
University of
Cambridge
Computer Laboratory

ESSAYS ABOUT

COMPUTER SECURITY

Prof. E. Stewart Lee

Director

Centre for Communications Systems Research

Cambridge

 Cambridge, 1999

Preface

The purpose of these essays is to present some of the material that
is the basis of security in computer systems. An attempt has been made to
include examples in order to make the difficulty of many of the concepts
apparent. It is all too easy to state glibly that a system is required to
include a reference monitor, or that controls on covert channels will be
enforced, or that the network will be secure against unauthorised
observation of traffic, or a myriad of other requirements. Usually, such
things imply a major development issue, because always the devil hides in
the details.

No attempt has been made to include everything. Notable missing
areas are security protocols1, database security2, the least privilege
principle3, modern work on cryptography and cryptographic algorithms4,
public key cryptosystems5 and the recent work on the composition
problem6. There are many other subjects that might have been covered,
but it is felt that these essays provide sufficient background so that people
who are developing an interest in computer security can appreciate many
of the follow-on issues that are the focus of present research activity.

These essays were originally conceived as some handouts to a
course in computer security that was started in 1993 in the Department of
Electrical and Computer Engineering at the University of Toronto. These
essays were drawn from the handouts for the spring of 1995.

In all cases an attempt has been made to include references to
original material. However, much of this material is not easily accessible.
In these cases rather more detail is included that might be otherwise
strictly necessary.

Great thanks must go to those authors who developed the material
upon which the essays are based. Several hundred students also merit
thanks. Without their attention and probing questions the essays would
contain many more absurdities and errors than they still do.

1 Bruce Schneier, Applied Cryptography, 2nd ed., Wiley, 1996.
2 S. Castano, M.G. Fugini, G. Martella, P. Samarati, Database Security,

Addison-Wesley, 1995.
3 See for example Aris Zakinthinos & E. Stewart Lee, "A Least Privilege Mechanism

for User Processes" Fifth International Working Conference on Dependable
Computing for Critical Applications, IFIP Working Group 10.4 on Dependable
Computing and Fault-Tolerance, September 1995, pp. 56-67.

4 See citation 1.
5 See citation 1.
6 Aris Zakinthinos & E. Stewart Lee, "Composing Secure Systems that have

Emergent Properties", 11th IEEE Computer Security Foundations Workshop,
IEEE Computer Society, June 1998. A series of papers by these authors, of which
this is the latest, discuss the problem.

Table of Contents

1. THE SECURITY VOCABULARY...1
1.1. Security Policies, Principles, and Mechanisms..................................1

1.1.1. Security Policy 1
1.1.2. Security Principles 2
1.1.3. Security Mechanisms 2

1.2. Access Control..2
1.2.1. Discretionary Access Control (DAC) 3
1.2.2. The Access Matrix 3
1.2.3. Capabilities 4
1.2.4. Profiles 4
1.2.5. Access Control Lists 5
1.2.6. Mandatory Access Control (MAC) 5

1.3. Common Attack Techniques ...7
1.3.1. Search for Stupidity 7
1.3.2. Trojan Horse 8
1.3.3. Trapdoor 9
1.3.4. Spoofing 10
1.3.5. Virus 10
1.3.6. Worm 11
1.3.7. Overt Channel 11
1.3.8. Covert Channel 11

1.4. Safety Critical Systems...12

2. GLOSSARY OF TERMS ..15

3. OPERATING SYSTEM SECURITY ...21
3.1. Confidentiality Security Policy ...22

3.1.1. U.S. Confidentiality Policy 22
3.1.2. CLASS ONE – POLICY 22
3.1.3. CLASS TWO – ACCOUNTABILITY 24
3.1.4. CLASS THREE – ASSURANCE 26

3.2. The Orange Book...28
3.2.1 Summary of Evaluation Criteria Classes 28
3.2.2 Requirement Directory 29
3.2.3 Summary of the TCSEC 45

3.3. A Formal Model of Access Systems...46
3.3.1. The Trusted Subjects 47
3.3.2. Command Semantics 49
3.3.3. Access Control 50
3.3.4. Delegated Ownership 51
3.3.5. Avoiding Confinement Problems 51
3.3.6. DAC Assessed 52

4. BUILDING ASSURANCE..53
4.1. The Reference Monitor ..53
4.2. The Mechanisms That Must be Trusted ..53
4.3. Single Level Operation..54
4.4. System High ..55

Table of Contents

4.5. Building Assurance ...55
4.5.1. Verifying All Programs 55
4.5.2. Certify or Evaluate Critical Programs 56
4.5.3. Journal of All Security Relevant Events 56

4.6. Principles of Trusted Operating Systems...57
4.6.1. Lattices 57

4.7. The Three Policies ...58
4.7.1 Confidentiality 59
4.7.2 Integrity 59
4.7.3. Denial of Service 60
4.7.4. The TCB and the Reference Monitor 60
4.7.5. Specification 60

4.8. The Six Basic Principles..61
4.8.1. Simple Security: READ DOWN 61
4.8.2. The ∗-Property: WRITE UP 61
4.8.3. Tranquillity 62
4.8.4. No Re-use 62
4.8.5. Accountability 62
4.8.6. Enhanced Privilege 63

4.9. An Example: Privilege in UNIX ...63

5. BELL-LAPADULA AND SECURE XENIX ..67
5.1. System States ..67
5.2. State Transitions ...68
5.3. Systems, System Appearance, System Actions................................69
5.4. Model Axioms ..69

5.4.1. The Simple Security (SS) Property 70
5.4.2. The * - Property 70
5.4.3. Discretionary Security (DS) Property 71
5.4.4. Compatibility Property 71
5.4.5. (Sometimes) Tranquillity Principle 71
5.4.6. Activation Axioms 71

5.5. System Security...73
5.6. Other BLP Theorems...75
5.7. Assessment of Bell-LaPadula ...76

5.7.1 Perceived Advantages of Bell-LaPadula 76
5.7.2 Perceived Disadvantages of Bell-LaPadula 76

5.8. The Secure Xenix Interpretation of BLP..77
5.8.1. The Interpretation of the System State 78
5.8.2. State Transitions in Secure Xenix 90
5.8.3. Access Control in Secure Xenix 91
5.8.4. Initial State z0 97
5.8.5. Compatibility in Secure Xenix 98
5.8.6. Tranquillity in Secure Xenix 98
5.8.7. Activation 98

5.9. Conclusion..99

6. RISK ANALYSIS AND ASSET LABELLING ...101
6.1. Our Risk Measure ...102

6.1.1. Worth 103

Table of Contents

6.1.2. Vulnerability 104
6.1.3. Threat 104

6.2. The Evaluation of Risk..105
6.3. Risk Factors ...106

6.3.1. Risk and a Reasonable Authority 107
6.4. Risk in Input Labelling ...108
6.5. Risk in Separation...109
6.6. Risk in Output Labels ...110
6.7. Output Label Risk Factor ...110
6.8. Limiting Cases...111

6.8.1. Completely Reliable Separation 112
6.8.2. Faultless Input Data 112

6.9. The Environment and Maximal Risk ...112
6.10. The Environment and Maximal Levels..113
6.11. The Environment and Minimal Reliability....................................113
6.12. Maintaining Minimal Risk ...114
6.13. Discussion of the Results ..116
6.14. Inter-System Communications ...117
6.15. Summary..118
6.16. Acknowledgement..119

7. TRUSTED LAN NETWORKS...121
7.1. Architectural Overview ...123

7.1.1 Hardware 123
7.1.2 Protocols 123
7.1.3 Encryption 125

7.2. Specification and Discussion ..126
7.2.1. Hardware Components of the Network 126
7.2.2. Encryption and Keys 130
7.2.3. Protocols 133

7.3. Risk Assessment..136
7.3.1. Common Security Attacks 136
7.3.2. Damage Extent after Key Compromise 137

8. BIBA DATA INTEGRITY..141
8.1. The Elements of a Mandatory Integrity Policy..............................142

8.1.1 Definitions 143
8.1.2. The Low-Water Mark Policy on Subjects 144
8.1.3. The Ring Policy 148
8.1.3. The Strict Integrity Policy 149

9. CLARK-WILSON COMMERCIAL POLICY...153
9.1. Commercial Security Policy For Integrity......................................153
9.2. Differences with the Orange Book..155
9.3. Mandatory Commercial Controls..156
9.4. A Formal Model Of Integrity ..157
9.5. Properties of Clark-Wilson..162

10. INFERENCE CONTROL IN DATABASE SYSTEMS165
10.2. Knowledge and Inference..166
10.3. Types of Statistics..167

Table of Contents

10.4. Disclosure...168
10.5. Partial Disclosure ..169

10.5.1. Information Entropy 169
10.5.2. Disclosure 170
10.5.3. Protection 172

10.6. Control Mechanisms..172
10.6.1. Macrostatistics 172
10.6.2. Query Set Size Control 173
10.6.2. Tracker Attacks 173
10.6.3. General Trackers 174
10.6.3. Linear Equations and Other Attacks 175

11. ELEMENTARY CRYPTOGRAPHY..177
11.1. A Simplistic Introduction to Cryptography....................................177
11.2. Transposition Ciphers...178
11.3. Substitution Ciphers ...179

11.3.1. Simple Substitution Ciphers 180
11.3.2. Homophonic Substitution Ciphers 181
11.3.3. Polyalphabetic Substitution Ciphers 182
11.3.4. Vigenère Cipher 182
11.3.5. Rotor Machines 183
11.3.6. Polygram Substitution Ciphers 186
11.3.7. The Playfair Cipher 186
11.3.8. Block Codes 187
11.3.9. Product Ciphers 187
11.3.10. The Data Encryption Standard 188
11.3.11. The DES Function f 189

11.5. One-Time Pads ..195
11.5.1. Developing the Key Stream 196

11.6. Rivest-Shamir-Adelman..197

1

The

SECURITY
VOCABULARY

1. THE SECURITY VOCABULARY

The use of personal computers in industry and commerce has expanded
dramatically in the last decade. Large gains in employee productivity are
possible as a result of this technology. However, ensuring the security of
the processes and the privacy of data that these machines access is a very
hard problem. Solutions that ensure security by preventing access by
legitimate users are inconsistent with the gains in productivity that are
possible. The general problem of computer security is being attacked by
government and by academic and industrial research with some notable
success. The aim of these essays is to review the principles behind these
successes, to describe some of the remaining problems and to discuss their
application in industry and commerce.

The opening two essays present the terminology used in the
computer security world. This terminology is mostly inherited from that
used in government. Consequently, it has become common practice to
speak of secret when company confidential might in many cases be a more
appropriate term. In the literature, the government terms are (almost)
universally used. It is an easy matter to map the governmental
vocabulary onto that used in other sectors.

1.1. Security Policies, Principles, and Mechanisms

The objective of a trustworthy computer system is to control access by
subjects (users) to objects (data). This control is governed by a set of
general goals and objectives called a security policy.

1.1.1. Security Policy

The security policy is a statement of intent about the required control over
access to data. For a trustworthy system to be effectively implemented,
the security policy it must enforce must be static and must be precisely
known. The security policy must represent the pertinent laws,
regulations, standards, and general policies accurately. There are three
types of policy generally used in secure computer systems:

2

Confidentiality Policy:
A confidentiality policy typically states that only authorised users
are to be permitted to observe sensitive data, and that all
unauthorised users are to be prohibited from such observation.

Integrity Policy:
An integrity policy has two facets. The first refers to the quality of
the data that is stored in the computer. The integrity policy will
state that the data should reflect reality to some degree. How best
to do this is the subject of much research activity.

The second facet of integrity policy is associated with the data being
available for use when it is legitimately needed. No user, whether
he or she is or is not authorised to access some data item, should be
able to unreasonably delay or prohibit another authorised user from
legitimate access.

Availability Policy: The computer system should be available for use when
it is needed, and it should satisfy some specified requirements for
its mean-time-to-failure and its mean-time-to-repair.

The first and second of these types of policy will be examined in
detail. The third is a separable topic. It will be mentioned only in
passing.

1.1.2. Security Principles

Security principles are not policy. They are a collection of generally
accepted standards of good practice that is thought to further the
enforcement of security policies in general. We shall identify several
popular security principles throughout the course.

1.1.3. Security Mechanisms

A security mechanism is a device that is used partially to enforce a
security policy. Some mechanisms do this by individually or collectively
implementing a security principle. Other mechanisms are implied
directly by a security policy. These enforce some component of the policy.

1.2. Access Control

The purpose of access controls is to authorise legitimate access by subjects
to objects, and to prohibit illegitimate accesses. The essential notion is
that without a legitimate access to an object, the system prohibits
anything from happening with or to it. It can not be owned, created,
destroyed, observed, altered, appended to, distributed, executed, or
searched. There are two forms of access control, those that can be used at
the discretion of the owner of an object, and those that are required to be
used by the policy.

3

1.2.1. Discretionary Access Control (DAC)

With Discretionary Access Control the owner of an object is able to specify
the types of access other users, or classes of users, can have to that object.
Discretionary Access Control7 is a means of controlling access by subjects
to objects. DAC is established by the owner of an object, and is
changeable only by that owner. It is based on the identity of the subject
and the identity of the object. Usually, the identity of the owner that the
subject is an agent for is a significant factor in DAC.

EXAMPLE: UNIX Permission Bits
Binary Octal Comment

100 000 000 400 Read by owner.
010 000 000 200 Write by owner.
001 000 000 100 Execute (search) by owner.
000 100 000 040 Read by group.
000 010 000 020 Write by group.
000 001 000 010 Execute (search) by group.
000 000 100 004 Read by others.
000 000 010 002 Write by others.
000 000 001 001 Execute (search) by others.

In UNIX, the owner of an object is permitted to set independently
permissions as shown. There is a 9-bit field associated with every object,
with the bits independently settable with the meaning in the table above.

1.2.2. The Access Matrix

Discretionary access controls can be captured in the access matrix. This is
a (usually very sparse) matrix showing the totality of all subjects (users
and processes) and their access permissions to a set of supposedly
protected objects. An example is given in the following table. The
permissions that are stored at each entry are drawn from the set rwaxdso.

Objects
Subjects 1 2 3 4 5 6 7 8 α β ξ δ ε

1 ox rwo r
2 ox r rop o xo
3 ox x
4 ox rw
5 ox rop rw
6 ox rw
7 ox rxo
8 ox

7 U.S. National Computer Security Center, "A Guide to Understanding

Discretionary Access Control in Trusted Systems", NCSC-TG-003, Library N0. S-
228,576, September 1987.

4

The members of the set rwaxdso stand for read, write, append,
execute, directory, special or sticky (see glossary) and owns.

1.2.3. Capabilities

A capability is an unforgeable permission that is incontestable proof of
authorisation for a subject to access an object. The capability is associated
with a subject, is protected or otherwise given high integrity, includes the
name of the object that it refers to, and specifies the access rights that the
subject may have to the object. The set of all capabilities for a given
subject is a row of the access matrix. If the access matrix were not so
sparse, we might store the whole row with the subject and capture all the
subject’s access rights at once. This is not practical because it takes too
much memory.

A capability-based system can in theory provide dynamically
changeable domains for processes to run in. When a process (which is, of
course, a subject) is started, it is given the capabilities it needs to do its
thing. Dynamic domains are ideal for limiting the damage that a Trojan
horse can cause. It is very difficult, however, to build such a system and
make it efficient. A structure that attempts to do this is typically called a
Least Privilege Mechanism (LPM).

Subjects can have the right to pass on their capabilities to other
subjects. Sometimes this right is conditional on, for instance, a special
access permission. Making this right conditional on ownership makes the
system too secure – so secure that it can not be used for practical work.
Because the right is not necessarily confined, it is difficult to make an
effective list of all the subjects (users) who have access to a given object.
This can make DAC impractical. For instance, one of the things that may
be desirable is the ability of the owner of an object to revoke access by all
other subjects. This is difficult if the permissions of each other subject has
to be inspected.

Most security systems require that an owner of an object be able to
specify by name those other users who, either directly or indirectly
through processes, are permitted access and those who are prohibited
access. This usually must be achievable on the basis of user names.
Grouping users is not considered fine enough control. It is hard to do this
with capabilities – the control of passing on the capability becomes rather
complicated. This is because capabilities are row-based mechanisms.
Deletion of an object also presents a problem, because all access
capabilities must be deleted as well.

1.2.4. Profiles

A profile is a row of the access matrix, with the empty entries deleted. It
is, in effect, a summary of all a subject's capabilities. It suffers from all
the difficulties that capabilities suffer from, without some of their
advantages.

5

1.2.5. Access Control Lists

Access control lists are the columns of the access matrix. It is usual to
delete unnecessary entries, so that the list is not too large. An access
control list is a list of the users who are permitted access to an object, and
those who are prohibited access to the object. In this way, the control of
access to the object is associated with the object, which is an intuitively
satisfying concept. In most implementations, every file has associated
with it another file called the ACL, that ordinary users can not observe or
alter. Observation of the ACL requires a special access privilege that only
the trusted part of the system has and that can not be passed on.

In order to limit the growth of the ACLs, a wild card mechanism is
common. Let an ACL be composed of a sequence of entries of the form
[user, group, permissions]. Let the (user) field be the name of a user. In
practice this will be the name of the user who is accountable for the
actions of a subject. Let the (group) field be the name of a group of users
with a known membership. Both the (user) field and the (group) field can
also be the single entry "*". This * stands for any legitimate entry in the
field it occupies, and is called a wild card. Let the permissions include the
usual (rwaxdsop) set, or be the single entry (-). Then an access control list
like the following one can be quite compact, and yet quite easy to search,
to store, or to alter. Suppose the name of the file is SecretOfHeidi&Peter.

user group permissions
Heidi Athlete rwxao
Peter Athlete xa
MumOfHeidi Parent -
DadOfHeidi Parent -
MumOfPeter Parent -
DadOfPeter Parent -

* Athlete r
* * -

When a file is created it will be given a default ACL, including
something like ownership by the originating user with nobody having any
access except him or her. The defaults may be system-wide, user specific,
or associated with the directory that contains the file. All of these can co-
exist, but there are usually limits on the last two for obvious reasons.
Another approach is to allow a user to specify that the ACL of a new file
should mirror a given prototype ACL, perhaps the ACL of an existing file.

1.2.6. Mandatory Access Control (MAC)

Mandatory Access Controls (MAC) are means of restricting access to each
object based on the sensitivity of the information contained in the object
and on the authorisation of each accessing subject. The sensitivity of the
object is determined by its classification. The authorisation of the subject
is determined by its clearance. Every object has associated with it a label

6

containing its classification. Every subject has associated with it a label
containing its clearance.

1.2.6.1. Realms of Knowledge

Not all knowledge is intended to be universal. Some knowledge is private
for social reasons – medical records. Some knowledge is secret for
functional reasons – when the next police drug-raid will happen. Some
knowledge is more secret than other knowledge – the content of the next
patent application to be filed by me contrasted with the content of the
next paper to be published by you. Some of the difference, in the sense
that this is more sensitive than that, is a matter of degree or of the
identity of the observer. Some of the difference is related to the realm of
knowledge that the information belongs to. Users need special permission
to access information in special realms of knowledge. For instance, Patent
Application is a realm of knowledge to which salesman has no access.

A category is an attribute of an object that identifies it as belonging
to some group of objects with some common basis – often a realm of
knowledge. This basis usually has to do with the contents of the
document. A category is a property of the data in the document.

A caveat is an attribute of an object that also identifies it as
belonging to some group of objects with some common basis. This basis
usually has to do with what a user (a process) can do with the object. A
caveat is usually a property of, or a restriction on, the way a document can
be handled.

A simple model is that a category is a property of the data and a
caveat is a restriction on the handling of the data. If we have a secret
research project with the category NuclearAutoEngine we might want to
prohibit access by foreigners to some of the critical data. We do this with
a caveat Foreigner. Any user with the entry Foreigner in his or her caveat
list would be denied access.

For simplicity, from this point on in this course the concept of the
existence of a caveat will be ignored.

1.2.6.2. The Dominates Relation and the Lattice

Let there be a subject S and an object O . Let the clearance of S be a
sensitivity level L(S) . Let the classification of O be a sensitivity level
 L(O) . The sensitivity levels are a totally ordered sequence, with the order
relation being ≥ . Let the categories of S be a set G(S) , and the categories
of O be a set G(O) . The categories are a set. In comparing the categories
of two objects the significant thing is whether one set of categories is a
subset of the other set. Let the security level of S be L (S) , and the
security level of O be L (O) . The security level of an object or subject is
the combination of its sensitivity and its categories.

7

We are interested in being able to determine whether one subject or
object is at a higher security level than another. We speak of this as one
object dominating another if the first is at a higher level or the same level
as the second8. In these notes dominates will be written using the symbol
 > . The converse of dominates, called is dominated by, is written < . The
negatives of these two relations are sometimes useful; they are written
 ¬ > and ¬ < respectively. Let the two objects be α and β . α ,β ∈{S ,O}
and

 α > β ⇔ [L(α) ≥ L(β)] and [G(α) ⊇ G(β)].

The dominance relation defines a lattice on the possible security
levels. A partial ordering like > or its inverse < defines a structure called
a lattice. For subjects or objects

 a,b, c,L , the relation > has the
following properties.
Reflexive a > a is always true.
Antisymmetric If a > b and b > a then L(a) = L(b) and G(a) = G(b) so

that L (a) = L (b) .
Transitive a > b and b > c implies that a > c .

1.3. Common Attack Techniques

The following sections describe the main techniques used to attack
systems.

1.3.1. Search for Stupidity

There are only three ways into a computer system. The first bypasses all
security mechanisms, and relies on a direct usage of the raw machine.
Normally, this way is blocked because it must be done from the console of
the machine, and hopefully that is in a locked room that Machiavelli
himself could not enter from a distance.

user name password
root system
root god
root guru
root wizard
wolf flow
guest guest
guest visitor

The second way concerns normal, authorised users. Normal users
have every right to login to the machine. Once they are in, they can
deploy any of the devices described below to circumvent the security
controls. There is far, far greater security risk from authorised users than
there is from any other person. The risk is because these users can
legitimately pass the primary security perimeter, the login perimeter.

8 Dorothy E. Denning, "A Lattice Model Of Secure Information Flow",

Communications of the ACM, Vol. 19, No. 5, pp. 236-243, May 1976.

8

Once it is passed, the threat comes from those who are careless, who want
to play (often expressed as testing the security controls), or who are just
plain evil.

Third, a more covert entry relies on the stupidity of authorised
users or system administrators. The primary security perimeter is the
login perimeter. Entry is easy if this perimeter is not carefully guarded.
For example, if the system permits it, an intruder can try to login using
many (often thousands) of user names and corresponding passwords that
are frequently used. The table above gives some hint to the kind of
(name, password) pairs that might be on the list.

There has been considerable work aimed at making passwords
random, and memorable, and typeable. Some aids exist9.

Because of the world-wide computer network, the malicious invader
need only login to one machine that is attached to the network. Then he
or she can use its power to try to login to other machines. The first of
these other machines that an evil invader will try to invade are those that
have their names stored in the files of the machine that has been
successfully invaded. These attempts can be in parallel, with the
telephone bills being paid by the various machines’ budgets. Once a login
to any machine is successful, the ability to repeat the login is made sure
by one of the techniques below.

Thus, the observation that by far is the most significant and
important motto of the computer security professional:

The most important security perimeter is the login perimeter.

1.3.2. Trojan Horse

Other than problems with the login perimeter, Trojan horses are the
single most dangerous security problem. They have an additional serious
disadvantage when compared to login. The act of performing a login can
be recorded by the system, and many systems inform their users of the
time and place of their last login. This can be monitored, and can
sometimes show up either illegitimate users or misuse of passwords. On
the other hand, Trojan horses operate entirely within the security
perimeter. In practice they are only detected when they cause a serious
breach of security, or by accident.

A Trojan horse is a part of a program that otherwise conforms to
the security policy. When this apparently innocuous program is executed
it compromises the security of the user (or his agent executing it) by
unauthorised violations of the security policy. Trojan Horses are built
into the source code of a program by the original programmer, and have

9 Ping Lin and E. Stewart Lee, "An Algorithm for the generation of Pronounceable,

Typeable Passwords", Proc. 1st Annual Canadian Computer Security Conf.,
Ottawa, Ontario, 30 Jan - 1 Feb, 1989. Pages 165-176.

9

been known to be dormant for a period of time before any attempt is made
to overcome security.

The Trojan horse is the single most powerful tool in the armoury of
the malicious intruder. DAC is impotent against it. MAC protects against
it, but only as long as the Trojan horse is confined to one realm of
knowledge. The canonical example is as follows:

Peter: "I really hate this editor. I wish there was a better one."

Heidi: "I wrote a pretty good editor last week. I think it is a great
improvement. See – it uses changes in the background colour to
highlight misspelled words. It has lots of other fancy features,
too!"

Peter: "That looks fantastic. Can I try it?"

Heidi: [Gotcha] "Sure. It's in my file /hack/myed. I will change the
permissions so you can run it. I will appreciate any feedback
you can give me!"

The editor, when run by Peter in his directory /mysecret, does a
wonderful job. It also contains a Trojan horse that copies all of the files
from Peter's directory /mysecret to Heidi's directory /hack. There is no
security mechanism to prevent this copying. It is all perfectly legitimate,
because Peter is running the editor with his access permissions, and the
editor is owned by Heidi and she has given it the right to write into /hack.

Trojan horses are the operating mechanism behind a spoof and a
virus and sometimes a worm.

1.3.3. Trapdoor

A trapdoor is a feature built into a program such that the provision of
specific input data allows the process executing the program to overcome
the security policy, usually by directly returning to the calling program
with the called program's permissions, completely bypassing all security
guards. Trapdoors are built into the source code of a program by the
original programmer, and have been known to be dormant for a period of
time before any attempt is made to overcome security.

Trapdoors and their establishment can be very sophisticated.
Suppose there is a Trojan horse placed into the compiler such that

• When it compiles the login procedure, it will generate unexpected (by
the casual user) output code that will let the user ptah login without a
password, and

• When the compiler recompiles itself the code to build the Trojan horse
into the compiler is itself always included in the compiler.

10

The original source code for the Trojan horse can then be removed
from the compiler, with the knowledge that the Trojan horse will always
be included in the login procedure. The only way to detect this is to
compare carefully the source and object code of the compiler, a task not
frequently undertaken for obvious reasons.

1.3.4. Spoofing

A spoof is a pretence that a subject is some other subject, or a user is some
other user. It is possible only if the authentication mechanism fails,
either because it is not good enough or because it contains a Trojan horse
(e.g.: always authenticate the user ptah as the user root).

There are several spoofs that are often overlooked. It is possible to
be able to authenticate subjects to one another with adequate reliability.
But how does the user, when he or she wants to login, tell that the
software and hardware is what he or she expects it to be? How does the
system software determine who it really is that is trying to login, and
whether or not he or she is under duress? The answers to these kinds of
questions are not obvious!

Most secure computer criteria insist on a trusted path from a login
location to the login procedure. There is no agreed best way to do this.
Most system software identifies a potential user by some combination of:

• Something he or she knows (a password).
• Something he or she has (a key or badge).
• Something he or she is (biometrics).
• Where he or she is.
• What time it is.

Some users consider a login protocol that involves more than the
first two of these factors to be a nuisance (or worse), and are actively
hostile about their use.

1.3.5. Virus

A virus is a program that when executed operates entirely within the
security policy. When a virus is activated (becomes part of a process) it
uses a Trojan horse to search its authorised environment for executable
programs that it is entitled to modify, and attaches itself to all such
programs. In turn, when they are executed, the virus reactivates, and
eventually spreads throughout the executable code in the computer.

The only hard parts of setting up a virus are to substitute the entry
point of the virus for that of the program, and then to pass the program's
parameters, supplied by the calling program as input to the original
program, on to the original program when they appear at the entry to the
virus. If this is done correctly the chance of a user detecting a virus is
very nearly nil unless it announces its presence. The substitution of entry
point can easily be done by renaming the original program with a name

11

unlikely to be noticed, renaming the virus with the original program’s
name, and arranging that the virus knows about the renamed original
program. Parameter passing just means that when the original program
is called, the registers must be restored by the virus to their state that
they had on entry to the virus.

These programs are easy to create and very difficult to detect. The
anti-virus agents in use today accomplish their task by looking for the
distinctive patterns that are a representation of the virus’s code and
looking for new copies of particular files.

1.3.6. Worm

A worm is a program that migrates from a computing environment to
another computing environment, often keeping a record of the last few
environments it has entered. The name worm comes from analogy with
the animal well known to gardeners and fishermen, because each
connected environment of the worm is called a segment. There are
usually several segments in order to develop fault tolerance. Once the
worm has migrated to a new environment, it can do whatever it is entitled
to do according to its discretionary and mandatory access controls.

A worm must have the ability to login to a target machine. It is this
perimeter, as usual, that is the critical one.

Good worms are used to distribute software, to propagate quick
fixes to bugs, to modify system tables to reflect the present state (as when
a new machine is added to a network) and generally to help the system
managers ensure that all machine software is up-to-date.

Bad worms carry a virus.

1.3.7. Overt Channel

An overt channel is a communication channel that is used in the way it is
intended to be used, that legitimately exists and that is consistent with
the security policy. It is to be contrasted with a covert channel.

1.3.8. Covert Channel

A covert channel is a mechanism for two processes to communicate, where
such communications is a violation of the security policy. There are two
forms of covert channel.

In addition to the ones discussed below, some covert channels are,
in practice, undetectable. For instance, suppose two processes with good
provenance, thought to be secure, in the course of their legitimate function
exchange data. They could modulate this legitimate exchange with an
illegitimate exchange, for example by varying the message length. No
known confidentiality technique, other than turning off the computer, can
be proven to eliminate this type of threat. The two processes are

12

permitted to exchange certain kinds of data. If they begin to modulate the
data to exchange other kinds of data, detection becomes difficult.

1.3.8.1. Storage Channel

A storage channel uses a storage cell of some kind (for instance, a register,
an I/O buffer, or a system parameter) to communicate from one process to
another, where such communication should not happen. Storage channels
can be completely eliminated in most cases by careful system design using
sensible hardware and good software engineering. A common way is to
use a blunder in the hardware or software to transfer data, such as
reading and writing a register in an I/O device so as to evade the security
checks.

1.3.8.2. Timing Channel

A timing channel uses some detectable time-related action to transfer
information. Timing channels almost always rely on resource exhaustion.
This is the detectable unavailability of (some or all of) a resource because
some process is hogging most or all of it. By using all of memory, locking
and unlocking a data file, or modulating the use of the CPU, it is possible
to transfer information from one process to another. This transfer is not
controlled by the security mechanism.

Fortunately, the bandwidth of these timing channels can be made
quite low. The timing channels that are capable of high data rates can be
either prohibited or controlled as a special case. For instance, locking and
unlocking a data file could be done at quite a high rate, but in practice
there is little reason for a single process to do this. The system may limit
the rate of successive lock commands from one process. The objective is to
keep the channel bandwidth very low. Typical permissible bandwidths
are in the 0.01 bit/s region.

1.4. Safety Critical Systems

A safety critical system is one where the availability, fault tolerance,
accuracy, faithfulness, or integrity of the system needs to be assured.
Safety critical systems are closely related to secure systems. They both
require that identifiable properties of the system be irrefutably
established. Many of the same techniques apply to both types of systems.

There is beginning to be substantial research into the area of safety
critical systems. Following the example of security, initially a policy that
describes the required safety properties is specified. This policy is then
imposed upon a design. Using modelling or other techniques it is proven
that the design fulfils the properties. Then an implementation of the
system is constructed and thoroughly checked to establish that it is
exactly consistent with the design.

The process outlined in the preceding paragraph is an attempt to
ensure that the desirable level of assurance is developed in the efficacy of

13

the system conforming to its goals. We will visit this issue frequently in
this course.

15

GLOSSARY

2. GLOSSARY OF TERMS

Access The ability to make or make use of information.
Access Control
List (ACL)

A list of subjects that are authorised to access some object.

Accountable User The identity of the user that is responsible for the
instantiation of a subject or for the existence of an object.
An executing process is always an agent of a user, and each
executing process will always have some user accountable
for it. An object is always owned by or controlled by a
unique user, and each object will always have some user
accountable for it.

Alter, Write To modify any part of an object without increasing its size.
Append To increase the size of an object without in any way

modifying its original contents.
Authenticate Verify the identity of a user, a machine on a network, or of

something that is an agent of a user or machine (a process,
etc.). This almost always uses an exchange of messages
called an authentication protocol. Most such exchanges
depend on the sender and receiver sharing a secret, or on
the existence of a universally trustworthy authentication
server that all entities share a secret with and that can
verify their identity.

Authorise Grant a subject access to an object.
Beyond Top Secret Whether or not there are any security classifications

beyond top secret is a top secret. Words like NATO Top
Secret and Cosmic recur.

Boolean Algebra A lattice with a total ordering instead of a partial ordering.
Capability An unforgeable permission that is incontestable proof of

authorisation for a subject to access an object.
Category An attribute of an object that identifies it as belonging to

some group of objects with some common basis. This basis
usually has to do with the contents of the document.

Caveat An attribute of an object that identifies it as belonging to
some group of objects with some common basis. This basis
sometimes has to do with the attributes that a user (a
process) must have to access the object, or more commonly
with some special handling requirement.

16

Certify To formally guarantee the accuracy, correctness and
completeness of a security mechanism measured against
some established evaluation criteria. Compare certify with
evaluate.

Classification A level of sensitivity of an object. A measure of the amount
of damage that could happen if the object fell into the
wrong hands. In Canada the usual classifications for
objects connected with National security are Top Secret,
Secret, Confidential, Private and Unclassified. These terms
should be looked up in this glossary, along with Beyond Top
Secret. In the United States the usual classifications for
objects connected with National security are Top Secret,
Secret, Classified and Unclassified.

Clearance A level of trustworthiness of a subject. The subject can be a
person or of an agent authenticated to be acting on his or
her behalf. The clearance of a subject is a measure of the
proven, demonstrated, or assumed trustworthiness that it
merits. In Canada, the usual classifications for subjects
connected with National security are Top Secret, Secret,
Confidential, Private, and Uncleared. The meaning of
these terms is similar to the meaning of the levels of
classification, except a clearance applies to a subject rather
than an object.

Complete
Isolation

A system such that no flow of control or data can exist
between two or more (abstract) compartments. In operating
system terms, the flow of control or data can only be up or
down the tree of activated processes, from parent to child or
from child to parent. A fundamental principle in
containing the damage that might occur in the event of
unauthorised access.

Confidential An object is classified as confidential if unauthorised
disclosure would be prejudicial to the interests or prestige
of the nation or any governmental activity or be of
advantage to a foreign power. Also, individual personal
files may be classified confidential.

Confidentiality The limitation of access to data based on the sensitivity of
the data and the trustworthiness of the user. Security is
often contrasted to integrity. Security is concerned with
access to data, while integrity is concerned with the value
of data.

Confinement The containment of the transitivity of the delegation of an
authority or access or privilege. If a user authorises an
agent to perform actions on his behalf, and if the agent is
powerless to pass this authorisation on to another
unauthorised party, then the authorisation is said to be
confined. A system in which subjects are so confined is said
to have confinement.

17

Denial of Service A requirement established by a security policy that there is
some criterion that must be met before a subject can be
denied legitimate access to the objects that it must access to
perform its proper function.

Discretionary
Access Controls

Controls on access to an object that may be changed by the
user (or his authenticated agent) that created the object.

Distribute To make a copy of an object with no alteration or
observation of it.

Evaluate To measure the degree to which a security mechanism
satisfies some given evaluation criteria. Compare evaluate
with certify.

Execute Execute has the usual meaning, but when used as a
permission it does not imply that the executed object can be
observed or altered. The transfer of parameters and
results, and issues concerning non-local data objects or side
effects are all instances of observe, alter, etc., and are all
subject to both discretionary and mandatory access
controls. Execute is subject to access controls.

Integrity The integrity of data is the likelihood that the data’s value
is what it should be. Integrity is often contrasted to
confidentiality. Confidentiality is concerned with access to
data, while integrity is concerned with the value of data.

Lattice A partial ordering on a collection of objects such that there
exist a Least Upper Bound and a Greatest Lower Bound.
Usually, the combination of the clearances, classification,
category, and caveat properties of objects and subjects,
interpreted according to the Security Policy, forms a lattice.

Liveness The state in which it can be shown that something
eventually happens. See safety; it is not difficult for a
system that is not live to be safe.

Mandatory Access
Controls

Controls on the access by a subject to an object that are
determined by the security level of the subject relative to
the security level of the object.

Multilevel A system that runs with more than one level of subjects and
objects is a multilevel system. To be contrasted with a
single level system.

Object Data or programs stored in a computer system. Objects
that are programs that are executed become a part of a
process, and so are also subjects as long as they are being
executed.

Observe To have access to the value of an object. Depending on the
security policy and the system design, it may be possible to
see the name of some object but not its value, or it may be
possible to see the name of an object only if seeing its value
is permissible.

18

Proof of
Correctness

A formal demonstration that the (high level) code of a
program agrees with some assertions that are included in
it. The assertions are coded as assertion statements. They
contain a proposition (a Boolean predicate) that must be
demonstrably true for any possible values of the variables
that are involved. Using some known formal semantics of
the statements in the programming language, it is shown
that each assertion must be true (in the terminology of
mathematical logic, at that point in the program it is a
valid theorem). There are usually four kinds of assertions
that are used:
• a pre-condition to establish a basis for reasoning;
• an in-line assertion, that must always be true based on

the situation that was previously known and the
semantics of the statements that could have been
executed to get to the point of the assertion, for any
combination of values of variables;

• a loop invariant, that must be true for any and all
excursions around the body of a loop; and

• a post condition, to establish that the program agrees
with its expected semantics.

Read To observe the value of an object with a destructive write-
destroy-restore sequence. Most modern computer storage
devices read their contents when they observe.

Restricted An object is classified as restricted if it should not be
published or communicated to anyone except for official
purposes.

Safety The state in which it can be shown that something bad
never happens. Something bad is something that violates
the security policy. See liveness.

Search To cause an object to be examined for a specific known
value. A search does not allow any observation of the
object, except by exhaustive probing. A successful search
returns the value and perhaps some associated information.
An unsuccessful search returns a failure indication. Search
is subject to access controls.

Secret An object is classified as secret if unauthorised disclosure
would endanger national security, cause serious injury to
the interests or prestige of the nation, or any governmental
activity thereof, or would be of great advantage to a foreign
nation.

Security Level For data, programs, or other files, the combination of
classification, category, and caveat that establish the
attributes required to access the data in the confidentiality
sense. For processes, the combination of clearance,
category, and caveat that establish the attributes available
to access data in the confidentiality sense.

Security Policy The set of rules that establish legitimate access, and define
accesses to be prevented, if a system is to be secure.

19

Single Level A system that runs with only one level for all subjects and
objects is a single level system. To be contrasted with a
multilevel system.

Sticky Bit A tenth UNIX permission bit that is interpreted in various
ways depending on the nature of the object it is associated
with. For instance, on a directory it may mean that only
the owner can delete any file in the directory regardless of
what permissions other users have.

Subject A process. An agent of a user in a computer system. An
executing process is always an agent of a user, and each
executing process will always have some user accountable
for it.

System High System high refers to the highest security level that can
possibly occur and that a system must be able to deal with.
It is sometimes the case that a system is constrained to
operate at system high in order to fulfil operational
imperatives.

Top Secret An object is classified as top secret if unauthorised
disclosure would cause exceptionally grave damage to the
nation.

Trapdoor A feature built into a program such that the provision of
specific input data allows the process executing the
program to overcome the security policy, usually by directly
returning to the calling program, completely bypassing all
security guards. Trapdoors are built into the source code of
a program by the original programmer, and have been
known to be dormant for a period of time before any
attempt to overcome security is attempted.

Trojan Horse A part of a program that otherwise conforms to the security
policy, such that when this either invisible or apparently
innocuous part of the program is executed it compromises
the security of the user (or his agent executing it) by illicit
violations of the security policy. Trojan Horses are built
into the source code of a program by the original
programmer, and have been known to be dormant for a
period of time before any attempt to overcome security is
attempted.

Trusted
Computing Base
(TCB)

The Trusted Computing Base is the set of protection
mechanisms in a computer system that is responsible for
enforcing a security policy. Formally, it includes all
mechanisms – hardware or software – but in practice the
hardware is often considered to be immutable. Frequently,
in consequence, a reference to the TCB is taken to be a
reference to the software mechanisms that enforce the
security policy. These are the mechanisms that must be
trusted, because to do their job they must violate the policy
that they are enforcing. If they did not need to violate the
policy, they need not be trusted, and would not be a part of
the TCB. Normally, considerable effort is expended to keep
the TCB to a small size.

20

Unclassified Anything that is not classified otherwise (higher) is
classified as unclassified.

Verify To use a (usually formal) mechanism to establish the
formal semantics of a program, in terms of the formal
semantics of its components. This always involves software
tools, two in particular that are called a verifier and a truth
prover. The verifier knows the formal semantics of the
various constructs in the language. Starting with a
precondition (often the condition true) it reads the
statements of the program, and deduces their semantic
effects. The truth prover does a lot of logical reductions on
the evolving expression. The whole enterprise concludes
with an expression describing the semantics of the
program. In appropriate cases, such as subprograms that
do not reference non-local variables and do not allow
parameters to alias of each other, this expression can then
be added to the verifier’s dictionary of constructs with
known semantics.

Virus A program that when executed operates entirely within the
security policy. When a virus is activated (becomes part of
a process) it searches the file system for executable
programs that it is entitled to modify, and attaches itself to
all such programs. When these in turn are activated, they
do the same. The virus can spread throughout the system
unless contained by mandatory access controls.

Worm A program that migrates from a computing environment to
another computing environment, often keeping a record of
the last few environments it has entered. The name worm
comes from analogy with the animal well known to
gardeners and fishermen, because each connected
environment of the worm is called a segment. There are
usually several segments in order to develop fault
tolerance. Once the worm has migrated to a new
environment, it can do whatever it is entitled to do
according to its discretionary and mandatory access
controls. Worms can be good or bad.

Write The same as Alter.

21

OPERATING
SYSTEM
SECURITY

3. OPERATING SYSTEM SECURITY

It is desired to enforce a security policy that is an organisation’s decisions
about security. This policy must be agreed in advance and must be
stationary.

A policy is a governing objective or goal. In practice, some
proposals for security policy arise within an organisation and are
approved by the most powerful body or person in the organisation. They
then represent the objectives or goals for data security in the organisation.
The security policy governs data security in the organisation.

There are three distinct classes of security policy that are used in
most organisations.

[1]. Confidentiality Policy: Who is permitted to see what?

[2]. Integrity Policy: What quality data values are needed?

[3]. Availability Policy: What service availability is needed?

The confidentiality policy that we use has been inherited from the
pencil-and-paper times before computers. Fortunately, it fits quite well.

Data integrity is an issue that is different in a computer than it is
in the pen & paper world. This is because in the P&P world, if data
should have high quality it is written in ink and never erased, so that the
evolution of its value is immediately evident. This is not the case with
computers, in which a change of value erases and overwrites the previous
value.

There is no known way to arrange that the design of some computer
hardware & software will prevent an anarchist or terrorist from setting off
a bomb to deny service. In addition to this type of drama, denial of service
attacks can be quite subtle and might be hard to distinguish from
momentarily high computational loads. What is possible is not known.

22

There is no agreement the problem’s identity, or about what solutions
might exist.

3.1. Confidentiality Security Policy

The objective of a trustworthy computer system is to control access by
subjects to objects. The security policy is a statement of intent about the
required control over access to data. For a trustworthy system to be
effectively implemented, the security policy it must enforce must be static
and must be precisely known. The security policy must represent the
pertinent laws, regulations, standards and general policies accurately.

3.1.1. U.S. Confidentiality Policy

The situation in the United States of America was, until recently, more
mature than that elsewhere and in consequence documentation is much
more readily available. For these reasons, this section will concentrate on
the US situation.

The confidentiality policy of the government of the USA is based on
several laws, Presidential Findings and Departmental Regulations. It can
be encapsulated in six simple requirements, arranged in three classes.

3.1.2. CLASS ONE – POLICY

REQUIREMENT ONE
CLASS ONE

SECURITY POLICY

There must be an explicit and well-defined
security policy enforced by the system.

For instance, US Department of Defense (DoD) directive 5200.28 requires
that classified material contained in an ADP10 system shall be
safeguarded by the continuous employment of protective features in the
system’s hardware and software design and configuration. [...] [ADP
systems that] process, store, or use classified data and produce classified
information will, with reasonable dependability, prevent:

a. Deliberate or inadvertent access to classified material by
unauthorised persons and

b. Unauthorised manipulation of the computer and its associated
peripheral devices.

10 Automatic Data Processing. Sometimes reference is made to Electronic Data

Processing (EDP) or other such terms. They are all a euphemisms, presumably
intended to assign more force to a document by concealing its content behind a fog
of alphabetic symbols. These should not be confused with mnemonics, which are
intended as an aide memoire.

23

The idea of classified material that is mentioned above has long
been established. The implication is that there is a set of classifications of
data and clearances of persons that is totally ordered. Also, there exists a
set of realms of knowledge, such that any data item of file can be a
member of none, one, or more realms. The rules for access are expressed
in terms of this arrangement, as described in the previous essay. The
combination of classification or clearance, together with one or more
categories or caveats, forms a security level. The normal way of deciding
to permit or prohibit an access involves the comparison of the security
level of the subject attempting access with the security level of the object
potentially being accessed.

The system will be composed of subjects and objects. There must be
a set of criteria that will determine whether a proposed access by a subject
to an object is to be permitted or to be prohibited. The dominance rule of
Denning, explained in previous essay, is one such criterion. Any proposed
access must either pass or fail these criteria; no access can be permitted to
evade or avoid this determination. The simple rule that existed long
before computers had been conceived is that information can not flow
downwards in the lattice. This is a restatement of the dominance relation.

Some examples:

Within a Realm of Knowledge:
This means that all relevant subjects and objects have the same category
set. A subject cleared to secret can read data classified confidential but is
prohibited from reading data classified top secret. A subject cleared to
secret can write data classified top secret (but not overwrite such data)
but is prohibited from writing data classified confidential. These actions
prohibit data from flowing from a higher level to a lower level.

Across Realms of Knowledge:
This means that all relevant subjects and objects have some category set,
not necessarily the same. Let the categories be red, white and blue. For
simplicity, let all relevant subjects and objects be cleared or classified the
same, say secret. A subject with category set (red, white) can read data
with category set (empty) or with category set (red) or with category set
(white) or with category set (red, white), but is prohibited from reading
any data with blue in its category set (even if red or white or both red and
white are also in this set). A subject with category set (red, white) can
write data with category set (red, white), or with category set (red, white,
blue). It is prohibited from writing data with any other category set.

REQUIREMENT TWO
CLASS ONE

MARKING

Access control labels must be associated with
objects.

24

This requirement is quite restrictive, because it eliminates the use
of capabilities. There are several reasons for forcing a system to be
designed this way. The revocation, destruction and confinement problems
touched on in previous essay are certainly among the more important.
The requirement associates the security data pertinent to an object with
the object, not with several subjects that may possibly or permissibly
access the data. This arrangement seems logical and elegant.

Originally, when the revocation, destruction and confinement
problems were not as well understood as they now are, it is clear to see
that this strong requirement was indicated. Modern research may,
however, solve some of these problems so that capabilities become
fashionable again – but the DoD requirements are not likely to allow them
to be used in the foreseeable future unless they are shown to be singularly
better than the present arrangement.

Access control labels include the category set, the classification, the
set of users who are to be permitted access and the set of users who are to
be denied access.

The classification is a number that can be stored in a few bits of
data. The category set can be stored in a bitstring that has a bit for each
possible category. Both these are reasonably modest in size. A system
capable of 8 sensitivity levels and 256 categories would require only 33
bytes to store this fixed length data. However, the set of users who are to
be permitted access and the set of users who are to be denied access can in
principle be long and can change dynamically and frequently. Normally
this data is stored in a compulsory ancillary file associated with the data.
This is the previously mentioned access control list (ACL).

3.1.3. CLASS TWO – ACCOUNTABILITY

REQUIREMENT THREE
CLASS TWO

IDENTIFICATION

Individual subjects must be identified.

Each access to information must be mediated. The mediation will
involve who is proposing access and what their access authorisations are.
Thus, there must exist a file of user parameters, including data
permitting identification with sufficient accuracy. The identification and
authorisation information must be securely protected.

This requirement implies the existence of a reference monitor that
contemplates any proposed information flow. If the security level of the
destination file dominates the security level of every file that is open for
reading, then data can be allowed to flow to the destination. Otherwise
there is the possibility of an unauthorised leak. For instance, suppose two

25

files are open for reading, a (red) one and a (white) one. Any file that is
opened for writing must be a (red, white) one. Otherwise, there is the
possibility of directly or indirectly writing (red) data in a (white) file, or
conversely.

The security level of the subject that triggers the write is not in
principle relevant to the permissibility of the write, unless that subject
could manipulate the data in transit. This can arise, for instance, if the
subject reads from a file into its memory and then writes the data out.
After the write the file will still be in memory. In this case the security
level of the subject must dominate the source file and must be dominated
by the destination file. This is the normal case.

This set of simple rules was imported almost unmodified from a
time long before computers could manipulate data. It has the primary
virtue of being simple to understand and simple to use11. It can be
extended to easily cover systems that include with the dominance
determination issues such as the maximum level a user is cleared to, the
minimum level a user is allowed to operate at and the actual level he or
she has assumed. Users and their agents usually operate all at one level.
Few users ever actually read data from a lower level, or write up.

The reference monitor requires the identity of the object that is the
source of the proposed access, the identity of the object that is the
destination of the proposed access and the identity of the users
accountable for the objects as well as the access rights of these entities. It
will require the identity of a subject (a subject may be part of a process, as
distinct from an executing object) proposing an access. Every access must
be mediated in this fashion. The reference monitor must govern all
proposed accesses by every subject. For efficiency reasons, the reference
monitor normally will do its mediation at the first of possibly multiple
references by a subject to an object.

REQUIREMENT FOUR
CLASS TWO

ACCOUNTABILITY

Audit information must be selectively kept and
protected so that actions affecting security can

be traced to the responsible person.

The journal of security-related events that is kept for audit is the
second-most important security protection mechanism in the system, after
the login perimeter. In almost all secure systems, governmental or
business, it is more important to detect all attempts to breach the security
policy, successful or not, than it is to prevent some of them. The

11 Any security mechanism that is not simple to understand and simple to use is

doomed to fail.

26

disclosure of data in an unauthorised way can be countered only if the
security officers are aware of it.

Sometimes the journal of security-related events can be monitored
in real-time to attempt to identify isolated problems, such as an unusual
number of failed login attempts from some source. Certainly, an audit of
the journal will require algorithmic assistance, because the volume of data
can be daunting and the evidence being sought is likely to be subtle.

3.1.4. CLASS THREE – ASSURANCE

REQUIREMENT FIVE
CLASS THREE

ASSURANCE

The computer system must contain hardware and
software mechanisms that can be independently

evaluated to provide sufficient assurance that the
system enforces requirements one through four

above.

Assurance usually gets confused with guarantee. An assurance is a
believable assertion that things should not go wrong and a commitment to
fix the system if they do go wrong. A guarantee is a useless protection
against unauthorised observation. That which has been seen, particularly
when it is unauthorised, is unlikely to be ignored or forgotten.
Documented guarantees are accompanied by emphatic assertions about
the good intentions and the resolve of the guarantor. An assurance is a
demonstration that some level of confidence can safely be placed in the
guarantee. The distinction is important and the assurance is the
important thing, because the security policy establishes the required
guarantee.

All the Generally Accepted Standards of Good Practice (GASGPS)
that have been developed in general engineering practice and in software
engineering must be deployed to develop a high level of confidence that
the system meets the policy. Without going into much detail, a system
that could be considered to have high assurance of enforcing the policy is
one that

• has been specified to meet some particular requirement and that

• has been designed to meet the specification and that

• has the right hardware configuration and that

• has been documented thoroughly before it is built, including testing
and that

27

• has been written by disciplined programmers according to the
specification and that

• passes all tests and that

• is highly resistant to penetration by a team of experienced security
personnel (often called a tiger team, for unknown reasons) even
when they are provided with the entire specification, the
documentation and the source code.

All this, regrettably, is not enough in the most sensitive case. The
assurance developed by the method described above finally boils down to
proof by emphatic assertion. No absolutely convincing proof, in the
meaning of the word in logic, will have been developed. As will be shown
later, in the most demanding cases it is necessary to construct an abstract
mathematical model of the system and to show that

• once the abstract model of the system gets into a secure state it can
not be driven into a state where insecurity is possible and that

• the actual system is an instance of the abstract model and conversely
and that

• the many details that erupt when the abstraction is solidified are not
in themselves a problem and can be proven to be consistent with the
abstraction and that

• the system can fail and recover from failure securely.

We will look into abstract models in a later essay.

REQUIREMENT SIX
CLASS THREE

CONTINUOUS PROTECTION

The trusted mechanisms that enforce these
basic requirements must be continuously

protected against tampering or unauthorised
changes.

This merely states the obvious. The system must protect itself
against meddlers. Much of the material discussed above in requirement
five applies directly to this case. Requirement six applies to the entire
development cycle and can at the higher levels of assurance involve
detailed methodologies to be used at the time software is written to guard
against the inclusion of Trojan horses or other unwanted excrescences.

28

3.2. The Orange Book

The following sections are reproduced more or less verbatim from the
TRUSTED COMPUTER SYSTEMS EVALUATION CRITERIA (TCSEC). Recently,
these criteria have been replaced by criteria common to many NATO
countries. However, the principles remain the same.

3.2.1 Summary of Evaluation Criteria Classes

The classes of systems recognised under the trusted computer system
evaluation criteria are given next. They are presented in order of
increasing desirability from a computer security point of view.

Class D:
Minimal
Protection

This class is reserved for those systems that have been
evaluated but that fail to meet the requirements for a higher
evaluation class.

Class C1:
Discretionary
Security
Protection

The Trusted Computing base (TCB) of a class C1 system
nominally satisfies the discretionary security requirements
by providing separation of users and data. It incorporates
some form of credible controls capable of enforcing access
limitations on an individual basis, i.e., ostensibly suitable
for allowing users to be able to protect project or private
information and to keep other users from accidentally
reading or destroying their data. The class C1 environment
is expected to be one of co-operating users processing data at
the same level(s) of sensitivity.

Class C2:
Controlled
Access
Protection

Systems in this class enforce a more finely grained
discretionary access control than C1 systems, making users
individually accountable for their actions through login
procedures, auditing of security-relevant events and
resource isolation.

Class B1:
Labelled
Security
Protection

Class B1 systems require all the features required for class
C2. In addition, an informal statement of the security policy
model, data labeling and mandatory access control over
named subjects and objects must be present. The capability
must exist for accurately labelling exported information.
Any flaws identified by testing must be removed.

29

Class B2:
Structured
Protection

In class B2 systems, the TCB is based on a clearly defined
and documented formal security policy model that requires
the discretionary and mandatory access control enforcement
found in class B1 systems to be extended to all subjects and
objects in the ADP system. In addition, covert channels are
addressed. The TCB must be carefully structured into
protection-critical and non-protection-critical elements. The
TCB interface is well defined and the TCB design and
implementation enable it to be subjected to more thorough
testing and more complete review. Authentication
mechanisms are strengthened, trusted facility management
is provided in the form of support for system administrator
and operator functions and stringent configuration
management controls are imposed. The system is relatively
resistant to penetration.

Class B3:
Security
Domains

The class B3 TCB must satisfy the reference monitor
requirements that it mediate all accesses of subjects to
objects, be tamper proof and be small enough to be subjected
to analysis and tests. To this end, the TCB is structured to
exclude code not essential to security policy enforcement,
with significant system engineering during TCB design and
implementation directed toward minimising its complexity.
A security administrator is supported, audit mechanisms
are expanded to signal security-relevant events and system
recovery procedures are required. The system is highly
resistant to penetration.

Class A1:
Verified
Design

Systems in class A1 are functionally equivalent to those in
class B3 in that no additional architectural features or
policy requirements are added. The distinguishing feature
of systems in this class is the analysis derived from formal
design specification and verification techniques and the
resulting high degree of assurance that the TCB is correctly
implemented. This assurance is developmental in nature,
starting with a formal model of the security policy and a
formal top-level specification (FTLS) of the design. In
keeping with the extensive design and development analysis
of the TCB required of systems in class A1, more stringent
configuration management is required and procedures are
established for securely distributing the system to sites. A
system security administrator is supported.

3.2.2 Requirement Directory

This appendix in the TCSEC lists its requirements alphabetically rather
than by class. It is provided to assist the reader in following the evolution
of a requirement through the classes. For each requirement, three types
of criteria may be present. Each will be preceded by the word: NEW,
CHANGE, or ADD to indicate the following:

NEW: Any criteria appearing in a lower class are superseded by
the criteria that follow.

30

CHANGE: The criteria that follow have appeared in a lower class but
are changed for this class. Highlighting is used to indicate
the specific changes to previously stated criteria.

ADD: The criteria that follow have not been required for any
lower class and are added in this class to the previously
stated criteria for this requirement.

Abbreviations are used as follows:

NR: (No Requirement) This requirement is included in this class.

NAR: (No Additional Requirements) This requirement does not
change from the previous class.

The reader is referred to TCSEC when placing new criteria for a
requirement into the complete context for that class. Figure 1 provides a
pictorial summary of the evolution of requirements through the classes.

Audit

C1: NR.

C2: NEW: The TCB shall be able to create, maintain and protect from
modification or unauthorised access or destruction an audit trail of
accesses to the objects it protects. The audit data shall be protected
by the TCB so that read access to it is limited to those who are
authorised for audit data. The TCB shall be able to record the
following types of events: use of identification and authentication
mechanisms, introduction of objects into a user’s address space
(e.g., file open, program initiation), deletion of objects, actions taken
by computer operators and system administrators and/or system
security officers and other security relevant events. For each
recorded event, the audit record shall identify: date and time of the
event, user, type of event and success or failure of the event. For
identification or authentication events the origin of request (e.g.,
terminal ID) shall be included in the audit record. For events that
introduce an object into a user’s address space and for object
deletion events the audit record shall include the name of the
object. The ADP system administrator shall be able to audit
selectively the actions of any one or more users based on individual
identity.

B1 : CHANGE: For events that introduce an object into a user’s address
space and for object deletion events the audit record shall include
the name of the objects and the object’s security level. The ADP
system administrator shall be able to audit selectively the actions of
any one or more users based on individual identity and/or object
security level.

ADD: The TCB shall also be able to audit any override of human-
readable output markings.

31

B2 : ADD: The TCB shall be able to audit the identified events that may
be used in the exploitation of covert storage channels.

B3 : ADD: The TCB shall contain a mechanism that is able to monitor
the occurrence or accumulation of security events that are subject to
audit that may indicate an imminent violation of security policy.
This mechanism shall be able to notify immediately the security
administrator when thresholds are exceeded and, if the occurrence
or accumulation of these security relevant events continues, the
system shall take the least disruptive action to terminate the event.

A1 : NAR.

Configuration Management

C1 : NR.

C2 : NR.

B1 : NR.

B2 : NEW: During development and maintenance of the TCB, a
configuration management system shall be in place that maintains
control of changes, to the descriptive top-level specification, other
design data, implementation documentation, source code, the
running version of the object code and test fixtures and
documentation. The configuration management system shall
assure a consistent mapping among all documentation and code
associated with the current version of the TCB. Tools shall be
provided for generation of a new version of the TCB from source
code. Also available shall be tools for comparing a newly generated
version with the previous TCB version in order to ascertain that
only the intended changes have been made in the code that will
actually be used as the new version of the TCB.

B3 : NAR.

A1 : CHANGE: During the entire life-cycle, i.e., during the design,
development and maintenance of the TCB, a configuration
management system shall be in place for all security-relevant
hardware, firmware and software that maintains control of changes
to the formal model, the descriptive and formal top-level
specifications, other design data, implementation documentation,
source code, the running version of the object code and test fixtures
and documentation. Also available shall be tools, maintained
under strict configuration control, for comparing a newly generated
version with the previous TCB version in order to ascertain that
only the intended changes have been made in the code that will
actually be used as the new version of the TCB.

ADD: A combination of technical, physical and procedural
safeguards shall be used to protect from unauthorised modification

32

or destruction the master copy or copies of all material used to
generate the TCB.

Covert Channel Analysis

C1 : NR.

C2 : NR.

B1 : NR.

B2 : NEW: The system developer shall conduct a thorough search for
covert storage channels and make a determination (either by actual
measurement or by engineering estimation) of the maximum
bandwidth of each identified channel. (See the Covert Channels
Guideline section.)

B3 : CHANGE: The system developer shall conduct a thorough search
for covert channels and make a determination (either by actual
measurement or by engineering estimation) of the maximum
bandwidth of each identified channel.

A1 : ADD: Formal methods shall be used in the analysis.

Design Documentation

C1 : NEW: Documentation shall be available that provides a description
of the manufacturer’s philosophy of protection and an explanation
of how this philosophy is translated into the TCB. If the TCB is
composed of distinct modules, the interfaces between these modules
shall be described.

C2 : NAR.

B1 : ADD : An informal or formal description of the security policy
model enforced by the TCB shall be available and an explanation
provided to show that it is sufficient to enforce the security policy.
The specific TCB protection mechanisms shall be identified and an
explanation given to show that they satisfy the model.

B2 : CHANGE: The interfaces between the TCB modules shall be
described. A formal description of the security policy model
enforced by the TCB shall be available and proven that it is
sufficient to enforce the security policy.

ADD: The descriptive top-level specification (DTLS) shall be shown
to be an accurate description of the TCB interface. Documentation
shall describe how the TCB implements the reference monitor
concept and give an explanation why it is tamper resistant, cannot
be bypassed and is correctly implemented. Documentation shall
describe how the TCB is structured to facilitate testing and to
enforce least privilege. This documentation shall also present the

33

results of the covert channel analysis and the trade-offs involved in
restricting the channels. All events that are subject to audit and
that may be used in the exploitation of known covert storage
channels shall be identified. The bandwidths of known covert
storage channels, the use of which is not detectable by the auditing
mechanisms, shall be provided. (See the Covert Channel Guideline
section.)

B3 : ADD: The TCB implementation (i.e., in hardware, firmware and
software) shall be informally shown to be consistent with the DTLS.
The elements of the DTLS shall be shown, using informal
techniques, to correspond to the elements of the TCB.

A1 : CHANGE: The TCB implementation (i.e., in hardware, firmware
and software) shall be informally shown to be consistent with the
formal top-level specification (FTLS). The elements of the FTLS
shall be shown, using informal techniques, to correspond to the
elements of the TCB.

ADD: Hardware, firmware and software mechanisms not dealt with
in the FTLS but strictly internal to the TCB (e.g., mapping
registers, direct memory access I/O) shall be clearly described.

Design Specification and Verification

C1 : NR.

C2 : NR.

B1 : NEW : An informal or formal model of the security policy
supported by the TCB shall be maintained over the life cycle of the
ADP system and demonstrated to be consistent with its axioms.

B2 : CHANGE :A formal model of the security policy supported by the
TCB shall be maintained over the life cycle of the ADP system that
is proven consistent with its axioms.

ADD: A descriptive top-level specification (DTLS) of the TCB shall
be maintained that completely and accurately describes the TCB in
terms of exceptions, error messages and effects. It shall be shown
to be an accurate description of the TCB interface.

B3 : ADD : A convincing argument shall be given that the DTLS is
consistent with the model.

A1 : CHANGE: The FLTS shall be shown to be an accurate description
of the TCB interface. A convincing argument shall be given that
the DTLS is consistent with the model and a combination of formal
and informal techniques shall be used to show that the FTLS is
consistent with the model.

34

ADD: A formal top-level specification (FTLS) of the TCB shall be
maintained that accurately describes the TCB in terms of
exceptions, error messages and effects. The DTLS and FTLS shall
include those components of the TCB that are implemented as
hardware and/or firmware if their properties are visible at the TCB
interface. This verification evidence shall be consistent with that
provided within the state-of-the-art of the particular National
Computer Security Center-endorsed formal specification and
verification system used. Manual or other mapping of the FTLS to
the TCB source code shall be performed to provide evidence of
correct implementation.

Device Labels

C1 : NR.

C2 : NR.

B1 : NR.

B2 : NEW: The TCB shall support the assignment of minimum and
maximum security levels to all attached physical devices. These
security levels shall be used by the TCB to enforce constraints
imposed by the physical environments in which the devices are
located.

B3 : NAR.

A1 : NAR.

Discretionary Access Control

C1 : NEW: The TCB shall define and control access between named
users and named objects (e.g., files and programs) in the ADP
system. The enforcement mechanism (e.g., self/group/public
controls, access control lists) shall allow users to specify and control
sharing of those objects by named individuals or defined groups or
both.

C2 : CHANGE: The enforcement mechanism (e.g., self/group/public
controls, access control lists) shall allow users to specify and control
sharing of those objects by named individuals, or defined groups of
individuals, or by both and shall provide controls to limit
propagation of access rights.

ADD: The discretionary access control mechanism shall, either by
explicit user action or by default, provide that objects are protected
from unauthorised access. These access controls shall be capable of
including or excluding access to the granularity of a single user.
Access permission to an object by users not already possessing
access permission shall only be assigned by authorised users.

35

B1 : NAR.

B2 : NAR.

B3 : CHANGE: The enforcement mechanism (e.g., access control lists)
shall allow users to specify and control sharing of those objects and
shall provide controls to limit propagation of access rights. These
access controls shall be capable of specifying, for each named object,
a list of named individuals and a list of groups of named
individuals with their respective modes of access to that object.

ADD: Furthermore, for each such named object, it shall be possible
to specify a list of named individuals and a list of groups of named
individuals for which no access to the object is to be given.

A1 : NAR.

Exportation of Labelled Information

C1 : NR.

C2 : NR.

B1 : NEW: The TCB shall designate each communication channel and
I/O device as either single-level or multilevel. Any change in this
designation shall be done manually and shall be audited by the
TCB. The TCB shall maintain and be able to audit any change in
the security level or levels associated with a communication
channel or I/O device.

B2 : NAR.

B3 : NAR.

A1 : NAR.

Exportation to Multilevel Devices

C1 : NR.

C2 : NR.

B1 : NEW: When the TCB exports an object to a multilevel I/O device,
the sensitivity label associated with that object shall also be
exported and shall reside on the same physical medium as the
exported information and shall be in the same form (i.e., machine-
readable or human-readable form). When the TCB exports or
imports an object over a multilevel communication channel, the
protocol used on that channel shall provide for the unambiguous
pairing between the sensitivity labels and the associated
information that is sent or received.

B2 : NAR.

36

B3 : NAR.

A1 : NAR.

Exportation to Single-Level Devices

C1 : NR.

C2 : NR.

B1 : NEW: Single-level I/O devices and single-level communication
channels are not required to maintain the sensitivity labels of the
information they process. However, the TCB shall include a
mechanism by which the TCB and an authorised user reliably
communicate to designate the single security level of information
imported or exported via single-level communication channels or
I/O devices.

B2 : NAR.

B3 : NAR.

A1 : NAR.

Identification and Authentication

C1 : NEW: The TCB shall require users to identify themselves to it
before beginning to perform any other actions that the TCB is
expected to mediate. Furthermore, the TCB shall use a protected
mechanism (e.g., passwords) to authenticate the user’s identity.
The TCB shall protect authentication data so that any
unauthorised user cannot access it.

C2 : ADD: The TCB shall be able to enforce individual accountability by
providing the capability to identify uniquely each individual ADP
system user. The TCB shall also provide the capability of
associating this identity with all audited actions taken by that
individual.

B1 : CHANGE: Furthermore, the TCB shall maintain authentication
data that includes information for verifying the identity of
individual users (e.g., passwords) as well as information for
determining the clearance and authorisations of individual users.
This data shall be used by the TCB to authenticate the user’s
identity and to ensure that the security level and authorisation of
subjects external to the TCB that may be created to act on behalf of
the individual user are dominated by the clearance and
authorisation of that user.

B2 : NAR.

B3 : NAR.

37

A1 : NAR.

Label Integrity

C1 : NR.

C2 : NR.

B1 : NEW: Sensitivity labels shall accurately represent security levels of
the specific subjects or objects with which they are associated.
When exported by the TCB, sensitivity labels shall accurately and
unambiguously represent the internal labels and shall be
associated with the information being exported.

Labeling Human-Readable Output

C1 : NR.

C2 : NR.

B1 : NEW: The ADP system administrator shall be able to specify the
printable label names associated with exported sensitivity labels.
The TCB shall mark the beginning and end of all human-readable,
paged, hardcopy output (e.g., line printer output) with human-
readable sensitivity labels that properly12 represent the sensitivity
of the output. The TCB shall, by default, mark the top and bottom
of each page of human-readable, paged, hardcopy output (e.g., line
printer output) with human-readable sensitivity labels that
properly represent the overall sensitivity of the output or that
properly represent the sensitivity of the information on the page.
The TCB shall, by default and in an appropriate manner, mark
other forms of human-readable output (e.g., maps, graphics) with
human-readable sensitivity labels that properly represent the
sensitivity of the output. Any override of these marking defaults
shall be audited by the TCB.

B2 : NAR.

B3 : NAR.

A1 : NAR.

Labels

C1 : NR.

C2 : NR.

12 The hierarchical classification component in human-readable sensitivity labels

shall be equal to the greatest hierarchical classification of any of the information in
the output that the labels refer to; the non-hierarchical category component shall
include all of the non-hierarchical categories of the information in the output the
labels refer to, but no other non-hierarchical categories.

38

B1 : NEW: Sensitivity labels associated with each subject and storage
object under its control (e.g., process, file, segment, device) shall be
maintained by the TCB. These labels shall be used as the basis for
mandatory access control decisions. In order to import non-labelled
data, the TCB shall request and receive from an authorised user
the security level of the data and all such actions shall be audited
by the TCB.

B2 : CHANGE: Sensitivity labels associated with each ADP system
resource (e.g., subject, storage object, ROM) that is directly or
indirectly accessible by subjects external to the TCB shall be
maintained by the TCB.

B3 : NAR.

A1 : NAR.

Mandatory Access Control

C1 : NR.

C2 : NR.

B1 : NEW: The TCB shall enforce a mandatory access control policy over
all subjects and storage objects under its control (e.g., processes,
files, segments, devices). These subjects and objects shall be
assigned sensitivity labels that are a combination of hierarchical
classification levels and non-hierarchical categories and the labels
shall be used as the basis for mandatory access control decisions.
The TCB shall be able to support two or more such security levels.
(See the Mandatory Access Control guidelines.) The following
requirements shall hold for all accesses between subjects and
objects controlled by the TCB:

A subject can read an object only if the hierarchical classification in
the subject’s security level is greater than or equal to the
hierarchical classification in the object’s security level and the non-
hierarchical categories in the subject’s security level include all the
non-hierarchical categories in the object’s security level. A subject
can write an object only if the hierarchical classification in the
subject’s security level is less than or equal to the hierarchical
classification in the object’s security level and all the non-
hierarchical categories in the subject’s security level are included in
the non-hierarchical categories in the object’s security level.
Identification and authentication data shall be used by the TCB to
authenticate the user’s identity and to ensure that the security
level and authorisation of subjects external to the TCB that may be
created to act on behalf of the individual user are dominated by the
clearance and authorisation of that user.

39

B2 : CHANGE: The TCB shall enforce a mandatory access control policy
over all resources (i.e., subjects, storage objects and I/O devices)
that are directly or indirectly accessible by subjects external to the
TCB. The following requirements shall hold for all accesses
between all subjects external to the TCB and all objects directly or
indirectly accessible by these subjects:

B3 : NAR.

A1 : NAR.

Object Reuse

C1 : NR.

C2 : NEW : All authorisations to the information contained within a
storage object shall be revoked prior to initial assignment,
allocation or reallocation to a subject from the TCB’s pool of unused
storage objects. No information, including encrypted
representations of information, produced by a prior subject’s actions
is to be available to any subject that obtains access to an object that
has been released back to the system.

B1 : NAR.

B2 : NAR.

B3 : NAR.

A1 : NAR.

Security Features User’s Guide

C1 : NEW : A single summary, chapter, or manual in user
documentation shall describe the protection mechanisms provided
by the TCB, guidelines on their use and how they interact with one
another.

C2 : NAR.

B1 : NAR.

B2 : NAR.

B3 : NAR.

A1 : NAR.

Security Testing

C1 : NEW: The security mechanisms of the ADP system shall be tested
and found to work as claimed in the system documentation.
Testing shall be done to assure that there are no obvious ways for

40

an unauthorised user to bypass or otherwise defeat the security
protection mechanisms of the TCB. (See the Security Testing
guidelines.)

C2 : ADD: Testing shall also include a search for obvious flaws that
would allow violation of resource isolation, or that would permit
unauthorised access to the audit or authentication data.

B1 : NEW: The security mechanisms of the ADP system shall be tested
and found to work as claimed in the system documentation. A team
of individuals who thoroughly understand the specific
implementation of the TCB shall subject its design documentation,
source code and object code to thorough analysis and testing. Their
objectives shall be: to uncover all design and implementation flaws
that would permit a subject external to the TCB to read, change, or
delete data normally denied under the mandatory or discretionary
security policy enforced by the TCB; as well as to assure that no
subject (without authorisation to do so) is able to cause the TCB to
enter a state such that it is unable to respond to communications
initiated by other users. All discovered flaws shall be removed or
neutralised and the TCB re-tested to demonstrate that they have
been eliminated and that new flaws have not been introduced. (See
the Security Testing Guidelines.)

B2 : CHANGE :All discovered flaws shall be corrected and the TCB re-
tested to demonstrate that they have been eliminated and that new
flaws have not been introduced.

ADD: The TCB shall be found relatively resistant to penetration.
Testing shall demonstrate that the TCB implementation is
consistent with the descriptive top-level specification.

B3 : CHANGE: The TCB shall be found resistant to penetration.

ADD: No design flaws and no more than a few correctable flaws
may be found during testing and there shall be reasonable
confidence that few remain.

A1 : CHANGE: Testing shall demonstrate that the TCB implementation
is consistent with the formal top-level specification.

ADD: Manual or other mapping of the FTLS to the source code may
form a basis for penetration testing.

Subject Sensitivity Labels

C1 : NR.

C2 : NR.

B1 : NR.

41

B2 : NEW: The TCB shall immediately notify a terminal user of each
change in the security level associated with that user during an
interactive session. A terminal user shall be able to query the TCB
as desired for a display of the subject’s complete sensitivity label.

B3 : NAR.

A1 : NAR.

System Architecture

C1 : NEW: The TCB shall maintain a domain for its own execution that
protects it from external interference or tampering (e.g., by
modification of its code or data structures). Resources controlled by
the TCB may be a defined subset of the subjects and objects in the
ADP system.

C2 : ADD: The TCB shall isolate the resources to be protected so that
they are subject to the access control and auditing requirements.

B1 : ADD: The TCB shall maintain process isolation through the
provision of distinct address spaces under its control.

B2 : NEW: The TCB shall maintain a domain for its own execution that
protects it from external interference or tampering (e.g., by
modification of its code or data structures). The TCB shall
maintain process isolation through the provision of distinct address
spaces under its control. The TCB shall be internally structured
into well-defined largely independent modules. It shall make
effective use of available hardware to separate those elements that
are protection-critical from those that are not. The TCB modules
shall be designed such that the principle of least privilege is
enforced. Features in hardware, such as segmentation, shall be
used to support logically distinct storage objects with separate
attributes (namely: readable, writeable). The user interface to the
TCB shall be completely defined and all elements of the TCB
identified.

B3 : ADD: The TCB shall be designed and structured to use a complete,
conceptually simple protection mechanism with precisely defined
semantics. This mechanism shall play a central role in enforcing
the internal structuring of the TCB and the system. The TCB shall
incorporate significant use of layering, abstraction and data hiding.
Significant system engineering shall be directed toward minimising
the complexity of the TCB and excluding from the TCB modules
that are not protection-critical.

A1 : NAR.

42

System Integrity

C1 : NEW: Hardware and/or software features shall be provided that
can be used periodically to validate the correct operation of the non-
site hardware and firmware elements of the TCB.

C2 : NAR.

B1 : NAR.

B2 : NAR.

B3 : NAR.

A1 : NAR.

Test Documentation

C1 : NEW: The system developer shall provide to the evaluators a
document that describes the test plan, test procedures that show
how the security mechanisms were tested and results of the
security mechanisms’ functional testing.

C2 : NAR.

B1 : NAR.

B2 : ADD: It shall include results of testing the effectiveness of the
methods used to reduce covert channel bandwidths.

B3 : NAR.

A1 : ADD: The results of the mapping between the formal top-level
specification and the TCB source code shall be given.

Trusted Distribution

C1 : NR.

C2 : NR.

B1 : NR.

B2 : NR.

B3 : NR.

A1 : NEW : A trusted ADP system control and distribution facility
shall be provided for maintaining the integrity of the mapping
between the master data describing the current version of the TCB
and the on-site master copy of the code for the current version.
Procedures (e.g., site security acceptance testing) shall exist for
assuring that the TCB software, firmware and hardware updates

43

distributed to a customer are exactly as specified by the master
copies.

Trusted Facility Management

C1 : NR.

C2 : NR.

B1 : NR.

B2 : NEW: The TCB shall support separate operator and administrator
functions.

B3 : ADD: The functions performed in the role of a security
administrator shall be identified. The ADP system administrative
personnel shall only be able to perform security administrator
functions after taking a distinct audited action to assume the
security administrator role on the ADP system. Non-security
functions that can be performed in the security administration role
shall be limited strictly to those essential to performing the security
role effectively.

A1 : NAR.

Trusted Facility Manual

C1 : NEW : A manual addressed to the ADP system administrator
shall present cautions about functions and privileges that should be
controlled when running a secure facility.

C2 : ADD: The procedures for examining and maintaining the audit files
as well as the detailed audit record structure for each type of audit
event shall be given.

B1 : ADD: The manual shall describe the operator and administrator
functions related to security, to include changing the security
characteristics of a user. It shall provide guidelines on the
consistent and effective use of the protection features of the system,
how they interact, how to generate securely a new TCB and facility
procedures, warnings and privileges that need to be controlled in
order to operate the facility in a secure manner.

B2 : ADD: The TCB modules that contain the reference validation
mechanism shall be identified. The procedures for secure
generation of a new TCB form source after modification of any
modules in the TCB shall be described.

B3 : ADD: It shall include the procedures to ensure that the system is
initially started in a secure manner. Procedures shall also be
included to resume secure system operation after any lapse in
system operation.

44

A1 : NAR.

Trusted Path

C1 : NR.

C2 : NR.

B1 : NR.

B2 : NEW: The TCB shall support a trusted communication path
between itself and user for initial login and authentication.
Communications via this path shall be initiated exclusively by a
user.

B3 : CHANGE: The TCB shall support a trusted communication path
between itself and users for use when a positive TCB-to-user
connection is required (e.g., login, change subject security level).
Communications via this trusted path shall be activated exclusively
by a user or the TCB and shall be logically isolated and
unmistakably distinguishable from other paths.

A1 : NAR.

Trusted Recovery

C1 : NR.

C2 : NR.

B1 : NR.

B2 : NR.

B3 : NEW: Procedures and/or mechanisms shall be provided to assure
that, after an ADP system failure or other discontinuity, recovery
without a protection compromise is obtained.

A1 : NAR.

45

3.2.3 Summary of the TCSEC

Figure 1.: Summary of the TCSEC
C1 C2 B1 B2 B3 A1

SECURITY POLICY
Discretionary Access Control
Object Reuse
Labels
Label Integrity
Exportation of labelled information
Exportation to Multi-Level Devices
Exportation to Single-Level Devices
Labelling Human-Readable Output
Mandatory Access Control
Subject Sensitivity Labels
Device Labels

ACCOUNTABILITY
Identification and Authentication
Audit
Trusted Path

ASSURANCE
System Architecture
System Integrity
Security Testing
Design Specification and Verification
Covert Channel Analysis
Trusted Facility Management
Configuration Management
Trusted Recovery
Trusted Distribution

DOCUMENTATION
Security Features User’s Guide
Trusted Facility Manual
Test Documentation
Design Documentation

LEGEND
No additional requirements
New or enhanced requirements
No requirements

46

3.3. A Formal Model of Access Systems

The material presented here is modelled on the work of Harrison, Ruzzo
and Ullman13. Here, the work has been updated and modified to be
compatible with modern terminology. The original paper concludes with
some analytical results that show that, in effect, a determination of
whether an access privilege has been confined is an NP-complete problem.
This result is interesting but somewhat dusty — DAC is still used with
effectiveness. Work by Sandhu14 extends the notions developed here.

This descriptive power and elegance of the HRU model of access
systems is still significant. A description of an access system using HRU is
close to a specification of it.

Definition: An access system consists of the following parts:

1. An access matrix A with a row for every subject S and a column for
every object O , containing the permitted accesses of subject S to
object O . Elements of A are designated by the row-column pair

 Xs, Xo[]. The elements of A are members of a set of privileges R .
For our purposes R = { ˆ o , r,w,x} . These mean, respectively, own,
read, write and execute.

2. A set of (DAC) commands of the form

command
 α (X1 , X2 ,L, Xk)

if
 r1 in [Xs1 , Xo1

] and

 r2 in [Xs2
, Xo2

] and
•••

 rm in [Xsm
, Xom

] and

 Xo1
 has some identified property and

 Xo2
 has some identified property and

•••

 Xom
 has some identified property

then
 op 1

 op 2

 op n

end α

In this command, α is the name of the command. Each r j ∈R , the

 X j are the parameters of the command, the Xs j
 and Xo j

 are both

13 M.A. Harrison, W.L. Ruzzo, and J.D. Ullman, "Protection in Operating Systems",

CACM, Vol. 19, No. 8, 1976 August, pp. 461-71.
14 Ravi Sandhu, Esorics 1994, Brighton.

47

parameters, respectively identifying a subject and an object and the op j

are each one of the set of primitive operations in the table below. Let
 r ∈ R .

enter r into [Xsj
, Xo j

] create object Xo j

delete r from [Xsj
, Xo j

] destroy subject Xs j

create subject Xs j
destroy object Xo j

The primitive operations are assumed to be protected, trusted and to
be indivisible and uninterruptible. We will see later that the
primitive operations are included in the TCB and that many of the
commands need to be there too.

The predicate following the if in the command is called the condition
of the command. It is constructed from an intersection of sub-
conditions that are each presumed to be indivisible and
uninterruptible. The series of primitive operations is called the body
Of the command.

Definition: A configuration is the triple (S, O, A) .

A configuration of the access system is the triple (S, O, A) . Each
member of S has a unique member of O that directly corresponds to
it. There are additional members of O that can never become
subjects, or that can become subjects but are not one at this time.
The later are called executable objects.

3.3.1. The Trusted Subjects

The commands that exist form a set of trusted subjects. The following is
an example list of possible trusted subjects.

A subject can always create a file:

command CREATE_FILE (Xs, Xo)
create object Xo

enter ̂ o into [Xs, Xo]
end CREATE_FILE

A subject can create another subject if it has the proper access.
The created subject needs to be given access to some data before it can do
anything. This is one of the places that the confinement problem arises.
There has never been a satisfactory rule developed that will properly
allocate a domain of execution to confine a privilege. In the following the
subject s2 is the name of the subject created by subject s1 when it asks for
object o to be executed.

48

command CREATE_SUBJECT (Xs1 , Xo, Xs2
)

if
 ̂ o in [Xs1 , Xo] and

 x in [Xs1 , Xo]
then

create subject Xs2

end CREATE_SUBJECT

A subject s1 can confer a privilege to access some object o on a
subject s2 .

command CONFER_READ (Xs1 , Xo, Xs2
)

if
 ̂ o in [Xs1 , Xo]

then
enter r into [Xs2

, Xo]
end CONFER_READ

Any of the privileges {r,w, x} ∈ R can be passed on in this way. Any
previously conferred privilege can be revoked with an analogous
command.

command REVOKE_READ (Xs1 , Xo, Xs2
)

if
 ̂ o in [Xs1 , Xo] and
 r in [Xs2

, Xo]
then

delete r from [Xs2
, Xo]

end REVOKE_READ

A subject s1 can transfer ownership ̂ o of some object o to a subject

 s2 . This is limited in the obvious way because only one subject can own
any object.

command CONFER_OWN (Xs1 , Xo, Xs2
)

if
 ̂ o in [Xs1 , Xo]

then
enter ̂ o into [Xs2

, Xo]
delete ̂ o into [Xs1 , Xo]

end CONFER_OWN

A subject s can always remove a file o that it owns. This leaves
dangling the issue of revoking all accesses by other subjects to the file.
These will be presumed not to exist. Otherwise the privileges all other
subjects would need to be polled. This is an example of the advantages of

49

access control lists, stored with the file and vanishing with the file, over
capabilities.

command REMOVE_FILE (Xs, Xo)
if

 ̂ o in [Xs1 , Xo]
then

destroy object Xo

end REMOVE_FILE

The removal of the file o above is not without difficulties. Several
subjects may have been given access rights to the file. When it is removed
there is no obviously efficient way to revoke these rights. In modern
systems this deficiency is overcome by keeping with the file an access
control list (ACL) that lists all subjects (users) that have access rights. At
least in theory if the object is removed the access control list can be used
to destroy any outstanding rights.

A subject s1 can remove another subject s2 if it has the proper
access. This leaves dangling the issue of revoking all accesses by the
destroyed subject to any objects it may have permission to access. As long
as no subsequently created subject can assume the identity of the removed
subject there should be no security problem, at least in theory. Cluttering
up the access matrix with latent privileges belonging to dead (perhaps
long dead) subjects does not seem sensible. Some method of revocation is
needed. Of course, if capabilities are being used they will all disappear
with the subject s2 . In the following, the subject s2 is assumed to have
previously resulted from the execution of the object o by s1.

command REMOVE_SUBJECT (Xs1 , Xo, Xs2
)

if
 ̂ o in [Xs1 , Xo] and

 x in [Xs1 , Xo]
then

destroy subject Xs2

end REMOVE_SUBJECT

3.3.2. Command Semantics

It is possible to give precise mathematical meaning to each of the
primitive operations. The starting point is the configuration (S, O, A) .
After the operation the configuration becomes (′ S , ′ O , ′ A). Let s ∈S and
 o ∈O . An example for CONFER_READ is given. The rest are left as an
exercise.

 (S, O, A) ⇒ (′ S , ′ O , ′ A) if op is the primitive operation enter r into

 [Xs, Xo] .

 ′ S = S, ′ O = O, ′ A si ,oi
= Asi ,oi

 if si ,oi ≠ s,o and ′ A s ,o = As ,o ∪ {r}.

50

3.3.3. Access Control

The command set that can be constructed from these primitive operations
can implement an effective DAC access control system. The number of
privileges might need to be expanded to include, for example, the privilege
append as well as the privilege write. As a second example, often the
privilege search (frequently coded as execute) is given to a subject for an
object that is a directory. This is in itself meaningless and is used to
imply that the subject has the privilege to search the directory. Gligor
et al15 use the four privileges read, write, execute and null. Other
privileges are contrived from these with considerable difficulty.

To make such a system usable in practice it should be able to
confine access privilege propagation. We will reason about this issue
here.

Consider a multi-pass compiler. Such a program is commonplace
and mundane. It should not need special privileges to do its job. When a
user invokes the compiler it must have conferred upon it at least read
access privilege for the source program. This is easy to do. The user owns
the source program and can perform a command similar to the
CONFER_READ command shown above. The first pass of the compiler will
be able to read the program it is supposed to be compiling.

The first pass of the compiler produces some intermediate output,
intended as input for the second pass. This output must be written, so
whoever owns it must grant write privilege to the compiler. Who owns
this output? It is not legitimate for the compiler to own it, because
ownership must be traceable to a user if accountability is to be effective
and the owner of the compiler is the compiler writer or his or her
employer, or perhaps the superuser in some guise. The logical owner of
the intermediate output is the user for whom the compiler is working.
This user must somehow assign appropriate privileges to the succession of
compiler passes, presumably without responding to frequent and obscure
requests for privilege from the compiler16. Thus the compiler must pass
on the necessary privileges on behalf of the user.

This need for the ability to pass privilege is the origin of the
confinement problem. Just about any program that is more than trivial
will need some privilege to receive input, to deal with files, or to return
output. If the program is a trusted system program it can be guaranteed
with assurance that the privileges will be confined. If the program is
homemade, or if it is as complicated as typical compilers are, the
guarantee can be asserted but the assurance is doubtful at best.

15 Virgil Gligor with eight other authors, "Design and Implementation of Secure

Xenix", IEEE Transactions on Software Engineering, Vol. SE-13, No. 2, February
1987, pages 208-221. Xenix is a dialect of UNIX System V.

16 These requests would constitute a violation of the principle of ease of safe use.
Almost no users would have the knowledge to decide whether any given request is
sensible or possibly evidence of an intruder.

51

3.3.4. Delegated Ownership

A number of proposals17 have been made to delegate from the owner of an
object some of his or her privilege-passing authority to an agent. Thus,
the owner of a source program might pass "temporary ownership" to the
compiler. The compiler could proceed to do whatever it needed and could
renounce its temporary ownership when it is finished.

While this process can be presented as progress, it exacerbates the
confinement problem by hiding it behind a veil of delegated ownership.
The user can only guess at what the agent is doing behind the veil.
Attempts to limit the agent's delegated ownership privileges – the
beginning of the delegation of least privilege – have not yet proven
successful.

3.3.5. Avoiding Confinement Problems

Can the command set be constructed so that, if confinement can not be
escaped problems with it can at least be detected? Recall the general
structure of a command:

command
 α (X1 , X2 ,L, Xk)

if
 r1 in [Xs1 , Xo1

] and

 r2 in [Xs2
, Xo2

] and
•••

 rm in [Xsm
, Xom

] and

 Xo1
 has some identified property and

 Xo2
 has some identified property and

•••

 Xom
 has some identified property

then
 op 1

 op 2

 op n

end α

If there is only one sub-condition in the predicate of each command
to determine whether to execute the command body, then whether to
execute the command can be established without fear of interruption. The
sequence of primitive operations in the command body can be ordered so
as to withdraw privilege before reassigning it, so there need not be an
inconsistent or delicate state between primitive operations. Thus, if a set
of one-condition commands could be produced, an examination of the
allocation decisions for all privileges can be developed. The allocation
decisions may not have actually happened at some time, but the
delegation of any privilege can be predicted and with some difficulty

17 See Butler Lampson's fine rebuttal of these proposals in his 1973 paper "A Note on

the Confinement Problem", CACM, Vol. 16, No. 10, October 1973. Pages 613-615.

52

controlled. Regrettably, a set of commands that each has only one sub-
condition implies a powerset growth in the number of privileges. This is
not helpful.

If there are several sub-conditions in the commands, whether to
execute the command body can not be established without fear of
interruption. The several sub-conditions can change during the
examination of the condition. Avoidance of this implies freezing the
allocation of the relevant privileges until they have all been examined.
How long the examination will take is unpredictable because
interruptions can happen between sub-conditions. It is impractical for
two reasons to freeze the allocation of a privilege until all conditions that
have been invoked are complete. Firstly, deadlock is a danger. Secondly,
it would be extremely expensive. An elaboration of the latter argument is
the basis of the NP-complete result of Harrison, Ruzzo and Ullman.

3.3.6. DAC Assessed

DAC does have its uses. It is impotent against Trojan horses and the
other animals in the attacking zoo. It can, however, be very helpful in
preventing accidents and in low-grade confidentiality circumstances. It is
easily understood by users. It is and will continue to be an important tool
in computer security implementation.

The descriptive mechanism called an access system remains a
powerful design, analysis and planning tool for those of us who want to
understand how a given system works

53

BUILDING
ASSURANCE

4. BUILDING ASSURANCE

The software bears the responsibility for many of the security
requirements. The hardware provides a way that processes can run in
independent domains, with secure process switching, no covert storage
channels and very slow covert timing channels. Software, and
particularly the Trusted Computing Base (TCB) provides the rest.

4.1. The Reference Monitor

Modern security system implementations all use an abstract concept that
is called the reference monitor. It is an abstract mechanism that mediates
all accesses by subjects to objects. The reference monitor determines if an
access being made by the TCB satisfies both the DAC and MAC
requirements, or if it is a reference from a trusted subject that has
privileges beyond those accorded normal processes. The TCB is the site of
all such trusted subjects with enhanced privileges.

In fact there is no one part of any truly secure system that is the
reference monitor. It is diffused throughout the software and hardware.
The process isolation enforced by the hardware is a part of it. The
software mechanism that compares two security levels to evaluate the
dominance relation is another part. Parts of the login mechanism is a
third.

4.2. The Mechanisms That Must be Trusted

The trusted computing base is the totality of the mechanisms within a
computer system, including all hardware and software, which combine to
enforce the security policy, and that must be trusted to work properly.
They must be trusted because they do not themselves obey the security
policy.

The TCB is evaluated to determine its ability to perform its task.
The level of confidence that is developed in the ability of the TCB to
function properly is dependent on three things:

• the functionality it provides, and the appropriateness of these
functions to enforce the policy;

54

• the degree of confidence that can be developed that the TCB exactly
meets its functionality, no more and no less; and

• the degree of security that must be provided.

The TCB is required to be as small as is practical. It consists of
those mechanisms that themselves violate the security policy so that
ordinary programs need not. That is why it must be trusted. Small
things are easier to test for their trustworthiness that big things are.
There can be many degrees of trust, dependent on the following kinds of
things:

• The functionality that is provided. A system that provides individual
logins only, as contrasted to group logins, is probably inherently more
trustworthy.

• The way it is specified. Some formal technique is better than natural
language.

• The way it is implemented. The configuration must be managed to
try to avoid Trojan horses.

• Whether intuition or mathematical proof have been used to
demonstrate its security.

• The way it is distributed and maintained.

4.3. Single Level Operation

Most secure computer systems (and this means computer systems that are
actually secure, not those that are thought to be secure) that are running
today have the following properties:

• They have never been tested to establish their security, and they
would almost certainly fail any such test.

• They have a small number of users, all working on the same problem.
(This means the data is all from the same realm of knowledge.)

• The users all know each other, and are all peers of each other. (This
means they operate at a single level of sensitivity.)

• The computer and its terminals are in a physically secure location.

• There is no telephone attached to the computer — it is completely
self-contained.

• There is no network attached to the computer — it is completely self-
contained.

This kind of operation is called single level. It is adequate as long
as its environment persists. However, every one of the conditions above is
inconsistent with modern computer usage.

55

4.4. System High

A version of single level operation that can cope with a small cluster of
computers that are networked together is called system high. The
interconnected systems run at the level of the component with the highest
classification. Obviously all users must be cleared to at least this level.

System high works provided that the presence of a network is the
only condition in the previous section that is false. And the network must
be contained, with no communications outside the cluster. Then, provided
every user has at least the same clearance as the classification of the data
object with the highest classification, the system can be reasonable secure.
This means that, for instance, an isolated workstation/fileserver set-up
can be reasonably secure in this environment.

4.5. Building Assurance

There are a number of explicit techniques, other than good engineering
practice, that can be used to increase both the implementer’s and the
user’s level of confidence that the system is secure.

4.5.1. Verifying All Programs

The formal examination of all programs is an important part of
determining the level of confidence to place in it.

Faithfulness A faithful program is one that will always have a
predictable result, regardless of the input stimulation it
receives or the computation it performs. It is neither
necessary nor sufficient that the result be numerically
accurate. Safety implies that the program conclude
within some finite time bound, that it not exit with an
unpredictable exception, that it not abort, that it not
cause the computer to stop, and that it not return a result
that might cause the calling program to be not safe.

Evaluation To evaluate a program is to measure the degree to which
a security mechanism satisfies some given evaluation
criteria.

Certification To certify a security mechanism is to formally guarantee
the accuracy, correctness and completeness of the security
mechanism, measured against some established
evaluation criteria.

Verification To verify a program is to use a (usually formal)
mechanism to establish the formal semantics of a
program, in terms of the formal semantics of its
components. This always involves software tools, two in
particular that are called a verifier and a truth prover.
The verifier knows the formal semantics of the various

56

constructs in the language. Starting with a precondition
(often the condition true) it reads the statements of the
program, and deduces their semantic effects. The truth
prover does a lot of logical reductions on the evolving
expression. The whole enterprise concludes with an
expression describing the semantics of the program. In
appropriate cases, such as subprograms that do not
reference non-local variables and do not allow parameters
to alias of each other, this expression can then be added to
the verifier’s dictionary of constructs with known
semantics.

Correctness A proof of correctness of a program is a formal
demonstration that the (high level) code of a program
agrees with some assertions that are included in it. The
assertions are coded as assertion statements. They
contain a proposition (a Boolean predicate) that must be
demonstrably true for any possible values of the variables
that are involved. Using some known formal semantics of
the statements in the programming language, it is shown
that each assertion must be true (in the terminology of
mathematical logic, at that point in the program it is a
valid theorem). There are four kinds of assertions that
are used:

• a pre-condition to establish a basis for reasoning;

• an in-line assertion, that is necessarily true based
on the situation that was previously known and the
semantics of the statements that could have been
executed to get to the point of the assertion, for any
combination of values of variables;

• a loop invariant, that is necessarily true for any and
all excursions around the body of a loop; and

• a post condition, to establish that the program
agrees with its expected semantics.

4.5.2. Certify or Evaluate Critical Programs

The critical programs are those that enforce the security policy. These
programs are those that are in the TCB. The necessity of developing a
level of confidence in the capabilities of the TCB has already been
discussed.

4.5.3. Journal of All Security Relevant Events

Regardless of the confidence that can be placed in the TCB, it is important
that a journal be kept of all security-related events, and that there be an
analysis of the journal both in real time and historically. It is often more
important to know that security has been violated that it is to prevent the

57

violation. This one assertion sums up the seriousness of the threat to
security that a Trojan horse represents, because if it is properly done it
leaves no evidence of its existence behind it.

4.6. Principles of Trusted Operating Systems

This section is concerned with the general problems of specifying,
designing, implementing, and evaluating trustworthy operating systems.

4.6.1. Lattices

Let L be a finite set with elements
 a,b, c,L. A partial ordering is a

relation on the members of a set. The usual symbol for a partial ordering
is ≥ . It is convenient for us to use the symbol > and to pronounce it
dominates.. The relation < is pronounced is dominated by. The relation
 > has the following properties.

Reflexive If a > a is always true.

Antisymmetric If a > b and b > a then a and b have the same level.
When dealing with security this is written as L(a) = L(b).

Transitive a > b and b > c implies that a > c .

A partially ordered set (poset) consists of a set, say L , and a partial
ordering relation, say > , on L . This poset is written as [L,>]. If [L,>] is
a poset then [L,<] is also a poset.

An element M of a poset [L,>] is maximal if there is no other
element a in [L,>] for which a > M . An element m of a poset [L,>] is
minimal if there is no other element a in [L,>] for which m > a. An
element I is the upper universal bound if I > a for all a ∈[L,>] . An
element O is the lower universal bound if a > O for all a ∈[L,>] .

Example: Consider the relation ÷ (meaning divides evenly into, without
a remainder) on the set S = {1,2,3, 4,6, 8,12}. The poset [S, ÷]
has a lower universal bound but no upper universal bound.
Why?

For elements {a, b} ∈[L,>] the least upper bound (lub) of a and b
is an element c of [L,>] for which c > a and c > b , and there exists no
other element x ∈[L,>] for which c > x > a and c > x > b . In general,
there might be several elements that satisfy the lub condition. If there is
only one such element it is called the join of a and b and written as a∨ b .

Let {a, b} ∈[L,>]. A join of a and b always exists if and only if

 [L,>] has an upper universal bound I .

For elements {a, b} ∈[L,>] the greatest lower bound (glb) of a and
 b is an element c of [L,>] for which c > a and c > b , and there exists no

58

other element x ∈[L,>] for which a > x > c and b > x > c . In general,
there might be several elements that satisfy the glb condition. If there is
only one such element it is called the meet of a and b and written as
 a ∧ b .

Let {a, b} ∈[L,>]. A meet of a and b always exists if and only if

 [L,>] has a lower universal bound O .

A lattice is a poset [L,>] in which all pairs of elements have a
unique join and a unique meet.

All these operations are useful in thinking about the properties of
the lattice of security levels. Those students who are seriously interested
in trustworthy systems are encouraged to expand their knowledge far
beyond this brief introduction.

4.7. The Three Policies

A security policy is a set of principles, which can be used to define the set
of permitted actions by active agents within a system. A system that
faithfully enforces a given policy can be said to be secure with respect to
that policy. For example, the security of a computer system could be
defined in terms of its ability to prevent the disclosure of information to
unauthorised persons. For another purpose, it might be preferable to
define security in terms of the ability to prevent the unauthorised use of
system resources. These are two quite different goals: a system that
satisfies the first may well not be secure according to the second, and vice
versa.

In any single host, the security of subjects (processes, agents or
surrogates for users), and objects (programs, data, or files) is a well-
studied problem. In the United States, the TCSEC18 establishes a graded
set of measures against which a computer system can be calibrated to
establish levels of security confidence. Several other countries have
produced
or will produce similar criteria19,20,21,22.

18 Department of Defense Trusted Computer System Evaluation Criteria, DOD

5200.28-STD, Library No. S225,711, December 1985.
19 Canadian Trusted Computer Product Evaluation Criteria, System Security Centre,

Communications Security Establishment, Government of Canada, Ottawa,
Ontario. Draft Version 1.0, May 1989. Now in Version 2.0.

20 A five volume set from the United Kingdom. Direct inquiries to Department of
Trade and Industry, Kingsgate House, 66-74 Victoria Street, London SW1E 6SW,
Attn. A. Matthew, IT4c, Room 8.47.

21 In the Bundesrepublik Deutschland, IT-Sicherheitskriterien, Kriterien für die
Bewertung der Sicherheit von Systemen der Informationstechnik (IT), ISBN 3-
88784-192-1, Published by, Bundesanzeiger Verlagsgesellschaft, Postfach 10 80 06,
5000 Köln, Germany. Also available in English from the same source with the title
IT–Security Criteria, ISBN 3-88784-200-6.

22 A Trusted Network Interpretation (TNI) of the TCSEC, Trusted Network
Interpretation of the Trusted Computer System Evaluation Criteria, U.S. National

59

4.7.1 Confidentiality

Various kinds of information policies are of interest in computer systems.
Together they form the overall security policy. The kind of policy that is
most familiar is the confidentiality policy, that defines which entities are
permitted access to what information. The most common formulation of
this partitions the policy into a mandatory component and a discretionary
component. Further detail is amply available in the literature23,24. The
essential notion is that every entity in the system must have a security
label, and there exists a relation on the set of possible labels that
establishes whether a given instance of a given function is to be
permitted. Given the labels, the relation can be adapted to fit whatever
policy it is desired to enforce.

4.7.2 Integrity

Integrity is not as well understood as its confidentiality25,26,27,28. The
integrity of data might indicate the degree to which it has the value that it
should have. The integrity of a user might indicate our confidence that he
or she originates correct data, or how trusted that person is to modify
critical files. The integrity of an executing process might reflect the
integrity label of its user, or the amount of trust we are willing to place in
its program’s correctness, or our confidence that the file containing the
program has not been modified.

A policy issue related to integrity is identification and
authentication. An application must be granted some level of assurance of
the identity of a peer process with which it communicates. A reference
monitor implementing a security policy on a host must know the identity
of a user in order to correctly implement its policy. A policy is necessary
to control these aspects of authentication.

Computer Security Center, NCSG-TG-005, Library No. S228,526. 31 July 1987
supposedly applies to networked computer systems.

23 Dorothy E. Denning, "A Lattice Model Of Secure Information Flow",
Communications of the ACM, Vol. 19, No. 5, pp. 236-243, May 1976.

24 United States National Computer Security Center, A Guide to Understanding
Discretionary Access Control in Trusted Systems, NCSC-TG-003, 1985 Sep 30.

25 S. Porter and T. S. Arnold, "On the Integrity Problem", Proc. 8th National
Computer Security Conference, Gaithersburg, pp. 15-17, 1985.

26 K.J. Biba, "Integrity Considerations for Secure Computer Systems", MITRE Tech.
Report 3153, 66 pp., Apr. 1977.

27 Dr. Stuart W. Katzke and Zella G. Ruthberg, editors, "Report of the Invitational
Workshop on Integrity Policy in Computer Information Systems (WIPCIS)",
Bentley College, Waltham, Mass., 1987 Oct 27-29, United States National Institute
of Science and Technology publication 500-160, January 1989.

28 "Reports of the 2nd and 3rd Invitational Workshops on Integrity Policy in
Computer Information Systems (WIPCIS II and III)", NIST, Gaithersburg, Md.,
February 1989 and in 1990.

60

4.7.3. Denial of Service

Denial of service is the prevention of authorised access to resources or the
delaying of time-critical operations 29. In this course, a denial of service
attack is one where there is no expectation that the trusted computing
base can recover in a reasonable time. The objective of the attacker might
be to destroy the ability of some user (or all users) to do useful work. One
way is to halt the machine. This will be an effective denial of service
attack that no amount of clever TCB design can overcome. Protection from
denial of service attacks must involve a measure of physical security.
Such attacks are immediately evident. A more subtle denial attack
involves the deletion, alteration, or insertion of just enough requests for
service so the system will eventually recover given enough time, but that
much time is never quite available. Such an attack is also immediately
evident to the hosts, and would require very fine judgement on the part of
the attacker.

4.7.4. The TCB and the Reference Monitor

The enforcement of a security policy is based on an interesting
contradiction. In order to enforce the security policy, some parts of the
system must be trusted with the privilege of violating the security policy.
These parts of the system are the trusted computing base (TCB). The TCB
is actually a suite of software programs. The TCB must be able to

• read all security labels – it can not decide what is permissible
without reading the security labels.

• to manipulate data regardless of its security level – it has to be able
to copy, input, and output, all data files. It has to be able to load the
system securely.

• to read and write secure files that must have high integrity – for
instance, the password file.

The TCB is actually an implementation of a set of mechanisms that
decide which kinds of which references are permissible, and which are
prohibited. This set of mechanisms can be abstracted to represent a set of
principles rather than a pile of detail. The principles implement the
reference monitor concept. It is the reference monitor that is formally
proven to be correct in those systems that employ formal proofs.

4.7.5. Specification

In any complicated system, it is important to specify what is to be built
before it actually gets built. This is a well-understood concept in both
software engineering and in computer engineering. Without specification,
the goal of the implementation will become obscure, and in most instances

29 ISO Standard 7498 Part 2, "Security Architecture", International Organisation for

Standardisation, 1988, page 3.

61

the result will not work as was wanted, if it works at all. When
implementing secure software, specification is doubly important.

The actual functions that the hardware provides must be precisely
understood. The desired functions that the software must add to the
hardware must be precisely stated. This specification is known in the
TCSEC as a Descriptive Top-level Specification if it is written in natural
language, or a Formal Top-level Specification if it is written in an
artificial specification language.

Artificial specification languages30 often have precisely known
semantics for all their syntactic constructions, and are in consequence
excellent bases for abstract models and formal proofs.

4.8. The Six Basic Principles

Normally, underlying all security policies are the following six basic
principles. The difference will usually concern the way that these
principles are interpreted or applied to a specific circumstance.

4.8.1. Simple Security: READ DOWN

The simple security condition is the basic rule that insists that a subject
can only observe information at the same security level, or a lower level.
The simple security condition is satisfied when a subject s can have
observe access to an object o if and only if L(s) > L(o). The security level
of the subject must dominate the security level of the object.

4.8.2. The ∗-Property: WRITE UP

The ∗-property31 is the basic rule that insists that there be no possible
situation in which data could flow from some level in the security lattice
to a lower level.

We distinguish between (over)write and append. Because of
integrity issues, write should be limited to an object at the same level as
the writing subject. A subject may append to a file at a higher level. In
practice, both write and append often are limited to the same level. If this
restriction is applied, information flows up the security lattice through
some trusted mechanism that a lower level process can use to signal a
higher level process to read. This mechanism will frequently be a file to
which the lower level process writes a journal of its activity, and the
higher-level process monitors.

If there is only one object open for observation, the ∗-property is
satisfied when a subject s has write access to the object o if and only if

30 Two of these specification languages are Gypsy from the University of Texas at

Austin, and EVES from I.P.Sharp, Inc. in Ottawa. Both include elaborate
automated theorem provers.

31 ∗-property is pronounced "star property".

62

 L(o) > L(s). In practice this is often modified to L(s) = L(o) for the
integrity reasons just mentioned.

If there are several objects open for observation, any object that is
opened for write must have a level equal to or higher than the least upper
bound of the levels of all objects open for observation. Let the objects that
are open for observation be

 {o0 ,o1 ,o2 ,L, ok }. Let
 o0 > oj for all 1 ≤ j ≤ k.

Object o0 is the lub of the objects that are open for observation. Any object

 ow that is open for writing must satisfy the relation ow > o0 .

If all objects open for observation are at the same level, a write can
be done securely at that level. If the overwriting of higher-level data with
upgraded lower-level data is allowed (implying that this integrity problem
is not an issue) then the write can be done securely at a higher level also.

If all objects open for observation are not at the same level, a write
can be done securely at a level that is the least upper bound of the levels
of the objects open for reading. If the overwriting of higher-level data
with upgraded lower-level data is a problem then this write must be
restricted to be an append.

The ∗-property ensures that there can be no possibility of
downgrading – of observing data at one level and writing it at a lower
level.

4.8.3. Tranquillity

The tranquillity rule is simply the rule that insists that the security level
of a subject or an object does not change while that subject or object is
involved in any activity involving any security rule. For efficiency
reasons, as well as correctness reasons, it is obviously not legitimate for
the security level of an object to change, for example, while some process
is reading it.

In practice, if it is thought that a system will have to support the
urgent re-classification of objects, there will need to be a method to revoke
a previously approved access. This sudden retraction of an access right
can be a difficult implementation issue, and might also be used as a covert
path in some strange circumstances. It is easy, however, to limit the
bandwidth available on this path.

4.8.4. No Re-use

When a re-usable resource (memory, registers, disk) is allocated to a new
user, it must be "empty". This principle is simply the prohibition of covert
storage channels.

4.8.5. Accountability

A user (some actual person) must be accountable for every security-related
event that happens in the system. In practice this means that all objects

63

must be owned by some authenticated user, and all processes must be
executed by authenticated and authorised users or other processes.

4.8.6. Enhanced Privilege

An enhanced privilege is a licence to avoid one or more of the usual limits,
rules, and controls that enforce the security policy. Subjects that are in
the TCB must be trusted to behave properly because they have enhanced
privilege. If they didn’t need to be trusted there would be no reason to
include them in the TCB.

Any mechanism, including a trusted mechanism in the TCB, should
have the least privilege that it needs in order to do its job. A user process
has only the privilege that the security policy allows it to have, but the
TCB processes will all have enhanced privilege. In practice, this need for
extra privilege is what defines the contents of the TCB.

Least privilege is contrasted with awarding to a TCB member all
the possible privileges. Least enhanced privilege is an attempt to
minimise the special cases that need to be examined when the TCB is
examined to determine the level of assurance it satisfies. It is also an
attempt to confine the damage that could happen if trusted subjects
misbehave or become ill with a virus or other plague.

In practical systems there are about 30 distinct enhanced privileges
that a process can have, but not all combinations make sense.

4.9. An Example: Privilege in UNIX32

This section follows the work of Guy Grenier and R.C. Holt33. The table
below describes the type of privileges necessary for a secure UNIX-like
system. No attempt has been made to make this table complete. It is an
example, and should not be thought to be anything more than an example.
It is written in terms of an arbitrary subject s that must have the
specified privilege to perform the described operation on the data object o .

32 UNIX is a trademark of Western Electric.
33 "Policy vs. Mechanism in the Secure Tunis Operating System", Proc. 1989 IEEE

Symp. on Security & Privacy, Oakland, CA, May 1989, 11 pages.

64

Privileges that Untrusted Mechanisms Can Have
No. Name. Conditions for s to have the privilege

to access o in the described way.
1 Simple Security For s to observe o , L(s) > L(o).
2 *− property For s to alter o , L(o) > L(s).
3 Discretionary

Access
The access permissions of s must allow access
to o .

4 Hierarchy Let oP be the parent directory of object o . If o
is a directory L(o) > L(oP). Else L(o) = L(oP).

5 Tranquillity The privileges of a process must not change
after invocation. The level of a process must
be static during the lifetime of that process.
The level of an object that a process accesses,
including the program that the process is an
instance of, must not change during the
lifetime of that process.

6 Accountability The same subject must be accountable for both
 s and o .

7 Passed
Accountability

A parent process of s must also be accountable
for o .

8 Veto
 *− property

Write allowed even though L(s) > L(o).

9 Writeable
Directory

 o1 is in directory o2 . o1 is writeable by s. o2 is
also writeable by s even if L(s) > L(o2) .

10 Create File The file o is to be created in directory o1 . If o
exists the file is being moved from directory o2

so both o1 and o2 are made writeable by s. If
 o does not exist, o1 is made writeable by s and

 L(s) = L(o1) .
11 Create

Directory
The directory o2 is to be created in directory

 o1 . o1 is made writeable by s and

 L(o2) = L(s) .
12 Open File o must exist and be observable, or if it does

not exist s must have privilege 10.
13 Path Search Privileges 1 and 3 for the path.
14 Path

Compatibility
 s references two paths in the file system index
to object o1 and directory o2 . If o1 is a file,
then L(o1) > L(o2) . If o1 is a directory, then

 L(o1) = L(o2) .

65

15 Set Security
Level

Let the new level of the object o be L
NEW (o),

and let the old level of object o be L
OLD (o) .

Let oP be the parent directory of o . If o is a
directory L

NEW (o) > LOLD (o) > L(oP) without
this privilege and both L

NEW (o) > L(oP) and

 L
OLD (o) > L(oP) with the privilege. If o is a

file L
NEW (o) = LOLD (o) = L(oP) without this

privilege and L
NEW (o) > L(oP) with privilege.

16 Access Allowed Either the owner of s is also the owner of o , or
the access is be allowed by this privilege.

17 Link This privilege permits a directory to be linked.
Without this privilege, directory linking is
prohibited.

18 User Same Either the user accountable for s is the same
user as the user accountable for the parent of
 s, transitively back to the shell process of the
user, or the action that requires this transitive
accountability is allowed by this privilege.

19 Group Same Either the user’s group accountable for s is the
same group as the group accountable for the
parent of s, transitively back to the shell
process of the user, or the action that requires
this transitive accountability is allowed by this
privilege.

20 Kill Either s is trying to kill itself, or the parent of
 s is trying to kill s, or s1 is trying to kill s and

 s1 has this privilege.
21 Setuid When o is instantiated by sP , to become s the

user accountable for of s will be the user
accountable for both sP and o , which must be
the same. If o has its setuid bit true the user
accountable for of s will be the user
accountable for either sP or o , which are not
necessarily the same.

22 Setgid When o is instantiated by sP , to become s the
user’s group accountable for of s will be the
user’s group accountable for both sP and o ,
which must be same. If o has its setuid bit
true the user’s group accountable for of s will
be the user accountable for either sP or o ,
which are not necessarily the same.

67

BELL-LAPADULA
AND

SECURE XENIX

5. BELL-LAPADULA AND SECURE XENIX

The Bell-LaPadula (BLP) model is a "state-transition" model of
trustworthy systems. The model formally defines system states and rules.
The states have little to do with the actual calculation occurring in any
program; they correspond to security-related events, such as (requests for)
changes in the access matrix. The rules are actions or operations that
move the system from state to state. The model includes four axioms that
must be preserved in every state. Proofs depend upon these axioms being
valid. The proofs demonstrate that any applications of rules to system
states can not move the system into an insecure situation if it ever starts
in a secure situation.

Secure Xenix is an instance of UNIX that conforms to the BLP
model.

5.1. System States

A system state V is an element of set V = {B × M × F × H} .

 B is the set of current accesses and is a subset of the set S × O× A ,
where S is the set of subjects, O is the set of objects and A is the
set of access privileges defined in the system. The set B defines the
access privileges that each currently active subject has to each
object.

 M is the access matrix. It consists of elements Mi , j ∈ A that define the
set of access privileges subject si has to object oj . M encapsulates
the Discretionary Access Control (DAC) of the system.

 F is a three-component security function that deals with security
labels associated with each subject and object:

 f s The first component, f s , assigns a maximum security level (clearance) to
each subject.

68

 f o The second component, f o , assigns a security level (classification) to
each object.

 f c The third component, f c , assigns the current security level of each
subject.

Note that f s > fc . A variation of F also includes a component to
assign a minimum-security level fm to each subject.

 H is the current object hierarchy. The current object hierarchy is a
collection of rooted directed trees and isolated points.

H is a subset of all functions from objects O to the power-set of
objects O subject to the following two restrictions:

(1) For { , }o o Oi j ³ then oi ≠ oj ⇒ H(oi) ∩ H (oj) = ∅ .

(2) There does not exist a set {o1,o2 ,L,ow } of objects such that

 or +1 ∈ H(or) for 1 ≤ r ≤ w, and ow+1 = o1.

These two conditions imply that the current object hierarchy is a
collection of rooted, directed trees and isolated points. They rule
out cycles and objects with multiple parents. If H is a tree
structure, then or is an object called the root for which H(or) ≠ ∅
and oi ∈ H(or) for any oi ∈O . Furthermore, oi is a superior of oj if

 oj ∈H (oi) . For such a tree structure, from a security level
viewpoint it will always be the case that

 L(oj) > L(oi) .

 H and F encapsulate the Mandatory Access Control (MAC) of the
system.

5.2. State Transitions

The system transitions from state-to-state are defined by a set of
operations or rules that are requested by subjects on system states. A rule
is a function that specifies a decision (output) and a next-state for every
state and every request (input).

Let R be the set of request invocations defined, and D be the set

 {yes, no, ?,error} of request outcomes. Thus, a rule ρ is defined as

 ρ: R × V → D × V , where R × V is the set of {request, state}-pairs defined
in the system for every request and state, and D × V is the set of {decision,
next-state}-pairs defined in the system for every decision and next-state.
The decision "yes" ("no") means that the request has (not) been granted;
"error" means that the request parameters are meaningless; and the "?"
outcome means that some exceptional condition was detected during the
consideration of the rule ρ (e.g., table overflow, etc.).

69

Let
 ρ = ρ1,L, ρs{ } be the set of rules. The relation W is the set of

state transitions and is defined for any Rk ∈ R , Dm ∈D , set of states V

and set of next-states V
∗. by:

(a) (Rk , Dm,V∗, V) ∈W if and only if Dm ≠" ?" and Dm ≠"error" .

(b) (Dm ,V∗) = ρi (Rk ,V) for a unique i, 1 ≤ i ≤ s.

5.3. Systems, System Appearance, System Actions

Let T be the set of positive integers. X is defined as the set of all request
sequences: the set of all functions from T to R; Y is defined as the set of all
decision sequences: the set of all functions from T to D; Z is defined as the
set of all state sequences: the set of all functions from T to V.

Each of X, Y, and Z represent a set of sequences of successive values
of requests, decisions, or states. X, Y, and Z are related to the starting
state z0 in an obvious way: the system starts in state z0 and X represents
all request sequences, Y all decision sequences, and Z all state sequences
that can ensue.

Let x ∈ X , y ∈Y and z ∈ Z and let z0 ∈Z be the initial state. A
system Σ (R, D,W,z0) is a subset of the cross-product X × Y × Z such that

 (x, y,z) ∈Σ(R,D,W ,z0) if and only if the three sequences are consistent:
starting in state z0 the inputs x result in the decisions y and a progression
through the states z. The system Σ (R, D,W,z0) includes all possible
executions that start from state z0 .

A system appearance is defined as each triple (x, y, z) such that

 (x, y,z) ∈Σ(R,D,W ,z0) for x ∈ X , y ∈Y , z ∈ Z . A system appearance is
the sequences of states, requests, and decisions that describe one
execution of the system.

A system action is defined as each quadruple (xt , yt ,zt , zt−1) ∈W ,
where xt , yt , zt are respectively the t

th request, decision, and state in the
sequences x ∈ X , y ∈Y , z ∈ Z . A system action embodies the move from
state zt−1 to state zt as a result of request xt and decision yt .

Alternatively, (Ri , Dj , V ∗, V) ∈R × D × V × V is an action of

 Σ (R, D,W,z0) if and only if there is an appearance (x, y,z) ∈Σ(R,D,W ,z0)

and some t ∈T such that (Ri , Dj , V ∗, V) = (xt , yt , zt , zt−1).

5.4. Model Axioms

The axioms of the Bell-LaPadula model require the definition of the access
privilege set A. In the model, A {r,w,x,a}= . The meaning of these

70

privileges is defined in the model in terms of the ability of a subject to
"observe" or "alter" an object as shown below.

Access Can Can
Privilege Observe Alter
execute no no
read yes no
append no yes
write yes yes

The first two of the four axioms to be described below use the above
access privilege definitions. A fifth axiom, called the "tranquillity
principle" is defined in earlier (1973) versions of the model, but has been
removed from later (1976) versions for reasons that will be explained
below. These axioms were called properties in the original BLP 1973
work, and this terminology persists.

5.4.1. The Simple Security (SS) Property

A system state v = (b, M, f , H) satisfies the SS-property if and only if, for
each element b ∈ B that has an access privilege of r or w, the maximum
clearance of the subject dominates the classification of the object; or
alternatively:

An element (s, o, x) ∈ B satisfies the SS-property relative to the
security function F if and only if

(i) x = x and fs(s) < fo (o)

(ii) x = r and f s(s) > fo (o) .

The above two conditions restrict subject accesses to objects of the
"observation" type. The restriction is based on object classifications and
subject maximum clearances. The SS-property also restricts subjects from
having direct access to information for which they are not cleared, because
in this case the subjects have no access privileges at all to the objects.

5.4.2. The * - Property

Let S ⊆ S be the set of untrusted subjects. A system state

 v = (b, M, f , H) satisfies the ∗-property relative to the set of subjects S if
and only if, for each element (s, o, x) ∈ B:

(i) x = a ⇒ f c(s) < fo (o)

(ii) x = w ⇒ fc (s) = fo (o)

(iii) x = r ⇒ fc(s) > f o (o)

71

The above property is intended to prevent unauthorised flow of
information from higher security levels to lower ones. In particular, the
∗-property prevents an untrusted subject from having simultaneously
privileges to "observe" information at some level and to "alter" information
at a lower level.

Trusted subjects (i.e., subjects not in S) need not be bound to the
∗-property in the same way subjects in S are.

5.4.3. Discretionary Security (DS) Property

A system state v = (b, M, f , H) satisfies the DS-property if and only if, for
every element (s, o, x) ∈ B, x ∈Mi, j .

5.4.4. Compatibility Property

The object hierarchy H maintains compatibility if and only if, for any

 oi , oj ∈O and oj ∈H (oi) , then
 f o (oj) > f o (oi). This axiom is also called the

"non-decreasing level" axiom for the object hierarchy. Descending the
object tree structure defined by H is never associated with decreases in
security classification.

5.4.5. (Sometimes) Tranquillity Principle

The original version of the Bell-LaPadula model (1973) also contained the
"tranquillity" principle. This principle (axiom) states that a subject
cannot change the security level of active objects. Of course, this is
defined for the untrusted subjects S .

This axiom has been removed from the 1976 version of the Bell-
Lapadula model to allow controlled changes of security levels of active
objects. The rules that control such changes depend on specific
applications (e.g., mail, guards, etc.) and differ from system to system.
Surprisingly, the proofs of confidentiality security do not depend on this
axiom in any vital way. The existence of f s as well as f c is due to the
removal of tranquillity. It seems clear, however, that more complex
security situations may require tranquillity.

5.4.6. Activation Axioms

Object activation or deactivation refers to the creation and destruction of
objects. The dynamic creation or destruction of objects in the Bell-
LaPadula model would cause the domain of the classification function f o

and the size of the access matrix M to vary dynamically. To avoid this,
the entire set of objects ever used are considered extant in either active or
inactive form. Furthermore, objects are considered to be MAC labelled in
both forms. The use of this artifice requires the specification

(1) of a subject’s access to an inactive object,

(2) of the state of newly activated objects,

72

(3) of the classification of newly-activated objects, and

(4) of the object deactivation rules.

Specification (1) is necessary because active and inactive objects are
assumed to coexist in O. Since the model defines subjects’ access to active
objects, it must also define subjects’ access, or lack thereof, to inactive
objects. If left unspecified, such access may cause security breaches in
real implementations.

Specification (2) is necessary because inactive objects have states
(since they exist in O). Thus, their activation must specify the
relationship between the state of an inactive object and its state at
activation.

Similarly, specification (3) is necessary because inactive objects also
have a classification in the model, and their classification while inactive
might not match the requirements of the requesting subjects.
Furthermore, their classification may conflict with the compatibility
axiom.

Specification (4) is also necessary because the object deactivation
(destruction) rules are security relevant.

The omnipresence of objects, even after destruction, is an awkward
thing to deal with, particularly when implementing a secure system.
Feiretag, Levitt and Robinson propose two activation axioms that specify
only a subject’s access to an inactive object and the state of a newly-
activated object. Their two activation axioms are:

(i) Non-accessibility of Inactive Objects
 In the sense of the section above discussing the access privilege set,
a subject cannot observe the contents of an inactive object.

(ii) Rewriting of Newly Activated Objects
A newly activated object is given an initial state that is
independent of the state of any previous incarnations (activations)
of the object.

The two activation axioms can be expressed formally and succinctly as:

(i) Let O = ˆ O ∪ O where ̂ O includes all active objects and O includes
all inactive objects. Clearly ̂ O ∩ O = ∅ . Then

 [∀(s,o,x) ∈B, o ∈O] ⇒ [x ≠ r and x ≠ w].

(ii) Let new(o) imply the simultaneous actions [O = O − o ; ˆ O = ˆ O + o]
and let call[si ,new(o)] be the invocation of the primitive
functional service "new" (create object) by si ; Then, for any
function g and state(o) ,

73

 call[si ,new(o)] ⇒ state[new(o)] ≠ g[state(o)].

5.5. System Security

A secure state is a state that satisfies whatever axioms are deemed
necessary and pertinent. This can (and does) change depending on the
particular system being considered. For instance, tranquillity may or may
not be significant in a secure system, or all objects may be at one level so
compatibility is irrelevant. BLP originally defined a secure state as one
which satisfied axioms one, two, and three, and five, but in 1976 axiom
four was added and five deleted. Later four became an underlying
principle that was assumed but did not explicitly appear in the proofs of
security (because if the security level of data decreases as the tree-
structured directories are traversed, processes at the lower levels can’t get
past the top of the tree to get at data they otherwise should be able to
access). The theorems below assume axiom four, and a secure state is
defined as one in which axioms one, two, and three are satisfied.

A state z ∈V is a secure state if and only if axioms one, two, and
three are satisfied.

A state sequence
 Z = (z1 ,z2 ,L,zt ,L) is a secure sequence if and

only if zt , is a secure state for each t ∈T .

A system appearance (x, y,z) ∈Σ(R,D,W ,z0) is a secure
appearance if and only if Z is secure state sequence.

A system Σ (R, D,W,z0) is a secure system if and only if every
appearance (x, y, z)is a secure appearance.

Several similar definitions of secure systems can be given. The
most straightforward, but not the most useful, is based on proofs that a
system satisfies the first three security axioms: the SS-property, the
∗-property, and the DS-property.

The following three lemmas, along with the Basic Security Theorem
prove the security of such a system. The proofs to these three lemmas are
not difficult. The first is given and the others are left as an exercise in
straightforward reasoning. In each case, the two given conditions state
that the accesses added as a result of the request (b* −b) satisfy the
axioms in the new state, and that any access in b that does not satisfy the
axioms in the new state is not present in the new state.

74

Lemma A1.

Let W = [Ri , Dj ,(b*, M*, f *, H*),(b, M , f ,H)]. For any initial state z0 that

satisfies the SS-property, the system Σ (R, D,W,z0) satisfies the SS-property if
and only if W satisfies the following conditions for each action:

(i) each (s,o,x) ∈(b* −b) satisfies the SS-property for f * ; and

(ii) each (s, o, x) ∈(b) that does not satisfy the SS-property for f * is

not in b* .

Proof:

Pick (x, y,z) ∈Σ(R,D,W ,z0) and write zt = (bt , Mt , f t , Ht) for each t ∈T .
Then z0 = (b0 , M0 , f0 , H0) .

[IF] The proof proceeds by showing that if z0 is secure then z1 must
be secure, and then by induction showing that the system is
secure.
 (x1 , y1, z1 ,z0) ∈W . By (i), every (s,o,x) ∈(b1 − b0) satisfies the SS-
property for f 1 .
Let b = [(s, o,x) ∈b0| (s,o, x) does not satisfy the SS − property]

for f1.

By (ii) we have b1 ∩ b = ∅ . But if b is in both b0 and b1 then it is
also in b0 ∩ b1 . Then b ∩ (b0 ∩ b1) = (b∩ b1) ∩ b0 = ∅ ∩ b0 = ∅ .
Hence if (s,o,x) ∈(b1 − b0), then (s, o, x) ∉b as hypothesised, so
that (s, o, x) satisfies the SS-property for f 1 . Since every (s, o, x)

is in either (b1 − b0) or b0 ∩ b1 we have shown that z1 must be a
secure state.
By induction on T, zt is secure so (x, y, z) is a secure
appearance. Since (x, y, z) is arbitrary the system Σ (R, D,W,z0)

is a secure system.
[ONLY IF] Proof by contradiction.

A contradiction of the conclusion of the lemma results in the
proposition that:

there is some action (xt , yt ,zt , zt−1) such that either
(a) some (s,o,x) ∈(bt − bt−1)does not satisfy the SS-property for

 f t , or
(b) some (s,o,x) ∈(bt−1) does not satisfy the SS-property for f t

but is in bt .
Suppose (a):
Then there is some (s,o,x) ∈(bt) that does not satisfy the SS-
property for f t , since (bt − bt−1) ⊆ bt .
Suppose (b):
Then there is some (s,o,x) ∈(bt) that does not satisfy the SS-
property for f t by the statement of (b).

75

Therefore the SS-property is not preserved by the stated action,
and this contradicts the assumption that the system
 Σ (R, D,W,z0) is secure.

Lemma A2.

Let W = [Ri, Dj ,(b*, M*, f *, H*), (b,M , f , H)] . For any initial state z0 that

satisfies the ∗-property for S ⊆ S , a system Σ (R, D,W,z0) satisfies the

∗-property for S if and only if W satisfies the following conditions for each action:

(i) for each S ⊆ S , any (s,o,x) ∈(b* −b) satisfies the ∗-property for
 S ; and

(ii) for each S ⊆ S , if (s, o, x) ∈(b) does not satisfy the ∗-property for
 S , then (s,o,x) ∈(b* −b) .

Lemma A3.

Let W = [Ri , Dj ,(b*, M*, f *, H*),(b, M , f ,H)]. For any initial state z0 that

satisfies the DS-property, a system Σ (R, D,W,z0) satisfies the DS-property if and
only if W satisfies the following conditions for each action:

(i) if (sk ,o1 ,x) ∈(b* −b) , then x ∈Mk, l
* ; and

(ii) if (sk ,o1 ,x) ∈(b) and x ∈Mk, l
* , then (sk ,o1 ,x) ∈(b*) .

Theorem A1 [Basic Security Theorem].

A system Σ (R, D,W,z0) is a secure system if and only if z0 is a secure state and
W satisfies the conditions of theorems A1, A2, and A3 above.

5.6. Other BLP Theorems

Lemmas A1-A3 focus on properties of the current access sets of B.
Lemmas A4-A6 and A7-A9 of the full Bell-LaPadula report represent
restatements of lemmas A1-A3 focusing on (A4-A6) properties of sets of
system actions of W, and on (A7-A9) properties of individual states of V,
respectively. Similarly theorems A2 and A3 are the corresponding
restatements of theorem A1.

Lemma 10 restates the results of the lemmas A1-A3, A4-A6, and
A7-A9 in terms of property-preserving rules ρ .

The need for the alternate, but equivalent theorems, becomes
apparent when one needs to construct proofs of real systems. For
example, in systems whose kernel enforces security, it is substantially
more convenient to prove lemmas A4-A6 or A10 than Theorems A1-A3 or
A7-A9. The reason is system actions or rules can be easily identified with
kernel calls and their effects on the system states.

76

5.7. Assessment of Bell-LaPadula

Bell-LaPadula is not a panacea. It was the first formal model of secure
systems to be developed, in the early 1970s. Consequently, it has an edge
over other more recent and perhaps better models because it was the
underlying model for most of the work that was done for a decade or more.
The formal model that the Orange Book designers had in mind was
clearly Bell-LaPadula.

5.7.1 Perceived Advantages of Bell-LaPadula

1. The axioms of Bell-LaPadula are modelled on the style of security
policy favoured by many national and commercial organisations.
Consequently, neither the policy nor the model need be bent out of
shape to use Bell-LaPadula in practical situations.

2. Bell-LaPadula is easy to adapt to a fairly broad range of special
circumstances. This means that minor changes in the axioms are
easily tolerated.

3. In contrast to some more recent models, Bell-LaPadula is perceived
to be understandable by people who do not have a doctorate in
computer science or in mathematical logic. It has a good intuitive
relationship to actual systems that it is used with. If it can be used
at all, it is usually fairly easy to apply.

4. The Bell-LaPadula model is well understood and has been
extensively used. Designers, implementers, and evaluators are
familiar with it and are familiar with its good and bad points.

5.7.2 Perceived Disadvantages of Bell-LaPadula

1. Bell-LaPadula’s rather simple access privileges always need
interpretation. It is not clear whether this is a strength (flexibility)
or a weakness (imprecision).

2. Bell-LaPadula is difficult to adapt to situations in which there are a
lot of access privileges that differ from each other only slightly. For
example, it is difficult to model the differences between a read
access that is a destructive-read-and-restore operation, and one
that is a pure observation that does not affect the data value at all.

3. Bell-LaPadula is designed to model the access by subjects to objects.
It does not handle easily accesses by subjects to other subjects. The
resulting issues of parameter and result passing, and visibility and
scope issues, are difficult or messy or both. This means that Bell-
LaPadula does not cope well with networks, because protocol
exchanges in a network are archetypal examples of subject-to-
subject access. Another is the common action of subjects calling
subjects with parameters and a result, and this requires some
interpretation.

77

4. Bell-LaPadula does not handle covert channels easily. Nor does
any other known model.

5. The ∗-property is overly restrictive. This is not strictly a criticism
of Bell-LaPadula alone since the ∗-property is not confined to Bell-
LaPadula, but appears as policy that must be enforced by any
model. Some data-flow models can cope with the ∗-property better
than Bell-LaPadula does.

Suppose there are two objects o1 and o2 , and a subject s3 at
different levels of security L1 < L2 < L3 respectively. Suppose that it
is desired that the subject s3 copy data o1 at level L1 and into data

 o2 at level L2 .

For simplicity, assume the write is just a copy without any
observation. Any write is contrary to the ∗-property because s3 is
prohibited from writing to the lower level L2 . This is the case even
though s3 is fully qualified to observe data at level L2 , but evidently
is not qualified to create such data in any circumstance.

In practice this situation could be handled by s3 having its current
security level lowered to L2 by a trusted process privileged to do
that operation (called downgrading). It could then make the copy
within the policy. Unfortunately, the downgrading of s3 may be
prevented by SS-property. This is because there might be other
data objects that are open for reading at L3 and that have nothing
to do with the copying. A subject s3 is prohibited from operating at
a level L2 and having an object at the higher level L3 open for
reading. A better way to cope is to have a TCB-resident subject that
is trusted to copy-up. But this adds to the TCB for this simple
operation.

Alternatively, the copy (call it o3) could be made at L3 within the
policy, and then the copy o3 could be downgraded to L2 . This is a
big deal; the downgrader would need to be convinced that the new

 o3 was truly a copy of o1 , because the risk of a covert storage
channel is very high. There are also other types of covert channel
that could be exploited here, so this type of downgrading is not
desirable, although it can sometimes be necessary.

5.8. The Secure Xenix Interpretation of BLP

The interpretation of the Bell-LaPadula model in Secure Xenix consists of
a description of the notion of system state, and state transition in Secure
Xenix. Furthermore, it includes the definition of the initial state and an
argument that explains why the mandatory and discretionary access
control of Secure Xenix implies that the axioms of the Bell-LaPadula
model are satisfied.

78

5.8.1. The Interpretation of the System State
The interpretation of the system requires the identification of the state
components B = S ×O × A, M, F and H in Secure Xenix.

5.8.1.1. Secure Xenix Subjects (S)

Processes are the only type of subject in Secure Xenix. A process may
create and destroy objects, may activate and deactivate them, may change
the discretionary privileges of objects in the access matrix, may change
the current access set, and may change the object hierarchy. However,
processes may not change the security level of objects. All changes a
process makes to the system state are constrained to satisfy compatibility,
tranquillity, SS-property, ∗-property, and DS-property. This is discussed
in detail below.

Processes are created at login time or by other processes. A process
is identified by a unique process identifier and its user is identified by a
non-reusable UID and GID [Gilgor86]. The effective UID and GID of a
process are used in all discrete unary access control decisions. Each
process contains a security label that is used in mandatory access control
decision. Process labelling is discussed below in the section describing the
interpretation of the security function in Secure Xenix, and the use of the
real and effective UID and GID is discussed in the interpretation of
discretionary access control.

5.8.1.2. Secure Xenix Objects (O)

The user-created objects of Secure Xenix are: files, special files (devices),
directories, pipes, message queues, semaphores, shared memory segments,
Xenix semaphores, Xenix shared data segments, ACLs, and processes.
Secure Xenix also includes system-created and maintained objects such as
the special files (devices) that can be opened or closed by user processes.
Trusted processes create, maintain, and use similar objects as those of the
users.

(1) Files, Special Files, Pipes, Xenix Semaphores,
Xenix Data Segments and ACLs

Files are containers of information managed by the Secure Xenix kernel.
Files are protected by either ACLs or by protection bits associated with file
i-nodes. The security label of each file is represented in its i-node.

The special files are used to represent devices and can be opened or
closed by user processes. In the case of special files the object activation
and deactivation are equivalent to the opening and closing of a device. In
all other aspects the special files function as the user-created files.

The Xenix shared data segments have similar function to that of
the files and are represented, protected, and labelled in a similar way.
The difference is that the shared data segments allow asynchronous
processes to synchronise their read and write accesses to segment data,

79

and that, unlike files that are shared on a per-copy basis, shared data
segments are shared on a per-original basis.

Named pipes function as "unbounded" communication buffers and
are represented, protected, and labelled in a similar way as the files. The
difference between named pipes and shared data segments is that named
pipes impose producer-consumer process synchronisation to prevent
underflow conditions.

Semaphores are objects that allow the synchronisation between
asynchronous processes and have similar representation, protection and
labeling to that of files.

Access Control Lists (ACLs) are objects used for the discretionary
protection of files [Gilgor86] and are represented as specially-protected
files by the kernel. The ACLs are labelled with the same label as that of
the files they protect. They are discussed in detail in the section on access
matrix representation.

(2) Directories

Directories are containers for files, special files, pipes, Xenix semaphores,
Xenix Data Segments, ACLs and other directories. They form the building
blocks for the system hierarchy. Directories are maintained and protected
by the Secure Xenix kernel and are represented in a similar way to that of
files. The directories that contain special files and ACLs are system
created or destroyed whereas the rest of the directories are created and
destroyed by users. A directory that contains an object is called a parent
directory. A special directory called the root is the highest directory in the
parent chain. It is its own parent. It has no ACL and always can be
searched by all users.

(3) Message queues, Semaphores,
Shared Memory Segments and Processes

The objects in this group do not have file system representation. The
System V semaphores and shared memory segments have the same
function as their Xenix correspondents. The message queues are
containers for messages and are used primarily for requests to server
processes. Processes are created and destroyed by their parent processes
and are identified, labelled, and protected in the same way as that used
for their parents.

All objects mentioned above are activated when they are created
and deactivated when they are destroyed. Exceptions to this rule are the
special files, which activated when they are opened and deactivated when
they are closed. Special files (devices) cannot be created or destroyed by
users. This is important in the interpretation of the activation axiom (see
section 5.8.7).

80

5.8.1.3. Access Privilege Set of Secure Xenix (A)

The basic set of access privileges in Secure Xenix consists of the read,
execute, write, and null privileges. (An additional privilege, setuid-gid, is
defined for executable files. This privilege is discussed in section 5.8.3
below). These privileges are visible to the user and are interpreted by the
kernel differently for different objects. Thus, the actual privilege set is
substantially larger than the basic set above. In this section we define the
access privileges for each type of object of Secure Xenix and its
relationship with the access privileges (modes) of the Bell-LaPadula
model.

In examining the relationship between the Bell-LaPadula model
privileges and the Secure Xenix privileges it should be noted that the e
(execute) privilege of the model does not have any correspondent in Secure
Xenix (nor in other systems [Bell76, footnote on p.11]). Similarly, the null
privilege of Secure Xenix is not explicitly represented in the model.
Furthermore, some of the model privileges have no meaning for some of
the Secure Xenix objects and have no representation among the privileges
define for those objects. These cases are denoted by the phrase "no
meaning" in the correspondence table below. Other model privileges that
have no meaning for some Secure Xenix objects have representation
among the access privileges for those objects. However the access
authorisation mechanisms ignore their representation. This means that
none of the operations defined on those objects may be authorised by the
ignored privileges. (These cases are denoted by the phrase "ignored" in
the privilege correspondence tables below.)

(1) File Access Privileges

read (r) A process granted read access to a file can execute instructions
that cause data to be fetched (read) from the file into processor or
memory registers that can be manipulated (e.g., copied) by users.
The read access of the Bell-LaPadula model maps directly into
the Secure Xenix read.

write (w) A process granted write access to a file can execute instructions
that cause data in the file to be modified. This access privilege
differs from the write access in the Bell-LaPadula model in the
sense that it does not allow any observation of the state of the file
being modified. The append (a) privilege of the Bell-LaPadula
model maps into the Secure Xenix write privilege. Note that the
Secure Xenix write privilege is also necessary for append
operations to files. The write (w) privilege of the Bell-LaPadula
model maps into the read and write privilege combination of
Secure Xenix.

81

execute (x) A process granted the "execute" (x) privilege to a file can transfer
control to that file and cause portions of the file to be interpreted
and executed as instructions. Note that the portions of the file
being executed as instructions are not stored in processor nor in
memory registers from which they can be copied by users. Thus,
the execute privilege differs from the read privilege. Also, this
access privilege differs from the e (execute) access of the Bell-
LaPadula model in the sense that it allows the observation of the
state of the program executing a file, whereas the execute
privilege of the Bell-LaPadula model does not. The execute and
read combination of the Bell-LaPadula model maps directly into
the execute (x) privilege of Secure Xenix.

null (–) A process with the null privilege for a file cannot access the file
in any way. The Bell LaPadula model does not include the null
privilege (although the execute privilege semantics comes close to
it).

setuid-gid
(suid-gid)

Files containing program code have an additional privilege bit
that can change the identity (i.e., UID or GID) of the process while
executing in that file. This is discussed in the section that
describes the discretionary access control in Secure Xenix.

In summary, the Bell-LaPadula privilege corresponds to File
Privilege as shown in the following table.

Name BLP XENIX
execute e –

read r r
read & execute re x

append a w
write w rw

no privilege – null

(2) Privileges for Special Files, Pipes, Message Queues,
Shared Memory Segments, Xenix Shared Data Segments and ACLs

The privileges for these types of objects are the same and have the same
meaning as the file privileges. They have the same relationship to the
Bell-LaPadula privileges as those of files (discussed above). The only
difference between the privileges for this group of objects and file
privileges is that the execute privilege (x) has no meaning for this group of
objects and, therefore, this field is ignored for all objects in this group.

82

In summary, the Bell-LaPadula privilege corresponds to this
privilege for this group.

BLP XENIX
e (execute) –

r (read) r
re (read & execute) x (ignored)

a (append) w
w (write) rw

– null

(3) Directory Privileges

read (r) A process granted read access to a directory can execute
instructions that cause directory attributes and contents to be
fetched (read) from the directory into processor or memory
registers that can be manipulated (e.g., copied) by the users.
Note that no information about the objects named by that
directory can be retrieved. The relationship of this access to the
read access of the Bell-LaPadula model is the same as that of the
files.

search (x) A process granted the search privilege to a directory can execute
instructions that match a given string of characters to those of a
directory entry. Note that the search privilege is weaker than
the read privilege, which could also be used for searching. The
read privilege of the Bell-LaPadula model maps into the search
privileges with the appropriate restriction; i.e., the read privilege
must be restricted to directory-entry reads. Also note that the
distinguished Root directory has the search privilege on for all
processes in the system.

execute The execute privilege has no meaning for directories. Thus, the
execute and read privilege combination if the Bell-LaPadula
model has no meaning either for Secure Xenix directories. Note,
however, that the execute privilege bit is reassigned by the access
authorisation mechanism to the search operation and thus it
denotes the search permission.

add_
entry(w)

delete_
entry (w)

(rw)

A process granted the add_entry (w) privilege to a directory can
execute instructions that cause new entries to be appended to
that directory. The append privilege (a) of the Bell-LaPadula
model maps directly into this privilege for directories. The Bell
LaPadula write (w) access maps directly into the delete_entry
privilege (rw) of Secure Xenix.

null (–) The null privilege has the same interpretation for directories as
that for files.

83

In summary, the Bell-LaPadula privileges correspondence to
Directory Privileges as follows.

BLP XENIX
e (execute) –

r (read) r (read)
x (search) r (restricted read)

re (read & execute) (x) no meaning
a (append) w (add entry or delete

entry)
w (write) rw

– null

(4) Privileges for Semaphores and Xenix Semaphores

The access privileges for System V semaphores are defined in the same
was as those for files, and their relationship to the Bell-LaPadula
privileges is the same as that of files. The execute (x) privilege has no
meaning for semaphores and is ignored by the access authorisation
mechanism. The write (w) privilege in isolation has no meaning for
System V semaphores. Whenever the write privilege is on but the read
privilege is off the write privilege is ignored by the access authorisation
mechanisms. Thus, the only non-null accesses defined for System V
semaphores are read (r) and read and write (rw).

For Xenix semaphores, the execute (x) privilege has no meaning
and is ignored by the access authorisation mechanisms. Although the
write privilege has meaning on semaphores in general, the Secure Xenix
access authorisation mechanism reassigns that meaning of write to the
read privilege and ignores the write privilege. Thus, the read (r) privilege
for Xenix semaphores implies both observation and alteration and,
therefore, it is equivalent to the write (w) privilege of the Bell-LaPadula
model, and to read&write (rw) in Xenix.

In summary, the Bell-LaPadula Privileges correspond to System V
Semaphore Privileges as follows.

BLP System V
e (execute) –

r (read) r (read)
re (read & write) x (ignored)

a (append) w (ignored whenever
read is off)

w (write) rw (read and write)
– null

84

Also, the Bell-LaPadula Privileges correspond to Xenix Semaphore
Privileges as follows.

BLP XENIX
e (execute) –

r (read) r (read)
a (append) w (ignored)
w (write) r (read and write)

– null

(5) Privileges for Processes

The only privileges defined for processes (not to be confused with the
process code file) are signal, kill, and null. The signal and kill privileges
are implemented implicitly for every process and are a stylised form of a
"write" to a process body. The null privilege is also implicitly
implemented by the kernel through the process isolation mechanism;
namely, two isolated processes have null privileges to each other.

5.8.1.4. The Current Access Set in Secure Xenix (B)

The current access set B is a subset of S × O× A . In Secure Xenix, the
current access set is represented by a per-process data structure for some
types of objects and by a per-type data structure for some other types.

(1) The Per-Process Component:

The per-process component of the current access set consists of a set of
descriptors (fd) stored in the u_ofile structure of the per-process u_block.
These descriptors point to a file table whose entries contain the current
access privileges of semaphores and Xenix shared data segments, and
directories. The file-table entries are multiplexed among objects of all
processes. Each per-process descriptor points to an entry in the file table.
The access privileges of each entry are a subset of the privileges that the
process has to the object (discussed in the next section). Note that for
semaphores and for shared data segments the current-access-privileges
set is the same as the process always has to these objects; i.e., the same as
the corresponding access matrix entry.

(2) The Per-Type Component

The per-type component of the current access set consists of special
descriptors that contain the access privileges available to each process.
These descriptors are semid_ds for System V semaphores, msgid_ds for
message queues, and shemid_ds for shared memory segments. The
ipc_perm field of these descriptors contains the access privileges a process
has to these objects. Here, as for Xenix semaphores and shared data
segments, the current access-privilege set is the same as that the process
always has to these objects.

85

5.8.1.5. The Access Matrix in Secure Xenix (M)

The access matrix M of the system state is interpreted in Secure Xenix
through a set of system structures maintained by the kernel. The system
structures interpreted for each object as access matrix entries are either
access control lists (ACLs) or Xenix (Unix) specifications but not both.
These structures represent the storage of the access matrix by column.
That is, each object is associated with a list of users that can access the
object, each user having a set of access privileges restricting his access.
Access control lists and Xenix (Unix) specifications are two different ways
of storing the access matrix by column.

An ACL is a set of <principal identifier, access privileges> pairs that
is attached to an object. The principal identifier is a non-reusable, two
part identifier consisting of a user identifier and a group identifier (UID
and GID). The user identifier places each individual user in a separate
access control group by himself, uniquely. The group identifier places
users in groups whenever such users are related by, or cooperage in, some
activity or project. Such groups imply that their members have similar
access privileges to a set of objects. A user may belong to several groups;
however, at login time he must specify the group in which he wants to be
for that login session. If no group is specified at login time, a default
group is assigned to the user. Both group-membership and group-default
definition on a per user basis are determined by the System Security
Administrator (SSA). Default group specifications can be changed by the
SSA at the user’s request. Note that not all members of a group must be
known when the group is formed. Members of a group may be added and
deleted by the SSA subsequently.

To simplify principal identifiers, a DON’T CARE (i.e., "wild card")
notation has been added [Saltzer 74]. A DON’T CARE in a user or a group
field of a principal identifier is denoted by an asterisk (*). For example,
the identifier Jones.Networks_FSD puts a user Jones in the Networks_FSD
group. By contrast, the identifier Jones.* names a user Jones in any
group, whereas the identifier *.Networks_FSD names any user in the
Networks_FSD group. The inclusion and exclusion of individual users on
ACLs and the review and revocation of privilege mechanisms are
presented in [Gligor 86].

Both ACLs and Xenix protection specifications are associated in a
one-to-one correspondence with the object they protect. For example, for
the objects that have file system representation, the object i-node number
is used to identify unambiguously its ACL. The ACL is destroyed upon
object (and i-node) destruction. For objects that have file system
representation the Xenix protection specification are kept in the i-node
itself. For objects that do not have file system representation (i.e., System
V semaphores, message queues and shared memory segments), the ACL or
the Xenix protection specification is associated with the object through the
object’s descriptor (i.e., semid_ds, msgid_ds, and shemid_ds). For
example, the ACL’s i-node number is stored in the descriptor; the Xenix

86

specification themselves are stored directly in that descriptor and used
whenever ACLs are not specified.

5.8.1.6. The Security Function (F)

The definition of the security levels as binary encodings, of assignment of
print names to binary encodings, and of the (lattice) relationships between
security levels is provided in [Gligor 86]. In this section we focus on the
definition of the three components of the security function, namely, the
assignment of maximum security level (clearance) to each subject, the
current security levels (clearance) of each subject, and the assignment of
security level (classification) to each object.

The assignment of user clearances in Secure Xenix is performed by
the system security administrator (SSA) on an individual and group basis
in the user security profile database. The individual user clearance
consists of a User Maximum Level (UML), and the group clearance consists
of a Group Maximum Level (GML). These values can only be assigned and
manipulated by the SSA, and must be in the range SystemHigh > UML ,

 GML > SystemLow for the System_High and System_Low values defined
by the SSA. The subject-maximum-clearance is the greatest lower bound
(see [Gligor.86]) of the UML and GML.

The current subject clearance is called the current process level
(CPL), and is assigned to that process for its entire lifetime. The CPL is
determined at process creation time and must be between the process
maximum level (PML) and System_Low. The PML is the greatest lower
bound of the UML, the GML, and the terminal34 maximum level (TML).
Note that, because the TML is no greater than the workstation maximum
level (WML), the WML is never lower than the PML. The TML and WML are
discussed below. The CPL of a process is the user Requested_level at login
time, or the user Default_level if no level is requested, if and only if the
Requested_level/Default_level is less than or equal to the PML (or
equivalently PML < UML, PML < GML and PML < TML). Therefore, it
is clear that the subject maximum clearance always dominates the current
subject clearance in Secure Xenix.

Note that a login fault is detected during the computation of the
CPL (and PML). The fault occurs whenever the terminal maximum level
(TML) is greater than the user maximum level (UML) or the group
maximum level (GML). Consequently, an audit record is written. The
reason for this action is that the user is likely to try to login from a
security area where he does not belong. Also note that a user can always
request a level that is lower than both the PML and TML, so long as both
that user’s GML and PML are no lower than the TML. No login fault occurs
in this case.

34 This refers to the computer terminal. It is the maximum security level permitted

by the physical location of the terminal or workstation.

87

The assignment of object classifications consists of the assignment
of classifications to the workstation components and the assignment of
classification to the user-created objects. The assignment of classifications
to workstation components is performed by the SSA (during the definition
of workstation security profile), whereas the assignment of classifications
to user-created objects is done by the Secure Xenix kernel. The current
level of the workstation devices is also assigned by the kernel.

The definition of the workstation security profile is performed by
the system security administrator, and includes the following
classification ranges:

(i) The individual workstation classification range; i.e., workstation
maximum security level (WML) and System_Low.

(ii) The classification range of each individual terminal and private
devices that are connected to each workstation; i.e., terminal
maximum and minimum level (TML, TmL) and the private device
maximum and minimum levels (PDML, PDmL).

The assignment of these values to a specific Secure Xenix
configuration is performed by the SSA and depends on the operational and
the physical security environment. For example, in some operational
environments the System_High and System_Low, and all other security
levels, may have the same clearance value but different category sets. In
such environments, the security levels assigned to individual
workstations, devices and file system depend solely on the "Need to Know"
basis.

The dependency of the security level ranges on the physical security
is equally important. For example, the workstations located to areas
accessible to users cleared at low security levels have a lower classification
than that assigned to workstations located in areas where all users are
cleared at the highest level. Physical security considerations may also
require

(1) that the maximum level of a terminal or private device be lower
than that of its workstation (TML < WML or PDML < WML), and

(2) that the minimum level of a terminal or private device be higher
than System_Low (TmL > SL or PDmL > SL).

Terminals and other workstation devices may be located in a
different physical security area than that of its workstation, and, thus, the
TML or PDML may be lower than the WML. Terminals and other private
devices are also vulnerable to the additional threat of spoofing, and thus
some information contained in the workstation may not be displayed on
the terminal or on the private device.

A user can only change the level of a private device or of a terminal
to a level that he requests at login time (viz., the computation of the CPL).

88

The current level of a private device of a terminal can be displayed by the
kernel on request. The minimum level of a terminal or of a private device
classification may be higher than System_Low because physical security
considerations may require that individuals with a lower clearance, or
with no need to know, may be denied access to workstations, terminals
and private devices located in highly classified areas or in areas with
different "need to know". This is done by raising the TmL or PDmL to a
correspondingly high security level.

A workstation terminal, or a private device, also has a current
classification, called the Current Terminal Level, or the Current Private
Device Level (CTL or CPDL). In Secure Xenix, both the CTL and CPDL
equal the CPL of the user, system process, or daemon to which they are
attached (and that owns or opens them). Note that it is possible to have
 CTL < TmL because CTL < CPL and CPL equals Request_Level < TmL of
a user whose UML < TmL and GML < TmL . For similar reasons, it is
possible to have CPDL < PDmL .

The determination of the classifications of the user-created (or
opened) objects is performed by the Secure Xenix kernel, and consists of
the following three groups of rules.

(1) Classification of Files, Special files, Xenix Semaphores, Xenix Data
Segments, and ACLs.

Objects in this group have a single level for their entire lifetime.
Exceptions to this are the special files whose activation level equals
the level of the process that activates or opens them. None of the
Xenix special files retain any state information in current
configuration. Whenever such files retain state information, SSA
intervention is required for activation. That is, unless a special
trusted process with discretionary access to that object changes the
object classification (i.e., downgrade or upgrade), the object
classification does not change. The classification of an object in this
group is the CPL of the creating process and must be equal to the
security level of the directory containing that object.

An object in this group can only be destroyed by a process
with the same (CPL) level as that of the object; the object is
destroyed only if its reference count equals zero (i.e., it is not shared
by any other directory or process). Note that special files are not
destroyed; they are only closed.

(2) Directory Classification

A directory has a single security level for its entire lifetime, just as
in the case or ordinary files. However, unlike ordinary files, the
security level of a newly-created directory can be assigned from a
range of levels. The lowest level of the range is the CPL of the
creating process and must be equal to that of the directory that
contains the newly-created directory. The highest level of the range

89

is the WML. If a process creates a new directory but does not
request any level for that directory, the default level of the directory
is that of the process (i.e., the CPL) and that of the containing
directory. The classification of a directory does not change during
the lifetime of the directory unless a trusted process with
discretionary access to that directory always changes it.

A directory can only be destroyed by a process at the same
level (i.e., CPL) as that of the containing (parent) directory. Also, a
directory can only be destroyed if it contains no files. This Xenix
interface convention introduces a covert channel, discussed in
[Gligor 86], because a lower level process can discover whether a
higher level process has removed all the files from the higher level
directory when it tries to remove them.

(3) Classification of Processes, System V Semaphores, Message Queues
and Shared Memory Segments

The security levels that are assigned to these objects by the
classification rules of the kernel always equal the CPL of the process
that created these objects. Similarly, these objects can only be
destroyed by the process that created them or by a trusted process
at the same level as that of the objects. The classification of those
objects does not change during their lifetime unless a trusted
process with discretionary access to those objects changes it.

5.8.1.7. Hierarchy (H)

The only Secure Xenix objects that may contain multiple components with
different classifications are directories. Thus, the only object hierarchy in
the system for the objects that have a file system representation is that
provided by the directory hierarchy. All objects in this group (i.e., group
(1) above) are classified at the level of the creating process, which must
equal that of the directory containing the object.

Objects that do not have file system representation (i.e., objects in
group (3) above) are classified at the level of their creator process. This
ensures that these objects cannot be at a lower level than that of the
processes’ current directory. This also maintains the "non-decreasing
level" rule for the directory hierarchy. These objects form the isolated
points (i.e., the "stumps" in the Bell-LaPadula terminology [Bell76]) of the
hierarchy.

The rules for assigning specific classifications to directories in the
hierarchy prevent a process from placing a newly-created directory in
another directory at a lower level than that process’ CPL. However, a
process can create an "upgraded" directory that has a higher level than
that of the CPL of the creating process and that of its containing directory.

Note that a user process can create links in its current directory to
objects that have file system representation. However, links to directories

90

can only be created by trusted processes. User processes can only link
(non-directory) objects in the process current directory (i.e., CPL=directory
level), and only if the security level of the object being linked equals that
of the current directory.

The Secure Xenix hierarchy has a root directory whose level is
always System_Low. All processes have the search privilege (x) to this
directory.

5.8.2. State Transitions in Secure Xenix
Transitions from state to state are defined by the kernel calls and returns
of Secure Xenix. Thus, each rule ρi in ρ : R × V → D× V of the Bell-
LaPadula model is represented as follows:

(1) Each request Rk ∈ R is represented by a specific kernel call or by a
trusted process call (these calls are implemented by kernel calls).
 R is the set of all kernel and trusted process calls.

(2) Each input to Rk comes from the current system state V . That is,
both parameters explicitly passed to each call (such as object
identifiers, values, pointers, access privileges, and so on) and
parameters implicitly passed to each call (such as the system
hierarchy, security levels, and so on) belong to the current system
state.

(3) Each decision Dm ∈D = Yes, No, ?, Error{ } is represented by a
specific return to a kernel call. "Yes" is represented by the
successful return parameter. "No" is represented by the error
return parameter that corresponds to violations of the access
control (e.g., mandatory or discretionary checks). "?" is represented
by the error return parameters specifying that the kernel call
parameters are faulty (e.g., non-existent file, parameters out of
range, attempt to invoke a privileged kernel call, etc.). In general,
these error returns are called domain errors. "Error" is represented
by error returns that correspond to other exceptional conditions
detected during the execution of specific kernel calls (e.g., deletion
attempted on a non-empty directory, overflow conditions, etc.).
Note that all decisions represent some information from the system
state at the time of the kernel call, V , or from the new system state,
 V

∗ , entered by the system as a consequence of the call.

(4) Whenever Dm ≠ No , Dm ≠ ? or Dm ≠ Error , the output of Rk

includes a new state V
∗ , in addition to new hierarchy, or may

exclude some objects and access privileges from previous states, and
so on.

The Dm ’s, the characteristics of the expected and of the new state
for each Rk are described in the Secure Xenix DTLSs.

91

5.8.3. Access Control in Secure Xenix

In this section we report the invariant access control checks that are
performed in Secure Xenix. This includes the presentation of (1)
authorisation checks for mandatory control, (2) authorisation checks for
discretionary access control, including the Setuid-gid mechanism, and (3)
the computation of the effective access authorisation to objects.

5.8.3.1. Mandatory Access Authorisation

The authorisation rules are divided into three groups depending on the
type of object being accessed.

(1) The object is a File, a Special File (Device), a Directory or a Shared
Memory Segment or an ACL:

A process may Read (Execute) an object if the CPL of the process
dominates the classification of the object.

A process may Write an object if the CPL of the process is equal to
the classification of the object.

This rule implies that the data displayed on a private device
or on a terminal can be a level that is no higher than that of the
CPL and, implicitly, of the CPDL/CTL. Any displayed data that may
have to be at a lower level can be labelled separately by a trusted
process of the secure application itself. Thus, the application is
responsible for providing labels for data fields that would be
appropriate for, and that use, the different terminal (i.e.,
windowing, scrolling, etc.).

(2) The object is a Named Pipe, Semaphore, Message Queue, Xenix
Shared Data Segment:

A process may Read/Write (open/close) an object if the CPL of the
process equals the classification of the object.

(3) The object is a Process:

A process can signal (kill) another process if the CPL of the latter
dominates the CPL of the former.

(4) For all objects, a process has NULL access to an object if the CPL of
the process neither dominates nor is dominated by the classification
of the object. The two objects are said to be isolated from each
other.

The above rules imply that the flow of information in Secure Xenix
can only take place from a given level to another level that is no lower
than the first.

92

The mandatory access authorisation rules presented above are
invariant for all Secure Xenix kernel calls. That is, depending on whether
a kernel call is relevant to a particular type of object, one or several of the
above rules apply to that call. These rules are compatible with the SS-
property and the * − property of the Bell-LaPadula model for the
following reasons.

(1) Rules 1 and 2 of Secure Xenix imply conditions (ii) and (iii) of the

 * − property .

(2) Rule 3 of Secure Xenix implies condition (i) of the *-Property.

(3) Since the subject maximum clearance (i.e., the greatest lower bound
of UML and GML) always dominates the current subject clearance
(i.e., CPL) in Secure Xenix, Rules 1-3 above imply the SS-property.

However, it should be noted that equivalence between the SS-
property, the ∗-property of the Bell-LaPadula model and any system
interpretation is impossible in practice. There are two reasons for this.

First, consider the meaning of the execute (e) privilege of the Bell-
LaPadula model presented in section 2.4 above. This privilege does not
exist in practice because, in any system, the execute privilege implies
some observation of the behaviour of the object being executed. Therefore,
in practice, the execute (e) privilege must be eliminated from condition (i)
of the SS-property and added to condition (ii). Furthermore, it must be
also added to condition (iii) of the ∗-property; otherwise, observation of
objects at levels that are higher than those allowed to the user or his
process is possible.

Second, consider the implementation of the "append" operation that
requires the append privilege (a) of the Bell-LaPadula model. In practice,
append operations may require one or more of the following observations
of objects or system state:

(1) find the end of the object that is target of the append operation;

(2) find the name of an object in a directory at a higher level than that
of the process executing the append operation;

(3) find out whether the object exists;

(4) find out whether the append operation fails due to a storage
channel exception.

Consequently, in practice, the append operation implies not only
alteration of an object but also observation of the object or of the system
state. Therefore, in practice, the append (a) privilege must be eliminated
from condition (i) of the SS-property and added to condition (ii) of the

 * − property for the similar reasons to those mentioned for execute (e)
above.

93

With the above two modifications that are required in practice, the
SS-property and the ∗-property would be equivalent to the rules 1-3 of the
Secure Xenix implementation. Note, however, that consistency of the
Secure Xenix interpretation with the model only requires that Rules 1-3
above imply the SS-property and the ∗-property.

5.8.3.2. Discretionary Access Control

The discretionary access authorisation rules of Secure Xenix define the
Secure Xenix model of discretionary policy. Discretionary policy is
characterised by four classes of axioms, namely, (1) authorisation axioms,
(2) axioms for distribution of access privileges, (3) axioms for review of
access privileges and (4) axioms for the revocation of access privileges.
The informal specification of the first three classes of axioms are required
explicitly by the [TCSEC 83] in the discretionary access control area of B2-
class system. The informal specification of the fourth is required
implicitly in the statement that "the enforcement mechanism shall allow
users to specify and control sharing for these objects.

(1) Authorisation in Secure Xenix

The specification of the discretionary authorisation mechanisms of any
system consists of two parts. First, it must include a specification that
relates every (kernel) operation on one or more objects with the privileges
required by the operation for those objects. This is necessary because the
authorisation mechanism requires different (combinations of) privileges
for different operations. Lack of such specification could mean that the
wrong privilege may authorise an operation. As seen in section 3.1.3
above, the correspondence between an access privilege to a kernel
operation depends on the type of objects and is not entirely obvious.

Second, the discretionary authorisation mechanisms must include a
specification of how the current access privileges of subjects are related to
the specification of the subjects access to objects by the access matrix.
This relationship is defined by the DS-property of the Bell-LaPadula
model, and is important because it relates the high-level, human-oriented,
discretionary access controls specified by the access matrix with low-level,
human-oriented, discretionary access controls specified by the access
matrix with the low-level, system-oriented, discretionary controls of the
system.

The requests Rk discussed below, namely, CALL, REVOKE, REVIEW,
ACCESS, GRANT, EXCLUDE are implemented by kernel calls or sequences of
kernel calls that require the reading and writing the ACL and Xenix
specifications. ACCESS and CALL are implemented by a single kernel call
(i.e., "access" and "exec").

The two general requirements of discretionary authorisation can be

expressed by the following two axioms. Let ρ : R × V → D × V ∗ be the set
of rules.

94

For all Rk executed by Si on some objects Oj with Rk ≠ CALL,
GRANT, REVOKE, REVIEW, ACCESS, or EXCLUDE, and x are the required
access privileges for Rk .

(1.1) Dm = Yes ⇒ si, oj, x()∈B and

(1.2) si, oj, x()∈B ⇒ x ∈Mi , j [Bell-LaPadula 76].

Secure Xenix satisfies both requirements mentioned above. First,
the DTLSs of Secure Xenix specify the discretionary privileges for each
type of object that are required by each kernel call. Furthermore, the
kernel call fail whenever the required privileges are not among the
privileges of each object used by the call. Second, each current access of a
process to an object is derived from either the objects’ ACL or from its
Xenix specifications (i.e., i-node, semid-ds, msgid-ds, shemid-ds) when the
object is open or created; viz., section 3.1.4 above. Because these data
structures represent the access matrix in Secure Xenix (viz., section 3.1.5
above), the DS-property of the Bell-LaPadula model is also satisfied.

(2) Distribution of Access Privileges in Secure Xenix

The policy for the distribution of access privileges must specify how "the
access permission to an object by users not already possessing access
permission shall only be assigned by authorised users" [TCSEC 83].

In Secure Xenix, the only users that are authorised to distribute
object privileges to other users are the owner of those objects. Ownership
of an object is a user attribute and not an access privilege. In Xenix,
ownership is determined solely by the user identifier (and not by the
group identifier GID). Each object has only one owner and only the owner
is authorised to modify either the ACL or the Xenix specifications for his
objects.

This privilege distribution policy is succinctly stated by the
following two axioms.

(2.1) Ownership Axioms:

 ∀i ≠ j() ∀si, sj ∈ ′ S () si = Owner oi() ⇒ sj ≠ Owner oi() and

 si = Owner oi() ⇒ for x ∈ A() x ∈Mi,i

(2.2) Privilege Granting Axioms:

Let ρ : R × V → D × V ∗ be the set of rules. For all Rk executed by si on
objects oj with Rk = grant x,sp() we have Dm = Yes()⇒ si = Owner oj() and

 x ∈Mp, j .

The effects of the privilege granting are equivalent to the inclusion
of a user/group identifier on an ACL or in the Xenix specifications. The

95

inclusion of users on ACL’s is explained in section 3.1.5 above and on
Xenix specifications for an object in [Ritchie 74].

Similarly, the policy for the distribution of access privileges must be
able "to specify a list of named individuals and a list of groups of named
individuals for which no access to the objects is to be given".

In Secure Xenix this is possible since the owner can either decide
not to include a specific user or group in the ACL or Xenix access
specification or to exclude a specific user’s or group’s access as explained
in section 3.1.5 above.

(2.3) Privilege Exclusion Axiom:

Let ρ : R × V → D × V ∗ be the set of rules. For all Rk executed by si on

 M si, oi[] with

Rk = excludes Sj{ }, oi() we have

 Dm = Yes()⇒ ∀j ≠ i() si = Owner oi() and Sj, oi, ∅()∈ B , where Sj{ }⊂ ′ S .

(3) Review of Access Privileges in Secure Xenix

The policy for review of access privileges "shall be capable of specifying,
for each named object, a list of named individuals and a list of groups of
named individuals with their respective models of access to that object"
[TCSEC 83].

In Secure Xenix, the only user that can perform access review (i.e.,
reading the ACL or the Xenix specifications) for an object is the owner of
that object. However, any user can inquire whether he has access to an
object, and what type of access, regardless of the object’s ownership. This

can be succinctly stated by the following axioms. Let ρ : R × V → D × V ∗

be the set of rules.

(3.1) For all Rk executed by si on M si, oi[] with Rk = review oj() we have

 Dm = Yes()⇒ si = Owner oj()

(3.2) For all Rk executed by si on oj with Rk = access oj() we have

 Dm = Yes()⇒ si ∈ ′ S

(4) Revocation of Privileges in Secure Xenix

The policy for revocation of privilege must specify how access privileges
for an object can be taken away from users that have these privileges in a
selective manner and, possibly, partially.

In Secure Xenix the (selective and partial) revocation of access
privilege can be performed only by the owner of an object. The reason is
that only the owner of the object may modify ACLs and Xenix
specifications. This can be expressed succinctly by the following axiom.
Let ρ : R × V → D × V ∗ be the set of rules.

96

(4.1) For all Rk executed by si on M si, oi[] with Rk = revoke x, sp() we

have Dm = Yes()⇒ for i ≠ p() x ∈Mp, j and si = Owner oj()
(5) The Setuid-gid Mechanism of Secure Xenix

The SETUID protection mode is used to build controlled interfaces to
various objects [Ritchie 74]. Whenever a program with the SETUID bit is
executed, the invoking process inherits the privileges of the program
owner. Every process has both a real and an effective user identifier that
are identical except when a SETUID program is executed. Then the
effective user identifier is set to that of the program owner. All
discretionary access control decisions are based on the effective use
identifier and not on the real one. There is a similar mechanism called
the SETGID mechanism for changing the effective group identifier.

Although the SETUID feature can be very useful it also poses three
types of security risks. First, a poorly designed SETUID program can
compromise the program owner’s security. Second, the code of the SETUID
program may be modified in an unauthorised way. Third, a Trojan Horse
in a borrowed program may steal a user’s privileges by creating a SETUID
program.

The modifications to the SETUID/GID mechanism presented in
[Gligor 86] make it impossible for a user to change an existing SETUID
program, or for a Trojan Horse to steal user’s privileges by creating a
SETUID program. However, it is the responsibility of the user to use
extreme care in the design of SETUID programs. The operating system
cannot protect the user from his own mistakes. Even if the user is
careless or malicious, he can only hurt himself by misusing the modified
SETUID features mentioned above because he cannot create a SETUID
program under a different user’s identifier. Note that the mandatory
access control (discussed below) remains unaffected by the SETUID
mechanism.

The SETUID/GID mechanism of Secure Xenix enforces the separation
of privileges between the subject that invokes a SETUID/GID program and
the subject that owns the program. This means that a subject invoking a
SETUID/GID program may only have indirect access to some of the objects
of the SETUID/GID program owner. This can be expressed succinctly by the
following axiom:

(5.1) Let A = r, w, x,null,suid_gid{ }.

 sj, oj ,indirect x()[]∈ B ⇒ call sj ,ok(), si = owner ok(),
 suid_gid ∈Mi ,k and si, oi,x()∈ B .

In other words, if a program has the SETUID-GID bit on, the subject si

executing it has privileges of the owner to objects oi that may not be
directly available to that subject’s callers (i.e., sj).

97

5.8.3.3. Computation of the Effective Access in Secure Xenix

The effective current access of a subject to an object in Secure Xenix
follows two rules. These rules are compatible with the Bell-LaPadula
model. They are:

(1) A user process is allowed to access an object in a given mode (i.e.,
requiring a certain privilege) only if both mandatory and
discretionary checks are passed.

(2) The Error value returned for failed discretionary checks must be
the same as that returned from failed mandatory checks unless the
mandatory checks have passed.

The first rule is necessary because, otherwise, the requirement of
the secure states and the Basic Security Theorem of the Bell-LaPadula
model would be violated. The second rule is necessary because otherwise
leakage of information rule is necessary because otherwise leakage of
information from higher levels to lower levels may be possible. That is,
whenever the discretionary checks are done first, a higher level subject
may revoke or add a privilege for an object to a lower level subject. The
lower level subject would then distinguish between denied discretionary
access and denied mandatory access errors. Thus, by modulating the
discretionary access of the lower level subject to a higher level object, a
higher level subject could transfer information to a lower level object. In
Secure Xenix, the mandatory access checks are performed before the
discretionary checks for every kernel call accessible to a user process.
However, this is a stronger requirement than the more general one
specified in (2) above.

5.8.4. Initial State z0

The initial state of any Secure Xenix installation is set by a secure
initialisation procedure. The secure initialisation consists of three distinct
phases:

(1) System configuration and generation.

(2) System and user profile definition.

(3) Normal start-up or Initial Program Load - (IPL).

The first phase is performed by the Trusted Systems Programmer
(TSP) in Maintenance mode. Once this mode is left, the TSP functions are
automatically disabled, and only the rest of the administrative users have
access to the workstation. The second phase work is performed by the
SSA. The third phase work, normally the IP, is performed by anybody
with physical access to the power switch of the workstation.

The IP of the Secure Xenix can only take place with input from the
fixed disk, whereas in maintenance mode, the IP can only take place with
input from the removable media (e.g., diskette) drive. This separation of

98

IP input is enforced by a special hardware configuration that, when
installed by the TSP, prevents user mode IP from using the removable
media drive. No cryptographic authentication of the removable medium
[Gligor 79] is performed at this time. The TSP is the only administrative
use that has access to the internal hardware configuration and he would
have to be trusted to configure the system correctly anyway. If the TSP
were not trusted, on-site physical surveillance methods would become
necessary, cryptographic authentication notwithstanding.

During the Secure Xenix IP, several consistency checks are
performed. Xenix already performs file system consistency checks (i.e.,
through the "fsck" program). In particular, the IP recovers whenever the
system is started up after an improper shut-down (after a crash, after
power-off during disk I/Os, etc.). This ensures that security label
consistency is maintained because each label is written onto the disk with
a separate, atomic sector-write operation. In addition to the file system
consistency checks, Secure Xenix checks (1) the consistency of the security
map, (2) the consistency of the current object label, and (3) the consistency
of the overall security level hierarchy (i.e., the non-decreasing security
levels for directories). This is done by the "scheck" program.

5.8.5. Compatibility in Secure Xenix

The interpretation of the compatibility axiom in Secure Xenix requires
that a directory contains (1) non-directory objects (which have file system
representation) only at the same level as that of the directory, and (2)
directory objects at the same level as that of the directory or higher.
Consequently, if a directory is at a higher security level than that of a
subject, all object fields in that directory remain inaccessible to the
subject.

The rules for object classification discussed in section 3.1.6 above,
and the definition of the Secure Xenix hierarchy discussed in section 3.1.7
above, imply that the compatibility axiom is satisfied.

5.8.6. Tranquillity in Secure Xenix

The section 3.1.6 is specified that both the current process level
(clearance) and the classification of objects in Secure Xenix do not change
during the lifetime process and of an object, respectively (unless a trusted
process with discretionary access to those objects or with root privileges
changes those levels). This suggests that the kernel call accesses, and the
clearance and classification rules of Secure Xenix satisfy the tranquillity
principle of the Bell-LaPadula.

5.8.7. Activation

The design of Secure Xenix satisfies the two activation axioms defined in
section 2.4.6 above. First, an active object can become inactive only
through destruction. Objects that have file system representation ate
inactivated by the destruction of their i-nodes and by the de-allocation of

99

the appropriate table entries (i.e., file descriptor, file table entry). Objects
that do not have file system representation are inactivated by the
destruction of their descriptors and of their table entries (i.e., shared
memory, semaphore and message queue table entries). A process is
destroyed by destroying the corresponding process table entry.
Consequently, the destruction of all these objects makes them inaccessible
to any active process.

Second, whenever an object is created (activated) the state of the
object is automatically written by the kernel with zeros. Thus, the
previous states of this object, or of any other destroyed object whose
storage representation is being reused, are erased before reuse. This is
discussed in more detail in a separate document on object reuse. Thus,
the state of a newly activated object cannot depend on the state of any
previous object incarnation.

Note that the destruction (inactivation) of some objects, such as
some special files representing terminals, does not cause the object
representation to be "erased". Whenever such objects do not retain state
information they can be reactivated and made accessible to different
processes (and labelled accordingly; viz. section 3.1.6 above). However,
the activation of objects that retain state information after their
deactivation requires the intervention of the SSA and of trusted processes
(i.e., mount/unmount volumes).

Secure Xenix also satisfies an additional activation axiom that
defines the classification of a newly activated (created) object and the
object destruction rule.

Consistency with the compatibility axiom and with the * − property
requires:

(3) Classification of Newly Activated Objects & the Object Destruction
Rule

Let O = ′ O ∪ ′ ′ O , where ′ O ′ ′ O () are the active (inactive) objects, and

 new o() ⇒ ′ O = ′ ′ O − o{ } ′ ′ O = ′ O + o{ }[] and

 destroy o() ⇒ ′ ′ O = ′ O − o{ } ′ O = ′ ′ O + o{ }[].

Let H
−1 o() designate the parent of object o .

call si, new o()()⇒ H−1 o() ≠ ∅ ⇒ fo o()> fc si() = fo H −1 o()(){ }

 call si, destroy o()()⇒ H−1 o() = ∅ ⇒ fo o() = fc si(){ }
The interpretation of these axioms in Secure Xenix is discussed in

section 3.1.6 above.

5.9. Conclusion

The Bell-LaPadula model is a state-based model of system actions. It is
useful in developing assurance that certain properties of a system are

100

obeyed. The TCSEC clearly is dependent upon it. It is easy to see by
construction that the access control mechanisms of Secure Xenix satisfy
the axioms of the Bell-LaPadula model.

101

RISK ANALYSIS
AND

ASSET LABELLING

6. RISK ANALYSIS AND ASSET LABELLING

Computer installations that are to be used with sensitive data assets must
undergo an evaluation to gauge their suitability for this purpose. Access
to such data assets must be carefully controlled to ensure that only users
who have appropriate authorisations can observe or manipulate it. Data
labels need to be definitive in their description of the sensitivity of data
because the data access controls will depend directly on the values of the
data label. The risk that data labels can become corrupted must be
carefully controlled so that we can develop any reasonable expectation
that the access controls can have a useful purpose.

The worth of data is defined as the relative importance or value or
merit of the data in respect of its qualities or in respect of the estimation
in which it is held in a particular setting. We will speak almost
universally of labels that give the worth of data assets, meaning some
measure such as security worth, utility, or some other aspect of the data
may in a practical situation be implied by this term. The analysis can
easily be extended to situations in which the monetary value of some sort
of asset is known. We are not particularly concerned with the measure
used to record worth or with how the worth of a data object is deduced.
We insist on only three things:

(1) All the data assets that are under discussion have their worth recorded
in a label that is associated with the data.

(2) All the data assets that are under discussion have their worth
measured according to the same standard, so that the result of a
comparison of the worth of any two objects can be meaningful.

(3) A method exists to compare the worth of data assets. We will need to
know by inspection of their labels the relative worth of two data objects,
or that there is no relation between their worth.

The first of these conditions merely says that if we are to study the
evolution of the risk involved in a label, then that label must exist. The
second condition asserts that when we compare the worth of two objects
the comparison must mean something. We will take the third condition to

102

imply that the possible measures of worth must either be totally ordered
or a partially ordered. This arrangement is similar to the worth schemes
that appear in the security literature35.

The users of a system are cleared to access data up to some known
worth. By access we mean observation or modification or any other
manipulation that pertains to the access policy of interest. It follows that
the measure of user clearance is the same as the measure of data worth.
Thus, a decision as to whether a user can access a data object can be
based upon a comparison of the user’s clearance and the data’s worth.

Our risk analysis is characterised by the range of data worth and
user clearances that are involved in an abstract situation. Each data
object is given some intrinsic worth when it is created. In most security-
enforcing systems this worth may be changed later only with human
intervention, normally done only on an exceptional basis. However, the
data will acquire a succession of new values as computation progresses.
These new data values occur without user intervention.

In this essay we will derive conditions that, if obeyed, ensure that
the risk associated with the correctness of an outcome’s data label can not
be greater than the risk associated with the data labels on the inputs to
the computation. If these conditions are not obeyed it is trivial to set up a
sequence of plausible calculations such that the risk associated with the
labels on data objects rapidly increases. This is done by recycling data
that is the result of a calculation back as an input in a subsequent
calculation. The label can rapidly become unacceptably questionable as
an indication of the worth of the data it purports to describe.

6.1. Our Risk Measure

The assurance that a data asset is correctly labelled is the essence of our
risk analysis. For example, if the worth of some data is described by its
label as Unclassified and if there is data with a Secret worth in the
machine, we want to have a measure of the assurance we have that the
purportedly Unclassified data value is not tainted with Secret data36. The
computer system could not be judged to be capable of enforcing policy if
the labelling can deteriorate so that a given data label may bear a poor

35 The following four papers are perhaps the classical references:

D.Elliot Bell and Leonard J. LaPadula, Secure Computer Systems: Mathematical
Foundations, MTR-2547, Mitre Corp., Bedford, MA. March 1973.
Dorothy E. Denning, A Lattice Model of Secure Information Flow, Comm. ACM,
Vol. 19, No.5, pp. 236-243. May 1976.
Department of Defense Trusted Computer System Evaluation Criteria, DoD
5200.28-STD, Library No. S225,711. December 1985.
Canadian Trusted Computer Product Evaluation Criteria, V3.0, Canadian System
Security Centre, Communications Security Establishment, January 1993.

36 The notion that data of relatively lower worth can be tainted with data of higher
worth does not serve easily as a metaphor for many other situations. One would
not consider lead that is “tainted” with gold to be worth less than lead not so
tainted. There is a parallel development, however, that can deal with this inverse
circumstance.

103

relationship to the label that the data should have. The degree of possible
imperfection in the relationship between the data and its label in a given
situation is the risk that the computer will perform adequately when used
in that situation.

The risk associated with an asset is a function of the worth of the
asset, the vulnerability of the asset to any relevant attack, and the nature
of the threats deployed against the asset. For a function ℜ that is rarely
if ever known, the function risk worth, vulnerability, threat= ℜ1 6 captures
this relationship. The risk function is not useful as an absolute measure.
In most cases an instance of a risk is measured relative to some other
instance of risk. A statement that a given risk is, say, 7.8 units, is
meaningful only when used as a comparison with greater or lesser risks.
We shall follow this relative approach throughout our work.

We desire to perform a risk analysis in order to deduce simple rules
that will determine whether or not to permit a known body of users to
operate a given computer system

• in a particular environment
• with specific input and system data
• that has a known range of worth.

We will use the term evaluation to refer to this binary decision to permit
or prohibit use. The system is evaluated to determine its suitability for an
identified use in a particular environment. The objective of an evaluation
is to decide whether the clearances of the users, the capabilities of the
system, the environment in which it to be used and the properties of the
data are consistent with a tolerable risk.

An acceptable evaluation may be granted to an installation in spite
of a low assurance level of the system's ability to keep data of different
worth separate. The evaluation could be positive if the evaluating
authority considers the separation adequate given the proposed operating
environment. The same hardware and software might be judged
inadequate if there were some users with low clearances, or if different
external handling procedures were proposed. The same system in two
distinct installations could be approved in one and not approved in
another, because in the second the external handling of potentially
corrupted data is deficient.

6.1.1. Worth

Data can be stored in a computer, or data can be manipulated by a
computer to produce new internal data values or new data results that are
output to the users and to the environment of the computer. The hazard
is that the label on a data object misrepresents its worth. The only
serious misrepresentation is the case where the label alleges a worth that
is lower than it should be. Data labelled at too high a level may be

104

difficult to deal with but it does not represent a risk to worth, but rather a
risk to the ability to access37.

The label could have been mislabelled initially with a lower worth
than it should have. This represents an error on the part of the user who
initially classified the data and produced the label. There is no currently
practical way that a computer could correct a mislabelling by a user.

The label also could indicate a lower worth than it should if data of
one worth becomes somehow contaminated with data of a second and
higher worth without the label changing to represent the presence of the
corrupting data. In the security world the corrupting data is at a higher
worth than the original data, as in Confidential data being corrupted with
Top Secret data without the label changing to represent the new status of
the data. The sense of the corruption is a property of the policy that is
being enforced. For our purposes we will limit our analysis to the
mislabelling of low level data that has been tainted with data that has a
higher worth. The development is adaptable to other policies.

6.1.2. Vulnerability

The vulnerability of a data object’s label is a measure of the confidence
that the object is correctly labelled and that the computer is capable of
preventing a high-level data object from corrupting another data object
with a lower worth. There are two extreme situations:

(1) If the label on an object is Completely Unreliable the data may be
highly vulnerable to being misused even if the access controls work
flawlessly, because the access controls rely on the label to describe
accurately the data object. It is vulnerable because the label is
unreliable.

(2) The label may be Completely Reliable. In this case access control can
be appropriately managed by effective mechanisms.

6.1.3. Threat

Let us focus on some arbitrary data item o1 with worth W1. The threat that
we have in mind is embodied in the presence in the system of data with
worth W2 that is greater than W1 and that might have affected the value of
o1 in a way that is not recorded in the label of o1 .

Consider a standalone system that is to contain a mix of Secret and
Confidential material, but which has users who are all cleared to deal
with Secret data. Assume that the configuration of hardware and
software and any security analyses performed on them are such that there
is a low level of confidence in the system’s ability to keep the data worth
Secret separate from the data worth Confidential. The risk of direct

37 Data that is labelled overly high may represent a real risk if there is a policy that

requires a certain accessibility of data. The analysis that follows is easily adapted
to deal with the circumstance.

105

security problems is low as long as all users are formally cleared to access
all data. The remaining very real risk is that Secret data and
Confidential data might combine in a calculation and some of the output
might be erroneously labelled Confidential. Subsequently, this
Confidential data is at risk of being mishandled because of its label is too
low. This presents a real risk if Confidential data is ever removed from
the installation. There is not the same risk when Secret data is exported.
For an acceptable evaluation the external conditions of the installation
need to control this risk.

6.2. The Evaluation of Risk

We view the evaluation process as the determination of the level of risk
associated with a system. The ultimate goal is to develop conditions for a
system such that the risk associated with its outputs is not greater than
the risk associated with its inputs.

We compare the worth of data items with the relation > , which
could be a total order (as in our examples38) or a partial order on worth. If
W W1 2> then W1 is judged to be of superior worth than W2. We say that W1

dominates W2. The reverse notation < is useful; if W W1 2< then W2

dominates W1.

We represent the functional dependency implied by the risk
function ℜ associated with a data label and a worth relation > as
ℜ = W R X, , where W is the worth of the data object, the vulnerability R

is the reliability with which the worth is known and the threat X is the
worth of the most serious contaminant. In this way we describe the
influence on a risk function of a vulnerability and a threat.

The actual units of measurement of the reliability R are not
important, except that they are required to be able to represent the
reliability spectrum from Completely Unreliable through to Completely
Reliable39 and they must be totally ordered such that any two reliability
measures can be meaningfully compared. The decision to require the
reliability values to be totally ordered is made for the sake of simplicity;
other orderings are possible but they overly complicate the analysis. If
the reliability R is less than Completely Reliable then there is a greater-
than-zero risk that the data has been tainted with some higher-level data.
The worth X is the worth of the most serious possible contaminant that
may be corrupting the data of interest. This must be some data with a
higher worth than that of the data of interest that has coexisted with it in
some pertinent environment.

38 We use the classifications Top Secret > Secret > Confidential > Unclassified,

abbreviated as TS>S>C>U, in our examples. This makes explicit the fact that
these measures are totally ordered. Everything is directly convertible to partially
ordered worth measures.

39 We use Completely Reliable > Extremely Reliable > Very Reliable > Slightly
Reliable> Completely Unreliable, abbreviated CR>ER>VR>SR>CU, in our
examples. Any such sequence of totally ordered designations will suffice.

106

The decision to represent only the single most serious contaminant
is made for the sake of simplicity. It is possible that there may be uses for
risk measures that include several R X, pairs. Adopting this approach
complicates the analysis unduly.

The necessity of having both R and X in the risk measure is
apparent when one considers two extreme cases:

Completely Reliable labels:
When the data of interest is labelled with an R value of Completely
Reliable the X value is superfluous. There can not have been any
contamination.

Maximum Worth:
When the maximum possible contaminant is dominated by the worth
of the data of interest, W X> , there can be no risk. The R value is
irrelevant because no higher worth data was available as a
contaminant in the system of interest.

6.3. Risk Factors

When more than one data item contributes to a risk we must adapt our
definition of risk function to represent accurately the possibilities. We
chose to be pessimistic in our approach; we will identify the riskiest
combination of elements and use this worst view of possible outcomes as
the risk. We observe that in many cases, the worst case scenario is far
less likely than any typical case, but it is always safe.

When we combine several data items and achieve some outcome,
the risk involved with that outcome is not a risk function as it was defined
above. We will define a risk factor Φ as the risk involved in the
combination of several data items.

We define the function LUB as follows:

Y W W W= LUB 1 2 3, , ,L1 6 iff ∀k Y Wk1 6 > and ¬∃Z such that ∀k Y Z Wk1 6 > > .

Let several data objects, each with risk ℜ =k k k kW R X, , , be indexed
with k and be combined by some process to develop an outcome. Security

policy undoubtedly dictates that the nominal worth of the outcome W
out

 be

such that W
out

W W W= LUB 1 2 3, , ,L1 6 because it specifies that W
out

 be an upper
bound on all data worth that participate in the process. The possibility
that some contamination of one of the input data objects will taint the
output will appear explicitly as a risk of contamination in the output, and

consequently will not directly affect W
out

.

We define the risk factor Φ and the function MIN as follows:

Φ = = �
��

�
��W R X W R X

out

k

out

k k, , , ,φ φ MIN iff ∀ ≤k R Rk1 6 φ and X k Xkφ = ∀LUB 1 62 7.

107

The function MIN determines Rφ and Xφ , where Rφ is the least
reliability of the labels of the data items that are being combined and Xφ

is the least upper bound of the contaminants of the data items that are
being combined. In practice Xφ will often be the worth of the system’s
highest-level data object.

We have been careful to speak of the outcome of the combination of
several data objects. One scenario is that some data being input to a
computation results in the generation of a new value for one or more data
items. There are other possible outcomes, such as logout, login, or some
data or action being passed to the environment that the system occupies.
We intend to encompass all these effects, but for simplicity we concentrate
on data labels.

6.3.1. Risk and a Reasonable Authority

A meaningful partial order on risks can be defined. Let ℜ =k k k kW R X, ,

for all k of significance. The partial order on two risks ℜA and ℜB is
defined as risk ℜA is at least as good a risk as risk ℜB, written ℜ → ℜA B , if
and only if W W R R X XA B A B A B> <∧ ≥ ∧ .

Thus, information labelled S VR TS, , is at least as good a risk as
information labelled C VR TS, , . If everything else is equal the risk
associated with manipulating data labelled Secret is less than that with
data labelled Confidential because the handling procedures for Secret
data are more restrictive and the potential contaminant is closer in level
to Secret than to Confidential.

The second conjunct asserts that increasing the label reliability
decreases the risk, and the third conjunct says that lowering the security
level of the contaminating data also lowers the risk. These definitions are
unlikely to be contentious.

The assurance component R of the risks has been defined so
vaguely and imprecisely that it is difficult to compare different risks. For
two risks ℜA and ℜB let W WA B= and X XA B> . The question of which of
the risks given by ℜ =A A AW VR X, , and ℜ =B B BW SR X, , is more risky and
which is less risky is hard to decide. This is an issue properly dealt with
by individual authorities, considering the system environment, the type of
asset, the desired requirements on labels, the user clearances, the
physical security measures, and other such issues. The relation → is
defined pessimistically because ℜ → ℜA B if and only if all three
components of ℜA are at least as risk-free as those of ℜB. This is because
→is a partial order. In the case above, and in many other cases, human
intervention is needed to decide whether ℜ → ℜA B or ℜ → ℜB A or, perhaps,
ℜ = ℜA B

An evaluating authority, a person or a purpose-designed algorithm,
need not be tentative in ordering risks. An authority should possess a

108

more comprehensive definition of risk comparison and be willing to apply
it to these enigmatic cases. Different authorities are likely to have
different definitions of this relation. The notation ℜ ⇒ ℜA B will be used to
denote the notion that the evaluating authority considers risk ℜA to be at
least as good as risk ℜB.

It is expected that ℜ ⇒ ℜA B may hold for many ℜA and ℜB where
the more pessimistic relation ℜ → ℜA B does not hold. But, the definition
of → is obvious enough that if it is true that ℜ → ℜA B , a reasonable
authority will agree that ℜ ⇒ ℜA B as well. We modify the definition of ⇒
so that the authority we are dealing with is reasonable.

Thus, for example, it always is true that C VR S C VR TS, , , ,⇒
because C VR S C VR TS, , , ,→ . However, C VR S C ER TS, , , ,⇒ might be
true if the authority so decides.

Further discussion will be restricted to installations governed by
reasonable authorities whose risk comparison relations are as described.

6.4. Risk in Input Labelling

The task of correctly initialising the worth of data fed into the system is
hopefully achieved with high reliability because the sources are human
users who are trained to perform this function well. If the situation is
otherwise there is not much that can subsequently be done in the system.

There are, however, sources of data that do not inspire this level of
assurance; the label on any data that comes to a system from a network
may have moot reliability. The reliability of the source computer in
labelling its output data becomes a factor in determining the risk inherent
in the arriving data. This situation is a reflection of the fact that two
computers that are actively exchanging data and are connected by a
network form a single system.

External handling procedures for some forms of input, such as
magnetic tapes or floppy disks, are a time-delayed version of the network
connection. Such input sources may be input by the receiving system only
with a human review of the worth of the data. Eventually, such review
becomes a chore and in consequence unreliable. In most other cases,
policy should require that an authorised user review and properly classify
information entered into the system. The intention is that the
knowledgeable authorised user decreases the risk in the reliability of the
worth labels assigned to the input data he or she reviews.

Input data can come from many sources, not only human users.
Consequently, the possibility that labels on received data are unreliable
must be considered. The input risk function associated with a label on

input data ok is ℜ =k

in

k

in

k

in

k

in

W R X, , , .

109

The use of [],R Xk

in

k

in

 pairs, providing a distinct Rk

in

 measure for each
possible contaminating situation, could give a more thorough analysis.
We choose to ignore this complication far the sake of brevity.

6.5. Risk in Separation

This component describes the system’s ability to maintain the accuracy of
security level labels and to control effectively the access to data objects
according to those labels within the system. It is concerned with the
system’s ability to prevent undetected leakage of higher-level data into
lower-level results. When a computing system design is evaluated, as for
example when being assigned a national evaluation class40, it is mostly
this component that is being measured.

The internals of computer systems usually differ from other
instances of multilevel security in that the mechanisms and procedures
that are used to control and separate data at different security levels are
equally effective for all data. In contrast to manual security procedures,
which might specify escalating security measures as data worth increases,
computer systems generally use the same methods for isolating all levels.

The possibility of leakage between levels in a computer, therefore,
does not depend on the separation between them. If a system is highly
rated to prevent Secret information from being contaminated with Top
Secret information, the same level of assurance should be assumed
between, say, Unclassified and Confidential data. It is not being
suggested that the risks are the same. The possible damage usually will
vary widely between one case to the next.

For this reason, the risk component due to faulty separation can be

categorised by the pair [],R X
sep sep

. Define X
sep

 as ∀k X W
sep

k1 6 > . X
sep

 is the highest
level of contaminant due to separation with which any data object can be

contaminated. Usually X
sep

 will be the system's highest classified data

object. It will be assumed that the level X
sep

 is unique. In a practical
multilevel system, it could easily be the case that there are several high

levels of contaminant, X X
sep sep

1 2, ,L, that exist. Some of them may not
dominate some of the others, because the dominates relation is a partial
order. It is possible to find a least upper bound for all these
contaminants, but that might be far too high a security level to be

representative of reality. Thus, while we will assume that X
sep

 is unique, it
is possible to perform a more detailed analysis that in the extreme uses a

pair of the form [],R Xk

sep

k

sep

 for the risk component to data object k due to
faulty separation. This approach might give an enhanced model, but to be

40 The classes of the TCSEC, the CTCPEC, or such governmental criteria are being

referenced. Recently some effort has been devoted to harmonising these criteria.

110

brief we chose the simpler approach. We also believe that the simpler
approach is adequate and that it is closer to what happens in practice.

 The reliability R
sep

, which is drawn from the same range as the R
in

 of
the input data, measures the reliability of the system’s ability to prevent
the contamination of labelled data with data labelled with a higher

security level. The confidence that R
sep

 expresses is the level of confidence
that the labelled data contains only information with a security level that
is dominated by its own security level. The actual security level is not
involved here because of the argument that the possibility of leakage
between levels does not depend on the separation between them.

Evidently systems can be compared using an obvious analog to →.
If P and Q are two systems, then from the separation viewpoint
VR S VR TS

P Q
, ,→ or ER TS VR TS

P Q
, ,→ , and in cases that are not as

clear, the evaluating authority may judge that the separation is adequate,
as it did in the discussion of the relation ⇒. We emphasise, however, that
this comparison ignores the environment that these systems occupy; it is
only a measure of the strength of their respective separation mechanisms.

6.6. Risk in Output Labels

Even a system with a perfect R
sep

 can not produce reliably labelled output if

the data was incorrectly classified on input. If R
sep

 is less than perfect
contamination in output labels can be caused both by contamination in
the inputs and by contamination from internal system data with a level

that dominates W
out

. The objective is to designate the reliability of the risk
labels taking into account any unreliability of the input data labels and
imperfections in the systems.

6.7. Output Label Risk Factor

An output label risk factor Φ
out out out out

W R X= , , can be defined, such that

it applies to for the case in which input data may be imperfectly labelled
and the separation controls may be imperfect.

We make the reasonable assumption that the system attempts to
preserve security. Therefore, it is expected that the system will label each

output with the worth W k W
out

k= ∀LUB1 6 where k ranges over all pertinent
data objects. This was mentioned in section 1.2. An output label risk

factor Φ
out

 can be defined for possibly imperfectly labelled input data and
possibly imperfect separation mechanisms.

Possible contaminants must dominate W
out

 for them to represent a
risk. These contaminants can not be the worth of inputs. Because by

their nature inputs are pertinent to the calculation, W
out

 will be at least as

111

high as each their worth. There are two possible sources of
contamination.

The first source of possible contamination is the contamination from
data objects that may or may not be directly involved in the determination
of the output of the combination, but that might affect it due to imperfect
separation. Let k range over all system data, excluding inputs, for which

W Wk

out
> or X Wk

out
> . These data objects may not affect the output directly.

They can, however, contaminate the output due to imperfect separation.

This contamination may be mitigated if R
sep

 is sufficiently high, and

vanishes if R
sep

 is perfect.

The second source of possible contamination is from inputs. We

know that for all inputs ik , W
out

kW> , but for any input k it might be the case

that X Wk

out
> and each such contaminant can contribute to the risk.

Let k range over all data objects in the system, including inputs.

Define Φ
out

 to be the risk contribution in an output due to contamination
from data object k with risk function ℜ =k k k kW R X, , . Then:

Φ
out

k

out

k

sep

k

out
W , R , R , X ,W= �

��
�
��

�
�

�
�∀

MIN LUBmin ,

The min R Rk

sep
,�

��
�
�� function appears because we wish to be pessimistic;

a low R
sep

 or a low Rk will increase the risk because of the likelihood of
contamination, so we chose the lowest of the pair of them. Reinforcing our

pessimism, the expression LUB X Wk

out
,�

�
�
� gives the highest level that

dominates W
out

 that could be a contaminant. Thus, the MIN
∀k

 function will

give a risk factor of Φ
out out

W R X= , lowest highest, , as our pessimistic nature

wishes.

A complete analysis would consider the issues already discussed, as
well as such issues as the possibility of coupling between the separation
risk with perfect inputs and the separation risk from contamination
arising from unrelated data. Our analysis, however, is pessimistic in that
it chooses the worst case possibility.

6.8. Limiting Cases

The value of Φ
out

 in several special cases is interesting, as well as serving to
reassure us that we are on the correct track.

112

6.8.1. Completely Reliable Separation

When R
sep

 is perfect, the result Φ
out

k

out

k

sep

k

out
W R R X W= �

��
�
��

�
�

�
�MIN LUB, min , , , has

several interesting aspects. Clearly, min R R Rk

sep

k,�
��

�
�� = , and since R

sep
 is

perfect there can be no contamination from data in the system so k ranges

only over the input data and Φ
out

CRS
inputs k

out

k k

out
W R X W= �

�
�
�∀

MIN LUB, , , .

6.8.2. Faultless Input Data

For faultless input data, Φ
out

k

out

k

sep

k

out
W R R X W= �

��
�
��

�
�

�
�MIN LUB, min , , , becomes

Φ
out

FID
system
data k

out sep

k

out
W R X W= �

�
�
�∀

MIN LUB, , , . In this case, k ranges over only the system

data; the input data is perfect so it cannot result in an output risk.

However, no pessimism is lost if we allow k to range over both the
system data and the input data. If we do this, it is easy to see that for

each input datum im it must be the case that R Rm

sep
≥ . If this were not so,

and R Rm

sep
< for a particular datum im then it would be the case that the

output risk factor in this situation Φ Φ
out out

FID→ . But we constructed Φ
out

 to
have the lowest reliability and highest possible contaminant in the
general case.

Consequently, we observe that R Rm

sep
≥ for all inputs m. This is the

first example of a control on the external environment, from which the
inputs come, that must be true if risk is to be controlled.

6.9. The Environment and Maximal Risk

The evaluating authority must consider a proposed environment and the
amount of confidence that can be placed in the output labelling and
output routing capabilities of the system. It will make the evaluation
decision depending on the reliability of the labels and on the exposure
that would result if a worst-case mislabelling occurred. The capability of
the environment to deal effectively with classified data can be described

by a maximum tolerable risk ℜ
env

 that is a property of the environment.

Different environments will have different ℜ
env

, agreeing with our
notion that a system might be approved for one environment but
forbidden in another. This decision can be effectively modelled as three
constraints.

113

6.10. The Environment and Maximal Levels

The first constraint is that there is some limit ℜ =
env env env env

W R X, , imposed by

the environment on the risk that is permissible. All data risks must be at

least as good a risk as ℜ
env

. In most cases there will be a maximum worth
that is tolerable in the environment. We take this limit to mean that

X W
env env

= since both the worth of the label and the worth of the highest
permitted contamination must be dominated by this maximum allowed
worth.

It would be overly permissive to forbid worth above W
env

 but to allow

contamination above W
env

, since W
env

 is the highest security level for which the
proposed environment provides adequate handling procedures. Although

W
env

 will always be an upper bound on the permitted worth, it is not
necessarily a least upper bound.

6.11. The Environment and Minimal Reliability

The second constraint concerns the reliability R
env

 in the maximum

risk ℜ =
env env env env

W R X, , . We know that ∀k W W
env

k1 6 > and ∀k W X
env

k1 6 > . For all

data objects ok we require that R Rk

env

⇒ .

We define Φ
sys env sys sys

W R X= , , with reliability and contamination

components that reflect a pessimistic view of all the actual data worth in

the system. Thus we have that ∀ ≥k R Rk

sys1 6 and ∀k X X
sys

k1 6 > . We insist

that ℜ ⇒ ℜk

env

 and implies that Φ
sys env

⇒ ℜ . Dealing with the relation ⇒ is a

problem, but in this case we can safely substitute Φ
sys env

→ ℜ because the

authority is reasonable. The worth of both Φ
sys

 and ℜ
env

 is W
env

. We know by

construction that ∀k X X
sys

k1 6 > . If Φ
sys env

→ ℜ it must be the case that R R
sys env

≥ .

Because ∀ ≥k R Rk

sys1 6 , we can say that ∀ ≥k R Rk

env1 6 . This gives an effective
lower limit on each Rk ; the reliability of the label on any system data must
be good enough to ensure that the risk associated with it is at least as

good as ℜ
env

.

The new condition that ∀ ≥k R Rk

env1 6 is merely an insistence that
every label have some minimal level of reliability to satisfy the minimal
risk that is tolerable. This does not seem excessively rigid.

If ℜ =
env

S ER S, , then a system that includes a data object with a
reliability function ℜ = S SR S, , would not be evaluated acceptable

114

because it is not the case that S SR S S ER S, , , ,→ , and since systems are
expected to be reasonable, neither can it be the case that
S SR S S ER S, , , ,⇒ .

6.12. Maintaining Minimal Risk

The third constraint is that the system must provide output labels and

separation with a risk not exceeding ℜ =
env env env env

W R X, , . All outputs of the

system must meet or better this permissible risk. The risk ℜ
env

 is a
limitation imposed by the security policy on the production of new data
values with evolving labels. The system will be evaluated as acceptable

only if Φ
out env

⇒ ℜ. In general, the value of ℜ
env

 is dependent on the particular
system of interest and its proposed environment.

A different maximal output label risk factor for each security level

might be a more precise representation. The risk factor ℜ
env

 can
pessimistically be thought of as the least upper bound of all these
different functions.

It is certain that the risk factor for faultless input data must be

such that Φ
out

FID
system
data k

out sep

k

out env

W R X W= �
�

�
� ⇒ ℜ

∀
MIN LUB, , , . We have ℜ =

env env env env

W R X, , and

∀k W W
env

k1 6 > and ∀k W X
env

k1 6 > . Thus, MIN
k

out sep

k

out env env env

W R X W W R XLUB, , , , ,�
�

�
� ⇒ .

The relation ⇒ is difficult to deal with, but because the authority is
reasonable we can substitute the relation → without losing our
pessimistic approach. The result is that

MIN
k

out sep

k

out env env env

W R X W W R XLUB, , , , ,�
�

�
� → . This states that the separation

capability of the system if all input data is labelled completely reliably

must be good enough to meet ℜ
env

, so that R R
sep env

≥ , surely a reasonable
condition. In the general case, we must insist on this condition; in
practice we have no way of knowing how reliably the input data is
labelled, so we must choose the pessimistic alternative.

If ℜ =
env

C VR S, , , then a system that includes an output with a

reliability factor Φ
out

C SR S= , , would not be evaluated acceptable because

it is not the case that Φ
out env

→ ℜ, and since evaluating authorities are

expected to be reasonable, neither can it be the case that Φ
out env

⇒ ℜ.

Unfortunately, the requirement Φ
out env

⇒ ℜ can not be used directly as

the basis for an assurance policy. One important reason is that ℜ
env

 is not

known. All that is known is that Φ Φ
out

FID

out env

⇒ ⇒ ℜ .

115

No optimism is introduced by insisting that Φ Φ
out

FID

out
⇒ . The

implication is that if the inputs are imperfectly labelled the risk should be
at least as good as when they are perfectly labelled. When they are
perfectly labelled the system must have adequate separation, a condition
that we do not find difficult to demand. This does have the possible
disadvantage of making the requirement stricter than is really necessary
for a standalone configuration. Without further information, there is no
way of detecting this potential over-qualification of a single system.

This Φ Φ
out

FID

out
⇒ approximation is still unusable because the precise

definition of the ⇒ relation is not known. Instead, the → approximation
must be used.

Substituting for Φ
out

 and ΦFID

out
 in this expression we get

MIN LUB MIN LUB
∀

�
��

�
��

�
�

�
� → �

�
�
�∀k

out

k

sep

k

out

system
data k

out sep

k

out
W R R X W W R X W, min , , , , , , .

The only problem in dealing with this relation is that the range of k
is not the same on both sides of it. However, this difficulty disappears if
we extend the range on the right to include the inputs. Effectively, we are
requiring that the maximum contaminant on the left, including inputs, is
dominated by the maximum contaminant on the right, which excludes

inputs. This can be done with safety if we require that ∀m X X
sep in

m> . This
extends the range of k on the right to be the same as it is on the left. With
this change we get:

MIN LUB MIN LUB
∀

�
��

�
��

�
�

�
� → �

�
�
�∀k

out

k

sep

k

out out sep

k

out
W R R X W W R X W

k
, min , , , , , ,

Clearly the worth and contaminant parts of this relation are satisfied
because they are identical on both sides of the relation. The relation will

hold if min ,R R Rk

sep sep�
��

�
�� ≥ , which effectively requires that for all system data

and inputs, R Rk

sep
≥ . This duplicates the result of section 3.2.1.

Summarising it is seen that for risk to be controlled there are two
conditions for all input data im :

R Rk

sep

≥ (A)

and X X
in

m

sep

< . (B)

Relation (A) asserts that the reliability of the input data labels must not
be less than the separation reliability. Relation (B) asserts that the
system-high worth level is an upper limit on the worth of any
contaminant in the input. We deem both of these conditions reasonable.

116

Thus the result is that for all data inputs im the label of the outcome

W W
out in

m> and that for the input to be acceptable R R
in

m

sep

≥ and X X
sep in

m> , and for

all system data ik the reliability of the labels R Rk

sep
≥ and for the separation

controls to be effective it must be the case that X X
sep

k> .

6.13. Discussion of the Results

We have established the following requirements on the data in the system
and on the input data to the system:

(1) For all system data objects and inputs ok , W W
env

k> , W X
env

k> , R Rk

env

≥ and

X X
sep

k> .

(2) For all data inputs om to the system, R R
in

m

sep

≥ and X X
sep in

m> .

Requirement (1) establishes that the worth of each of the system’s

data objects must conform to the limits expressed by R
env

 and the ability of
the system to enforce policy.

R
sep

 is closely related to the evaluation of the capability of the system
with faultlessly classified inputs of separating the system outputs from
contamination by system data objects. It is determined by a thorough
review of the system and by its operation in a particular type of
environment according to established practices. The first condition of
requirement (2) asserts that the reliability of the input labels must be at

least as good as the reliability R
sep

. This is not a surprising condition; it is

to be expected that with a given R
sep

 the system is capable of adequately
separating data with a reliability not less than some threshold.

We defined X
sep

 as ∀k X W
sep

k1 6 > , so the second condition of

requirement (2) that X X
sep in

m> merely asserts that the worth of the
maximum contaminant of a data input must not exceed the system’s
highest classified data object. It can not introduce a new, more highly
classified object into the system as a contaminant.

The system can not ordinarily enforce the risk factor of the input
data. This must be assured by external handling procedures that must
obtain if the system is to be adjudged sufficiently robust for the intended
environment. The intent of these requirements is that a system shall
neither include data objects that imply a risk that is greater than that
tolerable by the environment, nor produce outcomes that imply more risk
than the risk already inherent in whatever inputs the system receives.

117

6.14. Inter-System Communications

Consider two systems, A and B that may be exchanging data. We perceive
them to be in the same environment because they are exchanging data.

They both must satisfy the environment’s conditions so that R Rk

env

≥ ,

W W
env

k> and W X
env

k> . These systems may or may not both be active at the
same time. Computers that are connected to a network are
simultaneously active, but for instance a backup or previously recorded
magnetic tapes can be one of the systems.

The restriction that input contaminant levels be dominated by the
system high level can be rephrased as requiring that the system could be
evaluated to handle input data as high as the most highly classified object
that it contains. A system A that supplies an input signal to a system B

will only be able to satisfy this requirement if its separation RA

sep
 is

Completely Reliable (which is unlikely) or if R Rsignal A

sep
≥ is at least as high

as RB

sep
 and if the input signal’s maximum levels are such that X XA

sep

signal>

and X XB

sep

signal> if X XB

sep

A

sep
> . Thus, for communication from A to B to be

allowable it must be the case that B’s highest security level dominates A’s.
If the communication is to be bi-directional, B and A must have the same
high level.

The other requirement, when applied to our hypothetical case of A

sending data to B requires that R RA

sep

B

sep
≥ . Bi-directional traffic would

require that the reliability of each of the systems be equal. These are
difficult requirements to meet, since there is no direct way of measuring

the R
sep

 values except by an arbitrary or authoritarian determination by an
evaluation process similar to that used with national evaluation classes to
establish that the system can be evaluated to some specific grade.
Consequently, these values must be determined as the result of the
evaluation process, and maintained while the system is in service.

A system P1 with outputs ranging from TS to U will undoubtedly be
required to maintain label integrity and separation with a higher
assurance level than a system P2 for which the outputs range only from
TS to S. However, it may be the case in a specific environment that this
very high reliability is only required for the U outputs, and is excessive in
the case of the S level outputs. It is an accident of implementation that,
as noted earlier, most computer systems will provide the same separation
between TS and S as between TS and U data.

If P1 and P2 are allowed to intercommunicate, even using floppy
disks or other such mechanisms, because of the higher requirements on P1

the composite system will separate TS and U data more reliably than it
does TS and S. However, the standalone output risk factors of P1 as an
approximation of the required reliability were accepted. P2 may not

118

satisfy the same risk factor criteria. The result of the analysis would not
permit this intercommunication unless the reasonable authority judging
the relation ⇒ was to be exceptionally lenient, or the environment were
to be unusual.

Thus, when two otherwise independent systems are connected, if
the two systems are very similar, with the same system-high worth, the
same reasonable authority, the same separation properties and they are
operating in the same environment with the same label reliability, they
may exchange data without serious security worry. Otherwise, a
reasonable authority must adjudicate all attempts to communicate. In
many cases, this degree of involvement from a reasonable authority is
probably unacceptable, both because of efficiency considerations and
because it would be difficult to develop high assurance in such a busy and
broadly responsible authority. It would also be difficult to design such a
mechanism because parts of it must be present in both systems. The
problem is not unknown in the literature41.

These results agree with commonly accepted intuition:

(1) A system that can deal with data only up to some limiting worth can
not be allowed to deal with any higher level data, and the reliability
of the worth given by the label must be up to a standard set by the
environment.

(2) Input data can be allowed into a system only if it does not introduce
worth that are more unreliable than the system is graded to handle
and if it does not introduce higher level contaminants into the
system.

The fact that our results agree with our intuition is comfortable. Of
course, in many situations throughout the analysis we mentioned
potential refinements that may give results that disagree with our inbred
intuition in specific circumstances. We have, however, taken the
pessimistic side of all modelling decisions, so we do not expect that such
disagreements will be common.

6.15. Summary

We have shown that risk can be effectively considered to be an expression
of the form risk , ,= ℜ worth v y threatulnerabilit1 6. The interpretation of
each of these parameters is determined by the nature of the system or
process that is being analysed. If this is done, and if reasonable but
pessimistic choices are adopted, then the result of the analysis can be a
useful adjunct to other formal mechanisms that are deployed to improve
the confidence that the system controls are likely to be effective. The
extended example that is included is not in itself very important, but it

41 See, for example, the appendices of the Trusted Network Interpretation of the

Trusted Computer System Evaluation Criteria, US National Computer Security
Center, document NCSC-TG-005.

119

does indicate that this sort of risk analysis can be done even in abstract
systems with possibilistic properties.

6.16. Acknowledgement

This work is an adaptation of part of the final report of contract W2207-6-
AF32/01-ST to the University of Toronto from the Communications
Security Establishment of the Government of Canada. The authors of the
original report were B. Thomson, E.S. Lee, P.I.P. Boulton, M. Stumm and
D.M. Lewis. The principal investigator was E.S. Lee. Much of the work
in this essay has benefited enormously from the original work done by
Brian Thomson during the contract.

121

TRUSTWORTHY

LAN
NETWORKS

7. TRUSTED LAN NETWORKS

This essay describes an architecture for a trusted network intended for a
computing environment in which frequent communication occurs amongst
computers linked by an open local area network. The network is assumed
to be open in the sense that it may be subject to attempts at wiretapping,
eavesdropping, and sophisticated interference from unauthorised
intruders. This does not imply that the trusted network should be
operated in an open environment. We encourage, however, that any
network that is to be trusted be operated in a physically secure
environment. However, since a trusted network should be designed to
withstand possible breaches in security, worst case assumptions should
serve as a basis in the design. For example, the trusted network described
here is designed to withstand traffic analysis and other attacks in spite of
wiretapping and other forms of eavesdropping. Similarly, it ensures that
conversations are possible only between subjects connected by legitimate
connections and that these conversations are tamper-proof.

The architecture is based on secure data channels, over which only
authorised subjects can send, inspect or modify the data stream. This is
achieved through the use of a number of mechanisms including
encryption, checksums, and nonces42. Communication that bypasses these
secure data channels is not possible.

Additional security features of the secure data channels include:
• all transmitted packets are of equal length,
• each network node transmits packets at a constant average rate,

42 A nonce is a one-time identifier that is used to detect playbacks and to make

otherwise identical packets appear different when encrypted. In practice it is
typically implemented as a 32-bit or longer random number.

122

• a large proportion of transmitted packets are artificially generated
and contain no real data, but are indistinguishable from packets
containing real data,

• the transport-level protocols are connection oriented and different
keys are used for encryption at the transport level for each
connection, and

• each transmitted packet is also encrypted at the link level in its
entirety, that is, including the link-level header containing the
address fields.

The trusted network is controlled by a single, centralised, highly
trusted node, called the Trusted Network Controller (TNC). The TNC
arranges for the establishment of all connections and is responsible for
authentication and for encryption key distribution. Control of the trusted
network is fully centralised, although data channels connect two
endpoints directly for high performance.

Much of the network security in the trusted network is based on
encryption. We assume the existence of encryption mechanisms that are
sufficiently powerful and secure. We do not add anything to the body of
knowledge concerning encryption. Nevertheless, the trusted network
architecture has a number of features that make it more difficult to
compromise keys and which limit the extent of possible damage if there is
key compromise. For example, encryption keys are visible only to the TNC
and to network entities it trusts, and keys are not passed to higher
communication levels or passed to the operating systems of the hosts
connected to the trusted network. Additionally, keys are used at multiple
levels and must be changed frequently.

The Trusted Network Architecture is described in several steps.
Section 8.2 describes the major components of the trusted network and
presents an architectural overview and diagram. Section 8.3 informally
introduces the specification of the trusted network architecture and
presents the reasoning behind many of the architectural choices. It also
suggests possible implementations that would meet the specification
where it may not be obvious. Finally, in section 8.4 we perform a risk
assessment of the trusted network architecture. We analyse the effects of
common security attacks and consider the strength of the proposed
architecture by analysing the ramifications when individual encryption
keys are compromised.

In reading this document, it is important to keep in mind that a
good architectural specification is a balance between two forces. On the
one hand, it should be sufficiently complete to ensure that all
implementations conforming to the specification meet the goals of the
architecture. On the other hand, the specification should be minimal, so
as not to constrain the use of existing solutions or prevent the
introduction of new state-of-the-art mechanisms when they become
available.

123

7.1. Architectural Overview

The Trusted Network Architecture is defined by specifying the hardware
base, the various protocols that define the interaction between hardware
components, and how encryption keys should be used for communication.
We review these hardware components, protocols and encryption in the
following subsections.

7.1.1 Hardware

Four hardware components form the basis of the trusted network:
• the physical network,
• the host computers,
• Trusted Network Interface Units (TNIUs), which connect a host to

the network, and
• a Trusted Network Controller (TNC).

The sole purpose of the network is to efficiently communicate data
between two TNIUs or between the TNC and a TNIU. The only way a host
is allowed to connect to the network is through a TNIU. A TNIU contains
the network access controller necessary for transmitting and receiving
network packets, implements the low-level communication protocols, is
responsible for encrypting and decrypting all data, and co-operates with
the TNC for several purposes, including the establishment of transport-
level connections and key distribution.

The TNC is a highly trusted host in a secure area and centrally
manages the network. The primary function of the TNC is that of
arbitrating transport-level virtual connections between principals in
conformance with a network-wide security policy, that is, between
processes running on hosts connected to the network by the TNIUs. This
responsibility requires, in turn, that the TNC perform authentication as
well as the management and distribution of encryption keys.

The TNC is the only entity that implements a network-wide security
policy and therefore has total control over the trusted network. Hence,
from a control point of view, the network is completely centralised.
However, once a connection is established by the TNC, end-to-end
communication occurs directly between subjects without going through
the TNC, to allow for a high aggregate communication throughput.

7.1.2 Protocols

In addition to the hardware components, communication protocols must
be specified for:

• Host – TNIU communication.
• Link-level communication between two TNIUs or between a TNIU

and the TNC.
• Transport-level communication between processes executing on

hosts.
• TNIU – TNC transport-level and control communication.

124

Communication between a host and its TNIU is kept to a minimum
and is used only to establish or release transport-level virtual connections
and for passing data that is communicated over transport-level
connections that terminate at that particular host. The interface between
a host and its TNIU will be similar to any standard interlevel interface, as
found, for example in one of the ISO OSI architecture definition
specifications.

The link-level communication protocol can be similar to standard
datagram oriented link-level protocols. As is usually the case, the link
level is primarily responsible for link-level addressing and detection of
transmission errors (both those caused naturally as well as those caused
by intruders). However, a few simple changes or restrictions to standard
link-level protocols are necessary before they are suitable for our trusted
network. For example, link-level control information must be kept to a
minimum to reveal as little information as possible in case link-level keys
are compromised. All link-level data is transmitted in encrypted form
only. Also, since transport-level data is completely encrypted using keys
specific to each virtual connection, it becomes necessary to include a
connection identifier field in the link-level header to be able to identify the
connection and hence the corresponding appropriate transport-level
decryption key.

The transport-level communication protocol must be connection
oriented and capable of detecting and suppressing duplicate packets with
very long lifetimes. Otherwise, no restrictions are imposed on this
protocol level. The transport-level protocol can be executed in either on
the host or in the TNIU. The architecture described here does not specify a
required execution location. However, we assume it is executed on the
host, as depicted in figure 7.3.

Executing the transport-level protocol on the host has the
advantage that two hosts can communicate using arbitrary transport
protocols, including specialised ones (as long as they adhere to the
specification). Also, it makes security verification of the TNIU simpler,
since it does not include the verification of the transport-level protocols
needed for general interprocess communication. Finally, it allows for a
physical separation of plaintext and ciphertext, since encryption is
performed in the TNIU.

If the transport level is implemented on the host, then its
connections must make use of virtual connections between TNIUs, as
established and maintained by the TNIUs themselves. These TNIU – TNIU
virtual connection can be viewed as network-level connections, since they
connect two end hosts. Each transport-level connection must correspond
to a single network-level connection. However, strictly speaking, a
network level is not needed in this architecture, since it is restricted to
local area networks where no routing takes place.

125

HOST TNIU

High
LevelProtocols

Transport
Layer

Link
Layer(Network

Layer)

Physical
Layer

encryptedunencrypted

Transport
LevelEncryptio

n

Link
LevelEncryptio
n

To
Network

Figure 7.3.

Crypto locations and partitioning of protocol
layers.

Therefore, to be precise, one would have to view the implementation
of the transport-level protocol as being partitioned between host and TNIU,
where the lowest levels of the transport protocol, in particular the
transport-level encryption and the multiplexing, are performed in the
TNIU. Nevertheless, viewing the TNIU – TNIU connection as a network-
level connection has its advantages. It may not be trivial to partition
existing transport protocol implementations across two processors (that of
the host and the TNIU), but it appears simple to modify existing transport
protocol implementations to use a separate network-level connection for
each transport-level connection. If the interprocess transport level is
implemented on the host side, then the TNIUs will require a separate
transport-level protocol implementation to communicate with the TNC,
although this can be a simpler, specialised protocol.

Finally, the TNIU and TNC also need higher level protocols for
control, network management, key distribution, as well as other functions
described in later sections.

7.1.3 Encryption

Encryption is essential to the operation of the trusted network. It is used
for authentication purposes as well as for secure communication.

An important consideration is the level in the communication
architecture where encryption is to occur. The advantage of link-level
encryption over end-to-end, transport-level encryption or vice versa has
been discussed extensively in the literature. In the end-to-end approach,
the message contents only need to be decrypted once at the destination
host. This approach also allows a higher number of identifiable and

126

separately protected entities. But encrypting at the transport level leaves
the link (and network) level headers in the clear. On the other hand, link-
level encryption allows for the transmission of packets that are completely
encrypted, including header information.

In this architecture, encryption occurs at both the link level and the
transport level, benefiting from the advantages of both crypto locations.

At the link level, each host has its own link-level key assigned by
the TNC that is used to decrypt all received packets. Sending TNIUs obtain
the corresponding encryption keys from the TNC, one for each destination
TNIU. The encryption algorithms used at the link level do not need to be
"heavyweight": it is acceptable to sacrifice some cryptographic strength for
performance. The implementation used must allow the timely decryption
of each packet header as it arrives from the network, so that the TNIU is
not overrun. However, the use of a relatively weak encryption algorithm
does not significantly lessen security, since the higher-level portions of the
packet are additionally encrypted at the transport level. Encryption at
the link level is used mainly to hide traffic patterns and it is conjectured
that the utility of any information that can be deduced from traffic pattern
analysis will decay rapidly with time.

Separate key sets are used for each transport-level connection and
for each direction. The encryption at the transport level needs to be more
secure than the link-level encryption. The TNIU is responsible for
encrypting transport-level packets in their entirety before network
transmission and for their decryption at the receiving end.

Both the link-level and the transport-level encryption algorithms
must be stateless. The link-level packets are not reliably delivered, and
retransmission may be necessary. The packet may be re-encrypted on
each retransmission, and can include a nonce to make the retransmission
different. Overall, the transport level is by definition reliable. This
reliability is achieved by retransmission originating in the host. The
transport-level encryption takes place below this in the TNIU. Because of
the possibility of retransmission a stateless encryption algorithm must be
used.

7.2. Specification and Discussion

In this section we introduce the specification of the trusted network
architecture and present the reasoning behind many of the architectural
choices. Where it is not obvious, we also suggest possible implementations
that meet the specification.

7.2.1. Hardware Components of the Network

The trusted network contains four major hardware components:
• the local area network itself,
• the hosts connected to the network, with their operating systems

and application processes,

127

• a trusted network controller, and
• trusted network interface units connected to each host.

7.2.1.1 The Network

The network must be a broadcast network, where each transmitted packet
is sent to every connected host. This requirement complicates traffic
analysis attacks in that it ensures that the level of traffic is equal on each
link. Moreover, in a broadcast network routing is unnecessary, which
allows us to encrypt all link-level header information, including
addresses. Although the network must be a broadcast network, we do not
support broadcast or multicast messages, where a single packet is
addressed to multiple hosts.

The network must have an aggregate throughput capacity large
enough to sustain traffic in a stable manner when all network nodes
simultaneously generate traffic at their peak allowable rate. This allows
a policy whereby each network node continuously transmits packets at a
constant average rate. Whenever a node does not have real data packets
to send, it generates artificial, random packets and sends them instead.
Since most transmitted packets will be artificial, the packet signal-to-
noise ratio on the network will be high. Naturally, artificial packets must
be generated such that they appear to be valid encrypted packets.

The network must be structured such that only limited disruption
occurs if a path passing through an insecure area is destroyed.
Additionally, path failures must be detectable. This can generally be
achieved by having the TNC periodically poll each network node. It may
be important for each host to know if it is still connected to the rest of the
distributed system. If the network is of the type where a locally
transmitted packet is also received locally after it has traversed either the
entire network (as would be the case in a ring network) or traversed a
central point of the network, such as the root of a rooted tree network or
the central node in a star network, then each node verifies that it is still
connected to the rest of the network on each packet it transmits.

Additionally, it should not be possible for a single network access
point (possibly created by an intruder in an insecure area) to disrupt all
network traffic. Nevertheless, it is still useful to be able to isolate
individual segments of the network in a secure way to isolate, for
example, misbehaving or malfunctioning network nodes.

7.2.1.2. The Host and its Operating System

The operating system of the host may contain the communication protocol
levels corresponding to the transport level and above. The transport
protocol implementation must adhere to the specifications of section 3.3.3.

The host operating system is responsible for supplying to the TNIU
the parameters required by the TNC that are needed to decide the

128

permissibility of a proposed connection. The TNC is aware of all
parameters concerning security that are relevant to each host.

7.2.1.3. The Trusted Network Controller

The Trusted Network Controller (TNC) is a highly trusted host in a secure
area that manages the network. The primary function of the TNC is that
of arbitrating transport-level virtual connections between principals, that
is, between processes running on hosts connected by the network. It
implements the network-wide security policy. The TNC works closely with
Trusted Network Interface Units (TNIU) connected to each host.

In order for two processes to communicate, they must first through
the TNIU request the TNC to set up a trusted connection for them. The
TNC then determines the appropriateness of communication between these
two processes, using information provided by the hosts’ operating systems,
the TNIUs connected to the two hosts, and information held locally. If a
connection is permissible, the TNC generates keys for encrypting and
decrypting transport-level data and passes them to the two corresponding
TNIUs, implicitly granting permission for the two processes to
communicate. This protocol is described in more detail in section 8.3.5.

Packets that are transmitted on the network are also encrypted at
the link level. The TNC supplies the necessary link-level encryption keys
at the same time as it passes the transport-level keys. The TNC can
therefore entirely prevent certain hosts from communicating with each
other, by refusing to divulge the keys necessary for communication. The
TNC will periodically change the link-level key for each host.

The TNC is also used for auditing and administrative purposes. The
TNC may want to receive and analyse network traffic directly. It should
be able to detect any inconsistent traffic patterns. Also, if the capability to
remotely shut down a portion of the network exists, then the TNC may
decide to do so, to isolate individual hosts.

7.2.1.4. The Trusted Network Interface Unit

Each host is connected to the network through a Trusted Network
Interface Unit (TNIU). This device includes the network access controller
necessary for transmitting and receiving packets to and from the network,
a sufficiently powerful processor and working memory to be able to
implement the lower-level communication protocols, the necessary
protocol software, encryption devices, specialised protocols for
communicating with the TNC, and a manually installed but changeable set
of keys for communicating with the TNC.

All communication from a host to the network must go through a
TNIU. If an intruder attempts to transmit packets directly, circumventing
the TNIU, then the intended receiver will not recognise the address, since
the packet’s link-level header will not be properly encrypted.

129

For additional security, the TNIU can be made tamper-proof to
ensure that circuits cannot be modified to bypass components, and so that
it is impossible to infer any of the encryption keys it employs by observing
the circuits or component interfaces. In a sense, the TNIU can be viewed
as a trusted extension of the TNC.

The TNIU has a number of responsibilities. First, it transmits link-
level packets of fixed length. If the client wishes to send less transport-
level data, then the link-level packet is filled by the TNIU with randomised
data to its full length. The random fill data must be chosen so that it is
indistinguishable from real data after encryption.

Second, each TNIU always transmits packets at a constant rate. If a
host has no data to send, then artificial packets filled with random data
are generated and sent to a (non-existent) host with a randomly generated
address. If a destination address is chosen randomly, then there is a
small probability that the address will be equal to that of one of the TNIUs.
This will not be a problem, however, since the packet is also filled with
random data and hence will not be recognised as belonging to an existing
connection. These artificial packets must also be indistinguishable from
real packets after encryption. A timer mechanism is used to decide when
to transmit a packet. If a packet with real data is ready for transmission,
then it is queued and transmitted instead of an artificial packet the next
time the timer expires.

Third, each link-level packet is encrypted in its entirety. A
different, randomly chosen, nonce is included in each link-level header to
hide link-level retransmissions43.

Fourth, the TNIU creates virtual connections for the host’s processes
and obtains encryption keys from the TNC for communication over these
connections if the TNC authorises them.

Finally, the TNIU accepts transport-level packets from the host,
adds nonces, and encrypts the result using an appropriate transport-level
virtual-connection key. Conversely, it decrypts arriving transport-level
packets and passes them to the host. The TNC may limit the usage of keys
for virtual connections to a certain number of packets or a period of time.
The TNC can enforce limits based on time. The TNIU must cooperage with
the TNC if limits based on packet count are to be used.

Packets, including noise packets, can be transmitted from each
TNIU either with a fixed period or with a constant average period.
Transmitting with a constant average period is simple, and allows for the
immediate transmission of an occasional high priority packet with no
traffic analysis risk.

43 It is not clear that this would benefit security. This is because it is not clear that

anything useful is revealed if link level retransmissions are detectable. This
conjecture remains unproven either way.

130

Transmitting with a fixed period also has its advantages. It
simplifies the timer mechanism. The bandwidth of the network is
effectively partitioned into time division slots, where a TNIU transmits in
every nth slot, so the network operates as if it were a slotted network.
Slots are assigned to TNIUs dynamically; a TNIU attempts to transmit in
each successive slot until its transmission is successful. Thereafter, it
transmits a packet every nth slot, where n is determined by the
transmission period of the TNIU. A TNIU transmits in a new slot only
when a packet that was transmitted in one of its allocated slots did not
successfully get through. This can only occur in the case of a transmission
error or a retry for other reasons. Hence, if each TNIU transmits with the
same period, retries will occur infrequently. Retries appear only when a
new TNIU starts up or after a transmission error. If the network load is
less than its capacity, then the allocation of slots is stable. Each TNIU
will be able to acquire a slot after attempting to transmit in at most n-1
slots.

Operating the network in this fashion allows the network to run at
very high loads (above 85% of capacity) without becoming unstable.
Moreover, an abnormally high retry rate clearly identifies problems,
either regarding the number of transmission errors or, what is more
important, concerning unauthorised network transmissions. The
disadvantage of transmitting with a fixed period is that it is possible for
an intruder to determine that sequences of messages originate at a single
host, simply by observing the repetitive traffic pattern. However, this
may already be possible to a limited extent if the intruder can monitor
specific parts of the physical network or the drop line from a particular
TNIU. If the TNC transmits on demand, its transmissions will cause a
random rearrangement of the slots, reducing the traffic analysis risk. For
performance reasons, we prefer transmission with a fixed period.

7.2.2. Encryption and Keys

In this trusted network architecture, a number of different keys are used
to encrypt packets both at the link and transport levels.

It is necessary that each TNIU be capable of decrypting the header
of each arriving packet quickly to determine whether the connected host is
the intended destination of the packet. The only data visible at the link
level are addresses, an identifier indicating which virtual connection the
packet belongs to, a nonce that is changed every time the packet is sent to
disguise retransmissions, and a checksum. It is necessary to encrypt the
entire packet at the link level to hide traffic patterns. Moreover, the
encryption algorithm used at the link level must be a stateless block
algorithm, so that message losses can be tolerated.

Encryption at the transport level needs to be stronger than that in
use at the link level, and must also be stateless.

131

7.2.2.1. Link-level Keys and Booting

The TNC and every TNIU have link-level keys used for bootstrapping
purposes that are periodically manually changed by a security officer.
Any TNIU A stores two of these keys, namely

 B
λ
*S

E for encrypting packets

being sent to the TNC S and BλSA
D for decrypting packets received from the

TNC. The key
 B

λ
*S

E is identical on each TNIU. In the notation used here,

λ indicates a link-level key, the superscript E denotes Encrypt, and D
denotes Decrypt. The prefix B indicates that this key is used for
bootstrapping purposes only. The index SA in λSA means that the key is
used in sending packets from S to A. Thus, the key

λ

*A
 refers to the key

used in sending packets from any host to host A, while
 B

λ
*S

E is the

bootstrapping key used by all hosts for encrypting packets sent to S.

The key
 B

λ
*S

D is used by S to decrypt received boot packets. For any

TNIU A, the key BλSA
E is used to encrypt packets being sent to A by the

TNC. The TNC must know all these keys.

These keys,
 B

λ
*S

E ,
 B

λ
*S

D , BλSA
E , and BλSA

D are used only for

bootstrapping and resynchronisation purposes (hence the prefix B), and
only for communication between TNIUs and the TNC. They need be
changed infrequently.
Link-level communication is encrypted using other link-level keys that
are periodically changed on the initiative of the TNC. Each TNIU B is
assigned a key

λ

*B
D for decrypting all arriving link-level packets. The TNC

knows the corresponding encryption key

λ

*B
E for each TNIU.

A TNIU A can obtain from the TNC a link-level encryption key

λ

*B
E

for encrypting link-level packets destined to host B, and host B can
decrypt using

λ

*B
D . Only B can successfully decrypt these packets44, since

only it has the key necessary to do so. Naturally, the TNC may refuse to
give a link-level key to A, if it does not wish to allow A to communicate
with B.

Finally, each TNIU maintains a link-level key,

λ

*S

E , used for sending

packets to the TNC. This key is also changed periodically, as dictated by
the TNC.

7.2.2.2. Transport-level Keys

All communication at the transport level between processes executing on
two hosts connected to TNIUs occurs over virtual connections. A pair of
keys, κ AB

E and κ AB
D , is assigned by the TNC to each unidirectional

connection. Only A knows κ AB
E and only B knows κ AB

D . Additionally, a

44 Of course, S can also, but S is universally trustworthy.

132

connection between each TNIU and TNC exists, with two pairs of
corresponding keys, κ AS

E ,κ AS
D{ } and κ SA

E ,κ SA
D{ }.

Figure 7.3. Summary of operating encryption and decryption keys.

Key Level Description

λ

*B
E

Link encrypt packets to host B

λ

*S
E

Link encrypt packets to the TNC

λ

*B
D

Link decrypt packets arriving at host B

λ

*S
D

Link decrypt packets arriving at the TNC

 κ AS
E

Transport encrypt packets sent by host A to the TNC

 κ AB
E

Transport encrypt packets sent by host A to host B

 κ SA
E

Transport encrypt packets sent by the TNC to host A

 κ AS
D

Transport decrypt packets from A arriving at the TNC

 κ AB
D

Transport decrypt packets from A arriving at host B

 κ SA
D

Transport decrypt packets from the TNC arriving at A

The TNC may limit the validity of transport-level keys to a specific
time interval or limit the number of times they are used. The TNC can
enforce time limits by arbitrarily assigning new keys to the connection. It
is the responsibility of the TNIUs to request new keys from the TNC for
limits based on packet counts.

For bootstrapping and resynchronisation purposes, two transport-
level keys, Bκ AS

E and Bκ SA
D , are set manually in the TNIU A by a security

officer. The TNC will have the two corresponding keys: Bκ SA
E and Bκ AS

D .
These keys need be changed infrequently.

7.2.2.3. Key Distribution

As described in the previous paragraphs, three mechanisms are used for
key distribution. The boot keys are manually set by a security officer.
These keys are used during start-up initialisation and, as described later,
whenever the TNIU becomes unsynchronised with the TNC in such a way
that they do not use corresponding keys.

The TNIU obtains new keys from the TNC by way of normal
transport-level communication with the TNC. Each TNIU maintains a
virtual circuit with the TNC over which these new keys are obtained.
These keys are transmitted in packets encrypted with the link-level and
transport keys currently assigned to that virtual circuit. The keys for the
TNIU – TNC circuit are changed frequently, possibly as often as each TNIU
– TNC connection is negotiated.

Whenever the TNIU recognises that it has lost synchronisation with
the TNC for any reason, it then resorts to a recovery procedure. It uses the
boot keys to communicate with the TNC, authenticate itself, and obtain

133

new keys. This implies that the TNC be capable of decrypting each
arriving packet using two different decryption keys, namely

 B
λ
*S
D and

λ

*S
D .

This decryption can be done in serial order, if it can be done quickly
enough. The data in the recovery packets is encrypted using the
transport-level boot keys.

7.2.3. Protocols

Within the trusted network architecture, a number of protocols must be
defined, including protocols for:

• Host – TNIU communication,
• TNIU – TNC communication,
• Key distribution,
• Link-level communication, and
• Transport-level communication.

Since this is an architectural definition, we do not specify the
implementation for the individual protocols. Rather, we list a set of
requirements to which the protocols must adhere, and additionally,
present by example a possible implementation.

7.2.3.1. Host – TNIU Communication

Communication between the host and the TNIU should be minimal in the
sense that information should be passed through this interface only if
necessary for the operation of the interprocess communication protocols.
In particular, the TNIU should not divulge reasons why particular
connections could not be established. The services that are offered across
this interface are:

• virtual connection establishment,
• data transfer, and
• virtual connection release.

Since the TNIU maintains virtual connections for the
communication protocol software executing in the host, the host must be
capable of referring to specific connections. The TNIU allocates connection
identifiers (CIDs) for this purpose. The CIDs should be chosen randomly
from a sufficiently large space, so that no information will be divulged by
assigning a particular CID. A 32-bit CID space should be large enough. In
particular, the CID should not correlate with any actual circuit identifier
used internally, nor should it be assigned incrementally.

From a functional point of view, the interface between the host and
the TNIU could appear similar to any standard interlevel interface, as
found, for example, in the ISO OSI architecture. For instance, the interface
could be defined using the following service primitives:
Connect.Request(reqid, process-A, host-A, security-A, process-B, host-B)
Connect.Response(reqid, CID)
Connect.Indication(CID)
Disconnect.Request(CID)

134

Data.Request(CID, Data)
Data.Indication(CID, Data)

Connect.Request, Disconnect.Request and Data.Request are issued
by the host and Connect.Response, Connect.Indication and
Data.Indication are issued by the TNIU. The service primitive
Data.Indication indicates over which connection the data arrived. It is
expected that the transport-level protocols could infer that information
from the transport-level control fields, but the explicit inclusion of the CID
serves as an added consistency check.

7.2.3.2. Link-level Communication

The link-level protocol header should contain as little data as necessary.
The following fields suffice:

• a destination address,
• a nonce,
• a virtual circuit identifier, and
• a checksum.

A source address field is unnecessary, since packets need not be
acknowledged at the link level.

The nonce is used to disguise link-level retransmissions. It should
be changed on every transmission, including retransmissions. The
virtual-circuit identifier is necessary to be able to select the appropriate
key for transport-level decryption. The link-level protocol must
implement a checksum, to detect modifications to the packet. It is not
necessary to distinguish between transmission errors and errors caused
by intruders, although the occurrence of abnormally high frequency of
errors should be cause for further investigation and therefore reported to
the TNC.

7.2.3.3. Transport-level Communication

The transport-level communication protocol must be connection oriented
and must be capable of detecting and suppressing duplicate packets. It is
expected that whenever an interprocess transport connection is requested,
the request is passed on to the TNIU, so that it can set up a secure virtual
circuit, as authorised by the TNC. Each transport-level connection must
correspond to a single TNIU – TNIU connection. Once a transport-level
connection is set up, each transport-level packet is passed from the host to
the TNIU (together with the appropriate connection identifier), where it is
encrypted using an appropriate transport-level key before being sent
across the connection. The reverse path from the TNIU to the host is
similar.

7.2.3.4. TNIU – TNC Communication

A TNIU connected to a host A communicates with the TNC for four possible
reasons:

135

• To boot. See section 7.2.1.
• To obtain a pair of keys for encrypting and decrypting transport-

level data, and the associated link-level key, using a key
distribution protocol such as the one described in section 7.3.5.

• To inform the TNC of the closing of a transport connection. See
section 7.3.1.

• For the TNC to force a link-level or transport-level key change. See
section 7.2.2.

Whenever the TNC and a TNIU communicate, each party must
authenticate the other party by recognising that the packets sent are
correctly encrypted. However, to prevent delayed playbacks, it is
necessary to use nonces and a three-way handshake protocol. This is
described in the next section.

7.2.3.5. Key Distribution Protocols

The key distribution protocol must satisfy the following criteria:
• keys are never sent in plain text,
• the protocol survives errors in communication,
• the protocol detects playbacks, and
• keys are passed only to TNIUs.

The following is a possible transport-level key-distribution protocol. This
protocol is assumed to execute over the transport-level circuit between the
TNIU and the TNC. Consequently, it will be reliable and error-free.
Assume a process on host A wishes to establish a connection to a process
on host B. A's TNIU requests a connection and associated keys from the
TNC, using a three-way handshake protocol:

N1{ }κ AS

E : A → TNC

N1, N2{ }κ SA

E : TNC → A

N2, connect. Request parameters(){ }κ AS

E : A → TNC

The connection request parameters are described in section 8.3.1.
The TNC authenticates A's real identity by recognising that its packets are
correctly encrypted, and is certain that it is not a playback because of the
nonce N2 . A authenticates the TNC's identity by recognising that the
packets sent by the TNC are correctly encrypted, and is certain that it does
not receive replayed packets because it recognises its own nonce N1 .

If the TNC permits the establishment of the connection, it returns

 f N1() a well-known function45 of nonce N1 , a system-wide and unique
identifier for the subject virtual circuit, CIRCID, together with the

corresponding encryption keys κ AB
E

 and
λ

*B
E

:

f N1(), CIRCID,κ AB

E , λ
*B
E{ }

κ SA
E

: TNC → A

45 Suitable functions are simple actions such as adding one to the nonce. The

purpose is to indicate to the receiver of the function result that the nonce was
operated on before being returned. All TNIUs use the same function.

136

The TNC must also communicate the corresponding keys to B. A’s TNIU
may then proceed to send a packet to B, identifying the packet as
belonging to connection CIRCID. It is easy to fully expand this protocol.

7.3. Risk Assessment

In this section we consider the security of a network that adheres to our
architectural specification. We do this in two steps. First we consider
common security attacks and show what security mechanisms must be
compromised for a given attack to be successful. Second, we analyse the
extent of damage that occurs when individual encryption keys are
compromised. Note that since we do not assume a specific implementation
in this analysis, the results are valid for any implementation that adheres
to the trusted network architecture specification.

7.3.1. Common Security Attacks

Traffic analysis is not possible without compromising at least some of the
link-level keys, since

• each TNIU transmits packets at a constant rate,
• each transmitted packet is received by each TNIU,
• each transmitted packet is of the same fixed length,
• link-level header information is encrypted so that addresses are not

visible, and
• retransmissions are not detectable without compromising the link-

level encryption key because of the use of nonces.

Each station generates a uniform traffic pattern, independent of the
host's communication demands. For traffic analysis to be successful, link-
level keys must first be compromised. However, each link-level decryption
key that is compromised reveals traffic patterns only of the traffic to a
particular host and does not reveal the source of the traffic, since link-
level source addresses are not included in the link-level headers.

Passive wiretapping reveals no transport-level data, unless both the
link-level keys and transport-level keys are compromised.

Trojan horses and covert channels are not possible, since a host can
only communicate through a TNIU and because

• every network packet is of equal length,
• addresses are not visible,
• nonces change the appearance of otherwise identical packets, and

the timing between successful transmissions cannot be altered.

A Trojan horse can only be successful by bypassing the TNIU and
actively transmitting directly on the network. These transmissions are
not intelligible to any TNIUs, since the packets are not properly encrypted.
The physical security policy can prevent a host with sensitive data from
being in an insecure area that would allow it to bypass its assigned TNIU.
The TNC can periodically monitor the load at random times to detect extra
traffic on the network.

137

Packet modification is possible without compromising the link-level
encryption and decryption keys, but only in a random sense in that the
results of the modification are unpredictable. The effects of any such
modification are confined to the particular packet modified, since a block
encryption algorithm is used. The link-level checksum or CRC is in the
clear. Consequently, the modification can not be detected at the link level.
The packet is simply ignored by the destination TNIU, since the decryption
fails. Link-level modification is exactly equivalent to denial of service.

Transport-level data can be modified in a specific way only if both
the link-level keys and the transport-level keys are compromised. Having
the link-level keys, but not the transport-level keys, allows an intruder to
modify the transport-level data, but only in a random fashion, in the sense
that he cannot predict the outcome of his modifications. Such random
modifications can be detected, if a checksum is also employed at the
transport level.

If an intruder wishes to delete packets of a connection, then he
must compromise the link-level decryption key. An intruder with the
link-level encryption and decryption keys, however, has no way of
knowing which transport-level connections correspond to which
connection identifiers. If he wishes to delete specific packets of a specific
connection, then he must also compromise the transport-level keys.
Hence, denial of service attacks are possible on a broad basis, but are
detectable. Denial of service attacks against a specific (software) server or
even for a specific client are only possible if the corresponding transport-
level and link-level keys are compromised.

Comparable arguments apply to attempts at delaying individual
messages, as well as to playback attacks. Reordering and duplication of
packets are detected at the transport level. Again, the intruder must
compromise the link-level or transport-level keys to reorder the sequence
of packets or duplicate packets of a specific connection or link (by altering
transport-level header information).

7.3.2. Damage Extent after Key Compromise

In this section we analyse to what extent security is breached when
individual keys are compromised. We show that the compromise of a
single key reveals only a very limited amount of information, even if the
key is one used to communicate with the TNC. This stability of security is
achieved by using separate keys at the transport level for each virtual
circuit and in each direction as well as at the link level.

Compromise of a single link-level key

λ

*B
D , used by a TNIU, B, to

decrypt all received packets will only expose traffic patterns of the
messages encrypted with

λ

*B
E , which are the messages destined for TNIU

B. Both the number of virtual circuits as well as the traffic patterns of the
individual virtual circuits will become visible. But, an intruder will not be
able to read the data portion of the packet since it is encrypted using a

138

transport-level key, and he or she will not be able to determine which
virtual circuit is being used by which process. Virtual circuit identifiers
used in the packets do not correspond to identifiers used between the host
and the TNIU to identify connections. Denial of service attacks against a
host, B, are possible if

λ

*B
D is known.

Having compromised a link-level decryption key, however, does not
allow the intruder to modify a packet other than randomly, a denial of
service attack. For this he also needs the corresponding encryption key,

λ

*B
E . Even if

λ

*B
E is also compromised, then the intruder will only be able

to successfully modify the header of the link-level packet, or randomly
modify the data portion of the link-level packet if he does not also have
the transport-level encryption keys. Compromise of a link-level key will
not reveal the source of link-level packets.

To observe the traffic between two specific network nodes A and B,
an intruder will need to compromise both corresponding link-level
decryption keys,

λ

*A
D and

λ

*B
D , since the key used at the link level is

effectively determined by the destination TNIU and not by the sending
TNIU.

Compromise of the link-level key used to send to the TNC is more
damaging, since it reveals the number of messages being sent to the TNC
and hence can indicate of the number of connection requests being sent to
the TNC.

Compromise of a transport-level key κ AB
D alone is not damaging,

since all packets are also encrypted at the link level. If a transport-level
key together with the link-level key

λ

*B
D for the destination of the virtual

circuit is compromised, then an intruder will be able to observe data being
sent over a virtual circuit in one of the directions and potentially be able
to selectively remove packets from the network. If the intruder also has
the corresponding encryption keys, κ AB

E and

λ

*B
E , then he or she will also

be able to undetectably modify packets. But not until the intruder has
compromised the keys corresponding to the return path, κ BA

D and

λ

*A
D , will

she or he be able to observe the traffic of a connection in both directions.
With these keys, an intruder will successfully be able to modify packets
and be undetectable while doing so.

If the transport-level key and the link-level key of the TNC is
compromised then an intruder will be able to

• observe the number of connection establishment requests of each
TNIU,

• selectively deny service to a particular TNIU, and
• prevent the communication of certain transport-level messages to

the TNC, containing, for example, auditing information.

139

But having compromised these two keys alone will not reveal
further keys, since keys are transmitted only in the direction from the TNC
to the TNIUs.

If the transport-level key used to decrypt messages sent from the
TNC to the host A’s TNIU, κ SA

D , is compromised together with the
corresponding link-level key,

λ

*A
D , then all keys the TNC sends to the TNIU

will be revealed, including changes to the keys used to communicate with
the TNC itself. Depending on the key distribution protocol used, in the
worst case this can include the keys κ Ah

E , κ hA
D ,

κ

*S
E , κ SA

D ,

λ

*A
D ,

λ

*h
E ,

λ

*S
E and

all other keys that are used for virtual circuits from any particular host A
to other hosts h.

141

BIBA DATA

INTEGRITY

8. BIBA DATA INTEGRITY

K.J. Biba, in the abstract of a report sponsored by the U.S. government
and dated July 1975, stated46:

The integrity of data and procedures is the cornerstone for the goal of
preservation of proper system behaviour. The problem of ensuring integrity
is particularly acute for a secure, kernel-based computer utility. This paper
investigates the issues of integrity policy for both the kernel itself and for the
virtual environment provided by the kernel. While our particular concern is a
secure computer utility for the military environment (Multics), the
considerations are applicable to a larger community of systems.

Biba quotes Webster as defining integrity47 as "Integrity – 1a: an
unimpaired or unmarred condition; entire correspondence with an original
condition; soundness. 1b: an uncompromising adherence to a code of
moral, artistic, or other values.". The unabridged, second edition's
definition is "Integrity – 1. the quality or state of being complete;
wholeness; entireness; unbroken state. 2. the entire unimpaired state or
quality of anything; perfect condition; soundness. 3. the quality or state of
being of sound moral principle; uprightness, honesty, and sincerity.".
Speaking of integrity in general, he goes on to state that "integrity is a
static property of a dynamic system. That is, integrity guarantees that a
system will perform in the manner determined by its initial, isolated
condition. … A person thought to have the property of integrity is only
considered to behave consistently with respect to some standard: no
statement (or decision) about the quality of the standard is implied."

46 K.J. Biba, "Integrity Considerations for Secure Computer Systems", Mitre

Technical Report ESD-TR-76-372, July 1975. The actual form of words used in the
quotation that is given above has been slightly adapted from the original to make
it more comprehensible.

47 The shorter Oxford dictionary defines integrity as "integrity 1450 1. The condition
of having no part or element wanting; unbroken state; material wholeness,
completeness, entirety. 2. Unimpaired or uncorrupted state; original perfect
condition; soundness – 1450. 3. †a. Innocence, sinlessness – 1678. b. soundness of
moral principle; the character of uncorrupted virtue; uprightness, honesty,
sincerity – 1548.

142

Carrying the analogy to computer systems, Biba defines integrity
thus:

"A system possesses the property of integrity if it can be trusted to
adhere to a well-defined code of behaviour. No a priori statement as to the
properties of this behaviour are relevant."

"The concern of computer system integrity is thus the guarantee of
unfailing adherence to a code of behaviour". The concern about the initial
condition is dismissed; it is assumed that the system can start with
integrity, and the concern is that it retain its integrity by rigidly following
a security policy.

The definition of integrity given above is difficult to challenge. The
problem with integrity is that subsequently it has acquired a different
meaning: many authors knew that the control of access-to-observe was
covered by confidentiality policy, and they came to refer to integrity as the
control of access-to-modify. Sometimes the control of access-to-invoke has
also been included in integrity, but not often. The identification and
enforcement of an integrity policy governing proper modifications is
essential for the implementation of an effective kernel-based
confidentiality policy48. It is not, however, a confidentiality policy.

In the remainder of these notes an attempt will be made to use the
word integrity as it is used in the trade, whatever definition it has.

8.1. The Elements of a Mandatory Integrity Policy

The integrity policy that is being discussed governs accesses by active
subjects to passive objects. Each integrity policy is defined as a set of
relations governing allowed accesses by members of the sets of subjects to
members of the set of objects. There are three sub-policies to be discussed,

• accesses that imply observation of an object by a subject,
• accesses that imply modification of an object at the behest of a subject,

and
• accesses that imply invocation of a subject at the behest of another

subject.

There are two important parameters that a policy will use to decide
whether to allow or prohibit an access: the clearance of the user
responsible for the access request, and the classification of the data.

The user clearance is extended to processes acting on the user's
behalf. Every process and every user must have a specific identity that
can not be hidden and that is impossible for another user to assume. The
user clearance is expressed as an integrity level, just as security levels
have been discussed previously. A user's integrity level is a measure of
the trustworthiness of that individual to be entitled to modify data, and
may involve both a sensitivity measure and a set of allowed

48 Otherwise intruders will modify the kernel.

143

compartments. The same clearance that is used for confidentiality can be
used for integrity, but it is convenient to think and speak of it differently.
This difference is in spite of the simple principle that a user who is
trusted to observe data is not likely to carelessly or maliciously modify it.

Thus, there is a security level and an integrity level. The security
level applies to observation in the normal way. The integrity level applies
to modification and sometimes to invocation.

The data classification is assigned to data on the basis of possible
damage caused by unauthorised disclosure. Like clearance, in general it
will involve both a sensitivity and a set of categories. It is possibly the
case that the set of security levels that apply to confidentiality will be
distinct from those that apply to modification. It is possible that, for
instance, a milder form of damage might be done by unauthorised
observation of some data, but exceptionally grave damage would result
from its unauthorised modification. The former implies a low security
level; the latter requires a high integrity level. For the purposes of these
notes the possibility of parallel but disjoint classification levels will be
assumed. Nobody really knows whether the apparent need for this pair of
levels is real or imagined. As Biba says, "It is not very practical to
partition the trustworthiness of individuals with respect to disclosure
[observation] and sabotage [modification]."

The issue of a separate invocation policy will be left for further
study, except for a simplistic view that falls out of the approach to the
other policies. There has been little effective work in the field.

Having said all this, and following Biba, the remainder of these
notes will present three models of modification policy. Each is consistent
with the normal confidentiality policy, and they represent the three points
on the curve shown next.

Ease of Policy Use

Strength
of the

Policy ✖ strict

✖ low-water

✖ ring

highlow

high

8.1.1 Definitions

The definitions are consistent with those of Bell & LaPadula, so expect no
surprises. Each of the three integrity models to be presented has the
following basic elements:

S: the set of subjects s.

144

O: the set of objects o.

I: the set of integrity levels discussed above.

f: a function defining the integrity level of each subject and each object;
f defines a lattice under the relation dominates.

 > : a relation (a subset of I × I) defining a partial ordering dominates on
the set of integrity levels I.

 >> : an antisymmetric, transitive relation (a subset of I × I) defining a
properly dominates relation on I. If IA >> IB then IA > IB and

 IA ≠ IB .

∧ : the meet (greatest lower bound) of its two arguments. If IC = IA ∧ IB

then IA > IC and IB > IC and there is no ID such that IA > ID ,

 IB > ID , and ID > IC.

r

o : a relation (a subset of S × O) defining the authority of a subject s ∈S
to observe an object o ∈O ; s

r

o o iff the subject s is authorised to
observe the object o.

r

m : a relation (a subset of S × O) defining the authority of a subject s ∈S
to modify an object o ∈O ; s

r

m o iff the subject s is authorised to
modify the object o.

r

i : a relation (a subset of S × S) defining the authority of a subject s1 ∈S
to invoke a subject s2 ∈S ;

 s1

r

i s2 iff the subject s1is authorised to
invoke the subject s2 .

Using these definitions three alternative integrity policies there
were alluded to above can be defined. The policies are defined by axioms
that constrain the membership of the sets

r

o ,
r

m , and
r

i . A number of
other policies are conceivable, some of which are of dubious utility.

8.1.2. The Low-Water Mark Policy on Subjects

There is a high-water mark confidentiality policy that requires that a
subject’s security level always be as high as the security level of any object
that has been observed by it. The subject’s security level can never
decrease; the security level of the subject is either static at the high-water
mark, or dynamic and monotone non-decreasing. In the latter case the
security level of subjects that are governed by the high-water mark policy
is not static but is a function of the previous behaviour of the subject. The
high-water policy is based on the notion that if a subject has ever seen an
object at the level of, say, secret, its subsequent behaviour could be
unalterably changed by the experience. It might not be possible to
guarantee that the subject’s behaviour would keep the secret data
confidential if it were possible for the subject to subsequently operate at a
lower level.

145

A direct analogue to the high-water mark confidentiality policy is
the low-water mark integrity policy. The low-water mark integrity policy
provides for a dynamic non-increasing value of the integrity level f (s) of
subjects. The value of f (s) at any time is the low-water mark determined
from the previous behaviour of the subject s. The low-water mark is the
greatest lower bound of the integrity level of all objects accessed for
observation by the subject s. The subject is constrained to modify only
those objects that possess an integrity level that dominates the subject’s
integrity level.

Clearly time is a factor here. Let the superscript * indicate the
"after" alternative, and the absence of the superscript the "before"
situation. The following figure illustrates these concepts and the axioms
formalise them:

s

 o1

 o2

s

 o1

 o2

Domain of s

Domain of s

r

m

r

o

 observation access to o2

before after

Low-Water Mark Policy
CrucialIntegrity > VeryImportantIntegrity

 f (o1) = C f (o1) = C

 f (o2) = VI f (o2) = VI

 f (s) = C f (s) = VI

A2.1 ∀s ∈S and o ∈O the authority s
r

o o for the subject to observe the
object is controlled by the confidentiality policy requiring the
subject’s security level to dominate the object’s security level.

For each observe access of an object o by a subject s, the subject’s
integrity level f (s), changes immediately after the access. The new
value of the integrity level is defined by f

*(s) = f (s)̂ f (o) .

A2.2 ∀s ∈S and o ∈O the authority s
r

m o for the subject to modify the
object implies that f (s) > f (o).

146

This is not the usual write-up condition because its *-property is
replaced by this axiom involving integrity levels. For the low-water
mark policy the subject’s integrity level f (s) is not static. It would be
convenient if this axiom could be consistent with the *-property.
With careful definition it can be, but only with an important
additional restriction. This will be discussed below.

A2.3 ∀s1 , s2 ∈S the authority
 s1

r

i s2 for the first subject to invoke the
second subject implies that f (s1) > f (s2).

This is not a surprise; a subject can only invoke other subjects that it
dominates. In many practical cases both would need to be at the
same integrity level if parameters are to be passed (s2 observes s1)
and results are returned (s1 observes s2).

A2.1 ensures that the subject can not benefit from the prior
observation of higher integrity level data. By lowering the integrity level
of the subject depending on its experience, it is intended to ensure that
indirect modifications that are improper can not happen. A2.2 ensures
that direct modification is authorised only when the subject is suitably
cleared. This is not quite the same as the usual write-up condition. In
fact, the integrity level of the subject is pegged at the glb of the integrity
levels of all objects yet observed by the subject. Thus, if there are three
integrity levels49, important, very important, and crucial, a subject has
seen confidential data the integrity of which is very important,
subsequently it can not modify any crucial data. A2.3 ensures that
subjects without adequate authority can not achieve some otherwise
unauthorised modification by invoking some more privileged subject.

Definition:

D2.1 An information transfer path is a sequence of objects
 o1 ,L,on+1 and a

corresponding sequence of subjects
 s1 ,L, sn such that

 ∀i ∈[1,L,n], si

r
o oi and si

r
m oi+1 .

Theorem:

T2.1 If there exists an information transfer path from object o1 to object

 on+1 then enforcement of the low-water mark policy requires that

 f (on+1) > f (o1) .

The proof of the theorem is straightforward.

The low-water mark policy has some unfortunate behaviour. The
changing integrity level makes programming unpleasantly difficult, since
it would seem to be necessary to predict the objects that are to be seen by
a subject in advance, and to control this rigidly, if subjects are to avoid
ending up at too low a integrity level. Subjects can sabotage their own

49 This example is from Biba op cit.

147

usefulness by making objects that are necessary for proper functioning
inaccessible. There is no recovery short of invoking the superuser.

The low-water mark policy is consistent with Biba’s hypothesis that
"A subject that is trusted not to divulge information is not likely to
maliciously modify it". Modern practice realises that, while the possibility
of malicious modification persists, the greater danger is carelessness and
inattention.

An interesting observation about the integrity lattice and the
confidentiality lattice emerges. If one ascribes rigidly to the read-down-
and-write-up concept for the (confidentiality) security levels, then it is
evident that the confidentiality lattice and the integrity lattice must be
duals of one another. This will be discussed again subsequently.

8.1.2.1. The Low-Water Mark Policy on Objects

The Low-Water Mark Policy on subjects explicitly requires that the
integrity level of a subject changes. An alternative formulation can be
constructed in which the integrity level of an object also changes as the
result of a modification. Thus, the axioms would become

A2.1 ∀s ∈S and o ∈O the authority s
r

o o for the subject to observe the
object is determined by the confidentiality policy. For each observe
access of an object o by a subject s, the subject’s integrity level f (s),
changes immediately after the access. The new value of the integrity
level is defined by f

*(s) = f (s)̂ f (o) .

A2.2 ∀s ∈S and o ∈O the authority s
r

m o for the subject to modify the
object implies that f (s) > f(o) . For each modify access of an object o
by a subject s, the object’s integrity level f (o) , changes immediately
after the access. The new value of the integrity level is defined by

 f
*(o) = f (s)^ f (o) .

It is evident that the integrity level of any subject or object that is
accessed is monotone non-increasing. Ill-considered, malicious, or
unplanned behaviour by a subject or group of subjects can result in the
integrity level of every subject and object gravitating to the lowest
integrity level of any accessed object. In this state all objects are
accessible by all subjects.

The modification relation is close to the write-up axiom. However,
because the level of a subject can drop until it can modify any object, this
policy does not prevent improper modification. Instead it adjusts the level
of a modified object to reflect its experience of modification.

8.1.2.2. A Low-Water Mark Corruption Level

Biba identified an unplanned possible outcome of the low-water mark
model as the possibility of tracking a risk measure of contamination of a

148

data item with corruption as a result of observation or modification. He
defined a current corruption level c as the following:

 c
* (s) = c(s) ∧ c(o) for each observe access by a subject s to an object o.

 c
* (o) = c(s) ∧ c(o) for each modify access by a subject s to an object o.

Accordingly, for an object the corruption level c(o)is the least
integrity level of the data that could have been used to modify the object.
For a subject the corruption level c(s) is the least integrity level of the
data that could have been used to modify the object.

An obvious parallel can be drawn with the level of contaminant M
that appeared in the risk analysis developed in the previous essay. The
policy here is not the same as that in the previous essay. The notion of a
contaminant from the previous essay risk analysis is not the same as the
idea of corruption defined here. The ideas are, however, similar. A
parallel development can develop a measure of the maximum level of
contaminant that a given object could be tainted with. This would provide
the possibility of a kind of dynamic risk analysis, possibly a significant
advance on the static analysis now existing.

8.1.3. The Ring Policy

The low-water mark policy prevents unauthorised direct modifications.
Indirect modifications, those that are done later or on behalf of an
offending subject, are also prohibited by the lowering of the subjects
integrity level.

The ring policy described here prevents only direct modifications. It
includes no record of a subject’s or an object’s experience. Thus it includes
less substantial assurances of what it defines as integrity, but the
flexibility of the system is significantly increased.

The ring integrity policy is defined by two axioms:

A2.4 ∀s ∈S and o ∈O the authority s
r

m o for the subject to modify the
object implies that f (s) > f (o).

A2.5 ∀s1 , s2 ∈S the authority
 s1

r

i s2 for the first subject to invoke the
second subject implies that f (s1) > f (s2).

Thus, by construction no object with an integrity level that dominates a
subject’s integrity level can be modified by the subject. Also, no subject
with an integrity level that dominates an invoking subject’s integrity level
can be properly called by the invoking subject. The uncoupling of the
confidentiality and integrity policies allows a subject much more latitude
to perform its duties, and implies corresponding responsibility to specify,
design, verify and monitor that performance to guard against unwanted
effects erupting.

149

Ring Policy
Crucial > VeryImportant > Important

Domain of s

r

m
 o1

 f (o1) = C o2

 f (o2) = I

s

 f (s) = VI

 f (o3) = I

 o3

r

o

r

o

In the figure the subject s has observe access to both o1 and o3 .
This in spite of the evident fact that the integrity level of o1 is greater
than that of s and conversely for o3 . This illustrates the fact that observe
access is controlled by the security (confidentiality) levels. There is no
direct required relationship between the levels in this model. In the strict
integrity model such a relationship appears.

8.1.3. The Strict Integrity Policy

The strict integrity policy is often considered to be the dual of the security
(confidentiality) policy. It has three axioms, two of which are directly
analogous to the Bell & LaPadula SS property and *-property. The three
integrity axioms are:

A2.6 ∀s ∈S and o ∈O the authority s
r

o o for the subject to observe the
object implies that f (o) > f (s).

A2.7 ∀s ∈S and o ∈O the authority s
r

m o for the subject to modify the
object implies that f (s) > f (o).

A2.8 ∀s1 , s2 ∈S the authority
 s1

r

i s2 for the first subject to invoke the
second subject implies that f (s1) > f (s2).

This policy is related to the low-water mark policy as follows: In
cases where the low-water mark policy permits a modification and then
lowers the subject’s integrity level, the strict policy just prohibits the
modify access. Thus there can be no improper modifies. In this sense the
policy is stricter than the low-water mark policy.

150

Strict Integrity Policy
Crucial > VeryImportant > Important

Domain of s

r

m
 o1

 f (o1) = C o2

 f (o2) = I

s

 f (s) = VI

 o3

r

o

 f (o3) = VI

r

o ,
r

m

Clearly care must still be taken to ensure that the subject is neither
careless nor malicious when it modifies an object. This is a common
thread that runs through all these policies and that provides the
opportunity for the more malevolent security risks to prosper and thrive.
A subject that includes a trapdoor or a virus might make arbitrary
changes to any object it is legitimately authorised to observe.

A close inspection of the three axioms will lead to the conclusion
that the lattice defined by the integrity axioms above is exactly the dual
(reverse partial ordering) of the security (confidentiality) lattice. The
confidentiality levels could be used as the integrity levels with the
integrity dominance relation the converse of the confidentiality dominance
relation. This is not normally done because a few inconsistent other
responsibilities are associated with each type of level, such as
contamination for the integrity levels and the relationship to then user’s
classification for the confidentiality levels.

Objects with high integrity have low confidentiality, and
conversely. This implies that the integrity of a Top Secret object will be
dominated by the integrity of a Secret object, et cetera. Unclassified
objects with no categories have the highest integrity. The situation is not
as absurd as it sounds because of the interpretation that both policies
need to be satisfied to overwrite an object. If it can’t be observed it can’t
be overwritten. If only the integrity policy is satisfied appending is
allowed but not overwriting. In the append-only case an unauthorised
modification becomes something that any subject with observe access can
recover from, at least in principle.

It has been observed that objects that are universally accessible for
observation, or nearly so, should have the highest integrity because they
may be observed by (nearly) any subject, whereas an object with an
extremely high confidentiality level is observable by only a tiny

151

community of specialists who should be able to detect and repair poor
integrity because they can observe so many things. Against this
argument is the notion that an object is accorded a high confidentiality
level because it has a high value, or it is highly sensitive, or high damage
will result from an unauthorised observation of it. It would be satisfying
if an object of high value had high integrity without any special actions on
the part of the accessing subject. These are arguments that are not
reconcilable. As Prince Henry said50 when contemplating robbing Sir
John Falstaff and some other thieves, "it would be argument for a week,
laughter for a month, and a good jest for ever."

Strict integrity is used fairly often. At least one consultant makes a
successful practice advising clients on its adoption in restricted
application-oriented environments. It has the pleasing property that the
security system is not attempting to second-guess users as to the correct
value of data. This is an unfortunate property found in many other
approaches to data integrity.

50 Shakespeare, HenryIV, Part I, II, ii, 104.

153

CLARK–WILSON

COMMERCIAL

POLICY

9. CLARK-WILSON COMMERCIAL POLICY

In 1987 David Clark and David Wilson published an important paper51 on
the subject of commercial versus military security policies. Their thesis is
that the important problem in commercial work is the integrity of the
data. In the paper they develop an architecture that they devised for the
control of data integrity. They then comment on the relationship between
their model and others that are favoured more by the military. The Clark-
Wilson model is widely referenced. This essay summarises it and
discusses its strengths and its weaknesses. The following notes are
strongly based on the paper. The material has, however, been reordered
and placed in this new context.

9.1. Commercial Security Policy For Integrity

Clearly, control of confidential information is important in both the
commercial and military environments. In the military environment the
driving policy is confidentiality. However, a major goal of commercial
data processing, often the most important goal, is to ensure integrity of
data to prevent fraud and errors. No user of the system, even if
authorised, should be permitted to modify data items in such a way that
assets or accounting records of the company are lost or corrupted. This
must be balanced, however, with the need of users to exercise absolute
control over the value of the input data that they are providing to the
system. As shall be seen, one of the weaknesses of Clark-Wilson is that it
attempts to control modifications in such a way as to prohibit those
modifications that do not fit with predicted behaviour.

51 David D. Clark and David R. Wilson, "A Comparison of Commercial and Military Computer
Security Policies", Proc. 1987 IEEE Symposium on Security and Privacy, Oakland California,
April 27-29, 1987. pp. 184-194.

154

Some mechanisms in the system, such as user authentication, are
an integral part of enforcing both the commercial and military policies.
However, other mechanisms are very different. The high-level
mechanisms used to enforce commercial data integrity policies were
derived long before computer systems came into existence. In the
commercial world there are two mechanisms at the heart of fraud and
error control: the well-formed transaction, and separation of duty among
employees.

The Clark-Wilson concept of the well-formed transaction is that a
user should not manipulate data arbitrarily, but only in constrained ways
that preserve or ensure the integrity of the data. A very common
mechanism in well-formed transactions is to keep a journal of all data
modifications so that actions can be audited later. There have been
experiments with computational systems that keep sufficient data in the
journal such that time can be reversed and the data base can be restored
to a previous state by running the journal backwards. Before the
computer, clerks were instructed to write in ink, and in case of error to
make correcting entries rather than erase. In this way the books
themselves, being write-only with over-writing prohibited, are the journal.
Any evidence of erasure was indication of fraud.

Perhaps the most formally structured example of well-formed
transactions occurs in accounting systems, which model their transactions
on the principles of double entry bookkeeping. Double entry bookkeeping
ensures the internal consistency of the system’s data items by requiring
that any modification of the books comprises two parts, which account for
or balance each other. For example, if a cheque is to be written (which
implies an entry in the cash account) there must be a matching entry on
the accounts payable account. If an entry is not performed properly, so
that the parts do not match, this can be detected by an independent test
(balancing the books). It is thus possible to detect such simple frauds as
the issuing of unauthorised cheques.

The second mechanism to control fraud and error, separation of
duty, attempts to ensure the external consistency of the data objects: the
correspondence between the data object and the real world object it
represents. Because computers do not normally have direct sensors to
monitor the real word, computers cannot verify external consistency
directly. Rather, the correspondence is ensured indirectly by separating
all operations into several subparts and requiring that each subpart be
executed by a different person. For example, the process of purchasing
some item and paying for it might involve subparts: authorising the
purchase order, recording the arrival of the item, recording the arrivals of
the invoice, and authorising payment. The last subpart, or step, should
not be executed unless the previous three are properly done. If each step
is performed by a different person, the external and internal
representation should correspond unless some of these people conspire. If
one person can execute all of these steps, then a simple form of fraud is
possible, in which an order is placed and payment made to a fictitious

155

company without any actual delivery of items. In this case, the books
appear to balance; the error is in the correspondence between real and
recorded inventory.

Perhaps the most basic separation of duty rule is that any person
permitted to create or certify a well-formed transaction should not be
permitted to execute it (at least against production data). This rule
ensures that at least two people are required to cause a change in the set
of well-formed transactions.

The separation of duty method is effective except in the case of
collusion among employees. For this reason, a standard auditing
disclaimer is that the system is certified correct under the assumption
that there has been no collusion. While this might seem a risky
assumption, the method has proved very effective in practical control of
fraud. Separation of duty can be made very powerful by thoughtful
application of the technique, such as random selection of the sets of people
to perform some operation, so that any proposed collusion is only safe by
chance. Separation of duty is thus a fundamental principle of commercial
data integrity control.

Therefore, for a computer system to be used for commercial data
processing, specific mechanisms are needed to enforce well-formed
transactions and separation of duty. A precondition to a guarantee that
data items are manipulated only by means of well-formed transactions is
to ensure that the data items can be manipulated only by a specific set of
programs. These programs must be inspected for proper specification,
design, policy enforcement, construction, and evolutionary maintenance.
Controls must be provided on the authority and ability to install and
modify these programs so that their continued validity is ensured. One
way to enforce the separation of duties is to permit each user to use only
certain suites of programs. These must be distinct users, not an
individual having several roles. The assignment of people to programs
must again be inspected to ensure that the desired controls are actually
met. In this way the right of execution access becomes central to
commercial data integrity.

9.2. Differences with the Orange Book

The Clark-Wilson integrity mechanisms differ in a number of important
ways from the mandatory controls for military security as described in the
Orange Book.

With these integrity controls, a data item is not necessarily
associated with a particular security level, but rather with a set of
programs permitted to modify it. This models quite well the way
commercial organisations manage their affairs. However, the use of data
networks means that data may be widely accessible. The risk that some
other user using some other program (or the same one without
authorisation) grows. Putting the controls with the programs (ralph and
rebecca can use me) is akin to a capability. It seems more elegant and

156

possibly safer to associate the controls with the objects being protected,
the data (ralph and rebecca can modify me). Then if there is any bypass
of the security controls it must be an event of considerable significance,
involving a bypass of the reference monitor in the TCB.

If Clark-Wilson controls are implemented there must still be a TCB
and a reference monitor. Otherwise, careless authorised users, authorised
users taking a shortcut, or intruders can bypass the programs that are
supposed to govern modifications and can act unilaterally.

Clark-Wilson does not give a user authority to read or write certain
data items, but to execute certain programs on certain data items. The
distinction between these two mechanisms is fundamental. With the
Orange Book controls, a user is constrained by what data items he can
read and write. If he is authorised to write a particular data item he may
do so in any way he chooses. This effect may speak for the provision of a
less permissive interpretation of the Orange book controls. With Clark-
Wilson controls, the user is constrained by what programs he can execute,
and the manner in which he can read or write data items is implicit in the
actions of those programs. Because of separation of duties, it will almost
always be the case that a user, even though he is authorised to modify a
data item, can do so only by using some of the transactions defined for
that data item. Other users, with different duties, may have access to
different sets of transactions related to that data.

9.3. Mandatory Commercial Controls

The notion of mandatory control is central to the mechanisms for military
security, but the term is not usually applied to commercial systems. That
is, commercial systems have not reflected the idea that certain functions,
central to the enforcement of policy, are designed as a fundamental
characteristic of the system. However, it is important to understand that
the mechanisms described in the previous section imply mandatory
controls. They are mandatory in that the user of the system should not,
by any sequence of operations, be able to modify the list of programs
permitted to manipulate a particular data item or to modify the list of
users permitted to execute a given program. If the individual user could
do so, then there would be no control over the ability of an untrustworthy
user to alter the system.

In the commercial integrity environment, the owner of an
application and the general controls implemented by the data processing
Organization are responsible for ensuring that all programs are well-
formed transactions. As in the military environment, there is usually a
designated separate staff responsible for assuring that users can execute
transactions only in such a way that the separation of duty rule is
enforced. The system ensures that the user cannot circumvent these
controls. This is a mandatory rather than a discretionary control.

The two mandatory controls, military and commercial, are very
different mechanisms. They do not enforce the same policy. The military

157

mandatory control enforces the correct setting of classification levels. The
commercial mandatory control enforces the rules that implement the well-
formed transaction and separation of duty model. When constructing a
computer system to support these mechanisms, significantly different low-
level tools are implemented.

Another difference between the two forms of mandatory control is
related to its administration. In the Clark-Wilson model there must be
considerable discretion left to the security administrator of the system,
because the determination of what constitutes proper separation of duty
can be done only by a comparison with application-specific criteria. The
separation of duty determination can be rather complex, because the
decisions for many of the transactions may interact. This greater
discretion means that there is also greater scope for error by the security
officer, and that the system is nearly unable to prevent the security
officer, as opposed to the user, from blundering.

The behaviour, however, of the two mandatory controls is similar.
The rules are a fundamental part of each system, and may not be
circumvented, only further restricted, by any other discretionary control
that exists.

9.4. A Formal Model Of Integrity

This section introduces a more formal presentation for the Clark-Wilson
model for data integrity within computer systems. The specific integrity
policies associated with accounting practices are used as examples, but
the model is believed to be applicable to a wide range of integrity policies.

To begin, those data items within the system to which the integrity
model must be applied are identified and labelled as Constrained Data
Items, or CDIs. The other data objects in the system are called
Unconstrained Data Items, or UDIs.

The particular integrity policy that is desired is defined by two
classes of procedures: Integrity Verification Procedures, or IVPs, and
Transformation Procedures, or TPs. The purpose of an IVP is to confirm
that all of the CDIs in the system conform to the integrity specification at
the time the IVP is executed. Thus, what has just been called the integrity
specification is a central part of Clark-Wilson. The IVP is supposed to be
able to deduce that a given data item is in a state that does not, or may
not, conform with reality. This is a requirement without the IVP being
able to test reality. In the accounting example, the IVP view of reality
corresponds to the audit function, in which the books are balanced and
reconciled to the external environment. How the IVP does the latter is not
clear.

The TP corresponds to the concept of the well-formed transaction.
The purpose of the TPs is to change the set of CDIs from one (hopefully)
valid state to another. In the accounting example, a TP would correspond
to a double entry transaction.

158

To maintain the integrity of the CDIs, the system must ensure that
only a TP can manipulate the CDIs. Only the TCB can reliably do this. It
is this constraint that motivated the term Constrained Data Item. Given
this constraint, Clark-Wilson argue that, at any given time, the CDIs meet
the integrity requirements. Clark-Wilson calls this condition a "valid
state." They assume that at some time in the past the system was in a
valid state, because an IVP was executed to verify this. Reasoning forward
from this point, they examine the sequence of TPs that have been
executed. For the first TP executed, they assert that it left the system in a
valid state by the following reasoning.

By definition the TP will take the CDIs into a valid state if they were
in a valid state before execution of the TP.52 But this precondition was
ensured by execution of the IVP. For each TP in turn, this necessary step
can be repeated to ensure that, at any point after a sequence of TPs, the
system is still valid. This proof method resembles the mathematical
method of induction, and is valid provided the system ensures that only
TPs can manipulate the CDIs.53

While the system can ensure that only TPs manipulate CDIs, it
cannot ensure that the TP performs a well-formed transformation. The
validity of a TP (or an IVP) can be determined only by certifying it with
respect to a specific integrity policy54. In the case of the bookkeeping
example, each TP would be certified to implement transactions that lead to
properly segregated double entry accounting. The certification function is
usually a manual operation, although some automated aids may be
available.

Integrity assurance is thus a two-part process: certification, which
is done by the security officer, system owner, and system custodian with
respect to an integrity policy; and enforcement, which is done by the
system. The Clark-Wilson model to this point can be summarised in the
following three rules:

52 The CW definition of a TP does not constrain the destination state of a transaction. Rather, it
defines which user can modify data. Only if the users modify the data properly will the
resulting state be valid. The CW model is murky in this regard, but the intent is clear, so there
is no point being pedantic about it. See the next paragraph.

53 There is an additional detail, which the system must enforce, which is to ensure that TPs are
executed serially, rather than several at once. During the mid-point of the execution of a TP,
there is no requirement that the system be in a valid state. If another TP begins execution at
this point, there is no assurance that the final state will be valid. To address this problem, most
modern data base systems have mechanisms to ensure that TPs appear to have executed in a
strictly serial fashion, even if they were actually executed concurrently for efficiency reasons.

54 And by controlling the data values the users enter. Again CW is deficient in this regard. The
reason seems to be that the accounting metaphor was firmly planted in the minds of the
authors. Few other transaction-based systems have the ability to require the users to enter data
in consistent groups rather than as individual entries. The accounting example will only
enforce correct entries if ever entry has an incremental audit associated with it. This may
imply more overhead on the system processing power than can be justified.

159

C1: (IVP Certification) All IVPs must properly ensure that all CDIs are in
a valid state at the time the IVP is run.

C2: (Validity) All TPs must be certified to be valid. That is, they must
take a CDI to a valid final state, given that it is in a valid state to
begin with. For each TP, and each set of CDIs that it may manipulate,
the security officer must specify a relation or function that defines
that execution. A relation is thus of the form [TP1, (CDIa, CDIb, CDIc, . .
.)], where the list of CDIs defines a particular set of arguments for
which TP1 has been certified.

E1: (Enforcement of Validity) The system must maintain the list of
relations specified in rule C2, and must ensure that the only
manipulation of any CDI is by a TP, were the TP is operating on the
CDI as specified in some relation.

The above rules provide the basic framework to ensure internal
consistency of the CDIs. To provide the separation of duty mechanism,
additional rules are needed to control which persons can execute which
programs on specified CDIs:

E2: (Enforcement of Separation of Duty) The system must maintain a
list of relations of the form: [UserID, TP1, (CDIa, CDIb, CDIc, . . .)],
which relates a user, a TP, and the data objects that TP1 may
reference on behalf of that user. It must ensure that only executions
described in one of the relations are performed.

C3: (Separation of Duty Certification) The list of relation in E2 must be
certified to meet the separation of duty requirement. In effect, they
must exactly satisfy policy.

Formally, the relations specified for rule E2 are stronger than those
of rule E1 are, so E1 is unnecessary. However, for both philosophical and
practical reasons, it is helpful to have both sorts of relations.
Philosophically, keeping E1 and E2 separate helps to indicate that there
are two basic problems to be solved: internal and external consistency. As
a practical matter, the existence of both forms together may permit
complicated relations to be expressed with shorter lists, by the use of
identifiers within the relations that use "wild card" characters to match
classes of TPs or CDIs. On the other hand, mixing a formal definition with
an implementation detail is not usually productive. Having only E2 would
obviate the worry that E1 and E2 become inconsistent, a matter of
considerable concern.

The above relation made use of UserID, an identifier for a user of
the system. This implies the need for a rule to define these:

E3: (User Identity) The system must authenticate the identity of each
user attempting to execute a TP.

160

Rule E3 is relevant to both commercial and military systems.
However, commercial systems use the identity of the user to enforce very
different policies than military systems. The relevant policy in the
military context, as described in the Orange Book, is based on level and
category of clearance, while the commercial policy is likely to be based on
separation of responsibility among two or more users. This difference is
exacerbated if in the commercial system users are permitted to change
roles, because a different set of authorities and responsibilities may be
associated with the user in each of his or her different roles.

There may be other restrictions on the validity of a TP. In each
case, this restriction will be manifested as a certification rule and
enforcement rule. For example, if a TP is valid only during certain hours
of the day, then the system must provide a trustworthy clock (an
enforcement rule) and the TP must be certified to read the clock properly,
and the clock must present the authentic time in a tamperproof way.

Almost all integrity enforcement systems require that a journal be
kept of all TP execution to provide data for a later audit. However, no
special enforcement rule is needed to implement this facility; the journal
can be modelled as another CDI, with an associated TP that only appends
to the existing CDI value. The only rule required is:

C4: (Journal Certification) All TPs must be certified to write to an
append-only CDI (the journal) all information necessary to permit the
nature of the operation to be reconstructed. In some cases it may be
desirable to write sufficient data so a previous state can reliably be
restored.

There is only one more critical component to this integrity model.
Not all data is constrained data. In addition to CDIs, most systems contain
data items not covered by the integrity policy. This unprotected data may
be manipulated arbitrarily, subject only to discretionary controls. These
Unconstrained Data Items, or UDIs, are relevant because they represent
the way new information is fed into the system. For example, information
typed by a user at the keyboard may be a UDI; it may have been entered or
modified arbitrarily. To deal with this class of data, it is necessary to
recognise that certain TPs may take UDIs as input values, and may modify
or create CDIs based on this information. This implies a certification rule:

C5: (Transformation Certification) Any TP that takes a UDI as an input
value must be certified to perform only valid transformations, or else
no transformations, for any possible value of the UDI. The
transformation should take the input from a UDI to a CDI, or the UDI
is rejected. Typically, this is an edit program.

The only reason for taking such effort to protect the UDI value
before transforming it into what amounts to a CDI copy is to make certain
that the raw input value from outside the protected envelope gets reliably
entered into the journal. In this way a dependable audit can isolate the
cause of a suspected integrity problem.

161

For the Clark-Wilson model to be effective, the various certification
rules must not be bypassed. For example, if a user can create and run a
new TP without having it certified, the system cannot meet its goals. For
this reason, the system must ensure certain additional constraints. Most
obviously:

E4: (Initiation) Only the agent permitted to certify entities may change
the list of such entities associated with other entities: specifically, the
relation associated with a TP. An agent that can certify an entity
may not have any execute rights with respect to that entity.

This last rule makes this integrity enforcement mechanism
mandatory rather than discretionary. For this structure to work overall,
the ability to change permission lists must be coupled to the ability to
certify, and not to some other ability, such as the ability to execute a TP.
This coupling is the critical feature that ensures that the certification
rules govern what actually happens when the system is run.

CDI

CDI

Journal
CDI

IVP

C2: TP
preserves
valid state

C4: TP writes
to journal

E1: CDI
changed
only by
authorized
TP

E4: Authorize
lists changed
only by
security officer

The
Users

UDI

UDI

E3: User Authenticated

TP
Auth.
lists

E2: User
authorized
for TP
C3: Suitable
separation
of duty

C5: TP validates UDI

C1: IVP validates CDI state.

Together, these nine rules define a system that enforces a
consistent integrity policy. The rules are summarised in the figure, which
shows the way the rules control the system operation. The figure shows a
TP that takes certain CDIs as input and produces new versions of certain
CDIs as output. These two sets of CDIs represent two successive valid
states of the system. The figure also shows an IVP reading the collected
CDIs in the system in order to verify the CDIs validity. Associated with
each part of the system are the rules that govern it to ensure integrity.

162

Central to the Clark-Wilson model is the idea that there are two
classes of rules: enforcement rules and certification rules. Enforcement
rules correspond to the application-independent security functions, while
certification rules permit the application-specific integrity definitions to
be incorporated into the model. Enforcement is the process of dependably
arranging that the relations that have been certified, whatever they are,
actually always hold. It is desirable to minimise certification rules,
because the certification process is complex and complicated, may be
prone to error, and must be repeated after each program change. In
extending the Clark-Wilson model, therefore, an important research goal
must be to shift as much of the security burden as possible from
certification to enforcement.

For example, a common integrity constraint is that TPs are to be
executed in a certain order. In the Clark-Wilson model (and in most
systems of today), this idea is usually captured by storing control
information in some CDI, and executing explicit program steps in each TP
to test this information. The result of this style is that the desired policy
is hidden within the program, rather than being stated as an explicit rule
that the system can then enforce. Another way to order the TPs is to
associate with each an integer, or several integers, and to insist that the
integers for TPs about to be executed bear some specific relation to the TP
just finished executing. This is not always possible with one associated
integer, but with the freedom to use an integer-tuple almost any order can
be enforced.

Other variations on the theme of enforcement may exist.
Separation of duty might be enforced by analysis of sets of accessible CDIs
for each user. Clark and Wilson, in their 1987 paper, stated that they
believed that further research on specific aspects of integrity policy might
lead to a new generation of tools for integrity control. This has not
happened yet.

9.5. Properties of Clark-Wilson

The Clark-Wilson model has two levels of integrity: the lower level UDIs
and the higher level CDIs. CDIs are considered higher level because of the
control of data modification implied by the TPs and because the data
values can be verified using an IVP. In Biba’s model, any conversion of a
UDI to a CDI could be done only by a security officer or trusted process.
Data input is a common system function, and Biba requires that input be
done by a trusted component of the TCB. Clearly it can not be done
dependably by a mechanism that is outside the security model. Thus,
with Biba any input is not a UDI but a trusted CDI right from its inception.
The argument in Clark-Wilson that input is a UDI may be based on the
idea that the Clark-Wilson model would run on an untrusted platform.
This idea is clearly unrealistic.

The Clark-Wilson model permits the security officer to certify the
method for integrity upgrade, or in Clark-Wilson terms, those TPs that
take UDIs as input values. In this way Clark-Wilson recognises the

163

fundamental role of the TP (which is in a real sense a trusted process).
Biba’s model lacks any equivalent of rule E1 (CDIs changed only by
authorised TP), and thus cannot provide the specific idea of constrained
data.

On the other hand, Biba places the onus for the control of new
values for data squarely on the authorised user. If the user has
appropriate access to data he or she can modify it. Such modification can
be a security-relevant event and so be written to the journal of such
events that the system must keep. The various programs that the user
employs can be evaluated just as rigorously as in Clark-Wilson – in fact
Biba is closely associated with the Bell & LaPadula model, which implies
that security-significant parts of the system must be modelled and proven
safe. So there is a degree of concealed similarity between a Biba
implementation and a Clark-Wilson version of the same system.

With Biba there is much finer granularity to the notion of
authorisation; this is a result of the flexibility of having the full lattice of
security levels available as levels of integrity. In commercial work it is
not likely that this flexibility is of much significance.

Following this thought, Lipner55 has recognised that the category
facility of the Bell & LaPadula model can be used to distinguish the
general user from the systems programmer or the security officer. Lipner
also recognises that data should be manipulated only by certified
(production) programs. In attempting to express this in terms of the
lattice model, he attaches lists of users to programs and data separately,
rather than attaching a list of programs to a data item or a list of data
items to a program. His model thus has no direct way to express the
Clark-Wilson rule E1, but must rely on the indirect use of categories to
accomplish a similar result in a much more unwieldy way. By combining
a lattice security model with the Biba integrity model, he more closely
approximates the desired model, but still cannot directly express the idea
that data may be manipulated only by specified programs (rule E1). On
the other hand, the authorised user has control, as he or she should.

The commercial sector would be very interested in a model that
would lead to and measure parameters such as: better facilities for end-
user authentication; the segregation of duties within the security officer
functions, such as the ability to segregate the person who adds and deletes
users from those who write a user's rules; the restriction of the security
function from user passwords; and the need to provide rule with much
better capability to govern the execution of programs and transactions.
For the commercial world, these changes would be much more valuable
than taking existing applications together with their operating systems
and security packages to B or A levels as defined in the Orange Book.

55 Lipner, S.B., "Non-Discretionary Controls for Commercial Applications," Proceedings of the
1982 IEEE Symposium on Security and Privacy, Oakland, CA, April 1982.

164

165

INFERENCE CONTROL

IN

DATABASE SYSTEMS

10. INFERENCE CONTROL IN DATABASE
SYSTEMS

Database systems are widely used to store statistical or other such data.
The details of the way that the database system operates, the functions
and mechanisms it provides, and the way that it organises a search for
candidate data records that satisfy some query, are all of little interest to
the control of inference56.

Behind all types of database systems there is a database that is a
matrix of records that are identically structured. Let the matrix be called
B and let there be N records in it. Each record contains M variables. The
set of all N values of each of the variables form the columns of the matrix,
called Bj for 1 ≤ j ≤ M . A record is a hopefully consistent collection of
data about one individual database entry. In a relational database, for
instance, a record is the M-tuple of the relation. Let the field stored at
record i, variable j be called xij . Figure 1 shows the arrangement. The
database shown in figure 2 will be used in examples through the major
part of these notes.

Record Variable

1

i

N

B1 Bj BM

x11 L x1 j L x1M

M M M

xi1 L xij L xiM

M M M

xN1 L xNj L xNM

Figure 1. A View of a Database

56 Dorothy E. Denning, "Cryptography and Data Security", Addison-Wesley, Reading,

Massachusetts, 1983.

166

10.2. Knowledge and Inference

There are several terms that must be defined, and assumptions made with
respect to them.

Inference: Deducing or concluding some data that is supposed to be
unauthorised, from examining the answers to carefully
structured queries. The queries can include statistical or
summary results.

Internal Knowledge: The data that is stored in the database is the
internal knowledge. It is the value (and in some cases the
existence) of this internal knowledge that is to be
inferred.

External Working Knowledge: The external working knowledge is what
can be known about the structure of the database. This
includes the number and names of the variables, the
range of values they might have, and the number or
records in the database. For example there are only two
sexes, so this limit may be useful to deduce other data.

External Supplementary Knowledge: The external supplementary
knowledge is information not normally released by the
database security policy. The security policy for the
database might include, for instance, issues of social
significance, in addition to the non-disclosure rules.

Figure 2. A Simple View of a Database Called Canada
Province or
Territory

Type Predominant
Language

Capital City Population in
100 000s

Newfoundland P English St. John’s 3
Nova Scotia P English Halifax 5
Prince Edward
Island

P English Charlottetown 1

New Brunswick P English
& French

Fredericton 6

Quebec P French Quebec 79
Ontario P English Toronto 96
Manitoba P English Winnipeg 8
Saskatchewan P English Regina 12
Alberta P English Edmonton 27
British Columbia P English Victoria 33
Yukon T English Whitehorse 2
MacKenzie T English Yellowknife 2
Keewatin T Innuit Iqualuit 1

167

10.3. Types of Statistics

Statistics are computed for subgroups of records having attributes in
common. The attributes are determined by constructing a proposition. A
proposition is a question that admits only the answers true or false. The
proposition’s value is determined for each record, and those records that
satisfy the proposition (result is true) are the result of the statistical
query.

In constructing a proposition all the usual arithmetic and relational
operators can be used, including the full power of the predicate calculus.
In practice, many propositions use only the five operators ¬ (not), ∧
(and), ∨ (or), =(equal) and ≠ (not equal). Sometimes + or – are used to
indicate set union and set subtraction, and ∧ can also mean set
intersection.

The formula describing the proposition is called its characteristic
formula C . A characteristic formula CQ . (Q for query) can be described
as, for instance (language ≠ english) ∧ (Population > 500000) which
obviously has the unique result CQ = Quebec . In these notes, because of
the simplicity of the example, we will often abbreviate characteristic
formulas when the meaning is obvious, such as in (≠ english) ∧ (> 500000)

The set of records for which a characteristic formula C is true is
called the query set of C. It is convenient to designate both the
characteristic formula and its query set by the same symbol, usually C.
For example the C of the characteristic formula population ≥ 1000000 is
the set

 Quebec,Ontario,Saskatchewan, Alberta, British Columbia{ }.
The special characteristic formula all is true for every record in the
database.

Let variable Bj have ν j possible values, where bj is a possible
value of Bj . Then characteristic formulas of the form

 (B1 = b1)∧L∧(BM = bM) can distinguish a known number E of records,

where

E = ν j

j=1

M

∏ . The query set corresponding to a characteristic formula

of this form is called an elementary query set because it cannot be
specified more precisely. A distinct value bj is nominated for each
variable Bj . There is no way to ask a further question that would
subdivide the result. There are E elementary sets in the database, many
of which are usually empty. Let γ denote the maximum size of the
elementary sets. The quantity γ is the maximum number of records with
fields having identical values. In our example γ = 1. But in practice it is
not uncommon for several database records to have corresponding fields
with identical values, and then γ is the cardinality of the largest such set.

168

Statistics are the values returned by a query set C.. A general form
of a statistic is a finite moment of the form

q(C , θ1 ,L, θM) = xi1

θ1

i∈C
∑ ∧ xi2

θ2 ∧L∧ xiM
θ M .

In this formula, C is some characteristic formula with successive conjuncts

 xi , each of which is a proposition such as B = b or B ≥ b . The quantity

 xik
θ k is the ik

th conduct in C raised to the power θk . Some examples:

The number or records for which C is true:

count(C) = q(C , 0, 0,L, 0)
count(english) = 11

With obvious notational inference, the sum of the value of the k
th field,

which has a numeric value:

sum(C , Bk) = q(C, 01 ,02 ,L,1k ,L, 0M)
sum(all, population) = 275

The average value of some field:

avg(C ,Bk) = sum(C , Bk)
count(C)

avg(all, population) = 25

The variance:

variance(C , Bk) =

q(C ,01 ,L, 2k ,L, 0M)
sum(C)

− avg(C , Bk)[]2

The covariance and the correlation are also easily written. This
method of describing a statistic is astonishingly general. For descriptive
purposes, the form q(C) will be used to mean any statistic of the above
form. There are other types of statistics that can not be expressed by the
form q(C). For instance, the selection of some specific value from among
all the values for Bk , such as the smallest, the median, the largest, the
largest that is duplicated, etc., is sometimes wanted.

10.4. Disclosure

Suppose that the data in the column headed Capital City is confidential.
The query CapitalCity(population = 9600000) is clearly not allowed,
because it reveals Toronto. But the query CapitalCity(all) would be
acceptable, because it reveals a list of cities, and that is the same as
having knowledge of the working external knowledge. Thus, the size of
the query set – the number of records that are identified as satisfying the
query – is significant when deciding that the result of a query is a
disclosure that should be disallowed. All users have some supplementary
knowledge, and in combination with the results of a query set of small
cardinality, they may be able to infer information that they should not
have. One criterion used by some organisations is the n-respondent, k%-
dominance rule. This rule disallows revealing the result of a statistic if n
or fewer values contribute more than k percent of its total.

169

Example
Explosives. If a statistic is constructed that includes the explosive
power of an atomic bomb and the explosive power of a large number
of firecrackers, then for n ≥ 1 an n-respondent 99.99% rule would
disallow revealing the statistic.

A problem arises because the combination of allowed statistics
could reveal disallowed information. Suppose that only query sets of size
1 are disallowed. Then it is not hard to arrange that two successive
queries reveal information meant to be disallowed. In the example,
suppose that the population is considered sensitive data, query sets of size
1 are to be disallowed. Then sum(T ∧ english,population) has a size 2
and a value 400000. Also sum(T , population) has a size 3 and a value
500000. It takes little wit to realise that sum(T ∧ ¬english,population)
has a value of 100000. From supplementary knowledge, the only
predominant language other than English in the Territories is Innuit, and
the information is revealed.

This brings up another issue, that of the user’s supplementary
knowledge. There is no effective way to control the use of supplementary
knowledge by a user to infer information that he should not have. This is
because there is no way to measure the amount of supplementary
knowledge the user might have or does have. As a rule, it is safe to
assume that every user remembers information perfectly. A pessimistic
policy would need to assume that the user knows all internal knowledge
as supplementary knowledge.

The whole enterprise of inferring information from a combination of
queries and supplementary knowledge is related to cryptanalysis. For
inferring information using queries, there are analogues of the ciphertext-
only attacks that are used to try to break encrypted messages. The
mechanisms that are used for combined plaintext and ciphertext are
analogous to the use of the user’s supplementary knowledge.

10.5. Partial Disclosure

The amount of information that is revealed by a query can be measured
using information theory. The application of information theory to
information release requires a definition of the entropy of information.

10.5.1. Information Entropy

Information theory measures the amount of information in a message by
determining the average number of bits needed to encode all possible
messages in an optimal encoding. Thus, a message consisting of the
Province or Territory field in a database can be encoded in one bit (P or T)
if they are both equally likely. Population in 100000s might take 17 bits
(assuming no region has more than about 13 billion residents), or for
Canada 7 bits.

170

Formally, the amount of information in a message is its entropy57.

The entropy of a message X is defined as

H(X) = p(Xi

i=1

n

∑) log 2
1

p(Xi)

 .

The sum runs over all values Xi that the message can have. p(Xi) is the
probability of the message X having value Xi . As usual, the probabilities
must sum to one.

In the example there are two possibilities, P and T, that could be
encoded with one bit because the type of each province or territory is
permanently assigned as either a P or a T. A similar circumstance arises
in a list of people. If the list includes a column describing their sex, that
column will use one bit. If one sex is more probable than the other in
some circumstance, an optimal encoding would use a fraction of a bit to
encode the more probable sex, and rather more than a bit to encode the
less probable sex.

The situation with P and T is similar. The probability of P is 10/13
and the probability of P is 3/13. Thus

 H(X) = 10
13 log2

13
10 + 3

13log 2
13

3 = 0.78. If P and T were equally

probable, H(X) = 1
2 log 2

2
1 + 1

2 log2
2

1 = 1.

Intuitively, each term

log 2

1
p(Xi)

 represents the number of bits

needed to encode message Xi with optimal encoding. Following the data
in the above example, log 2 1.3 = 0.291163 and log 2 13 3 = 2.115477 . If the
bit were divisible, a more optimum encoding would use these encodings –
a P would be encoded with 0.291163 bits and a T with 2.115477 bits. The
field could then be encoded in an average of 0.78 bits. Clearly the bit is
not divisible, so that one full bit must be used.

With 1 bit the integers 0 and 1 can be encoded. If there are n
messages that are all equally probable, the probability of each message is

 p xi()= 1 n and the entropy is

H(X) = n 1

n log 2 n[]= log2 n. This shows

that if n messages are equally probable then log 2 n bits are needed to
encode the messages so that each has a distinct encoding. If n = 1 then

 p X1()= 1 and H(X) = log2 1 = 0 — there is no information because there is
no choice of message. Reminiscent of Saturday morning television.

10.5.2. Disclosure

Let K denote a user's supplementary external knowledge. Let R denote a
set of statistics released to a user. A Statistical Disclosure about some

57 Entropy also is used in thermodynamics as a measure the unavailability of

thermal energy for conversion into mechanical energy. It also appears elsewhere
as a measure of the disorganisation of the universe. Generally, that which is
organised can be transformed into another form, while that which is disorganised
is unavailable. The use in information theory has only a tenuous connection with
the other uses.

171

statistic q occurs whenever the entropy of the combination of K and R is
less than the entropy of K alone. This is expressed as HK , R(q) < HK (q) .

If the disclosure uses the supplementary knowledge associated with
a user, a compromise has taken place. The degree of compromise is
measured by the reduction in entropy HK (q) − HK ,R (q) . Complete
compromise occurs when HK (q) − HK ,R (q) = HK (q) in which evidently

 HK , R(q) = 0 because there is no residual information left after the
complete compromise.

If disclosure occurs without the use of supplementary knowledge, it
is called resultant disclosure. If it is assumed that the totality of
everything the user might know would take an infinite number of bits to
encode it, then any query that returns a result can make a resultant
disclosure. However, given that some resultant disclosure has been
tolerated, any further resultant disclosure can be measured. Notice that
entropy always decreases unless the model includes a way to simulate the
possibility that the user will forget information. This is not done in
practice, because it does not represent a pessimistic approach to security.

If a compromise is not complete, it is a Partial Compromise. In this
case the information q is not determined exactly. There are at least three
ways that this might occur. Assume that there is a lower bound and an
upper bound on the value that q can be expected to have, so that

 GLB ≤ q ≤ LUB. This is equivalent to a user being aware of the working
knowledge of the database.

(1) Narrowing bounds. If the query results in either GLB increasing or
LUB decreasing, a partial compromise has occurred. When
 GLB = LUB a complete compromise has occurred.

(2) Negative . It is revealed that q ≠ ′ q for some ′ q in GLB ≤ ′ q ≤ LUB .
A sufficient number of these results, together with a working
knowledge of the database, can gradually result in a complete
compromise, or if the values of ′ q are clustered near the GLB or the
LUB, a partial compromise of type (1) immediately above happens.

(3) Probabilistic . If some new bounds GL ′ B or LU ′ B can be
established, with probabilities that they are the actual bounds, then
the interval GL ′ B , LU ′ B [] is called the confidence interval that

 GL ′ B ≤ q ≤ LU ′ B , and p GL ′ B ≤ q ≤ LU ′ B () is the confidence level
corresponding to the confidence interval.

Suppose an estimate ′ q of the value q of a random variable is made,
with known standard deviation58 σ ′ q . Then the 99% confidence interval is

given by p q − 2.575σ ′ q ≤ ′ q ≤ q + 2.575σ ′ q ()= 0. 99 . It is 99% certain that

58 The standard deviation is the square root of the variance developed in section 3.

172

 ′ q lies in the interval given in this equation. Conditions for various levels
of confidence are given by:

 p q − 2.575σ ′ q ≤ ′ q ≤ q + 2.575σ ′ q ()= 0. 99

 p q −1. 645σ ′ q ≤ ′ q ≤ q +1. 645σ ′ q ()= 0. 90

 p q −1. 960σ ′ q ≤ ′ q ≤ q +1. 960σ ′ q ()= 0. 95

The general equation that these are specific cases of is beyond the
scope of this course59. The numbers assume that there are a large number
of measurements that contribute to the estimate ′ q . If a small number of
measurements are involved the interval widens slowly.

10.5.3. Protection

There is no perfect scheme of database security. It is only possible to
attempt to prevent unauthorised users from inferring close
approximations of sensitive values. It is said that a sensitive statistic q is
protected with confidence p within interval length L = LUB − GLB and

 p q ∈ L() ≥ p . Working with this arrangement is in practice quite difficult.
A number of approximations, many of doubtful provenance, seem to be
necessary to apply confidence intervals to security.

The number of statistics needed to reduce the uncertainty about a
statistic q to an unacceptably low figure can be used to represent the
difficulty in compromising q . If a very large number of statistics are
required to infer q with a high probability, then q might be considered to
be fairly well protected. This situation is analogous to attacking a cipher
that requires a large amount of cipher text to give a high probability that
the cipher can be broken. In this situation there will be a corresponding
high processing cost – perhaps beyond the range of that which it is
practical to compute.

10.6. Control Mechanisms

There are a number of mechanisms that can be built into the database
system to make the inference of sensitive information difficult. The most
obvious is to control the type of statistics that are released.

10.6.1. Macrostatistics

Macrostatistics are collections of related statistics, usually supplied as a
summary view of the database in which each row of the macrostatistics
represents a (fairly large) number of rows of the actual database, and
where the columns are often combined as well. This can make the
inference of individual data very difficult, even if supplementary
knowledge is deployed. Often, additional artificial records are added to
the database to conceal the number of microstatistics participating in a
macrostatistic.

59 See Alberto Leon-Garcia, "Probability and Random Processes for Electrical

Engineering", Addison Wesley, 1989, Section 5.4, pages 291-296.

173

The whole area is applicable only to situations like the output of
census bureaux, where there are likely to be a huge number of records
that are all very similar.

10.6.2. Query Set Size Control

Modern general purpose database systems include language features to
help the user formulate his questions, and to help reduce the effort
required to use a database. It is natural that these systems try to enforce
a security policy. The database needs a mechanism that will both prevent
the result q(C) of a query based on the characteristic formula C from
being composed of too few records, or from excluding too few records from
the reply. If either of these are allowed to happen it is too easy to deduce
another query set that will result in an inference that reveals too much
information. See section 5.2 for an introduction to the measurement of
how much is too much.

Let the query set size of the statistic q(C) be k. In general, a
statistic q(C) is permitted only if n ≤ k ≤ N − n . The quantity n > 0 is a
parameter of the security policy as it applies to the database. If n ≥ N 2
no statistic will ever be released, because n ≤ k ≤ N − n can not be true.
Consequently, n < N 2 . In practice, n must be quite a bit less that N 2 if
the database system is to be usable. Otherwise, queries will be required
to always contain close to half the records, and they are too hard to
construct and don’t represent a usable tool.

As a special case, q(all) is always permitted. This is because

 q(all) = q(C) + q(¬C) and it will be easy to find some statistic S with
query set size σ such that n ≤ σ ≤ N − n . Note that the query set size of
 ¬S is N − σ , and n ≤ N − σ ≤ N − n as well, so q(all) can be computed
trivially.

10.6.2. Tracker Attacks

A tracker is a pair of related characteristic formulas that can be used to
infer information even in the presence of query set size control. Let user I
be the one person for whom q(C) is true. It is desired to find out if
characteristic formula D is also true for user I. If C can be divided into
two parts then the user may be able to compute count(C ∧ D) from use of
the parts.

A tracker attack starts with finding a decomposition of C into

 C1 ∧ C2 , such that count(C1) and count(C1 ∧ ¬C2) both satisfy the query
set size control. The query set size of count(C1 ∧ ¬C2) can not be larger
than the query set size of count(C1) because count(C1) clearly identifies
more records than count(C1 ∧ ¬C2) identifies.

 n ≤ count(C1 ∧ ¬C2) ≤ count(C1) ≤ N − n

The pair of formulas C1 and C1 ∧ ¬C2 are called the tracker. The
compromise is as follows.

174

 C1 ∧ C2 uniquely determines I because of the way C1 and C2 have
been built. Let T = C1 ∧ ¬C2 . The statistics count(T) and

 count(T + C1 ∧ D) , both of which are permitted by the query set size
control, can be used to compute

 count(C ∧ D) = count(T + C1 ∧ D) − count(T).

10.6.3. General Trackers

A general tracker is a characteristic formula T with query set size τ such
that 2n ≤ τ ≤ N − 2n . The statistic q(T) is always answerable because τ
is smaller than the query set size control k. It is evident that n ≤ N 4 or
the (single) general tracker can not exist. It has been shown that if the
maximum size of the elementary set γ ≤ N − 4n then the database must
have at least one general tracker.

Let the query set size of q(C) be k. The compromise works as
follows. It is obvious that q(all) = q(T)+ q(¬T) . If k < n then compute

 q(C) from q(C) = q(C + T) + q(C + ¬T)− q(all) , while if k > N − n compute

 q(C) from q(C) = 2q(all)− q(¬C + T)+ q(¬C + ¬T) .

For example, in the following figure the Greek letters represent
statistics that are true in their area of the plane. The statistics α are true
in the upper left corner of the plane, and so on. It is desired to deduce

 q(C) using the tracker T as a vehicle to avoid query set size control. The
assumption is that the number of statistics in q(C) would fail query set
size control; the figure is drawn to crudely imply this state of affairs. The
way that the tracker works is shown after the figure.

q(C) = q(C + T) + q(C + ¬T)− q(all)
= (α + β +ξ)+ (α + β + δ) − (α + β + ξ + δ)
= α + β

T ¬T

C

¬C

α β

ξ δ

175

A double tracker can be built from two characteristic formulas, T
with query set size τ and U with query set size υ such that T ⊆ U and
 n ≤ τ ≤ N − 2n and 2n ≤ υ ≤ N − n . The compromise proceeds as follows.
If k < n , q(C) = q(U) + q(C +T) − q(T) − q(U ∧ (¬(C ∧ T))) while if k > N − n ,

 q(C) = q(¬U) − q(¬C + T)+ q(T) − q(U ∧ (¬(¬C ∧ T))).

For a double tracker, n < N 3, a slight improvement over the single
variety. Obviously higher levels of tracker can be conceived, although it
gets increasingly difficult to find them.

q(C) = q(U) + q(C +T) − q(T) − q(U ∧ (¬(C ∧ T)))
= (α + β +ξ + δ) + (α + β + γ + ξ) − (α +ξ)− (β +ξ + ζ)
= α + β + γ

The quantity U ∧ (¬(C ∧ T)) implies those areas of the figure in
which U is true and C and T are not true.

T ¬T

C

¬C

α β

ξ δ

U ¬U

γ

ζ

10.6.3. Linear Equations and Other Attacks

Let
 Q = q1,q2 ,L,qm be a set of statistics, all of which have been released

to a potential attacker. A linear system HX = Q can be solved, in which
 H is a matrix such Hij = 1 if qj ∈q(Ci) and Hij = 0 otherwise. Solution of
this linear system, together with the working knowledge, can now supply
other statistics that can be inferred from the set Q . Trackers are a
specialised form of this linear equation attack. The members of qk can be
formed from operations, such as intersection or union, on available
statistics. For instance, using the usual identities, it is easy to show that

 q(¬C ∧ D) = q(D) − q(C ∧ D). Such identities can be used to select the
members of Q so that the linear system is specialised to solve for the
desired statistic.

176

It has been pointed out that one type of query asks for a value for

 Bk , such as the smallest, the median, the largest, the largest that is
duplicated, etc. All these can be the basis of an attack, demonstrating
that query set size control is not a good enough control.

For example, using the median, an attack can be constructed as
follows. Let the following be statistics:

 median(PorT,population) = 6

 median(PorT using other than English, population) = 6
The example is trite, but if it is known from supplementary knowledge
that New Brunswick is the smallest province in which French is an
official language, and there are two, and that the Keewatin territory uses
Innuit and has a tiny population, then it is straightforward to deduce that
the population of New Brunswick is 6. The technique depends on the
attacker’s ability to devise the two (or more, if you want to get
complicated) median questions.
Another attack is based on repeated insertion of a record, asking a query,
deleting the record, and asking the query again.

If a database is dynamic in the sense that users can insert and
delete entries in it, a careful monitoring of the database can show the
values that are being inserted and deleted. It may be possible to deduce
some unaltered data from a contemplation of summary values, if the
entries are cleverly chosen, but it is not thought that this is generally the
case.

177

ELEMENTARY

CRYPTOGRAPHY

11. ELEMENTARY CRYPTOGRAPHY

Cryptography is the process of encrypting a plaintext with an algorithm
the action of which is moderated by an encryption key, and the
corresponding process of decryption. The encryption–decryption
algorithm is generally not secret. It is the modern practice that the
algorithm should be available to any observer, but that knowledge of the
algorithm and a supply of messages should not in practice enable an
intruder to deduce the key.

DecryptEncryptplain
text

cipher
text

plain
text

Encryption
key

Decryption
key

Cryptanalysis is the process of deducing the message by either
deducing the key and running the (known) algorithm, or by knowing the
algorithm and ciphertext and recovering the plaintext. There are several
types of attacks:

ciphertext-only:
the plaintext is recovered from knowledge of a sufficient number of
ciphertext messages.

known plaintext:
the plaintexts corresponding to some known ciphertexts is available.
This is used to try to deduce the key. In some cases the algorithm
may not be known, and it is then used to attempt to deduce both the
algorithm and the key.

11.1. A Simplistic Introduction to Cryptography

There are two mechanisms used in encryption and in the corresponding
decryption. Both mechanisms use the key to govern their actions. Some
techniques use a sequential combination of both mechanisms.

178

Transposition:
In a transposition, the bits, letters, words, ... that are the components
of a message are rearranged in a different order. The recipient must
know how to undo the transposition and recover the original
message. The rearrangement is determined by the key in some
unique way, so that if both the sender and the receiver know the key
they can determine how to transpose or its reverse.

Substitution:
A substitution encryption replaces the components of a message (bits,
letters, words, ...) with a substitute. The recipient must know how to
undo the substitution and recover the original message. The
substitution is determined by the key in some unique way, so that if
both the sender and the receiver know the key they can deduce the
correct output from their input.

In the following discussion the following text :
IN THE BEGINNING GOD MADE THE HEAVEN AND THE EARTH,

from the opening sentence of a well-known book, will be used throughout
unless an example with special properties is required. The elements of
the message to be transposed or substituted for are the letters in the
message. For convenience, only upper case letters will be used.

11.2. Transposition Ciphers

Transposition ciphers rearrange the letters according to some regular
pattern. For instance, the letters of the message could be written in a
matrix by rows, and then read out of the message by columns or with the
entries in a row jumbled. In order to show a blank it has been replaced
with the symbol ø. Normally in a transposition cipher, the blanks are left
out and the recipient is left to conclude where they should be. Because
natural language is so redundant this is rarely a problem. For example:

INTHEBEGINNINGGODMADETHEHEAVENANDTHEEARTH

is not hard to read.

Consider the matrix
I N ø T H E ø
B E G I N N I
N G ø G O D ø
M A D E ø T H
E ø H E A V E
N ø A N D ø T
H E ø E A R T
H ø ø ø ø ø ø

as a transposition matrix. In this arrangement, the plaintext has been
written into a matrix with seven columns, and enough rows to hold it.
One encryption is obtained by reading down the columns from left-to-
right. This reading gives the ciphertext

IBNMENHHNEGAØØEØØGØDHAØØTIGEENEØHNOØADAØENDTVØRØØIØHETTØ.
as an encryption of the original message.

179

This ciphertext is easy to decode. An elementary analysis will
notice that there are 56 letters. It is natural to try a 7 × 8 arrangement of
the letters, and the message is immediately evident.

There is a more general form of such encryptions.

Let c be the number of columns in the matrix, and let p be a
permutation of the digits

 1, 2, 3,L, c. If c = 7 then 1234567 is a
permutation, and so is 3721654. Such transpositions are countable. Each
permutation can be assigned a unique numerical identifier in the
sequence

 1, 2, 3,L, c! . In this way, the transposition can be represented
by a number. The pair c, p can define two different transpositions.

COLUMNWISE: The c specifies how many columns there are, and the p
specifies the order (permutation) that they are to be
read from top to bottom. The example above
corresponds to 7,1234567 . The permutation

 7,3721654 corresponds to the ciphertext
øGøDHAøøøIøHETTøNEGAøøEøIBNMENHHENDTVøRøHNOøADAøTIGEENEø.

ROWWISE: The c specifies how many columns there are, and the p
specifies the order (permutation) that the columns are
to be read one-by-one from left to right. The
permutation 7,1234567 returns the original text,
while 7,3721654 results in

øøNIEHTGIEBNNIøøGNDOGDHAMTøEHEøEVAEATøNøNDøTEHRAEøøøHøøø.

The latter method is sometimes preferable because the matrix can
be dealt with a row at a time, with no necessity to write the whole thing
down before producing the output.

To decipher a transposition message, the matrix is reconstructed.
This is elementary if c, p are known. The message is written back into a
matrix with the proper number of rows, according to the order that it was
read out of the matrix. The original message is then evident in the
matrix.

Transposition ciphers have the same relative frequencies of the
appearance of the letters as does the natural language. This, used
together with frequency-of-appearance tables of the common digrams (2-
letter sequences) and trigrams (3-letter sequences) make transposition
ciphers of little primary value. They are used, however, in conjunction
with substitution ciphers to concoct some very secure mechanisms.

11.3. Substitution Ciphers

There are four types of substitution ciphers.

SIMPLE: Simple substitution ciphers replace on a one-for-one basis
each character of a plaintext with the corresponding character of a
ciphertext. This is done throughout the message.

180

HOMOPHONIC: Homophonic substitution ciphers replace each
character of a plaintext with one of the corresponding characters of a
ciphertext. The mapping is, in general, one plaintext character to
many ciphertext characters.

POLYALPHABETIC: Polyalphabetic substitution ciphers replace each
character of a plaintext with the corresponding character of a
ciphertext – a simple substitution. They change the substitution
frequently, usually after each substitution. Thus, the first letter
might be encrypted with one simple substitution, the second with
another, and so on.

POLYGRAM: Polygram substitution ciphers are more general than the
other ciphers. In general, they replace blocks of characters of a
plaintext with the corresponding block of a ciphertext.

11.3.1. Simple Substitution Ciphers

The simplest simple substitution cipher is called a keyword mixed
alphabet. A ciphertext is written down, letter by letter, beneath the
plaintext, with duplicate letters in the ciphertext omitted. As an aid to
remembering the ciphertext, it is common to use a simple phrase; for
example GENESIS CHAPTER ONE VERSE ONE. The ciphertext is then
completed by writing down the rest of the letters (the ones that do not
appear in the phrase) in some arbitrary but known way. For example:

A B C D E F G H I J K L M N
G E N S I ø C H A P T R O V

O P Q R S T U V W X Y Z ø
B D F J K L M Q U W X Y Z

Our example encrypts as
AVZLHIZEICAVVAVCZCBSZOGSIZLHIZHIGQIVZGVSZLHIIGJLH.

Ciphers that just shift the alphabet to the right k positions modulo
the cardinality of the alphabet are known as shifted alphabets. If the
cardinality of the alphabet is n, then for 0 ≤ j ≤ n − 1,
ciphertext plaintext(+)j j k n= mod . The case where k = 3 is known as a Caesar
Cipher because Julius Caesar is supposed to have used it that way.
Augustus Caesar favoured k = 4.

If k and n are relatively prime, then ciphertext plaintext()j j k n=
� mod

will produce a workable cipher alphabet, because, as j goes from 0 to n-1,
the subscript on the right-hand side will become a permutation of the
integers from 0 to n-1. More elaborate functions can also be used, for
instance polynomials, but they are not better than the elementary
methods because there is a strong mathematical relationship between the
elements of the cipher alphabet.

181

Lots of other symbols have been used for the cipher alphabet.
Among others, there have been simple substitution ciphers using mystical
diagrams60 and musical notes61.

Given enough text, these techniques are all fairly easy to decipher
with a ciphertext-only attack. The use of single-letter frequency-of-use
distributions is sufficient. If the attacker has some knowledge of the
possible contents of the message then the process is helped considerably.
For example, the message might begin with the word CONFIDENTIAL. If
this proves to be true then 10 of the 26 ciphertext letters are immediately
known. Knowledge of that many letters usually leads to very rapid
deduction of the rest by simple inspection.

11.3.2. Homophonic Substitution Ciphers

The idea of a homophonic substitution cipher is to have several or many
ciphertext equivalents of each plaintext letter. Each ciphertext symbol is,
however, the equivalent of only one plaintext letter. Letters that are used
frequently will have more equivalents than those that are seldom used.
The letter frequencies have been evaluated as follows (for English):

Relative frequency of English
characters from a large text.

Letter Frequency Letter Frequency
ø 12.17 N 5.44
A 6.09 O 6.00
B 1.05 P 1.95
C 2.84 Q 0.24
D 2.92 R 4.95
E 11.36 S 5.68
F 1.79 T 8.03
G 1.38 U 2.43
H 3.41 V 0.97
I 5.44 W 1.38
J 0.24 X 0.24
K 0.41 Y 1.30
L 2.92 Z 0.03
M 2.76 others 6.57

Suppose that homophones are developed with the relative
frequencies of occurrence suggested in the table. Let each homophone be
a three digit number between 000 and 999, chosen for instance at random.
There would be 122 3-digit numbers representing ø, 114 representing E,
and so on. The 65 three digit codes for others are used to represent
punctuation, or are left unused. The construction of a suitable example is
easy but tedious.

60 For example, Conan-Doyle used some semaphore symbols in a Sherlock Holmes

story.
61 J.S. Bach encrypted his name into several of his works.

182

In practice three digit homophones would rarely be used. Two digit
ones are sufficient, except for extremely long messages. At the extreme, if
there are enough homophones so that they need not be reused in any
reasonable number of messages, this technique is extremely difficult to
penetrate. Its disadvantage is that the message grows in length, because
the number of characters needed to encode a homophone can be more than
the number needed to encode a letter.

There are a number of ways to chose homophones other than that
shown above. For instance, a somewhat infamous cipher known as B2
(Beale number 2) uses the United States Declaration of Independence
(USDoI) to arrive at a homophone. The words of the USDoI are numbered
in sequence from 1 up. Beale enciphered each letter of the plaintext
message by substituting the word-number of some word in the USDoI that
began with that letter. Thus word 6 is the word human, so the
homophone 006 could be used to represent an H in the plaintext.
Mechanisms like this are popular among people who want to travel widely
and be able to access their homophonic substitution table. Every good
library could be expected to have a copy of some particular printing of a
defined and reasonably popular book of reference, and so that could be
used as a way to build homophones without actually carrying a text while
travelling buy specifying the page number to begin with. The method is
well-known among the espionage community. All that need be
remembered by the encypherer is the name of the book.

11.3.3. Polyalphabetic Substitution Ciphers

Simple substitution ciphers use a single mapping from plaintext to
ciphertext. This is a one-to-one mapping. Homophonic substitutions use
a one-to-many mapping. Polyalphabetic substitution ciphers conceal the
mapping by using several successive simple substitutions and varying
each of the simple substitutions according to some planned pattern, letter
by letter.

Using successive simple substitutions is a just a linear combination
of simple substitutions; without any additional variation it is identical to
some (other) simple substitution. The method gets its strength from
changing one or more of the successive simple substitution ciphers at each
plaintext letter.

11.3.4. Vigenère Cipher

A representative technique, used by Vigenère in the 16th century,
employs a table like that given below. The encipherment proceeds as
follows. Some key is chosen, a phrase such as

GENESIS CHAPTER ONE VERSE ONE.

The message is written down, and the key is written under it.
IN THE BEGINNING GOD MADE THE HEAVEN AND THE EARTH
GENESIS CHAPTER ONE VERSE ONEGENESIS CHAPTER ONE V

183

A Vigenère Table
plaintext

ABCDEFGHIJKLMNOPQRSTUVWXYZø

Key ciphertext
A ABCDEFGHIJKLMNOPQRSTUVWXYZø
B BCDEFGHIJKLMNOPQRSTUVWXYZøA
C CDEFGHIJKLMNOPQRSTUVWXYZøAB
D DEFGHIJKLMNOPQRSTUVWXYZøABC
E EFGHIJKLMNOPQRSTUVWXYZøABCD
F FGHIJKLMNOPQRSTUVWXYZøABCDE
G GHIJKLMNOPQRSTUVWXYZøABCDEF
H HIJKLMNOPQRSTUVWXYZøABCDEFG
I IJKLMNOPQRSTUVWXYZøABCDEFGH
J JKLMNOPQRSTUVWXYZøABCDEFGHI
K KLMNOPQRSTUVWXYZøABCDEFGHIJ
L LMNOPQRSTUVWXYZøABCDEFGHIJK
M MNOPQRSTUVWXYZøABCDEFGHIJKL
N NOPQRSTUVWXYZøABCDEFGHIJKLM
O OPQRSTUVWXYZøABCDEFGHIJKLMN
P PQRSTUVWXYZøABCDEFGHIJKLMNO
Q QRSTUVWXYZøABCDEFGHIJKLMNOP
R RSTUVWXYZøABCDEFGHIJKLMNOPQ
S STUVWXYZøABCDEFGHIJKLMNOPQR
T TUVWXYZøABCDEFGHIJKLMNOPQRS
U UVWXYZøABCDEFGHIJKLMNOPQRST
V VWXYZøABCDEFGHIJKLMNOPQRSTU
W WXYZøABCDEFGHIJKLMNOPQRSTUV
X XYZøABCDEFGHIJKLMNOPQRSTUVW
Y YZøABCDEFGHIJKLMNOPQRSTUVWX
Z ZøABCDEFGHIJKLMNOPQRSTUVWXY
ø øABCDEFGHIJKLMNOPQRSTUVWXYø

Letter by letter, the key letter selects the row of the table above,
and the message letter selects the column. In this way, the ciphered
message becomes

ORMXZ

11.3.5. Rotor Machines

Rotor machines are just a mechanical way to mechanise the Vigenère
cipher, with the possibility of some considerably more elaborate
enciphering.

In principle, they operate as follows:
• There is a collection of co-axial rotors (or the electronic equivalent).
• Each rotor has two sides, and 26 (or some such number) contacts

around the circumference of each side.
• The segments on the left side of any rotor are connected to the

segments on its right side such that no back-to-back segments are
interconnected. Each of the rotors that is used has a different
connectivity.

• The segments on the right side of rotor j connect to the segments on the
left side of rotor j +1.

184

• Signals are fed into the mechanism at the left side of the leftmost
rotor. Since the rotor has 26 contacts, there is a one-to-one
relationship between a contact and the letter being enciphered.
Encrypting an A is done by feeding an electrical current into the A
contact at the left side of the leftmost rotor. The signal proceeds
through the rotors, moving from a contact on the leftmost rotor to a
different contact on its right side, and thence to the next rotor in the
chain.

• The right end rotor m is special, in that it has contacts only on its left
side. The contacts that would be on its right side are connected
directly to different contacts that feed the signal back to a new contact
on its left side. The signal proceeds back to the left through a chain of
contacts until it emerges at the left rotor.

• When the signal emerges at the left rotor the letter corresponding to
the contact that it appears at is the encrypted version of the letter
being enciphered.

• Each of the rotors has a mechanism to rotate it on its axis by one or
more segments, dependant on the motion of neighbouring rotors.
These mechanisms are adjustable with insertable pins and a drive
pickup from the rotor to the left. Typically the leftmost rotor jogs one
position for each encrypted character, the second jogs one position as a
function of the rotation of the leftmost rotor, the rotation of the third
from the left depends on the rotation of the second from the left in a
different way, and so on.

For the purpose of description, suppose that there are 3 movable
rotors, called the leftmost, the middle, and the rightmost. In practice
there are always at least three rotors, but rarely more than five. To use
the machine, the rotors are put in a starting position. Around their edge
they have printed the alphabet. The rotors are moved by hand until each
displays the proper edge letter against an index used for that purpose.
Also, the pins that govern the progression of the rotation of the rotors are
set up according to prior agreement. This set-up operation is in reality a
method of setting the key into the machine.

There is a keyboard that causes an electrical signal to appear at one
of 26 permanent segments that are in contact with the left side of the
leftmost rotor when the corresponding key is activated. Typing a key
causes an electrical signal to appear on exactly one of the input contacts,
and this signal will move through the connections in the leftmost rotor to
one of the segments in the right side of the leftmost rotor. This rotor does,
in effect, one simple substitution encipherment.

The right side of the leftmost rotor is connected to the left side of
the middle rotor. The middle rotor does another simple encipherment.

The right side of the middle rotor is connected to the left side of the
rightmost rotor. The rightmost rotor does another simple encipherment.
The signal connects through the end rotor, entering at one contact and
leaving at another. It flows back through the rightmost, middle, and
leftmost rotors, not interfering with the incoming signal because of the

185

way the rotors are wired. The signal eventually emerges from one of the
25 other segments at the left side of the left rotor. The segment that it
appears at indicates the ciphertext letter corresponding to the input
plaintext letter.

When the output appears, the leftmost rotor is jogged one contact
position around its axis. This may result in the rotation of the other
rotors, depending on the pin placement on the rotors. Thus, the next
letter typed will use a different simple substitution cipher on the left
rotor, and maybe a different cipher on one or more of the other rotors.

A little thought will reveal the fact that if the rotors start in the
proper position, the ciphertext can be fed into the rotor machine at the
connection it came out of when it was encrypted, the plaintext will appear
where it was input. It is a self-inverting mechanism.

The rotor machine does generate apparently long key sequences
because of the constant movement of the rotors, and might be expected to
be correspondingly secure. However, there are two problems. First, no
letter can encrypt as itself. Second, most of the rotor motion will be
embodied in the leftmost rotor, the one that moves once per letter. And
that fact, as well as the limitations of the pin-placements, means that if a
body of ciphertext is available, it is not too difficult to deduce some of the
wiring of the rotors. Also, the placement of some of the pins can be
deduced.

Once some wiring is known, the rest becomes easier to find. Rotor
machines are not sufficiently secure for use today, because computers can
try millions of possible arrangements in minutes. However, up until the
1970s they were extensively used, with a 4 or 5 rotor machine the norm.
They were reasonably secure provided the key distribution was secure,
and the rotor wiring was physically protected.

The breaking of the rotor machines used by the German navy in the
Second World War was first done by deducing the key. This was done by
the Polish before hostilities broke out in 1939. The Germans distributed
the key (the initial rotor setting) as a duplicated group of characters that
were prepended to each message – not very clever. All that was needed
was to steal a rotor machine. Polish intelligence delivered two to the
British in 1939.

Later in the war the key distribution was more sophisticated.
However, since there were only a limited number of different rotors
shipped with each machine, and all machines had to have the same rotor
set, once some information about one machine was deduced, it applied to
all. The starting position of the rotors was changed daily. Once the
wiring of the rotors was uncovered, it was a fairly simple matter to deduce
the starting position of the rotors for some given day.

Even if the rotors were changed around, and the pins adjusted, the
availability of the wiring of the rotors meant that there were a small

186

enough number of combinations of settings that only a small amount of
ciphertext was required to break the key for that day. Sometimes a single
message of some hundreds of characters was enough.

11.3.6. Polygram Substitution Ciphers

The idea of a polygram substitution cipher is to encipher blocks of letters,
and so lessen the effect of any statistical analysis that might be attempted
and that is based on letter frequencies.

11.3.7. The Playfair Cipher

The Playfair cipher is a polygram substitution cipher. It was used by the
British in World War I. It depended on a key not dissimilar to that used
in the keyword mixed alphabet. Some key is chosen, a phrase such as
GENESIS CHAPTER ONE VERSE ONE. The British eliminated J from their
alphabet. Also, blanks were ignored. Using our example, the key phrase
is written in a 5 × 5 square, filling in the square with the letters that do
not appear in the key phrase in their alphabetic order.

G E N S I
C H A P T
R O V B D
F K L M Q
U W X Y Z

This table is used in the cipher as follows. The plaintext is written
down according to the following rules:
• All instances of J are deleted or replaced.
• All blanks are deleted. In order to make the message unambiguous, it

was necessary to do this carefully. Blanks were sometimes written as
X to overcome problems.

• All repeated letters (TT in aTTack, or GG in biG Gun) have a filler put
between them – usually X was used for this filler, but the other
characters that appear infrequently were also used for this purpose.

• If the message had an odd number of characters, it is padded, usually
with an X, so it has an even number of characters.

The Playfair key table is quite easy to use, particularly manually.
Let an arbitrary pair of letters of the (adjusted) message be called mn and
let the corresponding ciphers be αβ . In the message, these will be the 1st
and 2nd, or the 3rd and 4th, or in general the 2i th and 2i +1st message
letters, for i ≥ 0 . The mn is encrypted according to the following rules:
• If m and n are in the same row, α is the letter in that row to the right

of m, and β is the letter in that row to the right of n. The leftmost
letter in the row is considered to be to the right of the rightmost letter
in the row (wraparound).

• If m and n are in the same column, α is the letter in that column
below m, and β is the letter in that column below n. The top letter in
the column is considered to be below the bottom letter in the column
(wraparound).

187

• If m and n are in different rows and columns, α and β are the letters
at the other two corners of the rectangle having m and n at its corners,
α in m's row, and β in n's row.

Again using our favourite example, the message after adjustment
and enciphering becomes as shown below.

INTHEBEGINXNINGXGODMADETHEHEAVENANDTHEXEARTH
GSCASONEGSNAGSNUERBQTVIHOHOHVLNSVAQDOHWNCVCA

This cipher is stronger than it looks. A modern version might use a
larger rectangular array to include lower case, or punctuation, or
numerals. It is not necessary that the array be square. The method can
be adapted to rectangular arrays. Col. Abel of the Soviet Union used just
this kind of cipher in his espionage forays into the United States in the
1960s and 1970s, with the added wrinkle that the enciphered message
was re-encyphered a second time with a different Playfair table based on a
different key phrase that the first Playfair table. The reason for the
popularity of this method is that no props are needed to use it and a few
easily-remembered phrases and a few simple rules embody the whole
method. "orange juice is red" might be used, with the table as follows,
where the table has been filled out with numerals.

o r a n g e
j u i c s r
d b f h k l
m p q t v w
x y z 1 2 3

11.3.8. Block Codes

There are many block codes that are not ciphers, including whole books of
words and equivalent 5- or 7-digit codes that can be used to code the word.
several different codes can be used for each word. The number depends
on the frequency of occurrence of the word in typical text. In 1940 in
Vancouver a team of German agents were using one of these ciphers that
was based on a key extracted from a catalogue of commercial dyes. They
were sending to Germany their observations of naval and air activity in
the Puget Sound and Esquimalt area. They were particularly interested
in the airframe factories in Seattle because of the Boeing factories.

11.3.9. Product Ciphers

A product cipher is a succession of (usually simple) ciphers intended to
produce a much more difficult cipher. The modern Data Encryption
Standard (DES) is an example of a product cipher; it is by far the most
important encryption method used with computers at this time. It will
probably soon be replaced by the Advanced Encryption Standard in the
next year or so. Because of its importance DES will be described in detail
in the next section.

188

11.3.10. The Data Encryption Standard

The DES is an example of an encryption method know as a Feistel cypher.
It encrypts data in a 64-bit block, using a 56-bit key. It is intended to be
used in computers, and special purpose chips are available that
implement it and that are capable of very high datarate (now >2 Gb/s).
This US standard is composed of

• an initial permutation that transforms the incoming 64-bit block of
data according to a fixed initial permutation and then divides it
into two 32-bit blocks,

• a sequence of 16 combined transposition and substitution steps, and
• an final permutation that transforms the outgoing 64-bit block of

data according to a fixed final permutation .

The permutations are not particularly interesting. A table for the
initial permutation is given in the accompanying table IP. The
permutation table is really a list, but it is displayed as an array for
reasons of space. The list index of any entry in the table shown is
obtained by adding the row and column indexes that are shown. If the
input data is in a Boolean array input 1..64[], for each bit j of the input,

 1 ≤ j ≤ 64 , the result of the permutation is

 permuted_ input j[]= input ip j[][]. Thus,
 d1d2d3 Ld64 permutes to the

sequence
 d58d50d42 Ld7 .

ip 1 2 3 4 5 6 7 8
0 58 50 42 34 26 18 10 2
8 60 52 44 36 28 20 12 4

16 62 54 46 38 30 22 14 6
24 64 56 48 40 32 24 16 8
32 57 49 41 33 25 17 9 1
40 59 51 43 35 27 19 11 3
48 61 53 45 37 29 21 13 5
56 63 55 47 39 31 23 15 7

And the final permutation is given in the accompanying table OP.
It is true that op = ip−1 . If the output data is in a Boolean array

 raw _ output 1..64[], for each bit j, 1 ≤ j ≤ 64 , of the raw output of the 16 th

interior stage the result of the permutation is

 output j[]= raw.output op j[][]. Under this permutation
 a1a2 a3La64

permutes to the sequence
 a40a8a48 La25.

op 1 2 3 4 5 6 7 8
0 40 8 48 16 56 24 64 32
8 39 7 47 15 55 23 63 31

16 38 6 46 14 54 22 62 30
24 37 5 45 13 53 21 61 29
32 36 4 44 12 52 20 60 28
40 35 3 43 11 51 19 59 27

189

48 34 2 42 10 50 18 58 26
56 33 1 41 9 49 17 57 25

Stage j of the 16 interior stages is depicted in the following figure.
Each of the stages is identical, except that the last stage omits the
crossing of the L and R outputs.

f
 K j

 Lj −1 Rj−1

from stage j-1

to stage j+1

Each of the 16 interior steps is identical. Let Tj represent the
output of the j

th step, and let Lj and Rj be the left and right halves of Tj .
Thus Tj = LjRj for

 Lj = t1t2t3 Lt32 and for
 Rj = t33t34t35 Lt64 . Lj is

computed from Lj = Rj−1 and Rj is the result of Rj = Lj −1 ⊕ f Rj−1, K j()
where f is a complicated and intricate function that does an expand-shift-
substitute-permute operation, K is derived from the key, and ⊕ is the
Boolean exclusive-OR function.

After the 16 thstep, the left and right halves are not exchanged.
Instead the block R16 L16 in that order is the input to the final
permutation.

11.3.11. The DES Function f

A schematic view of the function f is given in the figure given below and
entitled Figure Showing the Function f. The function f expands the 32-bit

 Rj−1 to 48 bits using a special bit selection table called E. This table just
gives some (apparently ad hoc) rules for selecting the 48 bits from the 32-
bits of Rj−1 by selecting some bits twice. The bit selection table is:

E 1 2 3 4 5 6
0 32 1 2 3 4 5
6 4 5 6 7 8 9

12 8 9 10 11 12 13
18 12 13 14 15 16 17
24 16 17 18 19 20 21
30 20 21 22 23 24 25
36 24 25 26 27 28 29
42 28 29 30 31 32 1

190

This table is used in the same way that the ip table is used; the 32 bit
sequence

 a1a2 a3La32 expands to the 48 bit sequence

 a32a1a2 a3a4 a5a4 a5a6 La32a1.

These 48 bits are exclusive-ORed with 48 bits chosen from the key. The
key that is used at each stage is derived from the input key by an arcane
selection method. The input key is 64 bits, with bits

 8, 16, 24,L, 64 being
parity bits for the previous 7 bits. The parity bits are discarded, leaving
an effective key of 56 bits. The parity bits are discarded and the bits of
the 64 bit key are permuted according to permutation & choice PC-1
shown next:

PC-1 1 2 3 4 5 6 7
0 57 49 41 33 25 17 9
7 1 58 50 42 34 26 18

14 10 2 59 51 43 35 27
21 19 11 3 60 52 44 36
28 63 55 47 39 30 23 15
35 7 62 54 46 38 30 22
42 14 6 61 53 45 37 29
49 21 13 5 28 20 12 4

The result is a 56 bit field, that is split into two halves called C and D of
28 bits each. The formation of the successive values of K j proceeds as
shown in the figure below. In this figure, the LS-j boxes do a left circular
shift of one or two bits, as given in this table:

key stage 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
shifts 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

Finally, the 56 bit field formed by concatenating the two 28 bit fields C jDj

is converted to a 48 bit field according to permutation & choice PC-2 shown
next:

PC-2 1 2 3 4 5 6
0 14 17 11 24 1 5
6 3 28 15 6 21 10

12 23 19 12 4 26 8
18 16 7 27 20 13 2
24 41 52 31 37 47 55
30 30 40 51 45 33 48
36 44 49 39 56 34 53
42 46 42 50 36 29 32

After all this, the successive values of the key K j all have 48 bits that are
derived from the 56 bits of key that was input.

191

 D1 C1

PC-1

 C0

LS-1 LS-1

 D0

 K

PC-2

 K1

LS-2 LS-2

PC-2
 C2 D2

 K2

 K16

LS-16 LS-16

PC-2 D16 C16

56 bits
28 bits

48 bits

64 bits

28 bits

48 bits

48 bits

Figure showing the Key Calculation

The 48 bit result of the exclusive-OR of the key and the output of the bit
selection E is split into eight 6-bit blocks. Each 6-bit block is input into a
substitution function (called an S-box) that returns a 4-bit block, and
these are assembled into a 32-bit output to form the input to another
permutation P. The result of this last permutation is f Rj −1, K j(). The

permutation P is:

P 1 2 3 4
0 16 7 20 21
4 29 12 28 17
8 1 15 23 26

12 5 18 31 10
16 2 8 24 14
20 32 27 3 9
24 19 13 30 6
28 22 11 4 25

The eight selection functions can be examined at leisure. There has been
no rationale published for the particular selection functions that are used.
It is not known publicly if the mechanism is a member of a family of
similar mechanisms, or if it is unique.

192

bit selection
E

⊕

 Rj−1

 K j

 S1 S2 S3 S4 S5 S6 S7 S8

permutation
P

 f Rj −1, K j()

32 bits

48 bits

48 bits

48 bits

32 bits

32 bits

Figure Showing the Function f.

Let the input to S-box j be Bj = b1b2b3b4b5b6 . Form an index ρ = b1b6 and
convert it to a decimal integer. Form an index χ = b2b3b4b5 and convert it
to a decimal integer. The indexes ρ and χ are used to select an integer
from the following table. The four-bit output of the S-box is the binary
representation of that decimal integer.

For example, if B3 = b1b2b3b4b5b6 = 011101, the row index is 012 = 110 , the
column index is 11102 = 1410 , so the output of S3 is 1110 = 10112. Of
course, in an actual DES circuit or program, there is no need or advantage
of the decimal representation; we are using it here for ease of typing.

Each row in the S-box table is a permutation of the 16 integers from 0 to
15. There are 16!= 2.09 × 1013 such permutations. Just why these 32 are
preferred over any of the other permutations is not known. The actual
analysis of DES along with its design decisions remains a mystery. Some
considerable effort has gone into trying to reconstruct the reasons why
these choices were made, with no visible success yet.

193

Column index
Row 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S1 0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S2 0 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
1 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
2 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
3 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S3 0 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
1 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
2 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
3 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S4 0 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
1 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
2 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S5 0 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
1 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
2 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
3 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S6 0 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
1 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
2 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
3 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S7 0 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
1 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
2 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
3 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S8 0 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
2 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
3 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

As far as is known, DES does not contain any design blunders of
any great moment. Some patterns have emerged in the results of the 16
stages, including the possibility that some of them can, in specific peculiar
circumstances, regenerate the input to a box earlier in the sequence. As
far as is known, nobody has been able to use this observation to break the
cipher.

There was a great controversy that raged about the rather short
key, because the original proposal suggested a 112 bit key. Some
researchers with suspicious minds or active imaginations felt that the
method may have been deliberately weakened. It is equally likely that
the key was shortened so that the original implementation of DES could
attain some target encryption datarate. The debate continues.

194

DES does, however, have known weaknesses. In order to discuss
DES sensibly, let c = DES p,k[] indicate that, using key k and DES, some
plaintext p is being ciphered to produce a ciphertext c. Many weaknesses
or alleged weaknesses have been published; a few of the better known
ones are:

complements: Let the ones complement of x be denoted x . If

 c = DES p,k[] then it will also be true that

 c = DES p , k []. This effect is probably not serious

unless a run of keys includes a known sequence of a
key and its complement, and even then it may be of
illusory value to an intruder.

weak keys: The key is split into two halves, and the effect of the
mechanisms is that each half is shifted circularly and
independently. If the value being shifted is all zeroes
or all ones, the same key will be used at each stage.
Since the effect is known these keys can be avoided,
but their existence does not fill one with confidence.
In hexadecimal, example weak keys are 01010101
01010101, FEFEFEFE FEFEFEFE, and 1F1F1F1F
1F1F1F1F.

paired keys: There are known pairs of keys that produce the same
ciphertext for any plaintext. This means that if k1,k2[]
is such a pair, c = DES p,k1[] and also c = DES p,k2[].
Several of the known pairs are shown in the following
table.

 k1 k2

01FE 01FE 01FE 01FE FE01 FE01 FE01 FE01
1FE0 1FE0 0EF1 0EF1 E01F E01F F10E F10E
01E0 01E0 01F1 01F1 E001 E001 F101 F101
1FFE 1FFE 0EFE 0EFE FE1F FE1F FE0E FE0E
011F 011F 010E 010E 1F01 1F01 0E01 0E01
E0FE E0FE F1FE F1FE FEE0 FEE0 FEF1 FEF1

Even with these remarks about its deficiencies, DES remains highly
respected. There are an enormous number of computer users who believe
it to be impregnable. We shall see. DES is certainly slower than other
complicated mechanisms that seem to be equally strong. These
competitors, however, were not blessed by the Agency, perhaps because
they were developed without its help, or perhaps because it can not
decipher messages that have used them, or more likely because certifying
cipher techniques to be used by business is not its job.

In late 1998 and early 1999, a competition was initiated by the US
government to develop the Advanced Encryption Standard (AES). The
key length and the block length will be longer. The ability to encrypt and

195

decrypt with software that runs quickly on machines of different
wordlengths, 8 bit to 64 bit, is central to the choice.

11.5. One-Time Pads

The one-time pad is the non plus ultra of encryption schemes. The figure
shows a data stream being exclusive-ORed with a key stream.

plain text
bit-stream

ciphertext
bit-stream

Encryption key
bit-stream

The one-time pad works exactly in this way. Decryption is precisely
the same operation. If c is the ciphertext bit-stream, p is the plaintext bit-
stream, and k is the encryption key bit-stream, then c = p⊕ k , Because of
the properties of exclusive-OR, it is also the case that p = c ⊕ k . This is
easily seen by operating on both sides of c = p⊕ k as follows:

 c ⊕ k = p ⊕ k ⊕ k but k⊕ k = 0 and p⊕ 0 = p from the elementary
properties of exclusive-OR, so c ⊕ k = p as predicted.

The strength of the one-time pad is entirely contained in the
properties of the encryption key bit-stream. It must have the following
properties:

• The encryption key bit-stream must be available to both encrypter
and decrypter, but must be kept highly confidential otherwise.

• The bits of the key must be independent and uncorrelated in the
following senses: each bit must equally probably by either 0 or 1;
each successive pair of bits must equally probably be 00, 01, 10, or
11; all eight triples of bits must be equally probable, and so on.
High-strength one-time-pad systems will ensure that these
probabilities are as they should be up to at least 16 bits, and possibly
further.

• There must be zero probability of two plaintexts being enciphered
with the same key. This is because if c1 = p1 ⊕ k and c2 = p2 ⊕ k then
if the exclusive-OR of the two ciphertexts is calculated,

 c1 ⊕ c2 = p1 ⊕ k⊕ p2 ⊕ k = p1 ⊕ p2 ⊕ k⊕ k = p1 ⊕ p2 .
The exclusive-OR of the two messages is a big help to an intruder.

Provided that precautions are taken to see that these conditions
hold, the one-time-pad is the strongest known encryption mechanism.
Because of the encryption key bit-stream statistics (the second condition
above), the ciphertext will have similar statistics as a long-term average.

196

11.5.1. Developing the Key Stream

The hard part is the first condition. How can two players chose a key
bit-stream without exchanging enough data so that any intruder could
also deduce it? The answer is that both parties must have the same
collection of data that they keep highly confidential. When they need a
new key they use the next one available from their data collection. In
pen-and-paper days the collection of data was printed as a pad of paper,
and exactly two copies of each pad existed. The two parties both had a
copy of the same pad. The top page on the pad was used by each to
encrypt and to decrypt, taking care to never re-use the page. It was
ripped off the pad and destroyed as soon as it had been used. The only
plaintext messages that were needed were occasional re-synchronising of
the number of the top page. The only major problem is keeping the pad
pages in synchronism.

A bit stream with the desired statistical properties can be developed
by using mathematical objects called "primitive polynomials modulo 2" or,
more prosaically, linear recurring sequences or feedback shift registers.
For example, the polynomial x

41 + x3 + x0 defines a recurrence relation for
obtaining a new random bit from the 41 preceding bits. It is guaranteed
that this process will not repeat until 2

41 − 1 bits have been generated.
The only difficulty is to avoid setting all 41 bits to zero. The forty-one
zeroes sequence is not part of the linear recurring sequence; if the 41 bits
are started at the initial pattern all-zero the sequence is stuck at that
value.

These linear recurring sequences are rather special. Suppose a
linear recurring sequence (LRS) of order n is being used (41 in the example
above). The calculation can be done as follows: Let the bits be identified
as b1 for the most recently generated bit to bn for the bit generated n time
units ago, where n is the order of the LRS being used. In the above
example the bits would be identified as

 b1,b2,b3,b4 ,L,b41. The next bit will
be called b0 and it is not difficult to deduce that, for the example,

 b0 = b3 ⊕ b41 . This is exceptionally easy to compute, so these sequences are
often used to generate streams of random bits. Watson62 lists LRS
sequences up to order 100. A few examples are given in the following
table. The coefficients are always one, so all that need be given is the
nonzero powers of x – the example can be written [41,3,0] Many others
are known.

[96,7,6,4,3,2,0]
[64,4,3,1,0]
[48,7,5,4,2,1,0]
[32,7,5,3,2,1,0]
[16,5,3,2,0]

62 E.J. Watson, "Primitive Polynomials (Mod 2)", Math. of Computation, Vol 16, p

368.

197

The first of these examples will generate a sequence of binary digits
with satisfactory statistical properties from any of 2

96 − 1 starting points.
This is about 7.923 × 1028 possible starting points.

LRS sequences do have the problem that if the polynomial that is
being used is known then concealing the starting point is vital. They are
not desirable because of this simple fact. Also, the process they use is
linear so even if the polynomial is not known some number of examples of
key bit-stream will suffice to deduce it. These could be recovered from, for
example, encrypting known plaintext. Better key bit-stream generators
are known but they all suffer from the necessity of concealing the starting
point.

11.6. Rivest-Shamir-Adelman

The Rivest-Shamir-Adelman (RSA) scheme owes its effectiveness to the
difficulty of factoring large numbers. Let a plaintext be denoted as M and
the corresponding cryptotext be C. Let n be a (very) large integer with
exactly two prime factors, p and q , so that n = pq. These two factors are
not known, and because the integer is so large it is not practical to
compute them. The method depends on this difficulty in factoring large
numbers, and on some results from doing arithmetic with the mod
function.

Define the quantities e and d such that ed mod (p − 1)(q − 1)() = 1. To
compute these, choose d relatively prime to (p− 1)(q − 1) . The easy way to
do this is to make d prime. An efficient algorithm to compute e given n
and d exists63. It is not necessary to know p or q to find e.

The idea behind RSA is to use the two equations

 C = M e mod n (1)

 M = C d modn (2)

The presence of the mod function makes the computation much
quicker that it otherwise might be. This arises because

 M e mod n∏ = M modn()
1

× M mod n()
2

×L × M mod n()e()mod n

The mod function can be used on all partial products to contain the build-
up of the size of the product.

The strength of RSA is partly derived from its strong encryption,
and partly from the fact that it can be easily used for public key
encryption. The key e can be stored in public in a file. The key d is kept
secret by one of the computers that can receive encrypted messages. To
send a message to that computer, the public key e is looked up and the
message is encrypted using equation (1) above. Only the intended

63 See D.E. Denning, "Cryptography and Data Security", A-W 1983. Figure 1.22 on

page 44.

198

recipient knows the private key d. It is not computationally feasible to
compute d given e and n.

It has been estimated that the fastest known factoring algorithm for
an n-digit number that does not use parallel computation takes

T(n) = O e (ln n) ln(lnn)(). If n = O 10129(), then T(10129) = O 7.25 × 1017() and at a

rate of one computation every nanosecond, factoring the 129 digit number
would take 23 years. The actual number that is used is the following:

114 381 625 757 888 867 669
235 779 976 146 612 010 218 296 721 242 362 562
561 842 935 706 935 245 733 897 830 597 123 563
958 705 058 989 075 147 599 290 026 879 543 541

An effort to factor this number by using numerous workstations on the
internet all operating in parallel according to an organised arrangement
was successful a few years ago. A 140-digit number has been factored in
1999. It is now being recommended that n have well over 200 digits.
Finding numbers that are that large and that have exactly two large
prime factors is difficult.

