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A project submitted as part of a programme of study for the award of Erasmus Mundus

International Masters/MA in Natural Language Processing & Human Language Technology.

May 2012





To my family





Abstract

This work presents a study of linguistically-informed features for the automatic

quality estimation of machine translations. In particular, we address the problem of

estimating quality when no reference translations are available, as this is the most

common case in real world situations. Unlike previous attempts that make use of

internal information from translation systems or rely on purely shallow aspects, our

approach uses features derived from the source and target text as well as additional

linguistic resources, such as parsers and monolingual corpora.

We built several models using a supervised regression algorithm and different

combinations of features, contrasting purely shallow, linguistic and hybrid sets.

Evaluation of our linguistically-enriched models yields mixed results. On the one

hand, all our hybrid sets beat a shallow baseline in terms of Mean Average Error but

on the other hand, purely linguistic feature sets are unable to outperform shallow

features.

However, a detailed analysis of individual feature performance and optimal sets

obtained from feature selection reveals that shallow and linguistic features are in

fact complementary and must be carefully combined to achieve optimal results. In

effect, we demonstrate that the best performing models are actually based on hybrid

sets having a significant proportion of linguistic features. Furthermore, we show that

linguistic information can produce consistently better quality estimates for specific

score intervals.

Finally, we analyse many factors that may have an impact on the performance of

linguistic features and suggest new directions to mitigate them in the future.
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Chapter 1

Introduction

This introduction describes the main motivations behind this research (section 1.1),

our objectives and research questions (section 1.2) and the main contributions of

our work with regard to existing approaches (section 1.3). Finally, an outline of the

structure of this dissertation is given (section 1.4).

1.1 Motivation

The decision to pursue this work on the automatic estimation of machine translation

quality was due to a number of reasons. First and foremost, Machine Translation

(MT) has become one of the most popular and necessary applications derived from

the natural language processing field. From home users to big companies, it has been

adopted as a convenient way to translate content automatically, either to understand

or produce text in a foreign language. However, automatic translations can often be

erratic and useless, which is why quality assessment becomes necessary to improve

systems and use them wisely.

There are clearly two different perspectives from which the assessment of

translation quality can be viewed: system development and system use. For system

development, translation is generally evaluated, which implies the availability of

gold standard translations. Thus, the output MT systems can be directly compared

against human references and assigned a quality score by measuring their similarity.

In fact, most MT evaluation metrics rely on lexical similarity measures, although

some of them are more flexible than others.

From an end user’s perspective, however, the lack of human references renders

any evaluation irrelevant so an estimation must be done instead. Such estimation of

quality is often based on characteristics derived from the source and target texts as

well as information from additional resources. The work we pursue here follows this

direction.
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CHAPTER 1. INTRODUCTION

Our strongest motivation is actually studying how MT quality estimation may

benefit from the use of linguistic information, following encouraging results in recent

research.

Although shallow features have been extensively used in previous approaches,

they are limited in scope. They convey no notion of meaning, grammar or content so

they could be very biased towards describing only superficial aspects of translations.

As a result, work on the automatic assessment of machine translations, either with or

without references, has gradually moved from using only shallow features to include

linguistic information, showing that it helps produce better estimations. In fact,

linguistic features account for richer aspects of translations and are closer to the way

humans make their judgements. Unlike most approaches which focus only on a few

specific indicators, our work explores a rich variety of linguistic features that are

derived from theoretical foundations of translation quality, most of which have not

been used before.

In addition, we restrict the Quality Estimation (QE) approach to incorporate only

MT system-independent features. This brings the advantage of enabling estimations

even when the internal information of a translation system cannot be accessed, for

example when using online translation systems.

Finally, assessing the quality of machine translations is essential in a variety of

scenarios where reference translations are not available. Home users who translate

content using online translation services are a typical example. In those cases, when

a user has limited or no knowledge of the source language or cannot read the whole

source text, they need to know in advance whether they can trust the translation,

especially if it is used to make decisions. On the other hand, large corporations

translating high volumes of text automatically need to know which specific portions

of text need post-editing by human translators, and the same applies to freelance

translators using MT systems to streamline their work. Provided an accurate quality

metric could be used, the time translators spend assessing machine translations would

be dramatically reduced and could be allotted to effective human translation instead.

1.2 Objectives

The aim of this work is to explore the effect of linguistic information in the automatic

estimation of machine translation quality. In order to do this, we use a machine

learning algorithm to build a regression model that scores translations on a scale

from 1 (lowest quality) to 5 (highest quality). These assessments can also be seen as

a measure of how much post-editing is needed to make them suitable for publication,

ranging from ‘requiring complete re-translation’ to ‘requiring little to no editing’.

2



1.3. MAIN CONTRIBUTIONS

Our specific objectives are summarised in the following research questions:

1. How does the performance of QE models integrating linguistic features compare

to models using only shallow features?

To this end, we compare models using only linguistic or shallow features with

other hybrid sets. Model performance is measured in terms of prediction error

and correlation with gold standard scores and significance tests are also carried

out to determine whether any difference found is statistically significant.

2. What are the best and worst performing linguistic features and why?

By applying different training schemes, we set out to discover which linguistic

features are the best and worst in our models so that we can draw conclusions

on the type of information they handle and how this correlates with quality.

In addition, learning about the performance of individual features allows us to

identify possible causes for performance.

3. What is the best performing combination of features?

For this purpose, we apply a feature selection algorithm to find an optimal set

of features that would maximise performance on our datasets. Further analysis

of the resulting set will indicate the proportion of shallow and linguistic features

and hence provide a valuable insight into the role of linguistic information.

Our experiments are restricted to translation from English into Spanish and

features from the source and target text only, using a standard dataset produced

for a shared task on quality estimation so that our results can be later compared to

well-known baselines and state-of-the-art systems.

Additionally, we examine theoretical principles and criteria from translation

studies from which we derive most of our linguistic features.

1.3 Main Contributions

There are basically two main contributions of our work to the task of QE for machine

translations. The first of them is the comparative study of models containing shallow

versus linguistic features, in addition to a few hybrid sets. Although other approaches

have proposed the use of shallow and linguistic information, none of them was

targeted at contrasting models using only one type or the other, let alone comparing

them to hybrid sets. Moreover, we present a detailed study of pros and cons of

a much wider range of linguistic features and how they can complement shallow

features in optimal hybrid sets.

Our second significant contribution is the introduction of novel linguistic features

that have not been explored before, such as information about subject-verb agreement

3



CHAPTER 1. INTRODUCTION

or lexicon estimation using a spell checker. Furthermore, most of our linguistic

features are derived from theoretical criteria, which also constitutes an innovative

approach.

Part of this work was also submitted to the Quality Estimation Shared Task of

the Seventh Workshop on Statistical Machine Translation (WMT 2012) and accepted

for publication (Felice and Specia, 2012). However, the analysis and results presented

in this work vary from those in the aforementioned publication because of differences

in the implementation of some features (see section 4.2.5).

1.4 Dissertation Outline

The remainder of this work is structured in four chapters. Chapter 2 introduces

machine translation assessment (section 2.1) and describes the difference between

reference-based (section 2.2) and reference-free (section 2.3) approaches. This last

section also makes a distinction between Confidence Estimation (section 2.3.1)

and Quality Estimation (section 2.3.2). In Chapter 3, we summarise guidelines

and criteria for producing and assessing translations as suggested in specialised

literature (section 3.1) and go on to derive related computational features that are

later used in our models (section 3.2). Chapter 4 describes our experimental setup

(section 4.1), including datasets, resources used to extract the proposed features,

evaluation metrics and training of our models. Section 4.2 provides the results of our

experiments together with a detailed analysis of performance. Finally, Chapter 5

presents conclusions and directions for future work.

4



Chapter 2

Related Work

This chapter gives an overview of the main approaches to the assessment of machine

translations. First, a brief introduction is given (section 2.1), followed by a quick

review of reference-based evaluation and its most significant metrics (section 2.2).

After that, reference-free estimation approaches are described (section 2.3), defining

the key concepts of Confidence Estimation (section 2.3.1) and Quality Estimation

(section 2.3.2). Finally, a short summary of potential applications of reference-free

approaches is given (section 2.3.3).

2.1 MT Quality Assessment

Machine translation has always been one of the most ambitious tasks within natural

language processing. While many commercial systems in use today employ a classic

rule-based approach (Way, 2010), newer systems make use of Statistical Machine

Translation (SMT), where correspondences between the source and target language

are learnt automatically from parallel corpora (Koehn, 2010). Specifically, phrase-

based SMT (Koehn, Och and Marcu, 2003) is the most successful approach today,

showing consistent improvement on general domains (Callison-Burch, Koehn, Monz,

Peterson et al., 2010; Callison-Burch, Koehn, Monz and Zaidan, 2011). However,

achieving high translation quality is still an open issue for MT systems, especially

for long and complex sentences.

The design of automatic MT assessment metrics is a challenging task. Firstly,

they may use reference translations (section 2.2) or not (section 2.3), which largely

determines their purpose and application. Secondly, they need to be versatile enough

so as to allow variations in translation but at the same time penalise oddities and

deviations from the original. Lastly, they should exhibit good correlation with human

judgements in order to be reliable. Given that formalising the factors that determine

the quality of translations is a hard task (see section 3.1), it is not surprising that

defining successful metrics is also difficult.

5



CHAPTER 2. RELATED WORK

REF. Israeli officials are responsible for airport security WER TER BLEU-2

TRANS. A Israeli officials responsibility of airport safety 57% 57% 9%

TRANS. B airport security Israeli officials are responsible 71% 28% 61%

Table 2.1: Example of WER, TER and BLEU-2 scores for two translation hypotheses
and one reference, based on examples by Koehn (2010).

Most approaches make use of ‘shallow’ information but there has also been a

noticeable move towards the inclusion of linguistic information in the latest research.

In fact, much of the previous work is actually devoted to exploring what features are

the most significant and where they should be extracted from, be it the source text,

output translation, references, MT system parameters or a combination of those.

The following sections describe in more detail the two principal approaches and

metrics proposed so far.

2.2 Reference-based Evaluation

Evaluating machine translations is essential for the development, improvement and

fine-tuning of MT systems and is typically addressed by computing similarity metrics

between system output and human references. Quality is thus measured in terms

of ‘human-likeness’, under the assumption that the more a machine translation

resembles a human translation, the better it is, although this is not universally

accepted (Albrecht and Hwa, 2007a).

While some of these metrics are based solely on edit distance, like PER (Tillmann,

Vogel, Ney, Zubiaga et al., 1997), WER (Nießen, Och, Leusch and Ney, 2000) and

TER (Snover, Dorr, Schwartz, Micciulla et al., 2006a), others concentrate on more

lexical aspects. The popular BLEU metric (Papineni, Roukos, Ward and Zhu,

2002), for example, relies on n-gram overlapping and has been specially designed

to approximate human judgements at the corpus level, thus performing poorly on

individual sentences. Other metrics built on similar ideas include NIST (Doddington,

2002), ROUGE (Lin and Och, 2004), GTM (Melamed, Green and Turian, 2003;

Turian, Shen and Melamed, 2003) and METEOR (Banerjee and Lavie, 2005). Table

2.1 shows an example evaluation using three of these metrics: WER, TER and

BLEU-2 (a version of BLEU based on unigrams and bigrams).

These n-gram lexical metrics have been the subject of strong criticism, especially

BLEU (Callison-Burch, Osborne and Koehn, 2006), which has been found to

contradict human judgements in many cases. In addition to this fact, reference-based

evaluation suffers from two major limitations. Firstly, there can be many different

good translations for a given source text but a reference translation represents only

one of them. As a result, if an automatic translation fails to match its reference,

6



2.2. REFERENCE-BASED EVALUATION

it will be regarded as bad although this is not necessarily the case. Although most

metrics try to minimise this problem by allowing the use of multiple references,

collecting multiple translations for a single input text is difficult and expensive.

Secondly, given that references are produced by human translators, they are not

only limited but also inconvenient and expensive in practice. As a result, evaluation

metrics can only be computed on texts with existing human translations, which

greatly restricts their application. A common workaround, however, is to use the

output from auxiliary MT systems as pseudo-references (Albrecht and Hwa, 2007b,

2008) but this is far from an optimal solution. In consequence, this type of metric

is acceptable for system evaluation but clearly unsuitable for evaluating ad-hoc

translations.

In order to overcome these limitations, a range of reference-independent methods

have been proposed, which are described in section 2.3.

2.2.1 Lexical Features vs. Linguistic Features

Most recent works put heavy emphasis on linguistic information in clear contrast to

earlier approaches. In fact, they are proposed as alternatives for standard metrics

which are often criticised for taking account of lexical aspects only. On the contrary,

these new efforts integrate information from different linguistic aspects like syntax and

semantics to provide better approximations of overall translation quality. This has

led to a classification of approaches in two different groups: ‘lexical’ and ‘linguistic’

metrics.

Work by Amigó, Giménez and Verdejo (2009), for instance, describes a

combination of standard lexical metrics with syntactic and semantic information to

generate a new metric called ULC. Experiments carried out to analyse the correlation

of this metric with human judgements at the system and phrase level revealed that in

both cases the new metric achieved better results than individual lexical metrics. It

was thus concluded that additional linguistic information contributed to overcoming

the intrinsic limitation of lexical metrics. A further description and exploration of

this approach is given by Giménez and Màrquez (2010).

Other approaches employ machine learning techniques to integrate n-gram

statistics with simple linguistic features. One such example is the ROSE metric

(Song and Cohn, 2011), which combines precision and recall from lexical n-gram

matches with information on punctuation, content and function words, and even

n-grams over part-of-speech (PoS) tags. Scoring performance using Support Vector

Machines (SVM) regression with a linear kernel function fell slightly below BLEU

while ranking results were mixed: for translation from foreign languages into English,

ROSE was significantly better than BLEU but the opposite was found for translation

in the opposite direction.

7
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Yang, Sun, Zhu, Li et al. (2011), on the other hand, experiment with regression

and ranking algorithms using as few as six linguistic features, such as information

on content words, noun phrases and a parsing score. Results show that regression

achieves better generalization performance than previous attempts and correlation

with human judgements is higher than that of non-linguistic metrics. Ranking

performance, however, was not found to be as good as initially presumed. In all, the

most interesting contribution of this work is the empirical demonstration that very

few linguistic features may suffice for improving the performance of existing lexical

metrics.

2.3 Reference-free Assessment

Reference-free translation assessment approaches emerged to overcome the limitation

of evaluation metrics that required human references for their computation. Although

this approach enables much wider application, the lack of the expected outputs

(references) make it impossible to measure quality in terms of segment comparison

so new information has to be exploited as a result. The following sections give a

chronological overview of the most significant attempts and introduces key concepts

that are fundamental to the methodology used in this work.

2.3.1 Confidence Estimation

The first attempts at assessing MT quality without references were conceived as

Confidence Estimation (CE) problems. Under this methodology, MT assessment

is seen as the problem of estimating how confident systems are in their output

rather than how good translations are objectively. Instead of using human references,

CE metrics rely mainly on parameters and information of the MT system and the

translation process, in addition to a few complementary features from the source and

target text. Given that system features are the primary focus of this approach, they

are also referred to as confidence features in the latest research.

In their seminal work, Blatz, Fitzgerald, Foster, Gandrabur et al. (2004) set the

objectives of CE for the assessment of machine translations and provided the first

experimental results. The aim of their work was to provide a numerical quantity

which would serve as a direct indicator of translation quality, making a distinction

between weak and strong CE: while the former yields a free numerical score which

can later be mapped onto a quality scale or even a probability of correctness, the

latter is directly aimed at estimating such probabilities.

Experiments were carried out for the purpose of evaluating quality at both

sentence level and sub-sentence level (i.e. words and n-grams) using Chinese to

English datasets. In both cases, the aim was to train a system from samples

8



2.3. REFERENCE-FREE ASSESSMENT

Group Description
Word alignment
information

Maximum and average alignment distance between words
in the source and target texts.

Average target word
statistics

Average word frequency in the output translation and
n-best hypotheses (n-best lists) plus a few variations.

Selected parameters of the
translation model

Log probability of the translation hypothesis based on a
trigram model, length penalty, cost of using auxiliary
translation rules, etc.

Basic syntactic
information

Number of mismatched parentheses and quotation marks.

Centre hypothesis features Edit distance from the n-best hypotheses to the central
hypothesis.

IBM Model 11 features Conditional log probability of the source given the target
sentence and vice versa.

N-best lists Information on hypothesis ranking, average length, list
density and scores.

Phrase-based language
models

1, 2 and 3-gram probability and perplexity of the target
sentence plus type-token ratios.

Search based features Scores and pruning information from the decoding process.
Semantic similarity Statistics on strongly related words within the target

sentence.
Sentence length features Number and ratios of tokens in the source and target

segments.
Source language model Log probability and perplexities of the source sentence.
Source n-gram frequency
statistics

Percentage of 1, 2 and 3-grams in different frequency
quartiles of an auxiliary corpus for the source sentence.

Target language model Percentage of 1, 2 and 3-grams in different frequency
quartiles of an auxiliary corpus for the target sentence plus
other length-based features.

Translation consistency
features

Average number of times a source word or phrase is
translated identically in the n-best list.

Table 2.2: Summary of features proposed by Blatz, Fitzgerald, Foster, Gandrabur
et al. (2004).

associating a set of features to a quality label by using a variety of machine learning

techniques. Other proposals have also been made for word-level error detection

(Xiong, Zhang and Li, 2010; Bach, Huang and Al-Onaizan, 2011). However, given

the aim of this work, we only focus on sentence level experiments.

A total of 91 features accounting for different aspects of translation were proposed

for the sentence-level task. Following the CE principle, references were not used for

the extraction of features but were used instead for computing automatic quality

scores for each segment as a replacement for manual annotation. Table 2.2 summarises

the types of features used in these experiments.

1The simplest of IBM translation models that estimates lexical translations and their probabilities
from a source and target text (Brown, Della Pietra, Della Pietra and Mercer, 1993).
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All the sentences in their datasets were assigned automatic quality scores based on

NIST or a modified version of WER using auxiliary reference translations. Different

machine learning algorithms were subsequently tested with the resulting dataset in

order to learn a quality function. Results showed that evaluation was harder at the

sentence level than at subsentence level, that multilayer perceptrons outperformed

Bayes models and that features based on the target text and n-best lists delivered

better results than the rest. Nevertheless, the power to discriminate good from bad

translations achieved in the experiments was found to be poor, apparently due to

the use of automatic metrics that correlate only moderately with human judgements.

For this reason, an additional experiment with human annotators was carried

out so as to analyse the correlation of six popular automatic metrics with human

judgements at the sentence level. This revealed that there exists both low inter-

annotator agreement and low metric correlation.

Quirk (2004) carried out similar CE experiments using a considerably smaller

dataset tagged with human scores instead. Again, a series of machine learning

alternatives were evaluated among which simple linear regression was found to be

the best. His results also served to prove that a relatively small set of translation

samples with human quality annotations achieves better performance than a large

set of samples with automatic quality scores.

Translation quality has also been strongly associated with fluency. Work by

Gamon, Aue and Smets (2005) describes the combination of an SVM classifier and

language models in order to study the correlation with human-rated fluency and

overall quality at the sentence level. Results show that such estimated scores fall

slightly behind those for BLEU but were still considered successful given the fact

that reference translations were not required for their computation. Other attempts

targeted at fluency and adequacy (Albrecht and Hwa, 2007a,b, 2008) have introduced

the use of pseudo-references instead, which are nothing but translations of the

same sentence produced by other MT systems. Vectors were constructed for each

of the sentences in the chosen dataset comprising the scores of several standard

metrics computed from the pseudo-references (like BLEU, WER, PER, METEOR

and ROUGE) together with fluency scores derived from target-language treebanks.

Features were later paired with human quality judgements and used to build an

SVM regression model in order to produce an automatic quality estimator. The

study concludes that although the best correlation rates are achieved with human

references, pseudo-references are still a viable option since they produce comparable

results. In fact, the regression metric trained on machine references outperformed

human-based BLEU and METEOR scores, with regression estimates performing

consistently better than any of the standard reference-based metrics alone.
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Black-box features Glass-box features
Sentence length SMT model score
Type-token ratio Phrase and word probabilities
N-gram log probability and perplexity Information from n-best hypotheses
Mismatches in punctuation Aborted nodes in the decoder’s search graph
PoS tagging on source and target texts Untranslated words

Table 2.3: Examples of black-box and glass-box features.

The choice of features for machine learning techniques is undoubtedly a key

issue for the accurate estimation of translation quality. Specia, Turchi, Cancedda,

Dymetman et al. (2009) draw a clear distinction between black-box and glass-box

features. The first group refers to features that are essentially extracted from

the source and target text, including both individual and contrastive features (e.g.

individual lengths and their ratio). In addition, they can also include features

extracted with additional resources as long as they are related to the source and

target text only, such as n-gram statistics or part-of-speech tags for a sentence. On

the other hand, glass-box features use information from the MT system that produced

the translation and the decoding process, such as hypothesis scores, n-best lists or

phrase probabilities. Features computed from resources used to train an SMT system,

such as its parallel corpus or derived translation tables, could also be considered

within this group since they use privileged information that is not normally available

to end users (see section 3.2.1.2) but this distinction was not originally made by the

authors. Given the clear focus of these two groups, it is then natural to consider

glass-box features as CE features and black-box features as non-CE features. A few

examples are included in Table 2.3.

Experiments were conducted using Partial Least Squares regression on four

different datasets containing: 1) automatically annotated NIST scores, 2) 1-to-4

human scores according to post-editing needs 3) 1-to-5 human adequacy scores and

4) word-based post-editing time. Learnt NIST scores deviated an average of 1.5

points on a scale from 1 to 18, which was considered acceptable, while the learnt

1-4 and 1-5 human scores deviated on average 1.1 and 0.6-0.7 points respectively.

Conclusions regarding post-editing time, however, were less homogeneous among

systems and require further study.

One revealing finding of this work is that black-box features are generally more

discriminating, with very little gain from glass-box features for manually annotated

datasets. Although this seems to contradict the observations by Blatz, Fitzgerald,

Foster, Gandrabur et al. (2004), their work uses only automatic scores, which is why

their conclusions cannot be directly compared.

Many of the latest developments in confidence estimation have been specifically

targeted at aiding post-editing. Based on previous work (Specia, Turchi, Cancedda,
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Dymetman et al., 2009; Specia, Turchi, Wang, Shawe-Taylor et al., 2009), He,

Ma, van Genabith and Way (2010) proposed the integration of an SMT system

and a Translation Memory (TM) in order to accelerate a post-editor’s job. Using

the proposed solution, whenever a new sentence in a source language needs to be

translated, two candidate translations are obtained: one from the TM and another

from the SMT system. Later, an auxiliary system which has been trained to recognise

which of the two translations requires less post-editing, decides on the best translation

and proposes that one to the user. Hence, post-editing times should be reduced given

the ‘intelligent’ decision of the recommendation system.

Experiments were conducted by using part of an English-French translation

memory, the phrase-based SMT system Giza++ (Och and Ney, 2003) and a binary

SVM classifier. Training samples were obtained by using a separate subset of source-

language sentences from the same TM. For each of these sentences, the two candidate

translations from the SMT system and the TM were generated and automatically

annotated with TER scores as a way of representing post-editing effort.

The set of features proposed in that work can be classified into three categories:

SMT features (such as phrase-translation model scores, language model probability

and word penalty), TM features (namely the fuzzy match cost of a suggestion) and

system-independent features (like source and target language model perplexities and

a pseudo-source fuzzy match score using a re-translation of the candidate into the

source language). Following our earlier classification, the first and second groups

constitute pure CE features while the third comprises non-CE features.

Despite training on an indirect measure of post-editing effort, the results obtained

in such experiments were encouraging. In particular, 0.85 precision and 0.89 recall

were registered while a considerable reduction of post-editing effort was said to be

achieved by using the recommendation system. A later study with human post-editors

presents even better results (He, Ma, Roturier, Way et al., 2010).

In a similar fashion, Specia and Farzindar (2010) proposed new models for

predicting translation quality within a post-editing environment. Experiments were

conducted with two different datasets. The first of them comprised French-English

translations from the legal domain evaluated using Human-targeted Translation Edit

Rate (HTER), a variation of TER that uses a post-edited hypothesis as reference

(Snover, Dorr, Schwartz, Micciulla et al., 2006b). The second dataset included the

same Spanish-English sentences used in previous work (Specia, Turchi, Cancedda,

Dymetman et al., 2009) but enriched with TER scores. Each of these datasets was

then used to build SVM regression models using a total of 86 shallow features from

the source and target texts as well as auxiliary corpora. While results revealed some

difficulty predicting scores accurately, correlation was higher for HTER, probably

owing to the use of post-edited versions of the sentences rather than free references.

12



2.3. REFERENCE-FREE ASSESSMENT

Overall, the approach was found to be a computationally cheap alternative for

estimating post-editing effort.

From a different perspective, González-Rubio, Ortiz-Mart́ınez and Casacuberta

(2010) considered the post-editing effort estimation problem within an Interactive-

predictive Machine Translation framework (i.e. interacting with an SMT system

during the translation process). Confidence measures were proposed for filtering the

initial translations generated by the SMT system before actually presenting them to

the user, in an attempt to save them time editing translations that were judged to

be already acceptable. Using a single word-level feature derived from an IBM Model

1 system, the authors computed two different sentence-level measures that were used

to evaluate translation candidates produced by the SMT system. Since these scores

are estimated, it is possible that some translations considered acceptable do have

errors. However, such a loss in quality was not found to be extremely significant and

was hence tolerated in order to favour a reduction in post-editing effort.

2.3.1.1 Combination of Approaches

As described earlier, reference-based and confidence estimation metrics tackle the MT

quality problem from two clearly distinct perspectives. While the former are more

suitable for comparing different MT systems and have fairly good correlation with

human judgements at the corpus level, the latter are ideally suited for analysing only

one MT system and correlate better with human judgements at the segment level

(usually sentences). For this reason, studying how they could be used in conjunction

to provide better estimates of MT quality is highly desirable.

To the best of our knowledge, the first experimental approach to the subject is the

work by Specia and Giménez (2010). Their report describes the use of both classic

reference-based metrics (such as BLEU, METEOR, TER or WER) and CE scores as

features for SVM regression. Experiments were conducted using different datasets

containing human scores for post-editing effort and the results were evaluated in

terms of correlation.

The individual performance of reference-based and CE metrics was then compared

to that of a few proposed combinations, including a simple averaged scheme and

SVM regression. Results show that hybrid metrics yield better correlation with

human judgements at sentence level than each individual metric, with statistically

significant improvements in most cases. Nevertheless, it has also been observed that

some datasets had greater affinity with either the reference-based or CE metrics,

mainly due to their composition and the type of score used in each case. In spite of

this, the hypothesis that a combination of metrics would yield better results than

metrics on their own was actually confirmed. The highest correlation rate reported

was 0.608 over the English-Spanish dataset for a hybrid metric using SVM regression.
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Although their work provides an alternative method for MT evaluation that is

robust and covers many more aspects than standard metrics, its application is limited

by a number of factors, such as the need for linguistic resources and the availability

of human references. As a result, the methodology is mainly suited for testing and

tuning MT systems.

2.3.2 Quality Estimation

Quality Estimation (QE) has emerged as a broader term to refer to reference-free

quality assessment (Specia, Raj and Turchi, 2010). Although initially used to describe

reference-free approaches that did not include system-dependent features, it is now

used to refer to any quality prediction system in general, regardless of whether they

use glass-box (CE) or black-box (non-CE) features.

This general conception has allowed researchers to abandon the idea of quality

assessment as a system-dependent task and experiment with features from different

sources. As a result, the focus is no longer on how confident a particular system is

about its output but rather how good a translation is on its own. Given this new

scope, many approaches seem to have moved from using CE features to using non-CE

features.

Estimating MT quality using only system-independent features may be desirable

for a number of reasons. First of all, it enables the assessment of translations

without requiring access to the internal components of an MT system, which is ideal

for situations where commercial systems are used. Secondly, system-independent

approaches allow the assessment of translations produced by any MT system

regardless of their paradigm (rule-based, statistical, hybrid, interactive, etc.). Thirdly,

it would also be possible to assess human translations, for example to find the most

appropriate one out of a pool in collaborative environments. Lastly, ignoring system

features makes an approach less computationally costly. However, relying only

on black-box features could also be disadvantageous. Specifically, it can be very

challenging to produce a set of features that could be as discriminative as CE features,

specially when this type of feature has been found to be very informative in previous

work (Blatz, Fitzgerald, Foster, Gandrabur et al., 2004).

The first experiments using only system-independent features were proposed by

Specia, Turchi, Wang, Shawe-Taylor et al. (2009), although their approach is further

developed in a later report (Specia, Raj and Turchi, 2010). Their proposal makes

use of 74 features, of which 39 relate to the source text and the remaining 35 to

the evaluated translation. A model was built using SVM epsilon regression and was

later evaluated in terms of correlation with human judgements. In all cases, the

correlation coefficients for the QE approach were found to be significantly higher

than those for common MT evaluation metrics, with gains of over 50% in many cases.
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Soricut and Echihabi (2010), on the other hand, proposed a model for document-

level ranking that includes a variety of system-independent features from the source

and target texts as well as additional corpora and pseudo-references.

2.3.2.1 Introduction of Linguistic Features

Most of the approaches for QE described so far have made use of similar shallow

features, such as n-gram statistics, token counts, aspects of punctuation, etc. Given

that the information provided by these features can be limited, new approaches have

started to exploit linguistic information in an attempt to account for richer aspects

of translation that could contribute to a more accurate assessment of quality.

Xiong, Zhang and Li (2010), for instance, combined word posterior probabilities

with a few linguistic indicators in order to train a binary classifier for word-level

error detection. Their linguistic features were grouped into two categories: lexical

information (the surface form of a word and its PoS tag) and syntactic information

(whether a word is linked to other words in a sentence according to a parser).

Experiments were conducted using different combinations of features with a maximum

entropy classifier and automatic binary classes derived from WER scores over reference

translations. A comparison of their results with previous work revealed that linguistic

features were able to produce better estimations than word posterior probabilities,

especially when more than one feature was used. In addition, it was observed that

combining all the features achieved even better results, supporting the hypothesis

that linguistic indicators are complementary to shallow information.

Specia, Hajlaoui, Hallett and Aziz (2011) used linguistic features for estimating the

adequacy of translations from Arabic into English. A total of 122 system-independent

features were used to build an SVM regression model to predict METEOR scores

and three different classifiers using 1-4 human annotations. Apart from many

common features from the source and target texts, a set of contrastive features was

introduced to capture the accuracy of translations, such as ratios between source and

target length, content and function words, PoS tags and differences in constituents,

dependency relations and named entities. Although the proposed classification

models always outperformed a majority class classifier, the contribution of adequacy

features was not found to be consistently beneficial. On the other hand, regression

results were more optimistic, deviating as little as 10% from the expected scores.

In another approach, Hardmeier (2011) proposed the exploitation of constituency

and dependency relations from the source and target texts independently to improve

estimates. Experiments were conducted using the same English-Spanish human-rated

datasets as in other previous approaches (Specia, Cancedda and Dymetman, 2010)

plus another English-Swedish subtitle dataset also manually annotated with scores

from 1 to 4.
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Constituency and dependency trees were produced for the source and target

sentences and integrated into a binary SVM classifier along with a subset of

features previously used by Specia, Turchi, Wang, Shawe-Taylor et al. (2009). A

comparison of different classifiers revealed that the models using only syntactic tree

kernels perform slightly worse than those trained on explicit features but the best

performance is actually achieved in models that integrate both types of information.

In consequence, this demonstrated that the addition of syntactic information helped

improve performance of shallow models.

In a more complex scenario, Bach, Huang and Al-Onaizan (2011) addressed

word-level QE by using linguistic features derived automatically from annotated

parallel corpora. Their approach defines three basic types of features: 1) source side

features, which associate the occurrence of source PoS tags or tokens to target words

2) alignment context features, which associate neighbouring words in the source

text with target words, and 3) dependency structure information, which encodes

similarities between dependency relations in the source and target texts. Different

‘instances’ of these features are then learnt from a very large parallel corpus and

subsequently used to build a weighted vector model that predicts a binary class for

each target word (‘good’ or ‘bad’). In another variation, a classifier was trained to

output a label related to a post-edited version (‘good’, ‘insertion’, ‘substitution’,

‘shift’). These word-level scores were then used for estimating sentence-level scores

using the Viterbi algorithm.

Experiments show that the addition of the proposed linguistic features to existing

datasets produces consistently better results than models without these features.

Moreover, the authors report a Pearson correlation coefficient of 0.6 between their

sentence-based predictions and HTER scores.

Finally, work by Pighin and Màrquez (2011) describes a methodology for

projecting source annotations onto target translations so that they can be exploited

for QE. As an example, the authors projected predicate-argument labels from English

into Spanish and used these estimates for pairwise ranking quite successfully.

It should also be noted that all these approaches use different representations

of linguistic information. Xiong, Zhang and Li (2010), for example, use strings for

lexical features and a binary indicator for syntactic information, Hardmeier (2011)

employs tree kernels that are particularly suitable for SVM algorithms, Bach, Huang

and Al-Onaizan (2011) create a large number of binary features from word and PoS

patterns and Pighin and Màrquez (2011) generate projected predicate-argument

structures. In our work, however, we follow the approach by Specia, Hajlaoui, Hallett

and Aziz (2011) and use attribute/value pairs as a way of avoiding complex and

costly representations.
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2.3.3 Applications

Reference-free MT assessment has been suggested for a wide range of applications:

� Hypothesis Re-ranking. Confidence estimation measures have been proposed

and tested for re-ranking the n-best list of candidates handled by SMT systems,

instead of relying on their internal score (Blatz, Fitzgerald, Foster, Gandrabur

et al., 2004; Bach, Huang and Al-Onaizan, 2011).

� Aiding translation and post-editing. Experiments using CE scores and SMT

systems interactively have proved to reduce translation effort in exchange for a

slight decrease in quality (González-Rubio, Ortiz-Mart́ınez and Casacuberta,

2010). Similar aims are pursued by using translation memories (He, Ma, van

Genabith and Way, 2010; He, Ma, Roturier, Way et al., 2010), visual post-

editing environments (Bach, Huang and Al-Onaizan, 2011) or prediction models

based on HTER, post-editing effort and time (Specia, 2011a).

� Warning users about unreliable translations. The reliability of a translation

could be a determining factor in deciding whether it can be trusted to make

a decision or should only be considered for gist. In this regard, works on

the estimation of adequacy (Specia, Hajlaoui, Hallett and Aziz, 2011) and

word-level errors (Bach, Huang and Al-Onaizan, 2011) may be particularly

helpful.

� Document ranking. Soricut and Echihabi (2010) have employed a QE approach

for producing a ranking of translated documents according to their quality.

Although their system is aimed at ranking translations of different source

documents rather than alternative hypothesis for a single source text, they

show QE can also be useful for document selection.

� Filtering. As in binary classification, many authors suggest the use of quality

scores for filtering bad translations in post-editing environments (Gamon, Aue

and Smets, 2005; Specia and Farzindar, 2010; Specia, Raj and Turchi, 2010).

This would allow translators to edit sentences which are only worth editing

and retranslate bad ones completely, for example.

� System combination. Many authors have explored the possibility of using CE

scores to compare and select the best translations produced by different SMT

systems (Blatz, Fitzgerald, Foster, Gandrabur et al., 2004; Quirk, 2004; Specia,

Raj and Turchi, 2010). A combination of the best translations would thus yield

better overall results than using only one system.

Despite the number of described proposals for QE, this task is still relatively new

and gradually arousing interest within the MT research community. In particular,
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the use of linguistic features is an open problem and requires further research in

order to develop more mature models. It is then expected that specialised meetings

and competitions in this area, such as the recent WMT 2012 Quality Estimation

Shared Task, would help develop this line of research as much as they have helped

others in the past.
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Chapter 3

Estimating MT Quality

Quality is never an accident. It is always the result of intelligent effort.

—John Ruskin

The first part of this chapter provides a summary of key theoretical principles

and criteria used to assess translations (section 3.1), which we use to derive our

computational features. The rest of the chapter presents a classification scheme

(section 3.2.1) and a detailed description of each implemented feature (section 3.2.2).

3.1 Translation Quality

Having a clear definition of what translation quality means and how it can be

measured is essential to learn how to assess it properly. However, there is no

straightforward answer to this question. Many translation experts have tried to

define the principles of good translation over the years but there are, in fact, no

fixed rules that guarantee a good result. The way a text is translated depends on

a number of factors such as the nature of the message, its purpose and audience

(Weissbort and Eysteinsson, 2006) so it is difficult to formulate a generalisation.

Nevertheless, there are some very general aspects that translations are expected

to exhibit. One of the most classic quotations from the field of translation studies is

from Tytler (1791), who postulated the following three ‘General Rules’ for translation:

1. A translation should give a complete transcript of the idea of the original work.

2. The style and manner of writing should be of the same character as that of the

original.

3. The translation should have all the ease of the original composition.

Renowned translator Yan Fu (1973) also stated his three translation principles

as fidelity, fluency and elegance, greatly influencing Chinese translation during
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the 20th century. Another notable contribution is that of Nida, who introduced

the concepts of functional equivalence to describe fidelity to form and content

(Nida, 1964) and dynamic equivalence (Nida, 1964; Nida and Taber, 1969) to

characterise a natural-sounding translation that produces the same effect as the

original.

Theoretical discussions on the desirable aspects of translation go far beyond this

summary, although most of them revolve around the same matters. Munday (2008)

gives an extensive chronological description of such theories.

In addition, many authors have concentrated on criteria for assessing rather than

producing translations. House (1977, 1997), for instance, proposes a ‘model’ for

Translation Quality Assessment (TQA) that compares a source and target text on

dimensions such as function, genre, register and language use. The following list is a

summary of the most significant parameters proposed for QTA by different authors

(al Qinai, 2000):

� Textual typology and tenor.

� Formal correspondence.

� Coherence of thematic structure

� Cohesion.

� Text-pragmatic (dynamic) equivalence

� Lexical properties (register).

� Grammatical/syntactic equivalence.

Since our interest in translation quality is eminently practical, we also considered

hands-on guidelines for translators from which we could derive other indicators of

quality. In this regard, it is worth mentioning the criteria used by the Institute

of Linguists in the United Kingdom to assess translations for their Diploma in

Translation (IoL, 2011):

1. Comprehension, accuracy and register.

2. Grammar (morphology, syntax, etc.), cohesion, coherence and organisation of

work.

3. Technical aspects: punctuation, spelling, accentuation, transfer of names, dates,

figures, etc.

Additional detailed criteria for examination purposes are proposed by the

Association of American Translators (Doyle, 2003).
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3.2 Features

In order to build a computational model for quality estimation, we had to encode the

formal aspects of translation quality described in section 3.1 into representations that

could be stored as feature-value pairs and processed by machine learning algorithms.

A classification and detailed description of such representations (features) is provided

in the following sections.

3.2.1 Classification Criteria

By classifying our features, it is possible to understand their differences and similarities

as well as make some comparisons. The classification criteria we have put forward

are explained below.

3.2.1.1 Linguistic Knowledge

Since the purpose of our work is to study the contribution of linguistic information to

QE, we must classify our features into two distinct groups: linguistic and shallow

features.

We consider linguistic features those that require at least some minimal knowledge

of general linguistics or the language they operate on, such as the number of nouns in

a sentence, information on phrase structure or the lexicon of a certain language. By

contrast, shallow or non-linguistic features can be extracted without requiring proper

linguistic knowledge and could range from the number of tokens1 or punctuation

marks2 in a sentence to statistical data such as n-gram probabilities.

3.2.1.2 Origin

In reference-free MT assessment, features can be extracted from three main sources:

the source text (original), the target text (translation) or the system that generated

the translation.

Features that exploit information from the MT system or the process used to

generate the translation (such as phrase table probabilities or an SMT decoder score)

are often called glass-box features, since they can ‘see’ how the translation was

produced. On the other hand, features extracted from the source and target text as

well as some relationships between them are called black-box features, since they

are totally uninformed about the translation process. A third category of grey-box

1Note that we have used the term token and not word here. While a token can be defined as a
string of consecutive non-blank characters that conveys no a priori meaning, a word is a linguistic
concept that carries semantic content and is part of the lexicon of a language.

2Although the notion of punctuation is essentially linguistic, we consider it very elementary and
shallow for the purpose of assessing translation quality.
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features can be attributed to those that are not strictly glass-box but somehow

integrate information related to an MT system, such as statistics derived from the

parallel corpus used for training.

It is usually stated that the origin of features is also a source of specific indicators

which are useful for QE. Thus, features from the source text, the MT system and the

target text are regarded as complexity, confidence and fluency indicators respectively

(Specia, Hajlaoui, Hallett and Aziz, 2011).

3.2.1.3 Language Dependence

Many of our linguistic features are built on aspects that are common to many

languages while others are specially tailored, and tied, to a particular language. We

call the first group language-independent features because they apply to many

languages and can often be extracted by using general-purpose resources, such as

PoS taggers or corpora. Example features in this group include PoS counts, content

and function words and named entities.

On the other hand, language-dependent features are specific to a language

and rarely applicable to others, mainly because the observed phenomena does not

exist in another language or they require substantial change. Examples of these

include the identification of zero subjects and missing contractions in Spanish (like

al or del).

A notable difference between these two categories lies in implementation. While

language-independent features can be ported to other languages by using different

underlying language-dependent resources (Specia, 2011b), this is not the case for

language-dependent features since the linguistic phenomena they capture is generally

not cross-lingual.

3.2.1.4 Resource Dependence

The difference between resource-dependent and resource-independent features

lies in the fact that the former require external resources for their extraction (such as

linguistic processors or corpora) while the latter can be computed using only the text

that is being analysed, with no additional information. N-gram probabilities and

counts of PoS tags are common examples of resource-dependent features whereas

Type/Token Ratio and its variations are resource-independent.

3.2.1.5 Aspect

Features can also be classified according to the criteria that have been described in

section 3.1. However, we will restrict our categories to the following aspects:
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Complexity: degree of difficulty of the source text, a dimension that is often

considered in many reference-free automatic approaches (Specia, Turchi, Wang,

Shawe-Taylor et al., 2009; Hardmeier, 2011; Specia, Hajlaoui, Hallett and Aziz,

2011)

Fidelity (also accuracy/adequacy): dynamic equivalence (Nida, 1964; Nida and

Taber, 1969), faithfulness to the meaning of the original text (Munday, 2008).

Grammaticality: conformity to the grammatical rules of a language.

Fluency: smooth, effortless and natural use of language (Brumfit, 1984; Crystal,

2010); closely related to grammaticality (Giannakopoulos, Karkaletsis and

Vouros, 2012).

Coherence and cohesion: logical and meaningful structure of a text that makes

it easy to read and interpret (Halliday and Hasan, 1976; Louwerse and Graesser,

2005).

Structure: surface technical aspects, as described by the Institute of Linguists

(IoL, 2011).

It should be noted that these dimensions are not mutually exclusive which is

why a single feature might be classified into more than one of these categories. One

such example is subject-verb agreement, which is a sign of both grammaticality and

fluency.

3.2.2 Proposed Features

The models we present in this work are based on a set of 147 features that attempt

to identify many of the quality indicators that are described at the beginning of this

chapter. Although a few more features were initially proposed, their implementation

was thwarted by the lack of suitable resources, especially for Spanish. As a result,

only those features that we were able to compute automatically are described. In

addition, we use features extracted from the source and target texts only, which is

why glass-box features are not included.

With regard to feature representation, we found that features that contrast

information from the source and target text could be expressed in a variety of ways

but this has rarely been explored in previous research. In order to find a suitable

representation for this type of feature, we tested different relational schemes as

part of our feature engineering process, including ordinary subtraction, division,

trigonometric ratios and modified versions of precision and recall. Results showed

that subtraction was the most appropriate combination scheme although keeping the
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original information separate seemed to be even more effective than contrasting it in

a single feature. All feature values in our experiments were treated as real numbers.

The following lists provide a description and classification of each feature together

with a unique identifier that is used to refer to them throughout the rest of this work.

Related features are grouped for the sake of clarity and examples are given in either

the source or target language and in good or bad grammatical form to show how

this affects estimations. Novel features are marked with ? .

3.2.2.1 Linguistic Features

1-5 Content words. These refer to the words in a language that carry the meaning

of a sentence, such as nouns, full verbs and adjectives (van Gelderen, 2005).

They are also generally called open-class words, since they allow the addition

of new items (a new noun, for example). With the help of a PoS tagger, we

extract the number and proportion of content words in the source (source-

cont-words, source-cont-words-pcent) and target sentences (target-cont-

words, target-cont-words-pcent) and compare them (s-t-ratio-cont-

words-pcent) as a way of measuring semantic content.

Identifiers:

source-cont-words

source-cont-words-pcent

s-t-ratio-cont-words-pcent

target-cont-words

target-cont-words-pcent

Example:

Cleft lips and palates affect around one in 700 babies born in the UK.

source-cont-words = 7

6-9 Function words. These include words such as determiners, pronouns,

prepositions, conjunctions, auxiliary verbs and adverbs of degree (van Gelderen,

2005) that help combine content words to form sentences. They are also called

closed-class words because additions to this set are not normally permitted.

These words are usually considered stopwords in automatic text processing.

Absolute numbers and proportions are also extracted from the source (source-

func-words, source-func-words-pcent) and target sentence (target-func-

words, target-func-words-pcent). An infrequent proportion of content and

function words is expected to indicate a poorly grammatical translation.
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Identifiers:

source-func-words

source-func-words-pcent

target-func-words

target-func-words-pcent

Example:

They got down and looked at him. source-func-words = 4

10-12 Nouns. Proportion of nouns in the source (source-n-pcent) and target

sentence (target-n-pcent), including both common and proper nouns. A

ratio between these proportions is also computed (source/target: s-t-ratio-

n-pcent).

Identifiers:

source-n-pcent target-n-pcent s-t-ratio-n-pcent

Example:

Ford retira más de 140.000 autos en EEUU por limpiaparabrisas

defectuosos. s-t-ratio-n-pcent = 4/12 = 0.33

13-15 Verbs. Proportion of verbs in the source (source-v-pcent) and target sentence

(target-v-pcent), including both full and auxiliary verbs. A ratio between

these proportions is also computed (source/target: s-t-ratio-v-pcent).

Identifiers:

source-v-pcent target-v-pcent s-t-ratio-v-pcent

Example:

Fans would have been likely to die of boredom.

source-v-pcent = 4/10 = 0.4

16 Pronouns. We only compute the ratio of the proportions of pronouns in the

source and target sentences.

Identifiers:

s-t-ratio-pron-pcent

Example:

As far as they were concerned, it was just between them and their

friends.

En lo que a ellos respecta, fue sólo entre ellos y sus amigos.

s-t-ratio-pron-pcent = (2/14)/(2/13) = 0.93
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17-19 Noun phrases (NP). We use automatic chunking for identifying the phrase

structure of a sentence and count the number of noun phrases (source-np,

target-np). In our implementation, we count only the outermost NPs in a

sentence, which means we do not check for embedded NPs. Our intuition, as in

many other cases, is that a comparison of such phrases between the source and

target text (t-s-diff-np) might serve as a shallow approach to quantifying

differences in content.

Identifiers:

source-np target-np t-s-diff-np

Example:

[NP You] need to make sure [NP you] speak to [NP someone with the

authority to do a deal ]. source-np = 3

20-22 Verb phrases (VP). Extraction of these phrases is similar to noun phrases.

Again, VP embedding is not taken into account.

Identifiers:

source-vp target-vp t-s-diff-vp

Example:

Grecia [VP compra tiempo], pero los problemas de fondo [VP siguen].

target-vp = 2

23-25 Prepositional phrases (PP). Extraction of these phrases is similar to noun

phrases. PP embedding is also disregarded.

Identifiers:

source-pp target-pp t-s-diff-pp

Example:

[PP En la reunión de Rajoy con sus ministros] también se han abordado

reformas [PP en el ámbito financiero]. target-pp = 2

26 Explicit subjects. In languages such as Spanish (our studied target language),

the subject of a sentence can be stated explicitly or implicitly (Real Academia

Española, 2009). In particular, we believe that studying explicit subject-

predicate relations may help detect lack of fluency (for example, by the addition

of extraneous information in subject position or the excessive repetition of an

existent subject) and even fidelity to the original (by the missing elements of

the structure, as shown in the example below).
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The number of explicit subjects in a sentence is estimated by counting the

number of cases where an NP is immediately followed by a VP. Although this

approximation yields correct results in most cases, it is not foolproof and may

produce inaccurate estimations in cases with complex grammatical structures,

a fact that is further aggravated by the imperfections of automatic parsing.

Identifiers:

target-exp-subj?

Example:

[NP The kidnapping ] [VP happened in the province of Agusan del Sur.]

[NP El secuestro ocurrido en la provincia de Agusan del Sur.]

target-exp-subj = 0

27-28 Pronominal subjects. Within explicit subjects, we also count the number of

cases where the subject NP is a pronoun (target-pron-subj) and estimate

their proportion within the sentence (target-pron-subj-pcent). This feature

is specially targeted at discovering superfluous, excessive or confusing pronouns

that may sound unnatural in Spanish.

Identifiers:

target-pron-subj? target-pron-subj-pcent?

Example:

* [PRON Ella] [VP se cree que han matado a ella mediante asfixia

utilizando una bolsa de plástico.] target-pron-subj = 1

29 Non-pronominal subjects. Number of explicit subject cases where the subject

NP is not a pronoun.

Identifiers:

target-non-pron-subj?

Example:

[NP El Gobierno] [VP le ofreció dádivas si desist́ıa] pero [NP ella] [VP se

negó]. target-non-pron-subj = 1

30-31 Zero subjects. Since Spanish is a pro-drop language (Chomsky, 1981), explicit

subjects are often omitted in fluent speech to avoid unnecessary repetition. In

consequence, we use this feature as an indicator of fluency.

The number of zero subject cases (target-zero-subj) and their proportion

within the sentence (target-zero-subj-pcent) are estimated by simply
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counting the number of VPs within a sentence that are not immediately

preceded by an NP. As in other mentioned cases, such a simplification in the

interpretation of sentences may result in inaccurate estimations.

Identifiers:

target-zero-subj? target-zero-subj-pcent?

Example:

[NP Hijo de diputado] [VP atropelló], [VP mató], [VP huyó] y [VP está en

libertad ]. target-zero-subj = 3

32 Subject-verb agreement. This feature, only implemented for the target language,

gives an estimation of the number and proportion of cases where the subject of

a verb phrase agrees grammatically with its main verb.

The number and proportion of agreements in a sentence (target-s-v-agree,

target-s-v-agree-pcent) are computed only for explicit subject-verb cases

and, in the case of Spanish, is based on the matching of three required aspects:

person, number and gender (Real Academia Española, 2009). The way we

conceived automatic checking of agreement is as follows.

First, we extract all the explicit subject-verb cases in the sentence. Second, we

search the VP for the most specific verb in terms of person, number and gender

(which is only applicable to participles). Finally, we check that the aspects of

the main verb agree with those of specific types of words in the NP, namely

determiners, pronouns, nouns and adjectives. Only when all these parameters

match is a case counted.

Identifiers:

target-s-v-agree? target-s-v-agree-pcent?

Example:

* [NP Los noruegos] [VP nunca ha tenido dudas de que se trataba de

un cohete ruso]. target-s-v-agree = 0

34-36 Deictics. Deictic expressions (Romero, 2005) are considered one of the essential

indicators of cohesion both in English (Halliday and Hasan, 1976) and Spanish

(Mederos Mart́ın, 1985; Uribe Mallarino, 2002). For this reason, we attempt

to estimate whether this aspect is preserved in the translation by computing

the ratio of deictic words (t-s-diff-deixis) found in the source (source-

deixis) and target sentences (target-deixis).
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Our approach is very simple and considers only one-word deictics, such as

pronouns (personal deixis) and relative references to time3 (temporal deixis)

and space4 (spatial deixis). Checking is done using language-specific lists that

were manually compiled from different specialised sources.

Identifiers:

source-deixis? target-deixis? t-s-diff-deixis?

Example:

Now, he claims, there is no good solution to this. source-deixis = 3

Según él hoy ya no tienen una solución buena. target-deixis = 3

37-42 Phrase structure. We apply constituency parsing (Chomsky, 1957) to the

source and target text in order to extract two shallow indicators: width

(source-ptree-width, target-ptree-width) and depth (source-ptree-

depth, target-ptree-depth) of their parse trees. Although languages

structure content differently within a sentence, we believe that some underlying

correspondences between the source and target trees (t-s-diff-ptree-width,

t-s-diff-ptree-depth) could help assess the probability of the translation

structure.

Ideally, trees should be exploited to retrieve more valuable information, as

proposed by Hardmeier (2011). However, languages express things differently

so a mismatch of structures between a source and target text is not expected

to discriminate good from bad translations. In fact, even in the same language

sentences could express equal information using quite different grammatical

structures. For this reason, we have chosen to exploit aspects that somehow

abstract from detailed structure, namely tree width (computed as the number

of root node children) and depth (longest path from the root node to the

leaves). By using these shallow parameters, we also help minimise the effect of

inaccurate parsing of ungrammatical sentences.

Identifiers:

source-ptree-depth

source-ptree-width?
target-ptree-depth

target-ptree-width?
t-s-diff-ptree-depth

t-s-diff-ptree-width?

3E.g. now, then, tomorrow (English); ahora, después, mañana (Spanish).
4E.g. here, there, these (English); aqúı, alĺı, éstos (Spanish).
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Example output from FreeLing (Padró, Collado, Reese, Lloberes et al., 2010):

SV

CLAUS

ST-BRK

Fp

.

PART

VBG

promising

VB

look

ADV

RB

far

ADV

RB

so

VBD

revealed

SN-CHUNK

N-CHUNK

N

plans

DT

The

source-ptree-width = 5, source-ptree-depth = 4

GRUP-VERB

F-TERM

Fp

.

GRUP-VERB-INF

S-ADJ

S-A-MS

A-MS

AQ

prometedor

INFINITIU

INF

FORMA-INF

V

mirar

GRUP-SP

SADV

RG

ahora

PREP

SG

hasta

VERB

V

reveló

SN

GRUP-NOM-MP

N-MP

NC

planes

ESPEC-MP

J-MP

DA

*Los

target-ptree-width = 5, target-ptree-depth = 6

43-48 Dependency structure. Following the same intuition as for phrase structure

analysis, we also applied dependency parsing (Kubler, McDonald, Nivre and

Hirst, 2009) to the source and target text in order to compute high-level width

(source-dtree-width, target-dtree-width) and maximum depth (source-

dtree-depth, target-dtree-depth), as well as their differences (t-s-diff-

dtree-depth, t-s-diff-dtree-width).

Identifiers:

source-dtree-depth?

source-dtree-width?
target-dtree-depth?

target-dtree-width?
t-s-diff-dtree-depth?

t-s-diff-dtree-width?

Example output from FreeLing:

The plans revealed so far look promising .

ROOT

DET NCSUBJ
NCMOD

NCMOD

CCOMP

CCOMP

TA

source-dtree-width = 4, source-dtree-depth = 2
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* Los planes reveló hasta ahora mirar prometedor .

ROOT

ESPEC SUBJ ADOR OBJ-PREP

DOBJ

MODNOMATCH

TA

target-dtree-width = 4, target-dtree-depth = 2

49-63 Named entities. Named entity recognition (Jurafsky and Martin, 2009, chap. 22)

is applied to the source and target sentences as a way of identifying important

concepts that must be preserved in the translation. By means of an automatic

entity recognition module, we are not only able to identify proper nouns but

also classify them into standard categories (person, location, organisation and

‘other’).

Unless recognisers are very robust, identification relies mainly on capitalisation,

which is why they might not perform well on lowercase text.

The number and differences of entities within a sentence pair are computed

for each category (source-ne-*, target-ne-*, t-s-diff-ne-*) as well as in

total (source-ne, target-ne, t-s-diff-ne).

Identifiers:

source-ne

source-ne-per

source-ne-loc

source-ne-org

source-ne-other?

target-ne

target-ne-per

target-ne-loc

target-ne-org

target-ne-other?

t-s-diff-ne

t-s-diff-ne-per

t-s-diff-ne-loc

t-s-diff-ne-org

t-s-diff-ne-other?

Example:

[PER Nabeel Shaath] said after [PER Mr Obama]’s speech to the [OTHER

General Assembly ] in [LOC New York ] that going to the [ORG U.N.] is

the ‘only alternative to violence’. source-ne = 5

64-65 Language model of PoS tags: log-probability. A common method for estimating

whether a particular sequence of words conforms to a given language is the

use of n-gram language models. N-grams are sequences of one or more

tokens (unigrams, bigrams, trigrams, etc.) extracted from text that are used

as a unit of analysis. An n-gram language model is basically a table containing

n-grams extracted from corpora and their associated frequencies, so that they

can be used to estimate probabilities for new sequences (Jurafsky and Martin,
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2009, chap. 4). These language models usually combine more than one type of

n-gram in order to achieve more robust results.

Formally, the probability of a sequence of tokens in terms of n-grams is defined

as:

P (wn
1 ) ≈

n∏
k=1

P (wk|wk−1
k−N+1)

where wn
1 is a sequence of n words and P (wk|wk−1

k−N+1) is the conditional

probability of word wk given the sequence of previous words in a model of N

grams.

An interesting fact about this kind of modelling is that it can be applied to

estimate any type of sequence, not necessarily words. In particular, we built a

trigram language model to predict part-of-speech tags using a tagged version

of a monolingual corpus for the target language. The rationale behind this

decision is that a PoS sequence should serve as an abstraction from the lexicon

of a language so it should provide better generalisations about likely sequences

(i.e. permitted word combinations).

Since the probabilities of observed n-grams are usually very low and inconvenient

for further calculations, a common practice is to represent them as log-

probabilities (i.e. P (wn
1 ) is redefined as logP (a)). The higher these

probabilities are, the more likely the sequence is in a language, giving us

an idea of its grammaticality and fluency.

For this feature, we implemented two variations: one using simple PoS tags such

as noun, verb, adjective, etc. (target-pos-logprob-bl) and another using

detailed morphosyntactic tags (target-pos-logprob) that encode information

about many aspects of the words, such as number, gender, mood, tense, etc.

In both cases we considered end-of-sentence markers.

Identifiers:

target-pos-logprob? target-pos-logprob-bl

Example:

* Al
PAL

final
NC

,
CM

un
ART

oficial
ADJ

y
CC

un
ART

protester
NC

fueron
VSfin

hospitalizados
VLadj

.
FS

target-pos-logprob-bl = −129.30

* A
SPS00

el
DA0MS0

final
NCFS000

,
Fc

un
DI0MS0

oficial
AQ0CS0

y
CC

un
DI0MS0

protester
NCMS000

fueron
VSIS3P0

hospitalizados
VMP00PM

.
Fp target-pos-logprob = −179.09
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66-67 Language model of PoS tags: perplexity. Unlike log-probability, the perplexity

of a sequence of words measures how likely it is that they branch out and

combine with other words as well, so it can be viewed as an inverse version

of probabilities. In fact, minimising perplexity is equivalent to maximising

probability (Jurafsky and Martin, 2009, chap. 4). Formally:

PP (W ) = n

√
1

P (w1w2...wn)

where W is a sequence of n words and P (w1w2...wn) is the probability of all

the words in the sequence estimated using an n-gram language model.

Again, two versions of this feature are computed using simple (target-pos-

ppl-bl) and morphosyntactic PoS tags (target-pos-ppl), both including end-

of-sentence markers.

Identifiers:

target-pos-ppl? target-pos-ppl-bl

Example:

* Al
PAL

final
NC

,
CM

un
ART

oficial
ADJ

y
CC

un
ART

protester
NC

fueron
VSfin

hospitalizados
VLadj

.
FS

target-pos-ppl-bl = 119.53, target-pos-ppl = 238.56

68 Missing contractions. This language-specific feature calculates the number

of times that the target text failed to produce the Spanish contractions del

(de+el) and al (a+el) in cases where they were required. The purpose of this

feature is to check for appropriate use of language.

Identifiers:

target-miss-contr?

Example:

* La polićıa pudo agarrar a el sospechoso gracias a un testigo.

target-miss-contr = 1

69 Dangling determiners. We count the number of cases in the target text where

determiners are not linked to any noun, as this is a very frequent grammatical

mistake in machine translations. Our implementation makes use of a PoS tagger

and considers a maximum context window of five words between determiners

and nouns.
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Identifiers:

target-dang-det?

Example:

* Brighton es una vibrante y fantásticamente creativa y estamos tratan-

do de intentar representar que a través de la espiritualidad.

target-dang-det = 1

70 Unknown words. This feature estimates the number of words that appear in

the target text and are not considered to be part of the target language lexicon.

Failure to render words into the target language indicates poor translation

ability and introduces noise, with a significant impact on quality. This is often

the case for SMT systems that have been trained on one domain and tested

on another: words that have not been seen in the training corpus remain

untranslated in subsequent translations. In some cases, however, replication

of these out-of-vocabulary words is a wise decision, as in the case of names

(Habash, 2008), but our approach does not distinguish between such cases.

The number of unknown words is estimated by using an auxiliary spell checker

for Spanish from which we make assumptions about valid words in the language.

Identifiers:

target-unknown?

Example:

La virtualisation de smartphones no es ciencia ficción.

target-unknown = 2

3.2.2.2 Shallow Features

71-75 Tokens. We count the number of all tokens in the source (source-num-

tokens) and target text (target-num-tokens) and compute their proportions

in both directions (s-t-token-ratio, t-s-token-ratio). Tokens are defined

as strings of consecutive printable characters separated by blanks or punctuation.

By this definition, a token does not necessarily constitute a word and could

therefore be a number, symbol or punctuation mark.

This basic feature not only gives an estimation of difficulty, under the

assumption that longer sentences are more difficult to produce and understand

than shorter ones (Dubay, 2004), but we can also use it to compute other

metrics that we describe below.
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In order to explore how the length of the target text compares to the source,

we also compute the difference in tokens between them and normalise it by the

number of tokens in the source (s-t-diff-tok-norm).

Identifiers:

source-num-tokens

target-num-tokens

s-t-token-ratio

t-s-token-ratio

s-t-diff-tok-norm

Example:

Informe: Más de 150.000 languidecen en prisiones en Norcorea

target-num-tokens = 10

76-77 Types. These refer to the number of unique tokens (Wetzel, 2009) in the source

(source-num-types) and target text (target-num-types), which may serve

as an indication of vocabulary size.

Identifiers:

source-num-types target-num-types

Example:

El año fiscal estadounidense arranca el 1 de octubre y finaliza el 30 de

septiembre del año siguiente. target-num-types = 15

78-79 Type/Token Ratio (TTR). This ratio between the number of types and tokens

in a text is often used as an indicator of lexical diversity (Johnson, 1944). While

low TTR values reflect a poor vocabulary, high values indicate richer and less

repetitive sentences. In turn, a high TTR may also suggest greater conceptual

complexity. Formally, the relation is defined as:

TTR =
number of types

number of tokens

Computing this ratio and some of its variations on the target text may help

determine lexical quality and repetition, such as the overuse of function words

by many MT systems. Although TTR can also be computed on the source

text as a proxy for complexity, we computed it only on the target text. Two

different versions of the metric were used, including and excluding punctuation

respectively (target-ttr, target-ttr-bl).

Identifiers:

target-ttr? target-ttr-bl
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Example:

* Trabajadores hab́ıa sido obligados a hacer dos horas de las horas

extraordinarias por encima de su normal turnos de ocho horas.

target-ttr = 18/22 = 0.82

80 Corrected TTR. A variation of TTR (Carroll, 1964) defined as:

CTTR =
k√
2n

where k is the number of types and n is the number of tokens.

Identifiers:

target-corr-ttr?

Example:

* Trabajadores hab́ıa sido obligados a hacer dos horas de las horas

extraordinarias por encima de su normal turnos de ocho horas.

target-corr-ttr = 2.71

81 Log TTR. Another variation of TTR (Herdan, 1960), defined as:

Log TTR =
log k

log n

where k is the number of types and n is the number of tokens.

Identifiers:

target-log-ttr?

Example:

* Trabajadores hab́ıa sido obligados a hacer dos horas de las horas

extraordinarias por encima de su normal turnos de ocho horas.

target-log-ttr = 0.94

82 Guiraud’s Index. This is another variation of TTR, also known as Root TTR

(Guiraud, 1954) and defined by:

GI =
k√
n

where k is the number of types and n is the number of tokens.

Identifiers:

target-gi?
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Example:

* Trabajadores hab́ıa sido obligados a hacer dos horas de las horas

extraordinarias por encima de su normal turnos de ocho horas.

target-gi = 3.84

83 Uber Index. Another variant of TTR (Dugast, 1980), defined as:

UI =
log2 n

log n− log k

where k is the number of types and n is the number of tokens.

Identifiers:

target-ui?

Example:

* Trabajadores hab́ıa sido obligados a hacer dos horas de las horas

extraordinarias por encima de su normal turnos de ocho horas.

target-ui = 20.68

84 Jarvis TTR. This metric is based on the Uber Index and defined as:

Jarvis TTR = n
−1
UI

logn

where n is the number of tokens and UI is the value of the Uber Index for the

sentence (Jarvis, 2002).

Identifiers:

target-jarvis-ttr?

Example:

* Trabajadores hab́ıa sido obligados a hacer dos horas de las horas

extraordinarias por encima de su normal turnos de ocho horas.

target-jarvis-ttr = 0.82

85-86 Language model of words: log-probability. Following the same concept that we

used for computing PoS log-probabilities, we built a trigram language model

from monolingual corpora to estimate token log-probabilities. This feature is

applied on the source text in an attempt to measure its difficulty (source-

logprob) and on the target text to estimate grammaticality (target-logprob).

The reason why this feature is considered shallow is that no linguistic

information is involved in its computation, since tokens are treated as mere

strings of characters.
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Identifiers:

source-logprob target-logprob

Example:

* El rastro Giffords especial de la recuperación desde la Jan. 8 disparos.

target-logprob = −39.329

87-90 Language model of words: perplexity. We also use a trigram language model

to estimate perplexities for the source and target texts, with (source-ppl,

target-ppl) and without end-of-sentence markers (source-ppl-no-smark,

target-ppl-no-smark).

Identifiers:

source-ppl

source-ppl-no-smark

target-ppl

target-ppl-no-smark

Example:

* El rastro Giffords especial de la recuperación desde la Jan. 8 disparos.

target-ppl = 227.045, target-ppl-no-smark = 334.507

91-95 Source unigrams. As in previous features, we use n-gram statistics to estimate

the probability of the source text and get an idea of its difficulty. In this specific

case, we compute the proportion of unique unigrams in the source text that are

part of our language model (source-uni). Using this value, we can quantify

how much the sentence deviates from the general lexicon of its language.

The same proportions are also computed using four separate subsets of the

language model, which go from the 25% least frequent unigrams (q1) up to the

25% most frequent (q4).

Identifiers:

source-uni

source-uni-q1

source-uni-q2

source-uni-q3

source-uni-q4

Example:

A siviglian dancer pays tribute to another siviglian dancer.

source-uni = 0.86

96 Source average unigram frequency. This is an average of the frequency of each

source type in a large auxiliary monolingual corpus, aimed at estimating natural

usage.
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Identifiers:

source-avg-uni

Example:

Negotiations concerning a ransom are reportedly already underway.

source-avg-uni = 821, 107.1

97-101 Source bigrams. This is the proportion of unique bigrams from the source

sentence that belong to our language model (source-bi). The intuition is that

whenever the number of recognised bigrams increases, so does the probability

that the sentence is well formed.

This feature also includes estimations using four frequency subsets of our

language model (q1 to q4).

Identifiers:

source-bi

source-bi-q1

source-bi-q2

source-bi-q3

source-bi-q4

Example:

The bond market has climbed sharply. source-bi = 0.83

102-106 Source trigrams. This is the proportion of unique source trigrams that are

also part of our language model (source-tri), which is expected to give more

accurate results than unigrams and bigrams. Again, additional estimations

were computed using four splits of our language model according to ascending

frequency (q1 to q4).

Identifiers:

source-tri

source-tri-q1

source-tri-q2

source-tri-q3

source-tri-q4

Example:

He is now under arrest and faces up to three years in prison.

source-tri = 0.75

107 Average token length. This is only computed on the source text as another

measure of difficulty, under the assumption that longer words are generally

more complex and difficult to understand than shorter ones (Dubay, 2004).
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Since tokens also include non-alphanumeric strings (such as numbers,

punctuation or symbols), they are also taken into account for the average.

Identifiers:

source-avg-tok-len

Example:

Parasympathetic postganglionic neurons release acetylcholine while

sympathetic postganglionic neurons release norepinephrine.

source-avg-tok-len = 9.5

108-110 Non-alphabetic tokens. Tokens that are not wholly composed of letters (such

as numerical expressions) are counted in the source (source-tok-not-az) and

target text (target-tok-not-az) to estimate how they are preserved. A ratio

between these values is also computed (s-t-ratio-tok-not-az).

Identifiers:

source-tok-not-az target-tok-not-az s-t-ratio-tok-not-az

Example:

El G8 acuerda dar 38.000 millones dólares para las reformas en cuatro

páıses árabes. target-tok-not-az = 2

111-113 Numbers. The proportions of numbers (integers and decimals) in the source

(source-num-pcent) and target text (target-num-pcent) are also computed

in order to check how they are preserved. A difference between these values

which is normalised by the target proportion is also calculated (s-t-diff-num-

norm).

Identifiers:

source-num-pcent target-num-pcent s-t-diff-num-norm

Example:

En 2012 se venderán 118,9 millones de tablets.

target-num-pcent = 2/9 = 0.22

114-118 Punctuation marks. We compute the number and proportion of punctuation

marks in the source (source-punc, source-punc-pcent) and target text

(target-punc, target-punc-pcent) plus a difference normalised by the

number of tokens in the target (s-t-diff-punc-norm). This and the following

indicators are expected to capture the relationship between the use of

punctuation in the source and target language.
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Identifiers:

source-punc

source-punc-pcent

target-punc

target-punc-pcent

s-t-diff-punc-norm

Example:

Tras bin Laden, ¿Quién es el más buscado del FBI?

target-punc = 3

119-120 Colons. We compute the absolute difference in the number of colons between

the source and target segments (s-t-diff-colons) in addition to a variation

which is normalised by the number of tokens in the target text (s-t-diff-

colons-norm).

Identifiers:

s-t-diff-colons s-t-diff-colons-norm

Example:

UEFA President Platini: Reprieve for Poland and Ukraine

El presidente de la UEFA, Platini: Respiro para Polonia y Ucrania

s-t-diff-colons = 1− 1 = 0

121-122 Semicolons. Absolute difference of semicolons between the source and target

segments (s-t-diff-semic) plus a variation normalised by the number of

tokens in the target text (s-t-diff-semic-norm).

Identifiers:

s-t-diff-semic s-t-diff-semic-norm

Example:

The Traffic Law only knows the term vehicle conductor; it does not

define the rights and responsibilities of that person.

* La Ley de Tráfico sólo conoce el plazo veh́ıculo director; no define

los derechos y responsabilidades de esa persona.

s-t-diff-semic = 1− 1 = 0

123-124 Commas. Absolute and normalised differences of commas between the source

and target text.

Identifiers:

s-t-diff-commas s-t-diff-commas-norm
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Example:

This year, interest in winter breaks is low due to the fact that there

is still no snow on the Krkonoše.

* Este año, el interés en invierno rompe es bajo, debido al hecho de

que todav́ıa no hay sobre la nieve Krkonoše.

s-t-diff-commas = 1− 2 = −1

125-126 Full stops. Absolute and normalised differences of full stops between the source

and target text.

Identifiers:

s-t-diff-periods s-t-diff-periods-norm

Example:

Obama has always been reticent in regards to his prize.

Obama ha sido siempre reticente en cuanto a su premio.

s-t-diff-periods = 1− 1 = 0

127-128 Exclamation marks. Absolute and normalised differences of exclamation marks

between the source and target text. It must be borne in mind that, unlike

English, Spanish requires two different exclamation marks: one at the beginning

(¡) and another at the end of the sentence (! ).

Identifiers:

s-t-diff-excm s-t-diff-excm-norm

Example:

How can any deny themselves the pleasure of my company!

* ¿Cómo puede negar cualquier por śı mismos el placer de mi empresa!

s-t-diff-excm = 1− 1 = 0

129-130 Question marks. Absolute and normalised differences of question marks between

the source and target text. It must be borne in mind that, unlike English,

Spanish requires two different question marks: one at the beginning (¿) and

another at the end of the sentence (? ).
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Identifiers:

s-t-diff-questm s-t-diff-questm-norm

Example:

How do you tell if someone is lying?

¿Cómo saber si alguien está mintiendo?

s-t-diff-questm = 1− 2 = −1

131 Mismatched quotation marks. This feature checks for mismatches of double or

single quotation marks in the target text.

Identifiers:

target-mis-qmarks

Example:

* Los periódicos rusos están describiendo el “Bulava” como “el cohete

flightless”. target-mis-qmarks = 0

132 Mismatched brackets. This feature checks for mismatches of round, square and

curly brackets in the target text.

Identifiers:

target-mis-brackets

Example:

Según AFP, los pistoleros forman parte del Nuevo Ejército Popular

(NPA), que es la facción armada del Partido Comunista de Filipinas

(CPP). target-mis-brackets = 0

133-147 Average translations per token. This feature estimates the average number

of translations of each token in the source sentence, providing a measure

of polysemic content in the source text. In order to compute this feature,

correspondences between a source word and its possible translations are derived

from the alignment of an auxiliary parallel corpus. The result of this alignment

is a table where each source token is paired with tokens in the target language

with a given probability (derived from the co-occurrences in the copora).

Estimations of the number of translations can then be extracted directly from

this table. In fact, we define two criteria to obtain different indicators.

The first criterion is a probability threshold, by which we only count a target

token towards the number of possible translations of a source token if it has a

probability greater than 0.01, 0.05, 0.1, 0.2 or 0.5 respectively.
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The second criterion is a normalisation factor, that is used to mitigate the

effect of token frequency on the estimations. We used three variations for

this purpose: 1) no normalisation (source-avg-trans-*), 2) normalisation by

source token frequency (source-avg-trans-*-freq) and 3) normalisation by

inverse source token frequency (source-avg-trans-005-*).

By combining these two criteria, we obtained 15 different estimations that

are then divided by the number of tokens in the source text to generate the

averages.

The reason why these estimates are considered shallow is that they are computed

using purely statistical methods on the surface tokens, without the help of

linguistic information. A downside to this method is the artificial increase

in translation probabilities caused by the unrestricted alignment of all source

tokens with all target tokens in each training pair of the corpus (Saers and Wu,

2009).

Identifiers:

source-avg-trans-001

source-avg-trans-001-freq

source-avg-trans-001-inv

source-avg-trans-005

source-avg-trans-005-freq

source-avg-trans-005-inv

source-avg-trans-01

source-avg-trans-01-freq

source-avg-trans-01-inv

source-avg-trans-02

source-avg-trans-02-freq

source-avg-trans-02-inv

source-avg-trans-05

source-avg-trans-05-freq

source-avg-trans-05-inv

Example:

City officials have categorically denied that accusation.

source-avg-trans-005 = 6.44

Many of the features described in this section have been proposed in previous QE

approaches and were included in our models to evaluate how they interact with our

new indicators. On the other hand, our work introduces 34 novel features (6 shallow

and 28 linguistic), which have been marked with ? throughout the section. Although

a few of them are variations of existing indicators (e.g. target-ttr), others are

original features for which specific extractors had to be implemented (e.g. target-

s-v-agree, target-unknown).

Table 3.1 shows a classification of all our 147 features according to the criteria

explained in section 3.2.1.
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Chapter 4

Evaluation

There is no difference between theory and practice. . . in theory.

But in practice, there is.

—Anonymous

The first part of this chapter focuses on our experimental setup (section 4.1),

describing our dataset, tools, evaluation metrics and training algorithm. The second

part (section 4.2) provides the results of our experiments (sections 4.2.1 and 4.2.2)

and a detailed analysis of performance (sections 4.2.3 and 4.2.4).

4.1 Experimental Setup

The following sections describe the experimental setup we used to test our quality

estimation proposal. We describe the datasets (section 4.1.1), tools for feature

extraction (section 4.1.2), the baseline system used for comparison (section 4.1.3),

evaluation metrics (section 4.1.4) and feature sets (section 4.1.5). Finally, we give a

brief description of Support Vector Machines and the training phase (section 4.1.6).

4.1.1 Datasets

For our experiments, we used the official training and test sets provided for the

WMT 2012 Quality Estimation Shared Task (Callison-Burch, Koehn, Monz, Post

et al., 2012). The training data comprised 1,832 English sentences extracted from

news texts and their translations into Spanish, produced by the SMT system Moses

(Koehn, Hoang, Birch, Callison-Burch et al., 2007) trained on a reduced version of

the English-Spanish Europarl parallel corpus (Koehn, 2005) provided for the WMT

2010 (Callison-Burch, Koehn, Monz, Peterson et al., 2010). Each of these pairs

also included an average quality score computed from three human judgements of

post-editing effort using the following scale:
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1: The MT output is incomprehensible, with little or no information transferred

accurately. It cannot be edited, needs to be translated from scratch.

2: About 50-70% of the MT output needs to be edited. It requires a significant

editing effort in order to reach publishable level.

3: About 25-50% of the MT output needs to be edited. It contains different errors

and mistranslations that need to be corrected.

4: About 10-25% of the MT output needs to be edited. It is generally clear and

intelligible.

5: The MT output is perfectly clear and intelligible. It is not necessarily a perfect

translation, but requires little to no editing.

The test set, on the other hand, consisted of another 422 instances produced in

the same fashion.

4.1.2 Resources

Features described in section 3.2 were extracted using a variety of resources. We

used TreeTagger (Schmid, 1995) for PoS tagging in English and FreeLing (Padró,

Collado, Reese, Lloberes et al., 2010) for Spanish, relying also on their tokenisation

and chunking for other features. Freeling was also used to obtain constituency and

dependency trees and perform named entity recognition in both languages.

For our language models, we used the SRILM toolkit (Stolcke, 2002) and two

different corpora: AnCora (Taulé, Mart́ı and Recasens, 2008) for Spanish and the

English section of the WMT 2010 Europarl-based corpus for English. The PoS

language models were built using PoS-tagged versions of the same corpora.

Unknown words in the target language were estimated using the JMySpell1

spell checker and the publicly available general Spanish (es ES) dictionary from the

OpenOffice suite2. In order to avoid wrong estimations, all named entities were

filtered out before the spell-checking phase, since they are not expected to be part of

the language.

The lists of deictic expressions we used were restricted to one-token words only

and compiled manually from different sources.

4.1.3 Baseline System

We used the official baseline system provided for the WMT 2012 QE Shared Task

to evaluate the performance of our models. The system was trained using the same

1Available at http://kenai.com/projects/jmyspell
2Available at http://www.openoffice.org/

48

http://kenai.com/projects/jmyspell
http://www.openoffice.org/


4.1. EXPERIMENTAL SETUP

learning algorithm as our models but uses only 17 shallow features that were found

to be the best in previous work (listed in Table 4.1).

Besides using standard error metrics (section 4.1.4), direct comparison between

the baseline and our models is also possible because they use the same machine

learning setup.

4.1.4 Evaluation Metrics

Performance of regression models is often measured in terms of prediction error. For

this reason, we adopted the following three standard error metrics to evaluate our

models (Witten, Frank and Hall, 2011, chap. 5):

Mean Absolute Error (MAE): This is a measure of absolute error expressed in

the same units as the predictions, which is why it can be easily interpreted.

Formally, it is defined as:

1

n

n∑
i=1

|yi − ŷi|

where n is the total number of evaluated instances, ŷi is the value predicted by

the estimator and yi is the expected true value.

Mean Squared Error (MSE): This is a common error metric that resembles

variance and is therefore expressed in quadratic units. Its definition is given by:

1

n

n∑
i=1

(yi − ŷi)2

Although it is the most widely used evaluation metric, it is known to magnify

the effect of outliers.

Root Mean Squared Error (RMSE): This metric is the square root of the MSE

and can be seen as analogous to standard deviation:√√√√ 1

n

n∑
i=1

(yi − ŷi)2

Since it is expressed in the same units as the predicted values, its interpretation

is also straightforward. Although RMSE values are similar in magnitude to

MAE, they are slightly greater.

In addition to these metrics, we also studied the correlation between expected

values and their predictions. To this end, we computed Pearson’s correlation
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coefficient, which is defined as:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

where xi represents each expected value, yi its prediction and x̄ and ȳ represent the

means of their corresponding distributions.

Values of r obtained from this formula range from -1 to 1. A value of 1 indicates a

perfect linear relationship between the variables which can be decreasing or increasing

depending on whether r is -1 or 1 respectively. On the other hand, a value of 0

denotes no relationship between the variables whereas any other intermediate value is

subject to interpretation. For the specific case of translation quality prediction, the

closer the Pearson correlation coefficient is to 1 or -1, the more reliable the estimator.

4.1.5 Feature Sets

In order to evaluate the impact of our proposed linguistic features, we built different

models using the following initial feature sets:

Baseline set: Includes 17 shallow features set as the official baseline in the WMT

2012 QE Shared Task. The model built from these features is known to be

very strong and hard to beat, since it includes some of the best features from

previous work in an attempt to push the state of the art within the shared

task.

Linguistic set: Comprises all the 70 linguistic features described in section 3.2.2.1.

Shallow set: Comprises all the 77 shallow features described in section 3.2.2.2,

which include the ones in the baseline set.

Baseline+linguistic set: Includes all the features from the baseline set plus the

ones in the linguistic set, amounting to 87 mixed features.

Full set: Comprises the sum of all feature sets, yielding a total of 147 mixed features.

The list of features included in each set is shown in Table 4.1.

4.1.6 Training

We built our models using Support Vector Machines regression, since it has been

proved to be successful for QE in previous work (see section 2.3.2).

SVMs are efficient supervised machine learning algorithms that can be used for

both classification and regression problems. When applied to binary classification,

SVMs find the optimal the optimal hyperplane that separates the classes and
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Name Features Total

Baseline source-avg-tok-len, source-avg-trans-001-inv,

source-avg-trans-02, source-bi-q1, source-bi-q4, source-logprob,

source-num-tokens, source-punc, source-tri-q1, source-tri-q4,

source-uni, source-uni-q1, source-uni-q4, target-logprob,

target-num-tokens, target-punc, target-ttr-bl

17

Linguistic s-t-ratio-cont-words-pcent, s-t-ratio-n-pcent,

s-t-ratio-pron-pcent, s-t-ratio-v-pcent, source-cont-words,

source-cont-words-pcent, source-deixis, source-dtree-depth,

source-dtree-width, source-func-words, source-func-words-pcent,

source-n-pcent, source-ne, source-ne-loc, source-ne-org,

source-ne-other, source-ne-per, source-np, source-pp,

source-ptree-depth, source-ptree-width, source-v-pcent,

source-vp, t-s-diff-deixis, t-s-diff-dtree-depth,

t-s-diff-dtree-width, t-s-diff-ne, t-s-diff-ne-loc,

t-s-diff-ne-org, t-s-diff-ne-other, t-s-diff-ne-per,

t-s-diff-np, t-s-diff-pp, t-s-diff-ptree-depth,

t-s-diff-ptree-width, t-s-diff-vp, target-cont-words,

target-cont-words-pcent, target-dang-det, target-deixis,

target-dtree-depth, target-dtree-width, target-exp-subj,

target-func-words, target-func-words-pcent, target-miss-contr,

target-n-pcent, target-ne, target-ne-loc, target-ne-org,

target-ne-other, target-ne-per, target-non-pron-subj,

target-np, target-pos-logprob, target-pos-logprob-bl,

target-pos-ppl, target-pos-ppl-bl, target-pp,

target-pron-subj, target-pron-subj-pcent, target-ptree-depth,

target-ptree-width, target-s-v-agree, target-s-v-agree-pcent,

target-unknown, target-v-pcent, target-vp, target-zero-subj,

target-zero-subj-pcent

70

Shallow s-t-diff-colons, s-t-diff-colons-norm, s-t-diff-commas,

s-t-diff-commas-norm, s-t-diff-excm, s-t-diff-excm-norm,

s-t-diff-num-norm, s-t-diff-periods, s-t-diff-periods-norm,

s-t-diff-punc-norm, s-t-diff-questm, s-t-diff-questm-norm,

s-t-diff-semic, s-t-diff-semic-norm, s-t-diff-tok-norm,

s-t-ratio-tok-not-az, s-t-token-ratio, source-avg-tok-len,

source-avg-trans-001, source-avg-trans-001-freq,

source-avg-trans-001-inv, source-avg-trans-005,

source-avg-trans-005-freq, source-avg-trans-005-inv,

source-avg-trans-01, source-avg-trans-01-freq,

source-avg-trans-01-inv, source-avg-trans-02,

source-avg-trans-02-freq, source-avg-trans-02-inv,

source-avg-trans-05, source-avg-trans-05-freq,

source-avg-trans-05-inv, source-avg-uni, source-bi,

source-bi-q1, source-bi-q2, source-bi-q3, source-bi-q4,

source-logprob, source-num-pcent, source-num-tokens,

source-num-types, source-ppl, source-ppl-no-smark, source-punc,

source-punc-pcent, source-tok-not-az, source-tri, source-tri-q1,

source-tri-q2, source-tri-q3, source-tri-q4, source-uni,

source-uni-q1, source-uni-q2, source-uni-q3, source-uni-q4,

t-s-token-ratio, target-corr-ttr, target-gi, target-jarvis-ttr,

target-log-ttr, target-logprob, target-mis-brackets,

target-mis-qmarks, target-num-pcent, target-num-tokens,

target-num-types, target-ppl, target-ppl-no-smark, target-punc,

target-punc-pcent, target-tok-not-az, target-ttr, target-ttr-bl,

target-ui

77

Baseline+
linguistic

All features from the baseline set plus the linguistic set. 87

Full set All features from the linguistic set plus the shallow set. 147

Table 4.1: Initial feature sets.

51



CHAPTER 4. EVALUATION

Figure 4.1: Two-dimensional classification using Support Vector Machines.

maximises the margin or distance between this hyperplane and its closest instances

(the support vectors). If a problem is not linearly separable, a kernel function is used

to map the data into a higher dimensional space where it can be linearly separated,

providing a solution to the original problem. Figure 4.1 illustrates this strategy.

SVMs also implement a cost parameter (C) which controls the trade-off between

allowing training errors and setting rigid margins. Whenever we increase this value,

we are increasing the cost of misclassifications, forcing the creation of more accurate

models that may result in overfitting. For this reason, it is important to find an

optimal value for this parameter.

Support Vector Regression (SVR) problems are modelled by minimising an error

function. Depending on the type of penalty that is imposed on misclassifications,

we can distinguish two versions: epsilon-SVR and nu-SVR. Epsilon-SVR, the one

adopted for our experiments, uses a parameter ε to define an acceptable distance

(margin) between the inferred function and training instances, ignoring all cases

beyond these limits (Figure 4.2). Besides C and ε, there is a third parameter, γ, that

is used in radial basis functions (a type of kernel function) to control the non-linearity

of the produced model.

Figure 4.2: SVM epsilon regression. Variable ε represents margin size while ξi and
ξ*
i are slack variables specifying the upper and lower training errors respectively.
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Feature set MAE ↓ MSE RMSE
Baseline+linguistic 0.674 0.681 0.825
Full set 0.681 0.710 0.842
Baseline 0.687 0.672 0.820
Shallow 0.691 0.713 0.844
Linguistic 0.716 0.791 0.889

Table 4.2: Error performance.

For our experiments, we used the LibSVM toolkit (Chang and Lin, 2011) to build

epsilon regression models for each of our feature sets. Training was performed using

a radial basis function kernel and optimal values for ε, C and γ estimated from prior

five-fold cross validation on the training set. We also used the default tolerance value

as the stopping criterion (=0.001).

Given that learning algorithms can be sensitive to high variance in the feature

space, our training and test data were scaled to a range from -1 to 1.

4.2 Results

In the following sections we present the performance of our models in terms of error

(section 4.2.1) and correlation (section 4.2.2). Further analysis of the efficacy of

linguistic features is presented in section 4.2.3, where we also describe the application

of a feature selection method to derive optimal feature sets. Finally, section 4.2.4

provides an interpretation of the results and a summary of the most challenging

aspects of the task.

4.2.1 Overall Prediction Performance

We evaluated each of our models on the test set and measured their performance

against gold standard annotations. The results of evaluation are shown in Table 4.2.

MAE values show that the two mixed sets of features (baseline+linguistic and

full set) beat the baseline features, although these differences are slight and not

statistically significant in any of the cases (paired t-test). On the other hand, the

‘pure’ feature sets (shallow and linguistic) fall slightly below the baseline, with the

drop in the linguistic set being the only statistically significant at 94% confidence

level (paired t-test, p <= 0.06). This would indicate that using a mix of linguistic

and shallow features is more effective than using only one type or the other, as

is further described in section 4.2.4. However, the rest of metrics give a different

picture. If we consider MSE, the baseline set outperforms all the others although

their differences are also very small. In any case, the three best performing sets are

still the baseline, baseline+linguistic and the full set.
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Figure 4.3: Comparison of true versus predicted scores for the three best feature sets.
The closer the predicted points are to the horizontal black lines, the better.

We also studied the distribution of predicted values and how they deviate from

the true scores. Figure 4.3 compares predictions of the three best performing sets

against the gold standard, taking the baseline set as a reference.

All models seem to have a similar pattern of behaviour, exhibiting considerable

dispersion around the expected values and systematic fluctuation. At times, the

models converge in their predictions, especially for true scores ranging from 2.5 to 3,

3.5 to 3.7 and at 5, although they can be quite dissimilar at the beginning of the

spectrum.

The fluctuation of predicted values for a single score is also very noticeable,

spanning more than one band in many cases. On the other hand, if we consider

scores in four bands (1-2, 2-3, 3-4 and 4-5) we find their individual predictions fall

consistently into an approximate range from 2 to 4, showing a systematic amplitude.

Nevertheless, our error analysis indicates predictions deviate around 0.68 (MAE) and

0.83 (RMSE) absolute points on average.

Figure 4.4 contrasts the distribution of the linguistic and shallow sets, with the

linguistic set as reference. Unlike the previous models, these sets exhibit a clearer

difference in predictions, with greater dispersion and fewer similar points. One of the

reasons for this is that they encode different kinds of information, whose impact on

predictions confirms that linguistic and shallow features account for different aspects

of translations indeed. On the other hand, the first three models share many features

between them, which somehow levels performance, whereas the linguistic and shallow

sets have no features in common.
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Figure 4.4: Comparison of true versus predicted scores for the linguistic and shallow
feature sets. The closer the predicted points are to the horizontal black lines, the
better.

As regards the variability of predictions, fluctuation is similar to that in the best

three models, although slightly higher. Average MAE and RMSE are 0.70 and 0.80

respectively.

4.2.2 Correlation Analysis

A correlation analysis shows the baseline is the best performing set with a Pearson

coefficient of 0.566 whereas the linguistic set is the worst with 0.456 (Table 4.3). Figure

4.5 includes individual scatter plots for each of the models where the relationship

between true scores and predictions can be seen more clearly. These distributions

reveal similar moderate dispersion for all models and some difficulty predicting values

in the 1-2 range, possibly affected by a lower representation in the training data.

Feature set Pearson ↑
Baseline 0.566
Baseline+linguistic 0.555
Full set 0.522
Shallow 0.518
Linguistic 0.456

Table 4.3: Correlation performance.
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Figure 4.5: Correlation of true scores (x axis) versus predictions (y axis) for the
evaluated feature sets.

These plots also show a consistent outlier: a bad translation (with a true score of

1) that is regarded as very good (with predictions greater than 3.5). The original

and its translation are as follows:

I won ’t give it away .

* He ganado ’ t darle .

This is clearly due to faulty tokenisation by the MT system which translated

the halves separated by the apostrophe in isolation. As a result, the translations

are acceptable for the isolated bits but not for the sentence as a whole. This may

reveal that our features act at a very local level and are therefore unable to detect

the global mismatch in meaning between the two sentences. More details about this

kind of observed phenomena are given in section 4.2.4.

4.2.3 The Role of Linguistic Features

At first glance, the performance of our models might suggest that the integration of

linguistic information is not highly beneficial for QE since the gain observed for the

sets containing linguistically-motivated features is very modest with regard to the

baseline. In addition, the fully linguistic set performs poorly when compared to the

shallow set, which might question the efficiency of this type of feature.
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However, we believe this behaviour may be due to two reasons. The first one

is that our linguistic features may simply not be expressive enough to capture the

differences in quality in our datasets. If this is found to be the case, then the

worst-performing features should be replaced with new ones.

Our second hypothesis is that our models may have too many features for too little

training data, a fact that is known to affect the performance of learning algorithms.

As a result, we performed a detailed analysis of the contribution of each feature,

which is essential to find the most discriminating features and overcome these potential

problems in the future.

Our first analysis was aimed at discovering the best and worst performing features.

For this purpose, we took the full set of features and trained and tested models

using: 1) one feature at a time and 2) all but one feature at a time. In the first case,

our models rely on only one feature so the results are direct indicators of individual

efficiency. In the second case, models are built using 146 features and show how

performance suffers after the deletion of a feature (i.e. how each feature works with

others in the set, whether they are found to be redundant or complementary). The

ten best and worst features obtained from these experiments are listed in Table 4.4.

These results show that purely statistical shallow features lead the table, which

is not surprising given the fact that n-gram language models have been proved to be

highly versatile for many NLP applications. Nevertheless, linguistic features make

up a significant proportion of these best features, showing that they are as good

as many other shallow indicators. This is also backed up by the low proportion of

linguistic features among the worst ones, where shallow features take the lead.

This table also allows us to identify the kind of information that seems to be

the most and least relevant for our models. It is clear, for instance, that n-gram

information on the target text is very helpful, be it linguistic (target-pos-logprob)

or not (source-bi-q4, target-logprob), as well as parse tree width (target-

ptree-width, t-s-diff-ptree-width) and noun information (target-np, target-

n-pcent). On the other hand, source trigrams, target named entities (target-ne-

org, target-ne-loc, target-ne-per), subject information (target-s-v-agree-

pcent, target-zero-subj-pcent) and type-token ratios (target-log-ttr, target-

jarvis-ttr, target-corr-ttr) do not seem to be very informative. Consistently

good or bad features are enclosed in boxes.

As a side note, we have also observed that RMSE on the test set for models built

on only one feature ranges from 0.912 (best) to 1.000 (worst) while those with all

but one feature range from 0.826 (best) to 0.855 (worst). This not only shows that

features have variable discriminative power but also reveals that the difference in

performance between using one and almost all features is not excessively large (0.086

and 0.145 for the best and worst cases respectively).
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Rank One-feature model Leave-one-feature-out model

1 source-bi-q4 source-avg-tok-len

2 source-logprob source-bi-q4

3 target-logprob target-unknown l

4 source-bi target-logprob

5 target-pos-logprob l t-s-diff-ptree-width l

6 target-pos-logprob-bl l source-avg-trans-001-freq

7 source-uni-q4 target-n-pcent l

8 target-ptree-width l s-t-ratio-pron-pcent l

9 target-np l target-pos-logprob l

10 source-tri-q4 t-s-token-ratio

138 target-func-words-pcent l source-bi-q2

139 source-avg-trans-02-inv target-zero-subj-pcent l

140 target-ne-org l source-tri-q1

141 target-log-ttr source-tri-q2

142 source-tri-q1 target-jarvis-ttr

143 target-s-v-agree-pcent l s-t-diff-periods

144 source-tri-q2 source-bi

145 target-ne-loc l target-ne-per l

146 source-tri-q3 target-corr-ttr

147 source-avg-trans-05-inv source-tri-q3

Table 4.4: List of best and worst performing features over the test set. Linguistic
features are marked with l while repeated features in the two sets are enclosed in
boxes.

Our second analysis was aimed at finding the subset of features that would yield

optimal performance on the test set, so that we could draw further conclusions. In

practice, this was equivalent to finding a realistic lower bound for the error metrics

we used, given our features and datasets.

For this analysis, we decomposed the problem into the following three main

questions, which are dealt with separately:

1. What set of features would achieve the best performance on the test set?

2. How does this optimal set compare to our existing feature sets?

3. What is the drop in performance when feature selection is performed on the

training set?

The first question is essentially a feature selection problem, where the optimal set

of features is found by testing our models directly on the test set. Although there are

many selection techniques for producing optimal sets of features, the simplest and
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Name Features Total

Best-test source-bi-q4, target-pos-logprob, source-avg-tok-len,

target-gi, target-unknown, t-s-diff-vp, t-s-diff-ptree-width,

target-tok-not-az, t-s-token-ratio, source-tri-q4,

source-cont-words, source-ppl, s-t-ratio-pron-pcent,

target-np, source-avg-trans-005-freq, target-logprob,

target-pos-logprob-bl, t-s-diff-dtree-depth, source-np,

source-num-tokens, target-cont-words, source-uni-q3,

source-uni-q1, source-uni-q2, source-avg-trans-001-freq,

s-t-ratio-tok-not-az, s-t-diff-questm-norm,

target-pron-subj-pcent, target-v-pcent, source-ptree-width,

s-t-diff-questm, source-avg-trans-02, t-s-diff-ne-per,

s-t-diff-periods-norm, s-t-diff-semic-norm, source-ppl-no-smark,

s-t-diff-periods

37

Table 4.5: Optimal set of features obtained from feature selection on the test set (in
order of selection).

least heuristic approach to find the globally optimal set required building a model

for every possible partition of our full feature set, which was not feasible in practice3.

As a result, we opted for a Sequential Forward Selection method (Alpaydin, 2010,

chap. 6) that allowed us to find suboptimal feature sets using substantially fewer

iterations4. Using this method, we start from an empty set and build models adding

one feature at a time, keeping in the set only the features that decrease the error on

the evaluation data until no further improvement is possible. Since this method uses

a hill climbing strategy, the algorithm is not guaranteed to find a global optimum.

However, a local optimum was equally acceptable for our purpose. The resulting

feature set found by our method (called best-test) is included in Table 4.5.

In order to answer our second question and find out how this set compares to

the rest, we built a new regression model using the training data and the features

from the best-test set. This model was then evaluated on the test set using the same

metrics as before, whose values are reported in Table 4.6.

The comparison of these results with our best sets reveal there is a decrease of

10.03% in MAE and 14.63% in MSE with regard to the baseline model, 8.32% and

15.63% against the baseline+linguistic set, and 9.31% and 19.09% respectively against

the full set. Improvements in predictions were found to be statistically significant in

the first two cases, with 92% confidence (paired t-test, p < 0.08) and 95% confidence

Feature set MAE MSE RMSE Pearson
Best-test 0.618 0.574 0.758 0.647

Table 4.6: Best-test performance.

3For 147 features, there are 2147 possible feature sets (i.e. models) to test.
4For 147 features, the maximum number of sets (i.e. models) that are explored in the worst case

is 147 × (147 + 1)/2 = 10, 878.
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Name Features Total

Best-
cross-
validation

target-logprob, target-pos-logprob, source-avg-tok-len,

target-tok-not-az, source-logprob, s-t-diff-questm-norm,

source-uni, source-ptree-depth, source-num-tokens,

source-dtree-width, source-bi-q4, target-pos-ppl,

target-n-pcent, s-t-diff-commas-norm, source-tri-q3, source-ppl,

source-cont-words-pcent, source-bi-q1

18

Best-train source-logprob, source-bi-q4, target-pos-logprob,

source-num-tokens, source-avg-tok-len, target-tok-not-az,

target-logprob, target-num-types, source-ptree-depth,

source-ppl, target-s-v-agree-pcent, source-ne,

target-jarvis-ttr, target-ttr, source-bi,

source-avg-trans-001-freq, source-uni, source-avg-trans-05-freq,

source-cont-words-pcent, target-zero-subj-pcent, source-v-pcent,

s-t-diff-questm, source-tri, source-ne-other, target-n-pcent,

target-ne, target-unknown, source-pp, source-dtree-width,

source-avg-trans-001, source-avg-trans-02, target-ne-org,

target-dang-det, target-punc, t-s-diff-dtree-depth,

source-tri-q1, source-n-pcent, target-cont-words-pcent,

target-pron-subj, source-bi-q2, t-s-diff-np,

source-avg-trans-02-freq, source-uni-q1, t-s-diff-ptree-depth,

target-ne-per, source-avg-trans-05-inv, s-t-ratio-v-pcent,

t-s-diff-ne, source-uni-q3, target-dtree-width,

target-non-pron-subj, target-punc-pcent, target-s-v-agree,

source-tri-q4, target-ttr-bl, source-deixis, source-ne-org,

t-s-diff-ptree-width, s-t-token-ratio, t-s-diff-pp,

target-num-pcent, source-uni-q4, s-t-ratio-cont-words-pcent,

t-s-diff-vp, s-t-ratio-tok-not-az, t-s-diff-deixis,

target-corr-ttr, s-t-ratio-n-pcent, t-s-diff-ne-loc,

s-t-diff-punc-norm, source-tok-not-az

71

Table 4.7: Optimal sets of features obtained from feature selection on the training
set (in order of selection).

(paired t-test, p < 0.05) when compared to the baseline and baseline+linguistic

sets respectively. Furthermore, the correlation is also increased by 8.08% over the

best correlated set (i.e. the baseline). Given that most of these improvements

are significant, we can compare the composition of all these sets and draw reliable

conclusions regarding the role of our linguistic features.

The first factor we analysed was the proportion of linguistic features in the sets.

From the best to the worst models (in terms of MAE), proportions are: 41% for best-

test, 80% for baseline+linguistic, 48% for the full set and 0% for the baseline. Except

for this last set, which shows performance can be comparatively good using only

shallow features, the best three performing sets confirm that a significant proportion

of linguistic information contributes to improving performance. In addition, this

reinforces our hypothesis that a hybrid set of features produces better results than a

purely linguistic or shallow set.

The second aspect we studied was the kind of linguistic information that

is integrated into the best-test set, which helps us gain deeper insight into

the most useful indicators. Out of the fifteen linguistic features in this set,

six of them appear among the best in Table 4.4 (s-t-ratio-pron-pcent, t-s-
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Feature set MAE ↓ MSE ↓ RMSE ↓ Pearson ↑
Best-cross-validation 0.667 0.674 0.821 0.560
Best-train 0.671 0.687 0.829 0.545

Table 4.8: Performance of best feature sets obtained from cross-validation and the
full training set.

diff-ptree-width, target-np, target-pos-logprob, target-pos-logprob-bl,

target-unknown) while another one is not on the list but is closely related to one of

the best features (source-ptree-width→ target-ptree-width), confirming they

are indeed the most effective linguistic indicators.

The third and last question of our analysis focuses on alternative ways of deriving

optimal feature sets from the training data. In particular, we applied the same

feature selection method as before but using different strategies on the training

set: 1) performing ten-fold cross-validation, and 2) training and testing on the full

training set. Features obtained in each case are included in Table 4.7.

Each of these sets was then used to build and test new regression models using

the full training and test sets respectively, achieving the results shown in Table 4.8.

Although neither of these models is able to outperform the best-test set, they

prove to be very good alternatives given the fact that they do not require information

from the test set. A quick comparison with the rest of our initial models shows that

the best-cross-validation set achieves the best MAE values and beats all other hybrid

sets as regards overall performance, although these improvements are not statistically

significant when compared to the baseline, baseline+linguistic or full set. On the

other hand, correlation is slightly lower than that of the baseline set but this fact

might be disregarded in favour of better error performance given that the difference

is not significant.

Out of the total 18 features in the best-cross-validation set, 33% are linguistic

and embody some of the most discriminative indicators we discovered in previous

analyses, such as target-n-pcent and target-pos-logprob.

4.2.4 Findings and Challenges

Overall, MT quality estimation seems to be a difficult task and almost as challenging

as translation itself. Producing a computational model to assess quality is not only

complicated in terms of finding appropriate features and their representations but

also in terms of actual correlation with human judgements, since quality is often

perceived differently from one person to another. The following sections describe

factors that were found to affect our QE models.
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4.2.4.1 Human Agreement

In order to analyse human agreement on translation quality, we examined the initial

set of translations that was used to compile the training and test data used in our

experiments. Each translation was annotated by three human experts, shown in

brackets in the examples below. Disagreement was considered to happen whenever

the difference between any two annotations for a single translation was greater than

one, in which case the translation was excluded from the dataset. Using this data,

we could observe that most disagreements were influenced by the following factors:

1. Differences in the structure of sentences and how information is expressed

(e.g. active-passive voice shift, variations in predicate-argument structure, etc.).

Examples:

a. This will let you have two user profiles at once on the same phone.

Esto va a permitir que haya dos perfiles de usuario de una vez sobre

el mismo teléfono. (4) (3) (5)

Although the translation is grammatical and conveys the original meaning,

there are two noticeable facts that may have an impact on perception: 1) a

change in the verbal construction (the indirect object ‘you’ is dropped and

an impersonal construction is used instead) and 2) a few expressions that are

unsuitable for this context and make the sentence sound slightly unnatural (‘de

una vez’, ‘sobre el mismo teléfono’).

b. Still, Friday featured the same sort of verbal fireworks that have

dominated the talks for the past week.

* Aún aśı, el viernes aparećıa el mismo tipo de fuegos artificiales verbal

que han dominado las conversaciones de la pasada semana.

(4) (2) (5)

Here, the translation succeeds at replicating the figurative expression in the

original by using a very wise translation of the main verb (‘featured’ →
‘aparećıa’) but it fails to produce correct inflections for other words. The

most interesting aspect of this translation is that the chosen form of the main

verb (‘aparećıa’) changes the original predicate-argument structure while still

producing a faithful result. However, this seems to be a casual rather than

intended effect, which is why it may be perceived with scepticism.

2. Differences in the interpretation of the translation, sometimes even disregarding

the original intention.
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Examples:

a. The challenge was to speak like he does.

El reto era hablar como lo hace. (4) (3) (5)

In this case, the translation is grammatically correct but it misses the original

emphasis on ‘he’, losing the intended reference.

b. Since Denis Kuljaš was injured, we urgently need another defender.

* Desde Denis Kuljaš resultó herido, necesitamos urgentemente otro

defensor. (4) (3) (5)

If ‘since’ had introduced a point in time, then the translation would only miss

‘que’ after ‘desde’ to be completely right, which is why some people would

assign a high score to it. However, ‘since’ is used to introduce a reason in the

original sentence, which is why the translation is actually inaccurate.

3. Discrepancies in the way humans regard the different aspects of quality (see

section 3.1) and how lenient they are with translation errors. The following

are some examples by aspect:

Grammaticality

Pakistani officials unraveling plot to send men to Afghanistan.

* Funcionarios paquistańıes deshilachado trama enviar a los hombres

a Afganistán. (4) (2) (3)

Substantially different scores assigned despite the evident lack of grammaticality.

Accuracy

a. The Bulava has generally not lifted off or has been damaged in the air.

* Los Bulava en general ha levantado o no se ha visto perjudicado en

el aire. (3) (1) (3)

Apart from a few infelicities, the translation says exactly the opposite of the

original sentence. Surprisingly, while one annotator considered it completely

wrong for this reason, others gave it a fair score.

b. New vaccinations

Nuevas vacunas (5) (3) (5)
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Although the translation looks good on the surface, rendering ‘vaccinations’ as

‘vacunas’ (instead of ‘vacunaciones’) introduces a subtle difference in meaning

that not all people know or perceive.

c. It’s a real art form, and you need time and steady nerves.

Es un verdadero arte, y se necesita tiempo y nervios templados.

(3) (4) (5)

Again, this is a case of inaccurate translation that may sound awkward to some

but acceptable to others.

Punctuation

Click here to find out more!

* Clic aqúı para averiguar más! (5) (3) (5)

Proper punctuation is often disregarded. In this case, the opening exclamation

mark (¡) is missing at the beginning of the sentence.

4. Unexplained inconsistencies in the annotation process.

Example:

Russian companies Lukoil and Gazprom were the top stakeholders in

two of the contracts awarded this weekend.

Las empresas rusas Lukoil y Gazprom fueron las principales partes

interesadas en dos de los contratos concedidos este fin de semana.

(5) (5) (3)

While the translation is flawless, one of the annotators gave it only a fair score.

The inconsistency of his annotation became evident when he gave the maximum

score to exactly the same sentence that was proposed as an alternative.

Out of the 1,000 translation instances in the analysed set, 148 were considered

to disagree while 852 were deemed suitable enough for inclusion on the training set,

representing 14,8% and 85,2% respectively. These differences in the perception of

quality raise the question of whether we can actually evaluate computational models

in terms of correlation with human judgements, given that there is no clear consensus

on this matter.
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4.2.4.2 Datasets

The size of the dataset used to build a model is also a relevant factor and is

directly related to the number features and classes. In our case, the total number

of training instances (1,832) may not be enough to build a very successful model

that differentiates 5 classes using 147 features. Provided a much larger training set

was used and the number of classes was reduced, more accurate models could be

built, such as the one by Bach, Huang and Al-Onaizan (2011). In cases where larger

datasets are not available, feature selection could help reduce dimensionality and

minimise the effect of a small training set.

4.2.4.3 Linguistic Resources

Linguistic resources also impose a limitation on the performance of our models. In

the first place, resources such as monolingual corpora, dictionaries, spell checkers,

grammar checkers, tokenisers, parsers, named entity recognisers and even semantic

role labellers may simply not be available for certain languages or be difficult to

exploit (because they use different representations, for instance). As a result, the

lack of appropriate tools precludes the exploitation of many linguistic indicators and

positions shallow features in an advantageous position within the models.

A second concern is the reliability of these resources. On the one hand, they

are naturally limited by approaching linguistic analysis in ‘hard’ numerical terms

while, on the other, they tend to produce inaccurate results for ungrammatical input,

thus leading to further errors in the computation of features. One such example is

the application of constituency parsing to ill-formed translations, which can easily

produce an incorrect structure that is further propagated to other features, like the

estimation of subject-verb agreement or dangling determiners (see Table 4.9 for an

example). It is then expected that the development of robust linguistic processors

will help reduce the number of errors in the estimations and therefore lead to a more

significant increase in performance.

4.2.4.4 Linguistic Features

Our linguistically-informed models also seem to suggest that many features are

limited in their scope. Firstly, most of them act on only one text (either the source

or target) and even those aimed at capturing details of the transfer process are based

on these isolated estimations. Examples include the differences in noun and verb

phrases as well as mismatched named entities, all of which are computed from the

individual values on the source and target texts. However, estimating the accuracy

of translations in this fashion does not seem very reliable.
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Automatic parsing (FreeLing) Features

S

PP

NP

N

CIA.

DET

la

PREP

de

PP

NP

ADJ

oficial

DET

un

PREP

a

VP

V

detiene

VP

V

Irán

target-num-tokens = 8
target-n-pcent = 0.125
target-v-pcent = 0.25
target-vp = 2
target-ptree-width = 4
target-exp-subj = 0
target-zero-subj = 2
target-s-v-agree = 0
target-dang-det = 1
target-punc = 0
target-ne = 0
target-ne-loc = 0

Human parsing Features

S

FS

.

VP

PP

NP

N

CIA

DET

la

PREP

de

PP

NP

N

oficial

DET

un

PREP

a

V

detiene

NP

N

Irán

target-num-tokens = 9
target-n-pcent = 0.33
target-v-pcent = 0.11
target-vp = 1
target-ptree-width = 3
target-exp-subj = 1
target-zero-subj = 0
target-s-v-agree = 1
target-dang-det = 0
target-punc = 1
target-ne = 1
target-ne-loc = 1

Table 4.9: Automatic vs. human parsing of a Spanish sentence and its impact on
linguistic of features.

On the one hand, differences between source and target values can be expressed

in many ways, for example by computing ordinary subtraction, unsigned subtraction,

proportions, etc. In turn, each of these alternatives will yield a specific distribution of

values and characterise this aspect differently, causing variations in final predictions.

As we mentioned in section 3.2.2, ordinary subtraction was found to be the most

effective operation for contrasting features and the one we mostly adopted in our

experiments. In a few cases, we decided to keep the original individual values instead

of computing contrastive features, in an attempt to let the machine learning algorithm

find the most likely relationship between the variables.

The other noticeable effect of estimating accuracy from individual values is that

they might not indicate a real match of the evaluated feature. The main reason for

this is the inability of contrastive features to check for true linguistic correspondences

instead of relying on simple counts. As an example, consider the case of named entity

matches and how they can be wrongly estimated for this reason:

a. The last training session was on Monday night, on the [LOC Manhattan]

side of the [ORG East River ].

* La última sesión de entrenamiento fue el lunes por la noche, en [LOC

Manhattan] lado del [OTHER Medio] ŕıo.
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t-s-diff-ne = 0

t-s-diff-ne-loc = 0

t-s-diff-ne-org = −1

t-s-diff-ne-other = 1

The total difference of named entities (t-s-diff-ne) is estimated as 0, when

in fact the entity East River is completely lost.

b. The [ORG NATO ] mission officially ended [ORG Oct.] 31.

* La misión de la [ORG OTAN ] terminó oficialmente [ORG PTUM ]. 31.

t-s-diff-ne = 0

t-s-diff-ne-loc = 0

t-s-diff-ne-org = 0

t-s-diff-ne-other = 0

In this case, not only is Oct. wrongly recognised as an entity but it is also

lost in the translation despite the value of t-s-diff-ne.

Sparsity is also a central issue in the assessment of quality because not all

linguistic phenomena occur in all sentences. As a result, many features that would

be specially informative may not be applicable to a specific translation pair and

be mostly useless. This implies that the learning algorithm should be capable of

discerning what features are the most suitable for assessing each specific translation

according to the traits it exhibits, but again this may be hindered if no special

value is used to signal non-observed phenomena (especially for contrastive features).

Some typical examples of sparse features are named entities, numerical expressions,

infrequent punctuation marks and non-alphabetic tokens, since they are not expected

to occur in most sentences.

Our linguistic features also seem to act at a local level rather than globally. This

becomes especially evident in cases where a translation misses the meaning of the

original sentence, despite having many aspects in common. This reinforces the idea

that more global features are needed to achieve better estimations, such as overall

grammar checking, the identification of semantic roles and lexicon accuracy. The

following examples show pairs of sentences with many local matches where overall

translation quality is low:

a. [PER Scalia] and [LOC Thomas] [V dine] with [N healthcare] [N law ]

[N challengers] as [N court ] [V takes] [N case].

* [ORG Scalia] y [ORG Thomas] [V cenar ] con la [N asistencia] sanitaria

[N ley ] retadores como [ORG Tribunal ] [V tiene] [N caso].

(too literal)
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b. It [V was ] as big as a [N suitcase], [V had ] a small cathode [N ray ] [N tube]

[N display ], and [PRON I ] [V fell ] in [N love] with [PRON it ].

* [V Fue] tan grande como una [N maleta], [V hab́ıa] un pequeño [N rayo]

catódicos [N tubo] [N exhibición], y [PRON me] [V cayeron] en el [N amor ]

con [PRON él ].

(bad lexical choice and inability to translate idiomatic expressions)

4.2.4.5 Feature Selection

Our experiments have also shown that feature selection is crucial to finding an optimal

set of features for quality estimation (see section 4.2.3), supporting the observations

by Specia, Turchi, Cancedda, Dymetman et al. (2009). This not only proved that

reducing the feature space was beneficial but it also revealed that linguistic features

can be as informative as many shallow features. This also suggests that these features

are not interchangeable but actually complementary and should then be carefully

combined to achieve optimal results.

In order to further investigate this complementarity, we studied how linguistically-

informed feature sets compare to shallow sets in individual sentences. Our aim was

to identify whether linguistic features were better at predicting certain types of

sentences than shallow features and how this explains complementarity.

Table 4.10 includes the results of comparing our initial feature sets over the 422

test sentences grouped by score classes. Each cell indicates the number of sentences in

the class interval that are estimated more accurately on one model than on the other

(i.e. how many sentences are predicted with less error than on the other model).

Class Full set Base.+ling. Linguistic Linguistic
[1-2) 11 10 11 13
[2-3) 61 62 74 80
[3-4) 77 79 76 74
[4-5] 67 59 69 61
Total 216 210 230 228

51.18% 49.76% 54.50% 54.03%
vs.

Class Shallow Baseline Shallow Baseline
[1-2) 5 6 5 3
[2-3) 73 72 60 54
[3-4) 70 68 71 73
[4-5] 58 66 56 64
Total 206 212 192 194

48.82% 50.24% 45.50% 45.97%

Table 4.10: Comparison of sentence prediction accuracy between linguistically-
enriched and shallow feature sets.

68



4.2. RESULTS

System ID MAE RMSE
? SDLLW M5PbestDeltaAvg 0.61 0.75

UU best 0.64 0.79
SDLLW SVM 0.64 0.78

UU bltk 0.64 0.79
Loria SVMlinear 0.68 0.82

UEdin 0.68 0.82
TCD M5P-resources-only 0.68 0.82

Baseline (17FFs SVM) 0.69 0.82
Loria SVMrbf 0.69 0.83

SJTU 0.69 0.83
WLV-SHEF FS 0.69 0.85

PRHLT-UPV 0.70 0.85
WLV-SHEF BL 0.72 0.86

DCU-SYMC unconstrained 0.75 0.97
DFKI grcfs-mars 0.82 0.98
DFKI cfs-plsreg 0.82 0.99

UPC 1 0.84 1.01
DCU-SYMC constrained 0.86 1.12

UPC 2 0.87 1.04
TCD M5P-all 2.09 2.32

Table 4.11: Official results for the scoring sub-task of the WMT 2012 Quality
Evaluation Shared Task (Callison-Burch, Koehn, Monz, Post et al., 2012). The
winning submission is indicated by a ? (result statistically-significant at p = 0.05).
The systems in the middle grey area are not different from the baseline system at a
statistically-significant level (p = 0.05).

Results show that the addition of linguistic information is clearly complementary,

since, on average, it helps predict 52.37% of sentences more accurately than using

shallow features alone. These figures also reveal that linguistically-enriched sets

consistently outperform shallow sets at predicting scores in classes 1-2 and 3-4, while

success in classes 2-3 and 4-5 is evenly divided. Overall, these numbers not only

confirm that the error decreases with the use of linguistic features but also that a

higher level of refinement is also achieved.

Finally, given that linguistic features require additional resources, time and effort

to be computed, it may be questioned whether they are worth using in QE to achieve

only a modest improvement. However, our experiments have proved that a carefully

combined set of linguistic and shallow features can indeed achieve a statistically

significant improvement and reduce the number of total features considerably when

compared to the full and baseline+linguistic sets.

4.2.5 Comparison with State-of-the-Art Systems

As was mentioned in section 1.3, two earlier versions of our models were submitted

to the WMT 2012 Quality Estimation Shared Task, which allowed us to see how
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they compared to other systems. Submissions were evaluated according to two

different sub-tasks: the scoring of translations on a scale from 1 to 5 and the ranking

of translations from the best to the worst. However, only the scoring results are

reported in this section.

The performance and ranking of participating systems is included in Table

4.11. Our submitted models were WLV-SHEF FS (built on the full set of features)

and WLV-SHEF BL (built on the baseline+linguistic set) but their results in the

competition were different from the ones reported in this work because of differences

in the implementations of some features. In particular, our new results (see Table

4.2) show that these sets now achieve values of 0.67 and 0.68 for MAE and 0.82 and

0.84 for RMSE respectively (all rounded), although they would still be considered in

the grey area (i.e. not statistically significant).

On the other hand, our new feature sets obtained from feature selection yield even

better results (see Table 4.8) and would then rank higher among these state-of-the-art

systems.
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Conclusions and Future Work

This work has presented a study of linguistic features for estimating machine

translation quality. Our approach starts from a review of desirable aspects of

translation and derives related computational features that are used to build a

supervised machine learning model. Experiments were conducted using an English-

Spanish dataset enriched with quality judgements of post-editing requirements on

a scale from 1 (re-translation required) to 5 (fit for publication), containing 1,832

sentences for training and 422 for testing. Models were built using SVM epsilon

regression with a radial basis kernel function and optimised learning parameters.

In order to evaluate the performance of our proposed features, we trained

and compared several regression models using different proportions of shallow and

linguistic information. In addition, we studied the best and worst performing features

and applied a feature selection algorithm to derive optimal sets.

5.1 Main Observations

Evaluation of our models revealed that linguistically-enriched feature sets are able to

reduce MAE when compared to a baseline containing only shallow features, although

this improvement is often slight and statistically insignificant. On the other hand,

values for MSE and RMSE are lower in the baseline model but this difference is not

significant either.

We also observed that the best three performing feature sets (baseline, baseline+

linguistic and the full set) behave similarly whereas a comparison of the linguistic and

shallow sets reveal marked differences. We believe this is a clear indicator that these

features capture different aspects of translations and are therefore complementary.

In terms of correlation, the best and worst models correspond to the baseline and

linguistic sets respectively. For all sets, however, we found the range of predictions

for a single true score fluctuates very similarly.
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An analysis of individual features revealed that target PoS n-gram probabilities

and phrase structure information are the most relevant indicators whereas source

trigrams and target features such as named entities, subject agreements and token-

type ratios are the least informative.

Additionally, we applied a feature selection algorithm to training and test data

to find optimal feature sets. Results indicate that all the extracted optimal sets

include a considerable proportion of linguistic features, confirming the hypothesis

that they are complementary to shallow features and contribute to achieving better

results. In particular, optimal features derived from the test set produced significant

improvements in MAE, MSE and correlation when compared to the best sets.

The results of our experiments suggest that QE is a difficult task, especially when

compared to reference-based evaluation. Intuitively, MT evaluation seems easier

given that references and translation hypotheses are in the same language and can

be compared straightforwardly but this is not possible in QE. In fact, it is very

difficult to compare segments in different languages because they use different words,

structures or even alphabets. In addition, the kind of linguistic information that can

be extracted for each segment depends on the availability of appropriate tools and

this can be a problem for low-resource languages.

With regard to our linguistic features, we believe there are many factors that

may have led to moderate performance:

1. Human ratings are not always homogeneous and are often based on different

perceptions of quality.

2. The five-point scale used for scoring translations might be too fine-grained for

our learning algorithm.

3. The small size of the training set may be also be a problem, especially when a

large number of features is used.

4. The lack of advanced linguistic processors for the source and target language

precluded the implementation of more informative linguistic features, such as

semantic roles or well-formedness estimations.

5. Automatic parsers might not be robust enough to parse sentences reliably

(especially ungrammatical ones), which may introduce further errors in the

estimations.

6. The sparsity of some features may also be problem, since not all sentences

exhibit the same linguistic phenomena. This may render some feature useless

in many cases, such as named entities or numerical expressions.
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7. Most of our linguistic features seem to act at a very local level, therefore being

unable to capture more global information like grammatical correctness or

preservation of original meaning.

8. Our set of linguistic features may not be large or expressive enough to capture

the difference between quality scores.

Although some of these problems can be circumvented by refining the experimental

setup, many others require the development of new automatic tools and further

empirical analysis of linguistic phenomena, some of which are addressed in our

proposals for future research.

5.2 Future Work

The directions for future research described in this section are intended to address

the problems evidenced in our current approach and investigate performance in other

settings.

The first of our proposals is the design and implementation of new linguistic

features. In particular, this includes more global indicators such as sentence

grammaticality (which could be approximated by using probabilities from a parser),

semantic roles (by projection, for example) and latent semantic analysis, which are

expected to model fidelity more reliably. Additional features include, but are not

limited to, new language models using large corpora (such as Wikipedia dumps),

hybrid n-grams mixing tokens and PoS tags, redundancy checks (e.g by counting

repetitions of content words or synonyms) and clause identification (e.g. by using a

clause splitter).

Secondly, a study of contrastive features should be conducted in order to determine

the most appropriate representation for these features. Although we adopted ordinary

subtraction and ratios after a few simple experiments, we believe a more detailed

study is necessary to find an optimal representation.

Thirdly, given that it has been observed that users have different views on

translation quality and can disagree in many cases, it would be interesting to carry

out an experiment to evaluate how users perceive automatic quality predictions. In

a typical setting, a user would be given a source text, a machine translation and an

automatic quality score and they would have to decide whether they agree or disagree

with the estimation. If they disagree, they would have to provide a new score which

would then be used to estimate an error metric. Although model performance is

usually evaluated in terms of prediction error over the expected scores, we believe

this user-driven assessment in real scenarios could bring an equally important insight.
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Additionally, other machine learning algorithms should also be applied to see if

they yield better prediction performance than SVMs, although some have already

been proved to be slightly less successful. In fact, we believe experiments should be

replicated using a classification algorithm in order to determine whether it is more

suitable than regression for this particular task and score scale.

Improvements on the selection of optimal features should also be investigated.

This includes the application of standard feature selection algorithms and efficient

ways of discovering optimal features without resorting to test data.

Finally, it would be interesting to evaluate how our feature sets perform with other

datasets, especially with segments from different translation systems and alternative

score scales.
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