
Learn
mati
: System Des
riptionMateja Jamnik1;2, Manfred Kerber2, and Martin Pollet3;21University of Cambridge Computer LaboratoryJ.J. Thomson Avenue, Cambridge, CB3 0FD, England, UKhttp://www.
l.
am.a
.uk/~mj2012S
hool of Computer S
ien
e, The University of BirminghamBirmingham B15 2TT, England, UKhttp://www.
s.bham.a
.uk/~mmk3Fa
hberei
h Informatik, Universit�at des Saarlandes, 66041 Saarbr�u
ken, Germanyhttp://www.ags.uni-sb.de/~pollet1 Introdu
tionWe devised a framework within whi
h a proof planning [1℄ system
an learn fre-quently o

urring patterns of reasoning automati
ally from a number of typi
alexamples, and then use them in proving new theorems [2℄. The availability of su
hpatterns,
aptured as proof methods in a proof planning system, redu
es sear
hand proof length. We implemented this learning framework for the proof planner
mega [3℄, and present it in this paper { we
all our system Learn
mati
.The entire pro
ess of learning and using new proof methods in Learn
mati

onsists of the following steps:1. The user
hooses informative examples and gives them to
mega to beautomati
ally proved. Tra
es of these proofs are stored.2. Proof tra
es of typi
al examples are given to the learning me
hanism whi
hautomati
ally learns so-
alled method outlines.3. Method outlines are automati
ally enri
hed by adding to them additionalinformation and performing sear
h for information that
annot be re
on-stru
ted in order to get fully
eshed proof methods that
mega
an use inproofs of new theorems.2 Learning and Using Learnt MethodsThe methods we aim to learn are
omplex and are beyond the
omplexity that
an typi
ally be ta
kled in the �eld of ma
hine learning. Therefore, we simplifythe problem and aim to learn method outlines, whi
h are expressed in the fol-lowing language L, where P is a set of known identi�ers of primitive methodsused in a method that is being learnt:{ for any p 2 P , let p 2 L,{ for any l1; l2 2 L, let [l1; l2℄ 2 L,{ for any l1; l2 2 L, let [l1jl2℄ 2 L,{ for any l 2 L, let l� 2 L, { for any l 2 L and n 2 N, let ln 2 L,{ for any list su
h that all li 2 listare also li 2 L, let T (list) 2 L.\[" and \℄" are auxiliary symbols used to separate subexpressions, \," denotes asequen
e, \j" denotes a disjun
tion, \�" denotes a repetition of a subexpression

II Mateja Jamnik, Manfred Kerber, Martin Polletany number of times (in
luding 0), n a �xed number of times, and T is a
on-stru
tor for a bran
hing point (list is a list of bran
hes), i.e., for proofs whi
hare not sequen
es but bran
h into a tree. For more information on the
hoi
e ofthis language, the reader is referred to [2℄.Here is an example from group theory of a simplify method outline whi
happlies the asso
iativity left method, and then redu
es the theorem by applyingappropriate inverse and identity methods: [asso
-l �; [inv-r j inv-l ℄; id-l ℄.Learning Te
hnique Our learning te
hnique
onsiders some typi
ally small num-ber of positive examples whi
h are represented in terms of sequen
es of identi-�ers for primitive methods (e.g., asso
-l, inv-r), and generalises them so thatthe learnt pattern is in language L (e.g., simplify given above). The pattern is ofsmallest size with respe
t to a de�ned heuristi
 measure of size [2℄, whi
h essen-tially
ounts the number of primitives in an expression. The pattern is also mostspe
i�
 (or equivalently, least general) with respe
t to the de�nition of spe
i-�
ity spe
. spe
 is measured in terms of the number of nestings for ea
h part ofthe generalisation [2℄. Again, this is a heuristi
 measure. We take both, the size(�rst) and the spe
i�
ity (se
ond), in a

ount when sele
ting the appropriategeneralisation. If the generalisations
onsidered have the same rating a

ordingto the two measures, then we return all of them.The algorithm is based on the generalisation of the simultaneous
ompressionof well-
hosen examples. Here is just an abstra
t des
ription of the learningalgorithm, but the detailed steps with examples of how they are applied
an befound in [2℄:1. Split every example tra
e into sublists of all possible lengths.2. If there is any bran
hing in the examples, then re
ursively repeat this algo-rithm on every element of the list of bran
hes.3. For ea
h sublist in ea
h example �nd
onse
utive repetitions, i.e. patterns,and
ompress them using exponent representation.4. Find
ompressed patterns that mat
h in all examples.5. If there are no mat
hes in the previous step, then generalise the examplesby joining them disjun
tively.6. For every mat
h, generalise di�erent exponents to a Kleene star, and thesame exponents to a
onstant.7. For every mat
hing pattern in all examples, repeat the algorithm on bothsides of the pattern.8. Choose the generalisations with the smallest size and largest spe
i�
ity.For instan
e, the three sequen
es of method outlines [asso
-l,asso
-l,inv-r,id-l ℄,[asso
-l,inv-l,id-l ℄, and [asso
-l,asso
-l,asso
-l,inv-r,id-l ℄ will be generalised to thesimplify method [asso
-l �; [inv-r j inv-l ℄; id-l ℄.The learning algorithm is implemented in SML of NJ v.110. Its inputs are thesequen
es of methods extra
ted from proofs that were
onstru
ted in
mega. Itsoutput are method outlines whi
h are passed ba
k to
mega. The algorithm wastested on several examples of proofs and it su

essfully produ
ed the requiredmethod outlines. Properties of our learning algorithm are dis
ussed in [2℄.

Learn
mati
: System Des
ription IIIThere are some disadvantages to our te
hnique, mostly related to the run timeof the algorithm relative to the length of the examples
onsidered for learning.The algorithm
an deal with relatively small examples, whi
h we en
ounter inour appli
ation domain, in an optimal way. The
omplexity of the algorithm isexponential in the worst
ase. Hen
e, we use some heuristi
s for large and badlybehaved examples [2℄.Using learnt methods From a learnt outline a learnt method
an automati
allybe generated. The learnt method is appli
able if some instantiation of the methodoutline, i.e., a sequen
e of methods, is appli
able. Sin
e methods are planningoperators with pre- and post
onditions, these
onditions must be
he
ked forthe methods of the method outline. The
omplex stru
ture of methods does notallow the pre
ondition of a subsequent method of the learnt outline to be tested,without the instantiated post
onditions of the previous methods. That is, themethods of an outline have to be applied to the
urrent proof situation.The appli
ability test performs a depth �rst sear
h on the learnt outline.Besides the
hoi
e points from the operators of the outline language, i.e., dis-jun
tions and number of repetitions for the Kleene operator, there
an be morethan one goal where a method of the learnt outline
an be applied. Addition-ally, for methods
ontaining parameters, an instantiation has to be
hosen. Theparameters of a method are instantiated by
ontrol rules that guide the proofsear
h. Every
ontrol rule that gives an instantiation of parameters for the
ur-rent method is evaluated and the resulting possibilities for parameters are addedto the sear
h spa
e.The appli
ation test is performed as the pre
ondition of the learnt method.The appli
ation of a learnt method for whi
h the test was su

essful will intro-du
e the open nodes and hypotheses generated during the appli
ability test aspost
ondition of the learnt method to the
urrent proof.3 Examples and EvaluationIn order to evaluate our approa
h, we
arried out an empiri
al study in di�erentproblem domains on a number of theorems. This test set in
ludes the theoremsfrom whi
h new methods were learnt, but most of them are new and more
omplex. They are from the domains of residue
lasses (e.g,
ommutativity ofthe operation �x; y x�+y on the residue
lass set of integers ZZ2), set theory (e.g.,8x; y; z ((x[y)\z) = (x\z)[(y\z)), and group theory (e.g., group(G; Æ; e; i))8a; b;
; d; f 2 G aÆ (((a�1 Æb)Æ (
Æd))Æf) = (bÆ (
Æd))Æf). The learnt methodswere added to the sear
h spa
e in a way that their appli
ability is
he
ked �rst,before the existing standard methods are tried.Table 1
ompares the values of mat
hings and proof length for the threeproblem domains. It
ompares these measures when the planner sear
hes for theproof with the standard set of available methods (
olumn marked with S), andwhen in addition to these, there are also our newly learnt methods available tothe planner (
olumn marked with L). \|" means that the planner ran out ofresour
es (four hours of CPU time) and
ould not �nd a proof plan. The
ounter

IV Mateja Jamnik, Manfred Kerber, Martin Polletmat
hings
ounts the su

essful and unsu

essful appli
ation tests of methodsin the pro
ess of �nding a
omplete su

essful proof plan. It also
ontains themethod mat
hings performed by the sear
h engine for learnt methods.Mat
hingsprovides an important measure, sin
e on the one hand it indi
ates how dire
tedwas the performed sear
h for a proof. On the other hand,
he
king the
andidatemethods that may be applied in the proof is by far the most expensive part ofthe proof sear
h. Hen
e, mat
hings is a good measure to approximate the timeneeded by the two approa
hes (i.e., with and without learnt methods) while itis also independent of the
on
rete implementation ineÆ
ien
ies.We tested the system with (and without) the use of the following learnt meth-ods: for residue
lasses we used two learnt methods, tryanderror and
hoose, forset theory we used one learnt method, and for group theory we learnt �ve newmethods, but only used two, sin
e these two are re
ursive appli
ations of theothers. As is evident from Table 1, the number of
andidate methods that theplanner has to
he
k if they
an be applied in the proof (i.e., mat
hings) is re-du
ed in all domains where our newly learnt methods are available. In general,the more
ompli
ated the theorem, the better is the improvement made by theavailability of the learnt methods. In the
ase of group theory, some
omplextheorems
an be proved only within the resour
e limits when our learnt meth-ods are available to the planner. Hen
e, the
overage of the system that useslearnt methods is in
reased. Furthermore, we noti
ed that for some very simpletheorems of group theory, a larger number of mat
hings is required if the learntmethods are available in the sear
h spa
e. However, for more
omplex examples,this is no longer the
ase, and an improvement is noti
ed. The reason for thisbehaviour is that additional methods in
rease the sear
h spa
e, and the appli-
ation test for learnt methods is expensive, espe
ially when a learnt method isnot appli
able, but still all possible interpretations of the learnt method outlinehave to be
he
ked by the sear
h engine.As expe
ted, the proof length is mu
h redu
ed by using learnt methods, sin
ethey en
apsulate patterns in whi
h several other methods are used in the proof.On average, the time it took to prove theorems of residue
lasses and
onje
-tures of set theory was up to 50% and 15% shorter, respe
tively, than withoutDomain Theorems Mat
hings LengthS L S LResidue asso
-z3z-times 651 113 63 2Class asso
-z6z-times 4431 680 441 2(using tryanderror method) average of all 1362.0 219.5 134.0 2.0Residue
losed-z3z-plusplus 681 551 49 34Class
losed-z6z-plusplus 3465 2048 235 115(using
hoose method) average of all 1438.8 918.3 101.0 57.3Set theory average of all 33.5 12.5 13.0 2.0Group theory average of all (simple) 94.2 79.0 15.5 8.3Group theory average of all (
omplex) | 189.6 | 9.8Table 1. Evaluation results.

Learn
mati
: System Des
ription Vsu
h methods. The sear
h in group theory took approximately 100% longer thanwithout the learnt methods. The time results re
e
t in prin
iple the behaviourof the proof sear
h measured by method mat
hings, but also
ontain the over-head due to the
urrent implementation for the reuse of the learnt methods.For example, the
urrent proof situation is
opied for the appli
ability test ofthe learnt method, and the new open goals and hypotheses resulting from asu

essful appli
ation are
opied ba
k into the original proof.The reason for the improvements des
ribed above is due to the fa
t thatour learnt methods provide a stru
ture a

ording to whi
h the existing methods
an be applied, and hen
e they dire
t sear
h. This stru
ture also gives betterexplanation why
ertain methods are best applied in parti
ular
ombinations.For example, the simpli�
ation method for group theory examples indi
ates howthe methods for asso
iativity, inverse and identity should be
ombined together,rather than be applied blindly in any possible
ombination.4 Future Work and AvailabilityThere are several limitations of our approa
h that
ould be improved in thefuture. Namely, the learning algorithmmay overgeneralise, so we need to examinewhat are good heuristi
s for our generalisation and how suboptimal solutions
an be improved. In order to redu
e unne
essary steps, the pre
onditions of thelearnt methods would ideally be stronger. Currently, we use an appli
ability testto sear
h if the pre
onditions of the method outline are satis�ed. In the future,pre
onditions should be learnt as well. Finally, in order to model the humanlearning
apability in theorem proving more adequately it would be ne
essaryto model how humans introdu
e new vo
abulary for new (emerging)
on
epts.A demonstration of Learn
mati
 implementation
an be found on the fol-lowing web page: http://www.
s.bham.a
.uk/~mmk/demos/LearnOmati
/. Fur-ther information, also with links to papers with more
omprehensive referen
es
an be found on http://www.
s.bham.a
.uk/~mmk/proje
ts/MethodFormation/.A
knowledgements Wewould like to thank AlanBundy, Predrag Jani�
i�
,A
himJung, and Stephen Muggleton for their helpful advi
e on our work, and ChristophBenzm�uller, Andreas Meier, and Volker Sorge for their help with some of theimplementation in
mega. This work was supported by EPSRC grant GR/M22031and European Commission IHP Cal
ulemus Proje
t grant HPRN-CT-2000-00102.Referen
es1. Bundy, A.: The use of expli
it plans to guide indu
tive proofs. In 9th Conferen
eon Automated Dedu
tion. LNCS 310, Springer (1988), 111{120.2. Jamnik, M., Kerber, M., Pollet, M., Benzm�uller, C.: Automati
 learning ofproof methods in proof planning. Te
hni
al Report CSRP-02-05, S
hool of Com-puter S
ien
e, The University of Birmingham, Birmingham, England, UK, (2002).ftp://ftp.
s.bham.a
.uk/pub/te
h-reports/2002/CSRP-02-05.ps.gz3. Benzm�uller, C., et al.:
mega: Towards a mathemati
al assistant. In 14th Confer-en
e on Automated Dedu
tion. LNAI 1249, Springer (1997), 252-255.

