Learn{2matic: System Description

Mateja Jamnik!-2, Manfred Kerber?, and Martin Pollet?:2

'University of Cambridge Computer Laboratory
J.J. Thomson Avenue, Cambridge, CB3 0FD, England, UK
http://www.cl.cam.ac.uk/"mj201
2School of Computer Science, The University of Birmingham
Birmingham B15 2TT, England, UK
http://www.cs.bham.ac.uk/“mmk
3Fachbereich Informatik, Universitit des Saarlandes, 66041 Saarbriicken, Germany
http://www.ags.uni-sb.de/ pollet

1 Introduction

We devised a framework within which a proof planning [1] system can learn fre-
quently occurring patterns of reasoning automatically from a number of typical
examples, and then use them in proving new theorems [2]. The availability of such
patterns, captured as proof methods in a proof planning system, reduces search
and proof length. We implemented this learning framework for the proof planner
QMECA [3], and present it in this paper — we call our system LEARN(QIMATIC.
The entire process of learning and using new proof methods in LEARNQMATIC
consists of the following steps:

1. The user chooses informative examples and gives them to (QMEGA to be
automatically proved. Traces of these proofs are stored.

2. Proof traces of typical examples are given to the learning mechanism which
automatically learns so-called method outlines.

3. Method outlines are automatically enriched by adding to them additional
information and performing search for information that cannot be recon-
structed in order to get fully fleshed proof methods that 2MEGA can use in
proofs of new theorems.

2 Learning and Using Learnt Methods

The methods we aim to learn are complex and are beyond the complexity that
can typically be tackled in the field of machine learning. Therefore, we simplify
the problem and aim to learn method outlines, which are expressed in the fol-
lowing language L, where P is a set of known identifiers of primitive methods
used in a method that is being learnt:

— for any pe P, let p€ L, —foranyl € Landn € N, let " € L,

— for any ly,ls € L, let [I1,ls] € L, — for any list such that all I; € list

— for any 1,12 € L, let [l1|l2] € L, are also l; € L, let T(list) € L.

— for any l € L, let I* € L,
“[” and “]” are auxiliary symbols used to separate subexpressions, “,” denotes a
sequence, “|” denotes a disjunction, “x” denotes a repetition of a subexpression

II Mateja Jamnik, Manfred Kerber, Martin Pollet

any number of times (including 0), n a fixed number of times, and T' is a con-
structor for a branching point (list is a list of branches), i.e., for proofs which
are not sequences but branch into a tree. For more information on the choice of
this language, the reader is referred to [2].

Here is an example from group theory of a simplify method outline which
applies the associativity left method, and then reduces the theorem by applying
appropriate inverse and identity methods: [assoc-1*, [inv-r| inv-1], id-1].

Learning Technique Our learning technique considers some typically small num-
ber of positive examples which are represented in terms of sequences of identi-
fiers for primitive methods (e.g., assoc-l, inv-r), and generalises them so that
the learnt pattern is in language L (e.g., simplify given above). The pattern is of
smallest size with respect to a defined heuristic measure of size [2], which essen-
tially counts the number of primitives in an expression. The pattern is also most
specific (or equivalently, least general) with respect to the definition of speci-
ficity spec. spec is measured in terms of the number of nestings for each part of
the generalisation [2]. Again, this is a heuristic measure. We take both, the size
(first) and the specificity (second), in account when selecting the appropriate
generalisation. If the generalisations considered have the same rating according
to the two measures, then we return all of them.

The algorithm is based on the generalisation of the simultaneous compression
of well-chosen examples. Here is just an abstract description of the learning
algorithm, but the detailed steps with examples of how they are applied can be
found in [2]:

1. Split every example trace into sublists of all possible lengths.

2. If there is any branching in the examples, then recursively repeat this algo-
rithm on every element of the list of branches.

3. For each sublist in each example find consecutive repetitions, i.e. patterns,
and compress them using exponent representation.

4. Find compressed patterns that match in all examples.

5. If there are no matches in the previous step, then generalise the examples
by joining them disjunctively.

6. For every match, generalise different exponents to a Kleene star, and the
same exponents to a constant.

7. For every matching pattern in all examples, repeat the algorithm on both
sides of the pattern.

8. Choose the generalisations with the smallest size and largest specificity.

For instance, the three sequences of method outlines [assoc-1,assoc-1,inv-r,id-1],
[assoc-l,inv-1,id-1], and [assoc-1,assoc-1,assoc-1,inv-r,id-1] will be generalised to the
simplify method [assoc-1*, [inv-r| inv-1], id-1].

The learning algorithm is implemented in SML of NJ v.110. Its inputs are the
sequences of methods extracted from proofs that were constructed in QMEGA. Its
output are method outlines which are passed back to QMEGA. The algorithm was
tested on several examples of proofs and it successfully produced the required
method outlines. Properties of our learning algorithm are discussed in [2].

LearnQmatic: System Description 111

There are some disadvantages to our technique, mostly related to the run time
of the algorithm relative to the length of the examples considered for learning.
The algorithm can deal with relatively small examples, which we encounter in
our application domain, in an optimal way. The complexity of the algorithm is
exponential in the worst case. Hence, we use some heuristics for large and badly
behaved examples [2].

Using learnt methods From a learnt outline a learnt method can automatically
be generated. The learnt method is applicable if some instantiation of the method
outline, i.e., a sequence of methods, is applicable. Since methods are planning
operators with pre- and postconditions, these conditions must be checked for
the methods of the method outline. The complex structure of methods does not
allow the precondition of a subsequent method of the learnt outline to be tested,
without the instantiated postconditions of the previous methods. That is, the
methods of an outline have to be applied to the current proof situation.

The applicability test performs a depth first search on the learnt outline.
Besides the choice points from the operators of the outline language, i.e., dis-
junctions and number of repetitions for the Kleene operator, there can be more
than one goal where a method of the learnt outline can be applied. Addition-
ally, for methods containing parameters, an instantiation has to be chosen. The
parameters of a method are instantiated by control rules that guide the proof
search. Every control rule that gives an instantiation of parameters for the cur-
rent method is evaluated and the resulting possibilities for parameters are added
to the search space.

The application test is performed as the precondition of the learnt method.
The application of a learnt method for which the test was successful will intro-
duce the open nodes and hypotheses generated during the applicability test as
postcondition of the learnt method to the current proof.

3 Examples and Evaluation

In order to evaluate our approach, we carried out an empirical study in different
problem domains on a number of theorems. This test set includes the theorems
from which new methods were learnt, but most of them are new and more
complex. They are from the domains of residue classes (e.g, commutativity of
the operation Az, y-z+y on the residue class set of integers Z,), set theory (e.g.,
Va,y, z.((xUy)Nz) = (xNz)U(yNz)), and group theory (e.g., group(G,o,e,i) =
Va,b,c,d, f € Geao(((a tob)o(cod))of) = (bo(cod))o f). The learnt methods
were added to the search space in a way that their applicability is checked first,
before the existing standard methods are tried.

Table 1 compares the values of matchings and proof length for the three
problem domains. It compares these measures when the planner searches for the
proof with the standard set of available methods (column marked with S), and
when in addition to these, there are also our newly learnt methods available to
the planner (column marked with L). “—” means that the planner ran out of
resources (four hours of CPU time) and could not find a proof plan. The counter

v Mateja Jamnik, Manfred Kerber, Martin Pollet

matchings counts the successful and unsuccessful application tests of methods
in the process of finding a complete successful proof plan. It also contains the
method matchings performed by the search engine for learnt methods. Matchings
provides an important measure, since on the one hand it indicates how directed
was the performed search for a proof. On the other hand, checking the candidate
methods that may be applied in the proof is by far the most expensive part of
the proof search. Hence, matchings is a good measure to approximate the time
needed by the two approaches (i.e., with and without learnt methods) while it
is also independent of the concrete implementation inefficiencies.

We tested the system with (and without) the use of the following learnt meth-
ods: for residue classes we used two learnt methods, tryanderror and choose, for
set theory we used one learnt method, and for group theory we learnt five new
methods, but only used two, since these two are recursive applications of the
others. As is evident from Table 1, the number of candidate methods that the
planner has to check if they can be applied in the proof (i.e., matchings) is re-
duced in all domains where our newly learnt methods are available. In general,
the more complicated the theorem, the better is the improvement made by the
availability of the learnt methods. In the case of group theory, some complex
theorems can be proved only within the resource limits when our learnt meth-
ods are available to the planner. Hence, the coverage of the system that uses
learnt methods is increased. Furthermore, we noticed that for some very simple
theorems of group theory, a larger number of matchings is required if the learnt
methods are available in the search space. However, for more complex examples,
this is no longer the case, and an improvement is noticed. The reason for this
behaviour is that additional methods increase the search space, and the appli-
cation test for learnt methods is expensive, especially when a learnt method is
not applicable, but still all possible interpretations of the learnt method outline
have to be checked by the search engine.

As expected, the proof length is much reduced by using learnt methods, since
they encapsulate patterns in which several other methods are used in the proof.

On average, the time it took to prove theorems of residue classes and conjec-
tures of set theory was up to 50% and 15% shorter, respectively, than without

Domain Theorems Matchings | Length

S 'L | S 'L
Residue assoc-z3z-times 651, 113] 63, 2

Class assoc-z6z-times 44311 680 441

(using #ryanderror method) average of all 1362.0,219.5(134.0, 2.0
______ Residue | closed-z3z-plusplus || 6811 551] 491 34|
Class closed-z6z-plusplus 3465: 2048 235: 115
(using choose method) average of all 1438.81918.3/101.0157.3
Set theory average of all 33.5: 12.5 13.0: 2.0
Group theory average of all (simple) 94.2) 79.0| 15.5, 8.3
| Group theory | average of all (complex)]| — '189.6] — ' 9.8|

Table 1. Evaluation results.

LearnQmatic: System Description A%

such methods. The search in group theory took approximately 100% longer than
without the learnt methods. The time results reflect in principle the behaviour
of the proof search measured by method matchings, but also contain the over-
head due to the current implementation for the reuse of the learnt methods.
For example, the current proof situation is copied for the applicability test of
the learnt method, and the new open goals and hypotheses resulting from a
successful application are copied back into the original proof.

The reason for the improvements described above is due to the fact that
our learnt methods provide a structure according to which the existing methods
can be applied, and hence they direct search. This structure also gives better
explanation why certain methods are best applied in particular combinations.
For example, the simplification method for group theory examples indicates how
the methods for associativity, inverse and identity should be combined together,
rather than be applied blindly in any possible combination.

4 Future Work and Availability

There are several limitations of our approach that could be improved in the
future. Namely, the learning algorithm may overgeneralise, so we need to examine
what are good heuristics for our generalisation and how suboptimal solutions
can be improved. In order to reduce unnecessary steps, the preconditions of the
learnt methods would ideally be stronger. Currently, we use an applicability test
to search if the preconditions of the method outline are satisfied. In the future,
preconditions should be learnt as well. Finally, in order to model the human
learning capability in theorem proving more adequately it would be necessary
to model how humans introduce new vocabulary for new (emerging) concepts.
A demonstration of LEARNQMATIC implementation can be found on the fol-
lowing web page: http://www.cs.bham.ac.uk/ mmk/demos/LearnOmatic/. Fur-
ther information, also with links to papers with more comprehensive references
can be found on http://www.cs.bham.ac.uk/ mmk/projects/MethodFormation/.

Acknowledgements We would like to thank Alan Bundy, Predrag Jani¢i¢, Achim
Jung, and Stephen Muggleton for their helpful advice on our work, and Christoph
Benzmiiller, Andreas Meier, and Volker Sorge for their help with some of the
implementation in OMEGA. This work was supported by EPSRC grant GR/M22031
and European Commission IHP Calculemus Project grant HPRN-CT-2000-00102.

References

1. Bundy, A.: The use of explicit plans to guide inductive proofs. In 9th Conference
on Automated Deduction. LNCS 310, Springer (1988), 111-120.

2. Jamnik, M., Kerber, M., Pollet, M., Benzmiiller, C.: Automatic learning of
proof methods in proof planning. Technical Report CSRP-02-05, School of Com-
puter Science, The University of Birmingham, Birmingham, England, UK, (2002).
ftp:/ /ftp.cs.bham.ac.uk/pub/tech-reports/2002/ CSRP-02-05.ps.gz

3. Benzmiiller, C., et al.: QMEGA: Towards a mathematical assistant. In 14th Confer-
ence on Automated Deduction. LNAT 1249, Springer (1997), 252-255.

