
C3PO: Computation Congestion Control (PrOactive)
an algorithm for dynamic diffusion of ephemeral in-network services

Liang Wang, Mario Almeida*, Jeremy Blackburn*, Jon Crowcroft

University of Cambridge, UK Telefonica Research, ES*

Presented by Suzan Bayhan (TU Berlin, Germany)

Question: Where Computations Happen

● "Fat client and thin server" or "thin client and fat server".

● Trend changes driven by the changes in usage pattern, advances in
hardware and software technologies, and even new business models.

● Nowadays, both fat clients and fat servers: high processing power and
storage capacity

● Still difficult to keep their pace with the ever-growing user demands.

2

Observation I: Pervasive Mobile Apps

Pervasive mobile clients have given birth to complex mobile apps. These apps
are continuously generating, disseminating, consuming, and processing all
kinds of information, in order to provide us convenient daily services.

3

Observation II: Battery Is The Bottleneck
○ Unfortunately, given current battery technology, these demanding apps

impose a huge burden on energy constrained devices.

○ Power hogging apps are responsible for 41% degradation of battery life on
average.

○ Even popular ones such as social networks and instant messaging apps
(e.g., Facebook and Skype) can drain a device's battery up to 9X faster
due only to maintaining an online presence.

4

Observation III: MiddleBoxes Grow Stronger
○ Quite different from a decade ago, network middleboxes are no longer

simple devices which only forward packets.

○ ISPs' own network services have been shifting from specialized servers to
generic hardware with the adoption of the NFV paradigm.

○ E.g., Telefonica is shifting 30% of their infrastructure to NFV by 2016.
Other providers such as AT&T, Vodafone, NTT Docomo, and China
Mobile.

There are many in-network resources we can exploit. Besides, many of them
are underutilised.

5

A New Paradigm: In-network Service Execution

○ Ubiquitous in-network service execution
○ Example services: ????

6

Challenge: How To Avoid Congestions

Because service execution consumes multiple resources on a router, especially
demands CPU cycles for computation intensive tasks, it introduces a new type
of "congestion" in a network - "computation congestion".

An obvious and important question:
● How to avoid such congestions?

i.e., what would be the mechanism of “Computation Congestion Control” for
those ephemeral computation-intensive in-network services?

7

How Is It Different From Previous Settings

Traffic congestion: the solutions usually either
● try to reduce the transmission rate or
● take advantage of multiple paths.
● congestions are avoided by the cooperation of both communication ends.

But: In-network services do not necessarily impose a point-to-point paradigm!

Load balancing: a cluster often has a regular structure, i.e., network topology,
central coordination, homogeneous configurations, uniform demands, and etc.
Therefore, fully centralised control is the norm in the cluster. The jobs are often
able to tolerate long scheduling delay.

8

Characteristics Of Our Context

Our context in an ISP network is more complicated:

1. the underlying topology is not regular

2. the node configurations can be heterogeneous

3. demands distribution is highly skewed hence the resources in a

neighbourhood needs to be well utilised

4. central coordination is often expensive and reduces responsiveness of

those networked nodes

5. services (and clients) are intolerable to long scheduling delay.

9

Our Solution:
C3PO: Computation Congestion Control (PrOactive)

C3PO: a low-complexity distributed load balancer based on the pessimistic
prediction of the service queue.

Why do we go for a distributed one instead of a centralised solver?
● A central solver needs global knowledge of all the nodes in a network
● the optimal strategy needs to be calculated periodically given the dynamic

nature of a network and traffic
● there is a single point of failure
● there is often only marginal improvements over a smartly designed

heuristic.

10

Two Strategies Are Studied: Passive
Control

Node 1 Node 2 Last Node

if NOT overloaded, execute the process
Else, forward to the next on-path node

Drop if overloaded
and the last node in
the ISP network

+ Very simple
- Reactive

11

User requests

Proactive Control

Node 1 Node 2 Last Node

Estimate the request arrival rate
Estimate potential consumption
If may become overloaded,

forward to the neighbor with the least load
Else, execute the process

Drop if overloaded
and the last node in
the ISP network

Node 3

Node 4

+ Proactive, anticipatory
- Requires 1-hop information exchange12

User requests

Proactive Control: A Closer Look

Node n

13

Service fj: Poisson λj
CPU req. cj
Memory mj
Exec.time tj

Total arriving reqs λ = ∑λj
Total completed reqs μ = ∑1/tjUser requests

Neighbor node
requests

CPU load
Memory load

λ, μ, service
popularity

Birth-death system

For a stable system,
workload < node capacity

Probabilistically (q) execute
requests to ensure stability

Tune q based on expected load

q

Service load analyzer

Intuitive Explanations of C3PO

Stationary analysis of M/M/1-PS model on the service queue on a router.
Intuitively:
● Try to estimate the future incoming request rate based on the previous

observations,
● If a router thinks it is going to be overloaded based on its capacity and

service requirements, it only probabilistically executes some of the service
requests.

● When estimating the future request rate, a router takes into account the
second-order information (i.e., the derivative) of the rate. Essentially, it is
smoothing. But it only considers the positive derivatives (line 4 in the
code), so it is “pessimistic”, therefore “proactive”. Why :)

14

Proactive Strategy: C3PO
● The algorithm is simple yet effective. We need to

make sure the load balancing itself will not cause too
much overhead.

● The algorithm maintains four circular buffer with fixed
size.

● on_arrival and on_complete two functions need to
be performed whenever a request arrives or finished.
Overall complexity

● The “proactiveness” is achieved by “being
conservative”. Technically, by smoothing the load
curve, or getting the derivative of the load increasing
rate.

15

Implementation Details

● We use four fixed-size circular buffers instead of fixed time window to prevent
the memory usage from being subject to service arrival/completion rate. The
reason is the number of arrived requests can vary in a fixed time window.

● Parameter k (buffer size) represents a trade-off between stability and
responsiveness.
○ Larger k → more stable estimates (longer history considered)
○ Smaller k → higher responsiveness to the changes in λ and μ.

● Although λ needs to be calculated at every request arrival (line 3), further
optimisations can be easily done to reduce the complexity.

16

Evaluation Setup

● Aim: analyze how different strategy impacts load distribution as well as
latency, drop rate, responsiveness to jitters.

● We test three strategies on both synthetic and realistic topologies using
Icarus simulator
○ None (only edge routers execute services),
○ Passive,
○ Proactive

● Poisson request stream with λ = 1000 as arrival rate
● We assume CPU is the first bottleneck in the system for computation

intensive services, and only present the results of using Exodus network in
the following.

17

C3PO Exploits Its Neighbourhood
Client connected to router at (0,0)
Server connected to router at (9,9).

Proactive is more capable at
utilizing the nearby resources within
its neighborhood, leading to better
load balancing and smaller latency.

On-path routers: a few due to
small-world structure of networks

18
Yellow: high load

Increasing
load

Scalable to Workload on Exodus ISP network

x-axis is node index and y-axis is load.
Top 50 nodes of the heaviest load are
sorted in decreasing order

τ : average load;
φ : average latency (in ms);
ψ : ratio of dropped requests.

19

Increasing
load

Scalable to Workload on Exodus ISP network

20

Proactive: No service drops due to
load balancing capability

Scalable to Workload on Exodus ISP network

21

Heavy Tail proves the success of
load balancing in the network

Lower latency because only
edge routers execute services

Responsiveness to Jitters
Simple line topology:
client → n1 → n2 → server.

Jitters (6λ arrival for 10ms) are
injected at time 40 ms and 70
ms.

C3PO balances the load on
n1 and n2 whereas Passive
cannot!

22Time

Load during jitter
period

n1

n2

n1

n2

C
3P

O
P

as
si

ve

Conclusion

● We studied two control strategies (Passive and Proactive).

● Based on the Proactive control, we proposed a fully distributed, low

complexity, and responsive load controller to avoid potential computation

congestions when executing in-network services.

● Our results showed that

○ the proposed solution C3PO can effectively take advantage of

available resources in a neighbourhood to balance the service load

and further reduce service latency and request drop rate.

23

Thank you. Questions?

For more information: Liang Wang
liang.wang@cl.cam.ac.uk

24

