A Prototype Implementation of MOOSE on a
NetFPGA/OpenFlow/NOX Stack

Daniel Wagner-Hall

University of Cambridge Computer Laboratory
dwh@cantab.net

ABSTRACT

Ethernet does not scale well to large networks. The flat
MAC address space, whilst having obvious benefits for the
user and administrator, is the primary cause of this poor
scalability. MOOSE — Multi-level Origin-Organised Scal-
able Ethernet — has been presented as a viable solution to
this problem. In this paper, we present an evaluation of
MOOSE through a prototype switch, built using OpenFlow
and NOX on the NetFPGA network prototyping platform.
We find MOOSE to be a worthwhile protocol, achieving its
proposed improvements, and worthy of future research.

1. INTRODUCTION

Ethernet, first devised in the 70s [7], has evolved to match
the changing landscape of network deployments over the
decades. Through preserving its self-same addressing and
frame-structure for backward compatibility, it has reached a
hurdle which it cannot overcome. Multi-level Origin-
Organised Scalable Ethernet (MOOSE) [11] has been pro-
posed as a solution to the problems outlined in Section 1.1.
This paper describes the development and evaluation of a re-
alistic prototype MOOSE switch using OpenFlow [6] on the
NetFPGA platform [8], providing an evaluation of MOOSE,
as well as the development platforms.

1.1 Scalable Ethernet

Ethernet networks were originally small (tens to hundreds
of hosts) shared-medium networks. The important prop-
erty of Ethernet MAC addresses was that they were uni-
versally unique, and that this uniqueness could be easily
provided. The format of MAC addresses was thus defined
to be six bytes: three bytes of organisationally unique iden-
tifier (OUI) allocated to the device’s manufacturer by the
IEEE, followed by three bytes allocated by the manufac-
turer. As networks became larger and switched networks
became normal, these addresses were preserved for back-
ward compatibility and interoperability. While this flat ad-
dress space requires no configuration of hosts or switches (a
globally unique MAC address can be used anywhere), this
leaves each switch with the task of learning and storing the
location of every addressable device on its network. Eth-
ernet devices frequently use broadcast (e.g. ARP queries),
and so every address is seen by every switch on a network,
and every address is stored with its physical location (port).
This forwarding table must be stored in fast memory, as
it is checked for every packet received. Typically, content-
addressable memory (CAM) is used for its speed, partic-
ularly as 10Gb/s Ethernet becomes ubiquitous, and as the

40Gb/s and 100Gb/s Ethernet standards have just been rat-
ified.

Growth of networks necessitates growth of this forwarding
table; however, increasing the capacity of CAM without sac-
rificing speed, and whilst constraining energy consumption
is hard [10]. In modern switches, this places a capacity con-
straint of the order of 16,000 entries [1]. Virtual hosts are in-
cluded in this table, magnifying the problem. Though higher
capacity forwarding databases exist, they are constrained to
very high-end switches. On moderately large networks, full
databases are a significant problem — if databases become
full, entries are discarded, and frames for unknown addresses
are forwarded to all ports, resulting in heavy congestion, es-
pecially a problem for low-capacity edge links. Ethernet’s
flat address space allows for no natural routing protocol to
be used other than learning locations of addresses as they
send frames, as addresses cannot be aggregated together as
takes place in higher-level Internet Protocol routing.

As well as the size of the forwarding database, Ethernet’s
inability to handle networks containing loops gives another
constraint to scalability. The Rapid Spanning Tree Proto-
col, RSTP [3, §17], must remove loops by disabling redun-
dant links. In a dense network, for instance in data-centres,
RSTP will disable a large proportion of links, constrain-
ing frames to suboptimal routes and introducing bottlenecks
where redundancy may have been planned.

1.2 MOOSE

MOOSE mitigates these issues by introducing routing in-
formation into MAC addresses through adding hierarchy,
whilst preserving backward compatibility and interoperabil-
ity. MOOSE operates by dynamically assigning new hierar-
chical MAC addresses (within the Locally Administered Ad-
dress space) to each host on the network. This dynamically-
assigned address is referred to as a MOOSE address to avoid
confusion with static, manufacturer-assigned MAC
addresses, but is itself a valid MAC address guaranteed not
to collide with any manufacturer-assigned address. Every
frame entering the network has its source address rewrit-
ten in-place to the sending host’s MOOSE address by the
first MOOSE-aware switch which it traverses. The destina-
tion address is left intact, in the expectation that it is al-
ready a MOOSE address — hosts” ARP caches will only con-
tain MOOSE addresses, as some MOOSE-aware switch will
have already performed relevant address rewriting for any
received frames, and a host’s manufacturer-assigned MAC
address is never seen beyond that host’s nearest MOOSE
switch. The nearest MOOSE switch to a host rewrites any
frames destined for that host’s MOOSE address with that

MAC address:
00:16:17:6D:B7:CF

Switch ID:
02:11:11

Switch ID:
02:22:22

Switch ID:
02:33:33

MAC address:
00:0C:F1:DF:6A:84

Host
A

X

X

Host
B

X

Query:
3-00:1 6:1 7:6D:B7:CF9 source
J rewritten
broadcast
Query:
- 02:11:11:00:00:01
| J
o broadcast
£
|
destinati i frame routed to 02:11:11
estination
rewritten
Response:
6 02:33:33390:00:01 -
00:16:17:6D:B7:CF

— 02:33:33:00:00:01
J

frame broadcast using reverse path forwarding

R —

Response:
600:0C:F1\:1/DF:6A:84-
02:11:11:00:00:01

source
rewritten

Response:

02:11:11:00:00:01

Figure 1: Sequence diagram of a request and response using MOOSE.

host’s manufacturer-assigned MAC address, so that the host
knows to receive them, and is not required to be aware of
MOOSE’s presence. In such a way, no modification to hosts
is required for MOOSE to be used in a network.

To facilitate this routing information, MOOSE introduces
hierarchy in addresses. Every MOOSE switch has an iden-
tifier of between one and four bytes long. A MOOSE switch
allocates an identifier to each host for which it performs ad-
dress rewriting which is of length 6—|switch identifier| bytes.
A host’s MOOSE address is formed by concatenating the
switch identifier with the host identifier, forming a complete
6-byte address. Switch identifiers have their length encoded
into them, and so are easily extractable from a MOOSE
address.

In such a way, switches only need to have entries in their
forwarding table per-switch rather than per-host (as well as
entries for locally attached hosts), as a switch must only
forward a frame to the host’s nearest MOOSE switch, and
that switch will forward the frame to the host. As well as
reducing the size of the forwarding table, this scheme allows
a shortest-path routing protocol such as OSPF [4] to operate
between switches. Using such a routing protocol, the Rapid
Spanning Tree Protocol is also no longer required — not only
is shortest path routing possible, but also no links require
disabling. Both of the major scalability issues of Ethernet
are accordingly addressed.

MOOSE brings some other benefits in addition to those
listed above, such as reduction of broadcast traffic. All of
these improvements are described in more detail by Scott et
al. [11].

2. PREPARATION

As no realistic prototype MOOSE switch existed, one was
developed to evaluate MOOSE’s claimed improvements and
practical constraints.

2.1 NetFPGA and OpenFlow

The aims of the prototype were to evaluate MOOSE’s
claims to reduce forwarding table size from O(hosts) to
O(switches), investigate the practicality of using routing
protocols in layer 2, and to evaluate inter-operation with
legacy Ethernet networks. NetFPGA was an obvious choice
of platform to use to this end, as it allows rapid prototyping
of line-rate operation of switches.

The use of OpenFlow allowed even more rapid prototyp-
ing and flexibility; for example, implementations of different
routing protocols could be more easily injected for direct
comparison. OpenFlow also expands the hardware available
for testing — though we currently have no results using pro-
prietary switches, we have plans to, as NetFPGA’s limited
four ports serve as a significant restriction to setting up test
networks. Writing the switching logic in C++, rather than
Verilog, also gives sample code with a wider reach of com-
prehension among the research community, and using Open-
Flow rather than raw Verilog also allows more researchers to
try the sample code without requiring specialist NetFPGA
cards (for instance on PCs with multiple network interfaces).

IMPLEMENTATION

NOX is a library available in C+4 and Python giving an
abstract, event-driven interface to OpenFlow. An OpenFlow
MOOSE switch was written on top of NOX [2] in Python,

3.

aiming to give a simple, high-level implementation. Basic
testing showed that the simplest of OpenFlow switches writ-
ten using NOX in Python (i.e. an Ethernet learning switch)
performed an order of magnitude slower than their C++
equivalents (100Mb/s vs 1Gb/s). Though the aims of this
prototype were to measure behaviour, rather than speed, it
was felt that this significant slow-down was worth avoiding,
so the switch was re-written in C++.?

Modularity

Some of the principal tenets of the NetFPGA project are
modularity and reusability. These were upheld in the
MOOSE switch. As an example, the OSPF Internet routing
protocol was adapted for use with MOOSE switch identi-
fiers by stripping PWOSPF [12] to its minimum required
functionality, and implemented as a routing module. This
module can be trivially swapped with implementations of
other existing or novel routing protocols such as IS-IS [5] to
compare their behaviour.

Testing

An extensive regression test suite of automated unit tests
was performed on the C++ switching-logic code as it was
written. Manual integration tests were performed by con-
necting computers to one or more NetFPGAs, sending well-
defined traffic through the network and verifying that the
correct behaviour was noted (frames received, addresses
rewritten, etc.).

4. EVALUATION

Several experiments were performed to compare the be-
haviour of MOOSE with that of Ethernet.

41 MOOSE

12 NetFPGA cards running the stock OpenFlow switch
loaded with the MOOSE switching logic, and 24 standard
1Gb/s network interfaces controlled by Linux computers
were used. Before all experiments, the ARP cache of each
host was cleared, and the OpenFlow switches reset to clear
their forwarding tables.

Forwarding Table Size

In the common case, MOOSE offers to reduce the number of
entries in switches’ forwarding tables, allowing more entries
in the same memory. MOOSE switches are claimed by Scott
et al. [11, §IV] to require O(switches) entries in a switch’s
forwarding table (with a small number of entries for locally
attached hosts), compared to Ethernet’s O(hosts) entries.
For dense networks (with more hosts than switches, very
much the common case), this offers a significant reduction
in the number of entries in the forwarding table. For sparse
networks (seldom seen), however, this may increase the size
of the forwarding table. Two experiments were performed,
illustrating both the dense and sparse network cases. Ex-
actly MOOSE’s proposed forwarding table sizes were seen.
As NetFPGAs have only four Ethernet ports, particularly
dense networks could not be used for testing, but hosts could
outnumber switches 2:1, still showing improvement. The use
of OpenFlow allows more dense networks to be used in the
future, using proprietary OpenFlow-enabled switches. 12

!The source code is available online at {TODO: Fill in stable
URL} for inspection and use.

switches were attached in a line, with two hosts connected to
each switch, and each host was made to communicate with
each other host. In this way, every host received frames from
each other host, and every switch processed frames from
each other switch. As predicted, each switch’s forwarding ta-
ble contained one entry per foreign switch, and one entry per
locally attached host, giving 13 entries in total. When Eth-
ernet (without RSTP) switching logic—rather than MOOSE
switching logic—was used, each forwarding table contained
one entry per host, giving 24 entries in total — many more
than MOOSE’s 13.

In the MOOSE network, there was a short delay after
turning the switches on before the hosts could communicate
with each other, while the routing protocol converged. On
the Ethernet network, no such delay was encountered. A
similar delay could be envisaged if a spanning tree protocol
were being used.

To test the sparse network case, the same dozen switches
were left in a line, but with two hosts attached to one switch,
and none to the others. The two hosts communicated with
each other. In the MOOSE network, all switches’ forward-
ing tables contained all of the other switches (12 entries),
and the switch with hosts attached also contained an entry
for each of those hosts, totalling 14 entries. In the Ether-
net network, all switches’ forwarding tables contained one of
the hosts (as its frame’s destination was previously unseen,
so the frame was broadcast), and the switch with attached
hosts also had the other host in its table (2 entries in to-
tal). MOOSE gave a significant increase in forwarding table
size, though this sparseness of network is expected to be in-
credibly rare in situations where forwarding table size is a
problem.

Significant multicast traffic was noted across the network
due to the routing protocol being used (OSPF is known to
be multicast-heavy), adding some congestion which MOOSE
strives in general to avoid. A more multicast-light protocol
(such as IS-IS) is worth considering, but evaluation of alter-
natives is left for future experimentation.

Shortest Path Routing

Two pathological cases exist for Ethernet, both involving
loops. Should no spanning tree protocol be used, any broad-
cast traffic on the loop will be continually re-forwarded
around the loop until the loop is broken. In a test with
three switches in a loop and a host attached to each, some
120,000 copies of a broadcast packet (sent once by its source)
were observed around the loop after 10 seconds. In the same
loop with MOOSE switches, the frame was received exactly
once by each host, and no such broadcast storm occurred.

The other, common, pathological case is that of RSTP
disabling links. 12 MOOSE switches were set up in a loop,
with a single host connected to each switch. One host pinged
each other host?. The times taken for these pings were
recorded. The experiment was then repeated using Cisco
Catalyst 3500-48 100Mb/s Ethernet switches with RSTP
enabled. Unfortunately 1Gb/s switches were not available,
so the times were not directly comparable, but the effects
are still clear.

In the Ethernet network, RSTP disabled a single link to
remove the loop from the topology, so any traffic whose
shortest path to its destination included that link was forced

2Specifically, the command ping -c 10000 -s 1400 -f
<destination IP> was used

-+ Ethernet network (with RSTP) < MOOSE network (without RSTP) ‘
I 35
E3
* ‘I‘ 3
ES
- 25
E +
g 2 x
£ +
- 15 E3
+
1 +
£
05
* b = * = X - * = = * =)
7 5 5 4 3 2 A 0 1 2 3 4 5 6 7
Switch-to-switch hops

a) Ethernet network (with RSTP) and MOOSE network
without RSTP)

Zoomed in version of
Be MOOSE data series ¥

1

Latency (ms)
Eanl
IS
[l

Switch-to-switch hops

(b) Enlarged version of just MOOSE network (without
RSTP)

Figure 2: Graphs of ping times around a loop in
both Ethernet network with RSTP and MOOSE
network without RSTP (above), and enlarged ver-
sion of graph with just MOOSE network (below).
Error bars indicate +1 standard deviation.

to use a suboptimal route, going the other way around the
loop. In the worst case, traffic between the hosts whose adja-
cency was disabled would need to cross all twelve switches,
despite the shortest path being simply across two. In the
MOOSE network, because no links were disabled (as
shortest-path routing could be used, rather than RSTP),
the optimal path was always taken.

Figure 2 shows these ping times. The absolute value of
the switch-to-switch hops measure is the number of links
between switches on the shortest path between the source
and destination, and the sign indicates the direction in the
loop (specifically, the negative values included the disabled
link, where the positive values did not). It is clear that
the Ethernet network (with RSTP) forced distinctly sub-
optimal paths to be used, where in the MOOSE network,
optimal paths were always used.

Mobility

To test that a simple care-of-forwarding mobility scheme
outlined in [11, §IV-E] functions, a long TCP session typical
of a large file transfer was initiated between two hosts at-

tached to different switches. One of the hosts was physically
disconnected from its switch, and reconnected to another

switch on the network. Within approximately three seconds
of physical disconnection from the original switch (including
approximately two seconds of physical disconnection time),
the TCP session had resumed. Mobility was shown to work
flawlessly.

4.2 NetFPGA, OpenFlow and NOX

OpenFlow provided an excellent platform for prototyping,
enabling the rapid and flexible development it claims to of-
fer. It was, however, noted that OpenFlow rules had to be
created describing actions on frames between every pair of
hosts, rather than one per host or switch, because a single
lookup of all frame headers is done per frame, whereas both
source and destination Ethernet address are used for switch-
ing in MOOSE, leading to many more rules being created
(and needing to be managed) than are strictly necessarily.
The current multiple-tables work being done on OpenFlow
[9] may alleviate this issue.

The delay introduced into the switching path by using
OpenFlow (and so having a Linux PC enter the switch-
ing path, and introducing DMA packet copying to provide
that PC with packets) meant that time-measurements could
not be used to compare MOOSE’s likely increased latency
to that of Ethernet, and a Verilog NetFPGA or similar
MOOSE switch implementation will be required for those
measurements.

NOX provided a very useful abstraction over OpenFlow,
but was found to be a somewhat immature project, due
specifically to the lack of convenience-functions around the
rule-management classes (e.g. ofp_flow.mod), and lack of
provision of sufficient modelling of the state of rules in the
switch. To modify existing rules, one must know which
rules exist in the switch, but this data cannot be retrieved
from the switch. A general-purpose reusable class for storing
these rules in memory could be useful, but is absent.

NetFPGA was found to be a useful prototyping platform,
though its full benefits were not exploited in these experi-
ments. The limitation of four Ethernet ports restricted the
scale of experimentation which could be done, but the use
of OpenFlow mitigated this.

S. CONCLUSIONS AND FUTURE WORK

MOOSE was found to provide the proposed improvements
in terms of forwarding table size, optimal routing, and mo-
bility. OpenFlow provided a useful, flexible platform for
developing the prototype MOOSE switch.

This work did not address the ELK [11, §IV-D] extensions
to MOOSE to address reduction of broadcast traffic, and
improvements to DHCP and ARP. ELK should be further
investigated and evaluated.

As this proof-of-concept prototype proved successful, a
future prototype should be created to analyse low-level tim-
ing differences between MOOSE and Ethernet. The existing
prototype, however, continues to be useful, for example to
experiment with different routing protocols. NetFPGA pro-
vided a useful and extensible platform for current and future
development of prototypes, and is likely to be used natively
for the next prototype.

6. ACKNOWLEDGEMENTS

I am grateful for much advice from Andrew Moore, Mal-
colm Scott, Jon Crowcroft, David Miller and Emma Win-

ston.

7.
1]

[9]

[10]

[11]

[12]

REFERENCES

3Com Corporation. Switch 5500G 10/100/1000 family
data sheet. Online,
http://www.3com.com/other/pdfs/products/en_US/
400908.pdf. Retrieved 2010-03-14.

N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. NOX: Towards an
operating system for networks. SIGCOMM Comput.
Commun. Rev., 38(3):105-110, 2008.

IEEE. 802.1D Standard for Local and metropolitan
area networks: Media Access Control (MAC) Bridges,
June 2004.

IETF. RFC2328 OSPF Version 2, April 1998.

ISO. ISO/IEC 10589:2002(E) Telecommunications
and information exchange between systems —
Intermediate System to Intermediate System
intra-domain routeing information exchange protocol
for use in conjunction with the protocol for providing
the connectionless-mode network service (ISO 8473),
November 2002.

N. McKeown, T. Anderson, H. Balakrishnan,

G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. OpenFlow: Enabling Innovation in Campus
Networks. SIGCOMM Computer Communication
Review, 38(2):69-74, April 2008.

R. M. Metcalfe and D. R. Boggs. Ethernet:
Distributed Packet Switching for Local Computer
Networks. Communications of the ACM,
19(7):395-404, July 1976.

J. Naous, G. Gibb, S. Bolouki, and N. McKeown.
NetFPGA: Reusable router architecture for
experimental research. In PRESTO ’08: Proceedings
of the ACM workshop on Programmable routers for
extensible services of tomorrow, pages 1-7, New York,
NY, USA, August 2008.

OpenFlow Team. Discussion of multiple tables in
OpenFlow. Available from
http://www.openflowswitch.org/wk/index.php/
OpenFlow_Meeting_Notes_4-20-2010 — Retrieved
2010-05-01.

K. Pagiamtzis and A. Sheikholeslami.
Content-Addressable Memory (CAM) Circuits and
Architectures: A Tutorial and Survey. Solid-State
Circuits, IEEE Journal of, 41(3):712 — 727, March
2006.

M. Scott, A. Moore, and J. Crowcroft. Addressing the
scalability of Ethernet with MOOSE. In ITC 21 First
Workshop on Data Center — Converged and Virtual
Ethernet Switching (DC CAVES), Sept. 2009.
Stanford. Pee-Wee OSPF (PWOSPF) Protocol
Details. Available from
http://yuba.stanford.edu/cs344 /pwospf/ — Retrieved
2010-03-25.

