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Not Only Tall, But Also Very Fat

e Data grow in both volume and dimensionality.
e Due to the technology advances and modelling techniques.

o Advances in measuring and monitoring tools.

o Advances in computation and storage technologies.

o DNA, stock market, language models: inherently HD models.
e \Why do high-dimensional data matter?

o ltis hard to tell what information matters in the beginning.

o Save everything and leave this problem later or someone else.
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Searching Needle(s) in a Haystack

e Searching is among the most important operations.
o E.g., Computer vision, pattern recognition, natural language
processing, online recommenders, and etc.

e Searching is difficult in high-dimensional data. \Why?

o “Under rather general conditions, given a query point, the
distance between the nearest and farthest points does not
increase as fast as dimensionality.”

o k-NN quickly becomes unstable in high-dimensional spaces.
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Key Technique - Approximation

e Approximate the original data set with another one of lower
dimensionality by “tolerating some error”, i.e., Dimensionality
reduction - e.g., SVD, Random Forest, and etc.
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Key Technique - Approximation

e Approximate the exact search results with a “roughly” good
ones, especially useful for time-constrained applications.

For example, B’s 3-nearest neighbours are A, C
and D. Instead of returning the exact result, we
can return A, C, and E if our application can
tolerate certain level of error.

By so doing, we are usually able to gain a
significant improvement on searching efficiency.
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Random Projection

e Essentially, it is all about clustering - similar points should be
grouped together, i.e., in a cluster.
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Classic Random-Projection Tree

In every step, the problem
space will be divided into
half, then solved separately.
It is a typical divide and
conquer technique.

The split point can be mean
value, median, or other
more complicated statistics.

The leaf node is a cluster of
points which are close to
each other.
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Issues of Classic RP-Tree
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In general, the accuracy is not
very high even for a data set of
medium dimensionalities.

The accuracy is impacted by two
kinds of misclassifications: i.e., B
and D; Aand C.

The process of Index building
has only limited parallelism, so
not very efficient in practice.

Index size is big due to storing
high-dimensional vectors in the
intermediate nodes.
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MRPT - Improve Accuracy

e Increase either leaf size or # of trees, but which is better?

combine leaf clusters
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MRPT - Improve Index Size

e \We do not need to store the actual vector at each node.
e Instead, we can use a random seed to generate on the fly.

[ x1, x2, x3, x4 ... xn ] a a

[yl,y2,y3,y4...yn] [21,22,23,2z4 ... zn ] b c a+1 a+2

— ——

In a leaf cluster, only the indices of vectors in the original data set are stored.
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MRPT - Improve Efficiency

e Current algorithm can be parallelised to some extent,
especially when moving towards leaves.
e Can we do better? By maximising the parallelism?
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MRPT - Improve Efficiency

Blue dotted lines are critical boundaries. The There is no critical boundary. All the projections
computations in the child-branches cannot can be done in just one matrix multiplication.
proceed without finishing the computation in the Therefore, the parallelism can be maximised.

parent node.
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Almost Done, Let’s Conclude

e High-dimensional data sets are quite common in practical
applications. Efficient and accurate searching is difficult.

e MRPT is a compact data structure which provides
approximate k-NN search for high-dimensional big data sets.

e MRPT optimises the index size, searching accuracy,
searching efficiency, and parallelism of a building process.
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Thank you. Questions?
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MRPT - Improve Accuracy

e Increase either leaf size or # of trees, but which is better?
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Finally, A Concrete Application of MRPT
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http://www.youtube.com/watch?v=dxFMD_acuwo

