
Learn
mati: System DesriptionMateja Jamnik1;2, Manfred Kerber2, and Martin Pollet3;21University of Cambridge Computer LaboratoryJ.J. Thomson Avenue, Cambridge, CB3 0FD, England, UKhttp://www.l.am.a.uk/~mj2012Shool of Computer Siene, The University of BirminghamBirmingham B15 2TT, England, UKhttp://www.s.bham.a.uk/~mmk3Fahbereih Informatik, Universit�at des Saarlandes, 66041 Saarbr�uken, Germanyhttp://www.ags.uni-sb.de/~pollet1 IntrodutionWe devised a framework within whih a proof planning [1℄ system an learn fre-quently ourring patterns of reasoning automatially from a number of typialexamples, and then use them in proving new theorems [2℄. The availability of suhpatterns, aptured as proof methods in a proof planning system, redues searhand proof length. We implemented this learning framework for the proof planner
mega [3℄, and present it in this paper { we all our system Learn
mati.The entire proess of learning and using new proof methods in Learn
mationsists of the following steps:1. The user hooses informative examples and gives them to
mega to beautomatially proved. Traes of these proofs are stored.2. Proof traes of typial examples are given to the learning mehanism whihautomatially learns so-alled method outlines.3. Method outlines are automatially enrihed by adding to them additionalinformation and performing searh for information that annot be reon-struted in order to get fully eshed proof methods that
mega an use inproofs of new theorems.2 Learning and Using Learnt MethodsThe methods we aim to learn are omplex and are beyond the omplexity thatan typially be takled in the �eld of mahine learning. Therefore, we simplifythe problem and aim to learn method outlines, whih are expressed in the fol-lowing language L, where P is a set of known identi�ers of primitive methodsused in a method that is being learnt:{ for any p 2 P , let p 2 L,{ for any l1; l2 2 L, let [l1; l2℄ 2 L,{ for any l1; l2 2 L, let [l1jl2℄ 2 L,{ for any l 2 L, let l� 2 L, { for any l 2 L and n 2 N, let ln 2 L,{ for any list suh that all li 2 listare also li 2 L, let T (list) 2 L.\[" and \℄" are auxiliary symbols used to separate subexpressions, \," denotes asequene, \j" denotes a disjuntion, \�" denotes a repetition of a subexpression

II Mateja Jamnik, Manfred Kerber, Martin Polletany number of times (inluding 0), n a �xed number of times, and T is a on-strutor for a branhing point (list is a list of branhes), i.e., for proofs whihare not sequenes but branh into a tree. For more information on the hoie ofthis language, the reader is referred to [2℄.Here is an example from group theory of a simplify method outline whihapplies the assoiativity left method, and then redues the theorem by applyingappropriate inverse and identity methods: [asso-l �; [inv-r j inv-l ℄; id-l ℄.Learning Tehnique Our learning tehnique onsiders some typially small num-ber of positive examples whih are represented in terms of sequenes of identi-�ers for primitive methods (e.g., asso-l, inv-r), and generalises them so thatthe learnt pattern is in language L (e.g., simplify given above). The pattern is ofsmallest size with respet to a de�ned heuristi measure of size [2℄, whih essen-tially ounts the number of primitives in an expression. The pattern is also mostspei� (or equivalently, least general) with respet to the de�nition of spei-�ity spe. spe is measured in terms of the number of nestings for eah part ofthe generalisation [2℄. Again, this is a heuristi measure. We take both, the size(�rst) and the spei�ity (seond), in aount when seleting the appropriategeneralisation. If the generalisations onsidered have the same rating aordingto the two measures, then we return all of them.The algorithm is based on the generalisation of the simultaneous ompressionof well-hosen examples. Here is just an abstrat desription of the learningalgorithm, but the detailed steps with examples of how they are applied an befound in [2℄:1. Split every example trae into sublists of all possible lengths.2. If there is any branhing in the examples, then reursively repeat this algo-rithm on every element of the list of branhes.3. For eah sublist in eah example �nd onseutive repetitions, i.e. patterns,and ompress them using exponent representation.4. Find ompressed patterns that math in all examples.5. If there are no mathes in the previous step, then generalise the examplesby joining them disjuntively.6. For every math, generalise di�erent exponents to a Kleene star, and thesame exponents to a onstant.7. For every mathing pattern in all examples, repeat the algorithm on bothsides of the pattern.8. Choose the generalisations with the smallest size and largest spei�ity.For instane, the three sequenes of method outlines [asso-l,asso-l,inv-r,id-l ℄,[asso-l,inv-l,id-l ℄, and [asso-l,asso-l,asso-l,inv-r,id-l ℄ will be generalised to thesimplify method [asso-l �; [inv-r j inv-l ℄; id-l ℄.The learning algorithm is implemented in SML of NJ v.110. Its inputs are thesequenes of methods extrated from proofs that were onstruted in
mega. Itsoutput are method outlines whih are passed bak to
mega. The algorithm wastested on several examples of proofs and it suessfully produed the requiredmethod outlines. Properties of our learning algorithm are disussed in [2℄.

Learn
mati: System Desription IIIThere are some disadvantages to our tehnique, mostly related to the run timeof the algorithm relative to the length of the examples onsidered for learning.The algorithm an deal with relatively small examples, whih we enounter inour appliation domain, in an optimal way. The omplexity of the algorithm isexponential in the worst ase. Hene, we use some heuristis for large and badlybehaved examples [2℄.Using learnt methods From a learnt outline a learnt method an automatiallybe generated. The learnt method is appliable if some instantiation of the methodoutline, i.e., a sequene of methods, is appliable. Sine methods are planningoperators with pre- and postonditions, these onditions must be heked forthe methods of the method outline. The omplex struture of methods does notallow the preondition of a subsequent method of the learnt outline to be tested,without the instantiated postonditions of the previous methods. That is, themethods of an outline have to be applied to the urrent proof situation.The appliability test performs a depth �rst searh on the learnt outline.Besides the hoie points from the operators of the outline language, i.e., dis-juntions and number of repetitions for the Kleene operator, there an be morethan one goal where a method of the learnt outline an be applied. Addition-ally, for methods ontaining parameters, an instantiation has to be hosen. Theparameters of a method are instantiated by ontrol rules that guide the proofsearh. Every ontrol rule that gives an instantiation of parameters for the ur-rent method is evaluated and the resulting possibilities for parameters are addedto the searh spae.The appliation test is performed as the preondition of the learnt method.The appliation of a learnt method for whih the test was suessful will intro-due the open nodes and hypotheses generated during the appliability test aspostondition of the learnt method to the urrent proof.3 Examples and EvaluationIn order to evaluate our approah, we arried out an empirial study in di�erentproblem domains on a number of theorems. This test set inludes the theoremsfrom whih new methods were learnt, but most of them are new and moreomplex. They are from the domains of residue lasses (e.g, ommutativity ofthe operation �x; y x�+y on the residue lass set of integers ZZ2), set theory (e.g.,8x; y; z ((x[y)\z) = (x\z)[(y\z)), and group theory (e.g., group(G; Æ; e; i))8a; b; ; d; f 2 G aÆ (((a�1 Æb)Æ (Æd))Æf) = (bÆ (Æd))Æf). The learnt methodswere added to the searh spae in a way that their appliability is heked �rst,before the existing standard methods are tried.Table 1 ompares the values of mathings and proof length for the threeproblem domains. It ompares these measures when the planner searhes for theproof with the standard set of available methods (olumn marked with S), andwhen in addition to these, there are also our newly learnt methods available tothe planner (olumn marked with L). \|" means that the planner ran out ofresoures (four hours of CPU time) and ould not �nd a proof plan. The ounter

IV Mateja Jamnik, Manfred Kerber, Martin Polletmathings ounts the suessful and unsuessful appliation tests of methodsin the proess of �nding a omplete suessful proof plan. It also ontains themethod mathings performed by the searh engine for learnt methods.Mathingsprovides an important measure, sine on the one hand it indiates how diretedwas the performed searh for a proof. On the other hand, heking the andidatemethods that may be applied in the proof is by far the most expensive part ofthe proof searh. Hene, mathings is a good measure to approximate the timeneeded by the two approahes (i.e., with and without learnt methods) while itis also independent of the onrete implementation ineÆienies.We tested the system with (and without) the use of the following learnt meth-ods: for residue lasses we used two learnt methods, tryanderror and hoose, forset theory we used one learnt method, and for group theory we learnt �ve newmethods, but only used two, sine these two are reursive appliations of theothers. As is evident from Table 1, the number of andidate methods that theplanner has to hek if they an be applied in the proof (i.e., mathings) is re-dued in all domains where our newly learnt methods are available. In general,the more ompliated the theorem, the better is the improvement made by theavailability of the learnt methods. In the ase of group theory, some omplextheorems an be proved only within the resoure limits when our learnt meth-ods are available to the planner. Hene, the overage of the system that useslearnt methods is inreased. Furthermore, we notied that for some very simpletheorems of group theory, a larger number of mathings is required if the learntmethods are available in the searh spae. However, for more omplex examples,this is no longer the ase, and an improvement is notied. The reason for thisbehaviour is that additional methods inrease the searh spae, and the appli-ation test for learnt methods is expensive, espeially when a learnt method isnot appliable, but still all possible interpretations of the learnt method outlinehave to be heked by the searh engine.As expeted, the proof length is muh redued by using learnt methods, sinethey enapsulate patterns in whih several other methods are used in the proof.On average, the time it took to prove theorems of residue lasses and onje-tures of set theory was up to 50% and 15% shorter, respetively, than withoutDomain Theorems Mathings LengthS L S LResidue asso-z3z-times 651 113 63 2Class asso-z6z-times 4431 680 441 2(using tryanderror method) average of all 1362.0 219.5 134.0 2.0Residue losed-z3z-plusplus 681 551 49 34Class losed-z6z-plusplus 3465 2048 235 115(using hoose method) average of all 1438.8 918.3 101.0 57.3Set theory average of all 33.5 12.5 13.0 2.0Group theory average of all (simple) 94.2 79.0 15.5 8.3Group theory average of all (omplex) | 189.6 | 9.8Table 1. Evaluation results.

Learn
mati: System Desription Vsuh methods. The searh in group theory took approximately 100% longer thanwithout the learnt methods. The time results reet in priniple the behaviourof the proof searh measured by method mathings, but also ontain the over-head due to the urrent implementation for the reuse of the learnt methods.For example, the urrent proof situation is opied for the appliability test ofthe learnt method, and the new open goals and hypotheses resulting from asuessful appliation are opied bak into the original proof.The reason for the improvements desribed above is due to the fat thatour learnt methods provide a struture aording to whih the existing methodsan be applied, and hene they diret searh. This struture also gives betterexplanation why ertain methods are best applied in partiular ombinations.For example, the simpli�ation method for group theory examples indiates howthe methods for assoiativity, inverse and identity should be ombined together,rather than be applied blindly in any possible ombination.4 Future Work and AvailabilityThere are several limitations of our approah that ould be improved in thefuture. Namely, the learning algorithmmay overgeneralise, so we need to examinewhat are good heuristis for our generalisation and how suboptimal solutionsan be improved. In order to redue unneessary steps, the preonditions of thelearnt methods would ideally be stronger. Currently, we use an appliability testto searh if the preonditions of the method outline are satis�ed. In the future,preonditions should be learnt as well. Finally, in order to model the humanlearning apability in theorem proving more adequately it would be neessaryto model how humans introdue new voabulary for new (emerging) onepts.A demonstration of Learn
mati implementation an be found on the fol-lowing web page: http://www.s.bham.a.uk/~mmk/demos/LearnOmati/. Fur-ther information, also with links to papers with more omprehensive referenesan be found on http://www.s.bham.a.uk/~mmk/projets/MethodFormation/.Aknowledgements Wewould like to thank AlanBundy, Predrag Jani�i�,AhimJung, and Stephen Muggleton for their helpful advie on our work, and ChristophBenzm�uller, Andreas Meier, and Volker Sorge for their help with some of theimplementation in
mega. This work was supported by EPSRC grant GR/M22031and European Commission IHP Calulemus Projet grant HPRN-CT-2000-00102.Referenes1. Bundy, A.: The use of expliit plans to guide indutive proofs. In 9th Confereneon Automated Dedution. LNCS 310, Springer (1988), 111{120.2. Jamnik, M., Kerber, M., Pollet, M., Benzm�uller, C.: Automati learning ofproof methods in proof planning. Tehnial Report CSRP-02-05, Shool of Com-puter Siene, The University of Birmingham, Birmingham, England, UK, (2002).ftp://ftp.s.bham.a.uk/pub/teh-reports/2002/CSRP-02-05.ps.gz3. Benzm�uller, C., et al.:
mega: Towards a mathematial assistant. In 14th Confer-ene on Automated Dedution. LNAI 1249, Springer (1997), 252-255.

