic proof steps in the same way as the sentential ones, all
within the same attempt to construct a proof.

1 Introduction

Most diagrammatic reasoning approaches are strictly informal (e.g., sketches or
specific illustrations of a general problem). This lead to numerous diagrammatic
formalisation efforts [2,3,5]. However, proofs “on paper” rarely consist exclu-
sively of drawings. Diagrams are often accompanied by sentential formulae. This
motivated some to investigate heterogeneous reasoning [1, §].

Our goal is to introduce diagrammatic reasoning techniques into an ezist-
ing sentential theorem prover, thus devising a heterogeneous reasoner. We first
study heterogeneous proof examples' in real arithmetic, from which we will then
construct diagrammatic inference rules and language. Finally we will integrate
the two modes of reasoning — the diagrammatic logic into the sentential prover.

One of our goals is to show whether heterogeneous reasoning can improve
proof intuitiveness in sentential provers. We also believe that heterogeneous
methods can provide better or entirely novel proof hints. Hints in homogeneous
sentential systems are provided in residual statements of an unsuccessful proof
attempt. The unresolved statements can be inspected for clues on how to proceed
[4]. However, such hints are often not easily discernible even for experts.

Additionally, naive general inferences from specific diagrams can result in
incorrect conclusions.? Thus it is essential to provide a suitable diagrammatic
formalism. Our aims can be broken down into several sub-goals:

Diagrammatic formalisation: Introduce diagrammatic inference rules for
our logic, check soundness and ensure that the language is powerful enough to
cover a sufficiently large subset of problems in the target domain.

Diagrammatic reasoner: Construct a diagrammatic reasoner that can either
prove a goal or produce a transformed one, which can again be used in the
sentential reasoner or act as a hint.

! Examples were taken from Nelsen’s Proofs without words [7].
2 A famous example is Cauchy’s erroneous proof of the Euler characteristic for all
polyhedra [6] This “proof” remained unchallenged for decades.



2 Heterogeneous Reasoning in Real Arithmetic

Integration: We have to establish a bidirectional translation between the two
modes of reasoning and integrate the diagrammatic reasoner into the chosen
sentential theorem prover. The truth of all statements must be preserved during
the translation. Also, integration must allow not only diagrammatic proof steps,
but also conversion of theorems and statements between the two realms.

2 Heterogeneous Reasoning

We currently identify three types of het- (atb)’+(a-b)? =a?+b°
erogeneous interactions (non-exhaustive, swi2tch to DR
based on our proof examples): a+b a+ (=b)
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Our target domain is the field of real
arithmetic, that is formulae from the ordered field [R,+, -, 0,1, <]. Numbers and
variables are represented as edges and rectangular areas. Areas also act as mul-
tiplication of edges. Summation is represented by multiple areas and connected
edges that extend in the same direction. Also, we use gray to denote the sign of
objects. Universal quantification is implicit in the diagram for all variables.

3 Methodology

In order to devise a framework with which we can construct heterogeneous proofs
as the ones described above, we need to complete the following tasks:

e Define a precise description of the diagrammatic language and its formal
inference rules. We will study several examples to determine the required features
of the language and the set of inference rules.

e Secondly, we will study the reasoning and theory formalisms in the senten-
tial reasoner. With this, we will determine how the logic of the reasoner influences
our diagrammatic language. Because of local expertise, we chose Isabelle [9] as
the underlying interactive prover. Initially, the user will choose when to switch
between the two modes. Later, we will examine the automation of this choice.
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e In the last phase, we will design a communication link between the diagram-

matic and symbolic representations. We have chosen a heterogeneous framework
architecture where the diagrammatic tactics and statements represent extensions
to the built-in native symbolic set of instructions in Isabelle. This will require
translation or reuse of internal structures of Isabelle.

In summary, there are many ways in which heterogeneous reasoning can com-

plement sentential approaches, e.g.: more intuitive proofs and proof hints, novel
proof tactics, and greater expressive power. We believe that extending a senten-
tial theorem prover with diagrammatic reasoning is viable and advantageous.
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