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Cipher Instruction Search Attack on the Bus-
Encryption Security Microcontroller DS5002FP

Markus G. Kuhn

Abstract—A widely used bus-encryption microprocessor is vulnerable to a new practical attack. This type of processor decrypts on-
the-fly while fetching code and data, which are stored in RAM only in encrypted form. The attack allows easy, unauthorized access
to the decrypted memory content.
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1 INTRODUCTION

HE idea of inserting cryptographic functions into the
bus connection between a processor’s CPU core and

external memory was described first by Best [1], [2], [3], [4].
Bus encryption is used to protect confidential software and
data that cannot be stored completely inside a single tam-
per-proof chip from being read by people with physical
access to the circuit board. It avoids the cost and complexity
of tamper-proof packaging for complete circuit boards [7].
The main applications are financial transaction terminals
and pay-TV access-control decoders, where adversaries
may easily gain full physical access to the system but must
be prevented from obtaining the secret algorithms and keys
stored inside the device. Another application is strong copy
protection of software [8]. The Intel 8051 [6] compatible 8-
bit microcontroller DS5002FP [5] is currently the most
widely used commercial bus-encryption processor.

The attack presented here has allowed the author to ac-
cess all the secrets stored in several commercial DS5002FP-
based security systems within a few minutes, and a very
similar attack can be applied to the older DS5000 processor,
as well as to Best’s original crypto-processor design.

2 SECURITY MECHANISMS OF THE DS5002FP
The DS5002FP implements the three on-chip block-cipher
functions EA for 17-bit address-bus encryption, ED for 8-bit

data-bus encryption, and ED-1 for 8-bit data-bus decryp-
tion, as shown in Fig. 1. K is a 64-bit secret key stored in
tamper-protected, battery-buffered static RAM inside the
CPU chip. The data-bus cipher function ED depends on
both the key K and the accessed address a. When the CPU

core writes byte d to address a, byte value d� = EDK,a(d) is

stored at address a� = EAK(a) in external RAM. During a
read access to address a, the crypto logic fetches from ad-

dress a� the byte value d� and presents the decrypted byte
value d ED dK a= ′−

, ( )1  to the CPU core. In other words, the
byte values in the external RAM are individually encrypted
and the addresses of all bytes are permuted.

After a DS5002FP-based device has been assembled, a
small lithium battery must be connected to the processor. It
will supply the CPU key register and the CMOS SRAM
chips with enough voltage to retain data for the next 10
years. The device is then powered up. Using a special CPU
pin, the system manufacturer activates a firmware monitor
in the processor, which generates a new key value using the
on-chip hardware random-number generator and stores it
in the key register K. The software is then uploaded in clear
into the CPU via the serial port and the firmware monitor
stores it encrypted under K in the external SRAM. Once an
on-chip security lock bit has been set using a firmware
command, all subsequent firmware commands for memory
access are disabled. This lock bit cannot be cleared without
overwriting K. The idea is that nobody, not even the device
manufacturer, can ever access K or use the firmware to de-
crypt and read out the software later. K cannot be changed
without making it necessary to upload the entire software
again through the serial port and firmware monitor. New
software can be loaded into the device through the firm-
ware after the lock bit has been cleared, but this will over-
write K with a new value and will thereby render the pre-
viously stored encrypted software meaningless. However,
the uploaded software can modify itself, which allows ap-
plication developers to provide a secure in-field replace-
ment mechanism for most parts of the software.

All 8051 compatible microcontrollers feature separate
program and data address spaces. The DS5002FP stores the
first 48 bytes of program memory, including the reset and
interrupt vectors, in an on-chip “vector RAM.” Whenever
the CPU core is not accessing external memory, the crypto
logic will generate a pseudorandom dummy access in order
to complicate bus-observation analysis. In addition, op-
code fetch accesses are sometimes swapped with preceding
dummy accesses to further complicate bus observation.
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Fig. 1. Bus-encryption processor (dashed box) plus external static
RAM.

3 ATTACK CONCEPT

The idea behind a cipher instruction search attack is to present
a large number of guessed encrypted machine instructions
to the CPU and, then, to identify some of the decrypted
machine instructions by observing the CPU reaction. The
machine instructions identified this way are then used to
form small encrypted programs that the attacker presents to
the crypto processor to gain more information until, even-
tually, an encrypted program can be constructed that pro-
vides cleartext access to the entire protected memory.

We use external hardware to reset the DS5002FP proces-
sor repeatedly and, after each reset, at a selected moment,
we substitute chosen instruction bytes for those that would
normally be fetched from external SRAM. We observe the
reaction of the processor on the chosen instruction bytes
until we have identified instructions that help us in tabu-
lating the data-bus encryption function for a sequence of
eight consecutive addresses. We then use this information
to introduce correctly encrypted instruction sequences.
These will be successfully decrypted by the processor and
will send the protected SRAM content in clear to the paral-
lel port. We record the parallel-port output and, then, disas-
semble the protected software and extract all the sensitive
data that was supposed to be inaccessible.

For the attack, we connect most pins of the DS5002FP
CPU and two pins of each SRAM chip to a special read-out
device. The CPU power supply has to be maintained care-

fully throughout this procedure to avoid the loss of the key
K stored inside the CPU. Our device allows the computer
that controls the attack to reset the analyzed CPU at any
time and to record in FIFO memory the CPU reactions on
the address bus, as well as on one of the four 8-bit parallel
ports, as shown in Fig. 2. It also allows us to replace the
encrypted bytes that the CPU fetches from SRAM with the
content of an instruction FIFO which had been filled with a
test sequence during the previous CPU reset by the control-
ling computer. To allow switching between SRAM and in-
struction FIFO, we interrupt the chip-enable and read/write
connections between CPU and SRAM in the analyzed sys-
tem and route these signals through the control logic of our
device, which can then either pass the signals on to the
SRAM or can block them and instead activate the FIFO
output driver that is also connected to the data bus. The
device can access all processor pins via a suitable SMD test
clip. A detailed description of this read-out device can be
found in [9].

The directly-addressed data-transfer instruction to a
parallel-port register turns out to be an especially suitable
instruction to search for. For instance, the command

75 a0 42 MOV a0h, #42h

writes the hexadecimal value 42h into the latch register of
parallel port P2, which is located at address hexadecimal
a0h. Any of the other output ports could just as well be
used.

4 INITIAL TABULATION

In order to search for the cipher bytes representing this MOV
instruction, we fill the instruction FIFO with the five bytes

X, Y, Z, 00h, 00h*,

where X and Y are search loop variables for which all 216

combinations are tested systematically. The CPU is stopped
when the instruction FIFO is empty and the two 00h bytes
simply ensure that the CPU runs for two more access cy-
cles. The * marking indicates that the 8-bit value P visible at
the observed parallel port will be recorded while this in-
struction FIFO byte is being fetched. For all pairs (X, Y), we
test whether E0 : P ° Z is a bijective function, i.e., whether
28 different Z values result in 28 different parallel-port out-
puts. In the common case of no port reaction, nonbijectivity

Fig. 2. Attacked CPU and SRAM connected to read-out device.
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can already be verified for an (X, Y) pair after testing only
two Z values, therefore, not many more than 217 CPU resets
are required for this test. As we can perform over 300 CPU
resets per second, these tests take only a few minutes.

After each of the 217 CPU resets, the switch from SRAM
to FIFO has to occur when the same instruction is about to
be fetched from SRAM. This will ensure that the CPU be-
lieves it has fetched the first FIFO value X from the same
address a0 each time and it will, therefore, always apply the

same decryption function EDK a, 0

1−  to X. As the CPU fetches

the first instructions after each reset from the on-chip vector
RAM, we cannot provide the instruction FIFO content to
the CPU directly after the reset. We have to guess when the
CPU will start fetching instructions from external memory
and have to switch from SRAM to FIFO at or after this
point. The switch over to the instruction FIFO can be trig-
gered either by a bus-access counter, by predictable port
reactions, or by a characteristic sequence observed on the
address bus.

Once we have identified a pair (X, Y) with X EDK a= , ( )
0
75h

and Y EDK a= +, ( )
0 1 a0h , we have already tabulated the data-

bus encryption function for address a0 + 2 as ED EK a, 0 2 0+ = ,

because the MOV instruction ensures that P ED ZK a= +
−

, ( )
0 2

1 .

However, MOV is not the only 8051 machine instruction
capable of generating a bijective mapping from a fetched
byte to the port value two access cycles later. The instruc-
tion XRL and, when the previous port value was 00h or
ffh, even ORL or ANL, will pass the bijectivity test, too.
These instructions combine the previous port value and an
argument using the bit-wise Boolean operations xor, or, or
and, respectively. With the previous port value being either
00h or ffh, we get three different candidate cipher op-
codes X and at least two of them result in identical E0 map-
pings. These two identical mappings are either those of MOV
and ORL, or MOV and ANL, and, therefore, the E0 mapping
that occurred more than once corresponds to EDK a, 0 2+ . For

all other previous port values, only MOV and XRL result in
bijective mappings and, in this case, both alternatives for E0

have to be stored and tried in the next test series described
below.

We must test all 28 values for X, but, once the first (X, Y)
pair has resulted in a bijective P ° Z mapping, we can keep
the value of Y constant as it decrypts already to the correct
port address; this speeds up the search for the remaining X
values by a factor of 256.

Having tabulated EDK a, 0 2+  as described above, we now

tabulate the data-bus encryption function for the addresses
a0 + 3 to a0 + 9. In addition, we look for two cipher op-codes

N0 and N1 to be fetched from a0 and a0 + 1 that are both sin-
gle-byte instructions with only one dummy memory access
and no serious side effect on any following instructions.
Examples for such op-codes are NOP (no operation), INC A,
or SETB C. We need these as padding instructions to move
the MOV instruction ahead in the address space such that Z
will be fetched from the next higher address, whose en-

cryption function can then also be tabulated. Machine in-
structions of the 8051 architecture require an even number
of access cycles, therefore, single-byte commands will al-
ways be followed by a dummy memory access.

For the next test series, we fill the instruction FIFO each
time with the bytes

X, ÓZ/8ã, Y, E0(a0h), Z, 00h, 00h*.

Again, X and Y are the search loop variables. Although we
are now looking for one additional NOP-like cipher op-code
represented by X = N0, the search complexity is still only
around 217. We can already use the known data encryption
table E0, which we obtained during the previous test se-
quence, to determine the correct encrypted parallel-port
address value E0(a0h) that will be fetched from a0 + 2. There
exist many suitable values for X and the first one found is
sufficient. So, this test hardly ever requires more than
around 2,500 resets and can be performed within a few sec-
onds. We are looking for (X, Y) pairs that fulfill the follow-
ing two conditions:

1)� the mapping E1: P ° Z must be bijective and
2)� the encrypted address from which E0(a0h) has been

fetched must be identical to the encrypted address
EAK(a0 + 2) from which Z had been fetched in the pre-
vious test series when the table E0 was generated.

The address check ensures that the cipher op-code X has
been an op-code for a one-byte instruction, that therefore
the E1 table actually represents EDK a, 0 3+ , and that the sec-

ond FIFO value ÓZ/8ã satisfies only the dummy fetch of the
NOP-like instruction. Using a value like ÓZ/8ã that changes
during the tests but that will not have 28 different values
ensures that the NOP-like instruction represented by X is not
one that exchanges the dummy access with the following
op-code fetch.

If this test series fails and there are two alternative tables
stored as E0 candidates, then the other table will be tried.
The first X value that passes the test will be stored as N0 for
the following tests. The MOV ambiguity that will result again
in two or three different Y values is handled as with the
first test series that tabulated E0.

In order to tabulate E EDK a2 40
= +, , we fill the instruction

FIFO with

N0, 00h, X, ÓZ/8ã, E0(75h), E1(a0h), Z, 00h, 00h*

and the first successful X value will be stored as N1. This
third test sequence usually requires less than 270 iterations,
as only the opcode for the second NOP-like instruction is
searched for and all other bytes can already be determined
using the previously obtained tables E0 and E1.

Starting with the tabulation of E EDK a3 50
= +, , no op-

codes have to be searched for any more, as all bytes can
now be determined using already known tables of the data-
bus encryption function. The instruction FIFO will be filled
with

N0, 00h, N1, 00h, E0(00h), E1(75h),

E1(75h), E2(a0h), Z, 00h, 00h*,
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where E0(00h) is the encrypted op-code of the NOP instruc-
tion. The dummy access following this NOP instruction is
already served with the op-code of the next instruction,
because the processor could swap the dummy access and
the op-code fetch. This test requires only 256 CPU resets to
tabulate E3. E4 to E7 can be tabulated the same way by in-
serting additional NOP instructions before MOV, each of
which will increase by one the address from which Z will
be fetched.

5 ACCESSING PROTECTED MEMORY

Using the values N0, N1, and the tables E0 to E7, we can now
fill the instruction FIFO with tiny encrypted programs that
will send everything accessible by the protected software to
the output port. For example, to access the program address
space, we use the instruction sequence

00 NOP
00 NOP
90 xx yy MOV DPTR, #xxyyh
e4 CLR A
93 MOVC A, @A+DPTR
f5 a0 MOV a0h, A
00 NOP

to send the byte stored at the address xxyyh to the port.
This corresponds to the following instruction FIFO content:

N0 NOP
00h dummy access
N1 NOP
00h dummy access
E0(90h) MOV DPTR,...
E1(X) high address
E2(Y) low address
E3(e4h) dummy access
E3(e4h) CLR A
E4(93h) dummy access
E4(93h) MOVC A, @A+DPTR
E5(f5h) dummy access
E5(f5h) dummy access
— read access to SRAM
E5(f5h) MOV..., A
E6(a0h) port address
E7(00h)* NOP

The first and third byte do not necessarily represent NOP
instructions; other single-byte instructions can serve a
similar purpose. The instruction FIFO hardware is actu-
ally nine bits wide and the ninth bit controls a temporary
switch back to SRAM, so that a machine instruction that
has been fetched from the FIFO can get and decrypt data
from the SRAM. This mechanism is used here in FIFO byte
14 for the fourth memory access of the MOVC instruction.
As mentioned above, the DS5002FP exchanges an op-code
fetch with one of the previous dummy memory accesses
after certain instructions, but the above instruction FIFO
content sees to it that the next cipher op-code is available
when required.

Very similar instruction sequences can be used to dump
the data address space and the special function registers.
The on-chip vector RAM area can be read as part of the
program address space. These 48 bytes are write protected
and, therefore, are not overwritten during the cipher in-
struction search.

6 FURTHER IDEAS

The described memory-access technique lets us read several
hundred bytes per second. For faster access, several bytes
can be sent to the port by one single instruction FIFO con-
tent. As the SMD test clip used on the bus in the analyzed
system does not provide very reliable contact, special con-
tact test sequences should be executed periodically during
read-out. This provides quick detection of data errors
caused by contact problems.

Another cipher instruction search allows us to identify
encrypted jump commands. We look for a first byte that
provides an injective mapping from the second byte to one
of the addresses from which the following bytes are
fetched. The search complexity is only around 29, therefore,
we can test within seconds whether the byte fetched from a0
is interpreted by the CPU as an op-code or whether the
switch from SRAM to FIFO has to be done somewhere else.

7 CONCLUSIONS

Although the DS5002FP has been described as the most
secure processor currently available for commercial users,
and although it has even been protected by special top-
layer die coatings against microprobing attacks, the tech-
nique presented here defeats the chip’s whole security con-
cept using only a personal computer and a device built in a
student laboratory with standard components for around
US$300. After only a few hours preparation, the author was
able to extract the protected software from a DS5002FP (Re-
vision A) based demonstration system that Peter Drescher
from the German Information Security Agency (BSI) built
as a challenge in July 1996.

A variety of countermeasures can make cipher instruc-
tion search attacks infeasible in future bus-encryption proc-
essors. If the data-bus block-encryption function operates
on whole cache lines of at least eight bytes instead of on
single bytes, tabulation will become impractical. Processors
without cache can implement restrictions on the maximum
number or frequency of both resets and illegal op-codes
that the CPU will accept without delaying further resets or
destroying the secret key. Instructions that are particularly
useful for cipher instruction search attacks might be repre-
sented by long op-codes to complicate the search.

Bus encryption continues to be an interesting concept,
but a secure implementation is harder than might at first
appear. The cipher instruction search attack presented here
did not depend on properties of the protected software to
get unauthorized access. Unless the software developer is
extremely careful, attackers can learn much from observed
encrypted bus activity or from the reactions of the protected
software on external memory modifications, as the follow-
ing examples illustrate. The critical conditional jump of a
password-check routine is easily identified by comparing
bus traces of a successful and a rejected login attempt. After
a short cipher instruction search, the attacker can replace
the conditional jump instruction with either NOP-like in-
structions or with the unconditional variant of the jump
instruction, in order to get unauthorized access without
having to know the password. Encryption and string-
compare routines are easily recognized by their cyclic loop
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traces. Observing and interfering with the bus while these
algorithms execute can help in reconstructing secret keys
and passwords. A data-transmission loop is as easily recog-
nized and, once it has been transformed by a single in-
struction-byte change into an endless loop, it will dump a
significant part of the protected memory content to the
communication port [10]. Security reviewers should use
simulation tools that show traces of the bus activity to get
an attacker’s view of potentially vulnerable instruction se-
quences. Goldreich and Ostrovsky [11] discuss systematic
techniques to keep attackers who observe or interfere with
encrypted bus activity from gaining any knowledge, but
they require many additional redundant access cycles and,
therefore, decrease the performance. Designers should
probably combine bus-encryption processors in high-
security applications with several independent protection
mechanisms, such as secure packaging and a design that
can easily recover from the compromise of single devices to
provide reliable overall tamper resistance.

Both the DS5000 and DS5002FP are used in a very large
number of credit-card terminals and other security sensitive
applications. Therefore, the author considered it good prac-
tice to inform the manufacturer of this processor more than a
year before submitting this paper. The manufacturer has, in
the mean time, informed customers, developed countermea-
sures usable for currently fielded processors, and has added
further countermeasures in new mask revisions.
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