
C3PO: Computation Congestion Control (PrOactive)

Liang Wang

University of Cambridge,UK

Mário Almeida

Telefonica Research, Spain

Jeremy Blackburn

Telefonica Research, Spain

Jon Crowcroft

University of Cambridge,UK

ABSTRACT
There is an obvious trend that more and more data and com-
putation are migrating into networks nowadays. Combining
mature virtualization technologies with service-centric net-
working, which is deemed as a natural evolution of information-
centric networking in 5G context, we are entering into an era
where countless (mobile) services reside in an ISP network
to provide low-latency access. Such services are often com-
putation intensive and are dynamically created and destroyed
on demand everywhere in the network to perform various
tasks. Consequently, these ephemeral in-network services
introduce a new type of congestion in the network which
we refer to as "computation congestion". The service load
need to be effectively distributed on different nodes in or-
der to maintain the functionality and responsiveness of the
network, which calls for a new design rather than reusing
the centralised scheduler designed for cloud-based services.
In this paper, we study both passive and proactive control
strategies, based on the proactive control we further propose
a fully distributed solution which is low complexity, adap-
tive, and responsive to network dynamics.

1. INTRODUCTION
Looking at the history of computer systems, computa-

tion has been migrating between terminal clients and cen-
tral servers, leading to different designs: "fat client and thin
server" or "thin client and fat server". The shifts of this trend
are mostly driven by the changes in usage pattern, advances
in hardware and software technologies, and even new busi-
ness models. Nowadays, both clients and servers are rather
fat regarding to their processing power and storage capacity,
but the fact is that they still fail to keep their pace with the

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
ICN’16, September 26-28, 2016, Kyoto, Japan
c� 2016 ACM. ISBN 978-1-4503-4467-8/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2984356.2988518

ever-growing demands of end users. Meanwhile, network
devices have been quickly evolving and growing their capa-
bilities [1]. Quite different from a decade ago, these pow-
erful middle boxes were no longer simple network devices
which used to only know how to forward packets. They
have complicated structures, highly optimised algorithms,
and powerful processing and storage capabilities even com-
parable to end devices. Since these network devices are
mostly underutilised, there is an obvious trend that more and
more data and computation are migrating into networks.

Such migration has been accelerated by the following facts
in both directions, namely from clouds to networks and from
end-user devices to networks. First, many popular Internet
services are cloud-based which often rely on a persistent and
stable connection to access. However, both connectivity and
latency pose significant challenges on quality of services
especially in a challenged environment. To improve ser-
vice availability and reduce latency, big content providers of-
ten resort to content-distribution networks (CDN) or deploy
their own datacenters co-located with ISP networks. Second,
the emergence of User Generated Content (UGC) has further
triggered another dramatic shift in usage pattern on the In-
ternet. Processing and storing such overwhelming informa-
tion, combined with users’ increasing on-line activities, give
birth to various mobile applications, most of which require a
significant amount of computations on users’ devices. Given
current battery technologies, mobile devices are severely en-
ergy constrained. Many prior work proposed to offload com-
putation intensive tasks into a network to extend battery life
[2]. Third, even for ISP themselves, their own network ser-
vices started migrating from specialised servers to their net-
works with the adoption of the NFV (Network function vir-
tualization) paradigm. For example, Telefonica is shifting
30% of their infrastructure to NFV technologies by the end
of 2016 [1]. Other providers such as AT&T, Vodafone, NTT
Docomo and China Mobile are following similar strategies.

ISPs’ networks, especially those at edges, have transformed
into an ideal place for both storing data and performing com-
putation, which collectively provide services to its users.
Followed by previous information-centric networking (ICN)
proposals [3], service-enabled ICN designs [4–6] clearly start
gaining many research interests in the community. Espe-

cially in 5G and IoT (Internet of Things) context, informa-
tion represents a much wider concept beyond simple static
content. Because service execution consumes multiple re-
sources on a router, especially demands CPU cycles for com-
putation intensive tasks, it introduces a new type of "conges-
tion" in a network which we refer to as "computation conges-
tion". Different from conventional traffic congestions which
are avoided by the cooperation of both communication ends,
in-network services do not necessarily impose a point-to-
point paradigm. Also different from classic load balanc-
ing problem in cloud which often has a regular structure
(i.e., regular network topology, central coordination, homo-
geneous configurations, uniform demands, and etc.), the sit-
uation in an ISP network is more complicated: 1) the under-
lying topology is not regular; 2) the node configurations can
be heterogeneous; 3) demands distribution is highly skewed
hence the resources in a neighbourhood needs to be well
utilised; 4) central coordination is often expensive and re-
duces responsiveness of those networked nodes.

The emerging ephemeral in-network services call for a
thorough investigation on the "computation congestion con-
trol" in order to effectively distribute service load within a
neighbourhood. In this paper, we study two basic control
strategies and propose a fully distributed algorithm called
C3PO (Computation Congestion Control PrOactive) built atop
of proactive control strategy. Our preliminary evaluations
with various realistic settings show that the proposed algo-
rithm is low complexity, able to well exploit neighbourhood
resources, and very responsive to dynamic workloads.

2. RELATED WORK
ICN is a clean-slate redesign of current Internet to build

network infrastructure around content. It abandons the clas-
sic point-to-point communication paradigm, and applies two
basic design principles in its architecture: 1) accessing con-
tent by name and 2) universal caching. Originally, the no-
tion of information in prior ICN proposals [3] only refers to
static content. As cloud computing, virtualisation technol-
ogy become mature enough, more computation are pushed
towards edge networks. The definition of information there-
fore is naturally extended to include both computation and
data, which is also referred to as services in most recent
work [4–6]. Such service-enabled ICN systems can be con-
sidered as an inevitable evolution of ICN paradigm in order
to catch up with the growing demands from edge networks
and improve quality of service.

Since service execution consumes different resources, both
computation and traffic congestions can potentially happen
in a network. Traditional congestion control targets traffic
load. The solutions usually either try to reduce the transmis-
sion rate or take advantage of multiple paths [7, 8]. In prac-
tice all the solutions rely on the cooperation of both ends in
a transmission. In ICN context, the congestion needs to be
controlled in a hop-by-hop fashion and can be ameliorated
by caching to some extent [9, 10]. Caching and routing are
tightly coupled in ICN to achieve various design goals, e.g.,
fairness [17], energy efficiency [18], and etc.

Load balancing, scheduling, and resource management
are classic problems in high-performance computing (HPC)
cluster. The topic gained lots of attention recently due to
the popularity of cloud computing, virtualization, big data
framework. Fully centralised control [11] is a popular solu-
tion at the moment, and control theory has been shown as
an effective tool to dynamically allocate resources [12]. As
mentioned, there are distinctive differences between a cloud
environment and an ISP edge network regarding its stabil-
ity, homogeneous configuration, regular topology, and etc.
Most jobs execute for a longer period and often access a lot
of data, hence can tolerate long scheduling delay.

Even though a service is abstracted as "data + computa-
tion", in practice it can be implemented as a process, a vir-
tual machine, at etc. The maturity of virtualisation technolo-
gies (e.g., Xen, Linux container, unikernel [13, 14]) com-
bined with edge computing will undoubtedly lead us to an
era where countless services reside in an ISP network, dy-
namically created and destroyed on demand to perform var-
ious tasks. In such a context, previous highly centralised
solution designed for cloud-based services will fail to scale
in order to provide a responsive control over such a high vol-
ume and asymmetrically distributed demands. Based on our
knowledge, very little work has been done to address this
challenge. In this paper, we focus on these ephemeral and
computation intensive services and research a low complex-
ity, distributed, self-adaptive, and responsive solution.

3. PROPOSED SOLUTION
We start this section with two fundamental control strate-

gies, then we present the actual algorithm (C3PO).

3.1 Two Basic Strategies
Service execution consumes both CPU and memory as

well as other resources such as bandwidth. Herein we fo-
cus on the first two since they are usually the most dominant
resources. The goal of load balancing is achieved by strategi-
cally drop or forward the computational tasks to some other
nodes to avoid being overloaded. However, instead of dis-
tributing load uniformly over all available nodes, a service
is preferred to be executed as close to a client as possible to
minimise induced latency.

Centralised coordination is not ideal in a practical deploy-
ment (especially out of datacenters) due to the obvious rea-
sons: 1) A central solver needs global knowledge of all the
nodes in a network; 2) the optimal strategy needs to be calcu-
lated periodically given the dynamic nature of a network and
traffic; 3) there is a single point of failure; 4) there might be
only marginal improvement over a smartly designed heuris-
tic. Therefore, we study two basic strategies in this paper.

Passive Control: a node tries to execute as many services
as possible before being overloaded. Whenever a service re-
quest arrives, it will be executed by default given enough re-
sources. If the node is overloaded, the request will be passed
to the next hop along the path to a server, or dropped if cur-
rent node is already the last hop node in ISP networks.

Proactive Control: a node tries to execute services con-

servatively to avoid being overloaded. To do so, a node esti-
mates request arrival rate with which it can further estimate
the potential consumption. If the estimate shows that the
node may be overloaded, it only executes some requests and
forwards the rest to the next hop neighbour with the lightest
load. This strategy requires exchanging state information
within a node’s one-hop neighbourhood.

Because of its simple logic, passive strategy has a very
straightforward implementation. Clients can benefit from
minimised service latency given no nodes are overloaded,
since a service gets executed immediately at an edge router.
For proactive strategy, the implementation relies on how es-
timate is made which we will detail in the following. Despite
of being conservative, we still aim to keep the latency low.

3.2 Workload Analysis
A node n receives service requests either from directly

connected clients or neighbours. We assume that a node n
has CPU capacity c0 and memory capacity m0. For a specific
service f j, we denote its average CPU and memory con-
sumption as c j and m j respectively. In practice, both can
be easily measured by tracking a service execution. We also
assume the execution time of f j follows an exponential dis-
tribution with its mean value equal to t j. The requests for
service f j can be viewed as a Poisson processes with arrival
rate l j. We can easily recognise that the process is a typi-
cal birth-death process. Because the joint process of multi-
ple Poisson processs is also Poisson, the aggregated requests
of all services form another well-defined birth-death process
with the birth rate as l =Â8 j l j and death rate as µ =Â8 j

1
t j

.
We herein focus on this aggregate request stream.

To calculate average workload at any given time, we can
estimate the average number of simultaneously running ser-
vices on node n, denoted as l. This is equivalent to calculat-
ing the average queue length in a simple M/M/1-Processor
Sharing (i.e., M/M/1�PS) queueing system, where the clients
in a queue represents the services running concurrently on a
node by applying a multiprogramming model. Herein we
consider a stable system where l < µ to prevent a queue
from growing infinitely long to overload a node. We will
show later how a proactive strategy is able to keep the system
stable. We have assumed that one CPU is allocated for ser-
vice execution hence we choose to use M/M/1�PS model
in this paper to simplify the discussion. However the analy-
sis can be easily extended to analyse a multi-core system.

Let p j denote the normalised popularity of f j derived from
all the requests observed by n, then p j =

l j
l and note that

Â8 j p j = 1 by definition. The average CPU consumption is
c00 = Â8 j p j⇥ c00j and average memory consumption is m00 =

Â8 j p j⇥m00j . If we let r = l
µ (i.e., utilisation rate), then we

have l = r
1�r by applying a stationary analysis on M/M/1�

PS model. Therefore we can calculate the overall work-
load induced by executing services in a straightforward way:
namely l⇥ c00 for CPU load and l⇥m00 for memory load.

3.3 Probabilistic Execution
To avoid overloading a node, we need to make sure the

workload is less than n’s actual capacity. As we have shown,
workload is directly controlled by the queue length l, which
can be further tuned by probabilistically selecting some re-
quests in a stream to execute and forwarding the rest to the
next hop. For each service request, if we let node n execute
a service with probability q, and q 2 [0,1] follows a uniform
distribution. According to basic queueing theory, the result-
ing sub-process forms another well-defined birth-death pro-
cess, with a new birth rate q⇥ l and the same death rate
µ . Therefore the new sub-process has a new utilisation rate
equal to q⇥ r . To calculate q, we can simply perform the
following derivations by letting the induced load (e.g., for
CPU) l⇥ c00 less than the capacity c0.

l⇥ c00 < c0 =) q⇥r
1�q⇥r

⇥ c00 < c0 (1)

=) r⇥q <
c0

c0+ c00
=) q <

c0

c0+ c00
⇥ µ

l
(2)

The formula has a very intuitive explanation: if services
can be executed faster on average (i.e., higher death rate µ),
node n increases q in order to serve more requests by main-
taining a longer queue; otherwise n decreases q to reduce the
queue length. If requests arrive faster (i.e., higher birth rate
l), the node also decreases q to keep the number of simulta-
neously running services low. Similarly, we can perform the
same calculations for memory constraint m0. Eventually, we
set q with the following formula.

q = max{min{ c0

c0+ c00
,

m0

m0+m00
}⇥ µ

l
,1} (3)

The formula above essentially indicates that the final q is
decided by the first bottleneck in a system, either CPU or
memory in our case. Also, q is capped by 1, indicating that
an underutilised system will simply accept all the requests.

3.4 Proactive Control Algorithm
We present an implementation of proactive control in Al-

gorithm 1, namely C3PO – Computation Congestion Con-
trol (PrOactive). The algorithm consists of two major func-
tions: on_arrival(·) (line 1–10) is called whenever a service
request arrives; and on_complete(·) (line 12–21) is called
whenever a service execution is completed. The notations
used in the algorithm follow the same definition as those
in the previous text. By keeping track of CPU usage c00,
memory usage m00, execution rate µ , and request arrival rate
l , the previous analysis shows how to control the workload
by tuning execution probability q. However, maintaining a
complete history of these statistics can be very expensive.
In the actual implementation, we use four circular buffers
of size k: 1) bufl for the timestamps of the most recently
arrived requests; 2) bufµ for the execution time of the most
recently finished services; 3) bufc00 and 4) bufm00 for CPU and
memory usage of the most recently finished services.

With these four circular buffers, we can calculate the re-
cent values of the parameters in eq.3. We decide to use fixed
buffer instead of fixed time window to prevent the mem-

Algorithm 1 C3PO - A Distributed Proactive Computation
Congestion Control for In-Network Services
1: void on_arrival (request r):
2: bufl [i] timestamp (r)
3: l mean_rate (bufl)
4: Dl max(0,l �l 0)
5: l l +Dl
6: q eq.3 (l ,µ,c0,c00,m0,m00)
7: if draw_uniform ([0,1]) < q then execute (r)
8: else forward_to_lightest_load_node (r)
9: i (i+1) mod k

10: if i == 0 then l 0 0.5⇥(l 0+l �Dl)
11:
12: void on_complete (service s):
13: bufµ [i] execution_time (s)
14: bufc00 [i] cpu_consumption (s)
15: bufm00 [i] memory_consumption (s)
16: i (i+1) mod k
17: if i == 0 then
18: µ 0.5⇥(µ+ mean(bufµ)�1)
19: c00 0.5⇥(c00+ mean (bufc00))
20: m00 0.5⇥(m00+ mean (bufm00))
21: forward_result (s)

ory usage of Algorithm 1 from being subject to service ar-
rival/completion rate. Parameter k represents a trade-off be-
tween stability and responsiveness. Larger k leads to more
stable estimates whereas smaller k indicates higher respon-
siveness of a strategy to the changes in two metrics (i.e., l
and µ). Lines 2–6 calculate the execution probability q. The
algorithm also maintains a variable l 0 for the average arrival
rate of previous k requests, so that we can calculate the vari-
ation in l as Dl = l�l 0. It is definitely worth emphasising
line 4 and 5: when Dl > 0, it indicates an increase in request
arrival rate, then C3PO will enter into conservative mode. In
conservative mode, C3PO updates q at line 6 by plugging
(l +Dl) as arrival rate in eq.3 rather than plugging original
l . In such a way, C3PO "pessimistically" estimates the ar-
rival rate will increase at the same rate Dl in a near future.
If Dl 0, C3PO operates in normal mode. In some sense,
"being proactive" is achieved by "being conservative" when
noticing a potential increase in resource consumption.

Although l needs to be calculated at every request ar-
rival (line 3), we can optimise the performance by using
another variable x to keep track the sum of arrival inter-
vals. If we further let y bufl [(i+1) mod k]�bufl [i] and
z timestamp(r)� bufl [(i� 1) mod k] before performing
line 2, then mean rate can be calculated by l (x� y+
z])/(k�1). Because all x,y,z can be updated with O(1), this
reduces the complexity of "mean_rate" function from O(k)
to O(1) by avoiding traversing through all the timestamps in
bufl . Other parameters except l are updated only periodi-
cally in both functions (line 10, 18-20). We apply an ARMA
(AutoRegressive Moving Average) model with exponential
mean when updating these parameters. Both history and re-
cent measure are given the equal weight as 0.5. To keep the

code short and easy to understand, we did not perform fur-
ther optimisations in Algorithm 1.

4. PRELIMINARY EVALUATION
In our evaluations, we study how different strategy im-

pacts load distribution as well as latency, drop rate, respon-
siveness to jitters. We test three strategies (None, Passive,
and Proactive) on both synthetic and realistic topologies us-
ing Icarus simulator [15]. In most simulations, we use a
Poisson request stream with l = 1000 as arrival rate, in-
creasing request rate means introducing more load into a
network. All simulations are performed at least 50 times to
guarantee the reported results are representative. To simplify
the presentation, we assume CPU is the first bottleneck in the
system for computation intensive services, and only present
the results of using Exodus network in the following.

4.1 Exploiting Neighbourhood

0 1 2 3 4 5 6 7 8 9

Pr
oa
ct
iv
e

0
1
2
3
4
5
6
7
8
9

1 # 6

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

2 # 6

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

3 # 6

0 1 2 3 4 5 6 7 8 9

Pa
ss
iv
e

0
1
2
3
4
5
6
7
8
9

0.25 # 6

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

0.5 # 6

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

1 # 6

Figure 1: An illustration of different behaviours of Passive
and Proactive control on grid topology. A client connects
to the router at (0,0) while a server connects to the router
at (9,9). Proactive is more capable of utilising the nearby
resources within its neighbourhood, leading to better load
balancing and smaller latency. (Yellow indicates high load.)

Before evaluating on a realistic topology, figure 1 provides
a basic example to illustrate the fundamental differences be-
tween passive and proactive strategy. The understanding of
these differences will help us in analysing the following re-
sults. The experiment is performed on a 10⇥ 10 grid and
a router connects to all its adjacent neighbours. For passive
control in the first row, since the server is deployed at top
right corner, the load is distributed along the path towards
the server as we increase the request rate from 0.25l to l .
Whereas for proactive control, the load is distributed in a
quite different way, the services are given high priority to be
executed in nearby neighbours. This introduces two imme-
diate benefits: first, a network with proactive control is able
to absorb more load. In comparison, with a workload of 3l ,
a large amount of requests will be dropped by the router at
(9,9) if passive control is used. Second, because services are
likely to be executed on nearby routers, the induced latency

tend to be shorter with proactive control. Especially when
edge routers are overloaded, the distance between execution
point and client grows much slower with proactive control
than with passive control as figure shows. Moreover, being
able to effectively exploit neighbourhood resources can sig-
nificantly benefit QoS due to the strong temporal and spatial
locality in usage pattern [16].

4.2 Scalability to Workload
Figure 2 shows the results of using three strategies (one

for each row) with three workloads (one for each column)
on Exodus network. The average load of each node is nor-
malised by its CPU capacity and only top 50 of the heaviest
load are presented in a decreasing order in the figure.

10 20 30 40

N
on

e

0

0.2

0.4

0.6

0.8

1
= = 0.0631
? = 18.16
A = 0

1 # 6

10 20 30 40
0

0.2

0.4

0.6

0.8

1
= = 0.2017
? = 17.82
A = 0.2009

4 # 6

10 20 30 40
0

0.2

0.4

0.6

0.8

1
= = 0.2305
? = 21.15
A = 0.5434

8 # 6

10 20 30 40

Pa
ss

iv
e

0

0.2

0.4

0.6

0.8

1
= = 0.0631
? = 18.16
A = 0

10 20 30 40
0

0.2

0.4

0.6

0.8

1
= = 0.2228
? = 20.82
A = 0.1173

10 20 30 40
0

0.2

0.4

0.6

0.8

1
= = 0.3202
? = 25.74
A = 0.3657

10 20 30 40

Pr
oa

ct
iv

e

0

0.2

0.4

0.6

0.8

1
= = 0.0631
? = 18.16
A = 0

10 20 30 40
0

0.2

0.4

0.6

0.8

1
= = 0.2528
? = 19.36
A = 0

10 20 30 40
0

0.2

0.4

0.6

0.8

1
= = 0.5047
? = 22.28
A = 0

Figure 2: Comparison of three control strategies (in each
row) on Exodus ISP network, the load is increased step by
step in each column. x-axis is node index and y-axis is load.
Top 50 nodes of the heaviest load are sorted in decreasing
order and presented. Notations in the figure: t: average load;
f : average latency (in ms); y: ratio of dropped requests.

By examining the first column, we can see all three strate-
gies have identical behaviours when the network is under-
utilised with a workload of l . The heaviest loaded node
only uses about 60% of its total capacity. However, as we
increase the load to 4l and 8l , three strategies exhibit quite
different behaviours. For none control at the first row, the
figures remain the similar shape. Since no load is distributed
and a node simply drops all requests when being overloaded,
none control leads to over 54% drop rate with load of 8l .

For passive control at the second row, we can see both
head and tail parts are fatter than none control, indicating
more load are absorbed by the network and are distributed
on different routers. This can also be verified by checking
the average load in the figure: given load 8l , passive control
increases the average load of the network from 0.2305 to
0.3202 comparing to using none control. However, there is

still over 36% requests are dropped at the last hop router.
This can be explained by the well-known small-world effect
which makes the network diameter short in general, so there
are only limited resources along a random path.

Among all the experiments, a network with proactive con-
trol always absorbs all the load, leading to the highest aver-
age load in the network which further indicates the highest
utilisation rate. As the workload increases from l to 8l , av-
erage load also increases accordingly with the same factor.
One very distinct characteristic that can be easily noticed in
the last two figures on the third row is that the load distribu-
tion has a very heavy tail. This is attributed to proactive strat-
egy’s capability of offloading services to its neighbours. It is
also worth pointing out that we only measured the latency of
those successfully executed services, which further explains
why none control has the smallest latency, since a service
gets executed immediately at an edge router connected to a
client, but more than half of the requests are simply dropped
and not counted at all. Comparing to passive strategy, proac-
tive strategy achieves shorter latency. Further investigation
on other ISP topologies show that such improvement on la-
tency will even increase on larger networks.

4.3 Responsiveness to Jitters

20 40 60 80 100 120 140

PA
S

n 1 lo
ad

0

0.5

1

0.885 0.881

Whole time span

20 40 60 80 100 120 140

PA
S

n 2 lo
ad

0

0.5

1

0.089 0.070

20 40 60 80 100 120 140

PR
O

 n
1 lo

ad

0

0.5

1

0.679 0.589

20 40 60 80 100 120 140

PR
O

 n
2 lo

ad

0

0.5

1

0.318 0.367

40 41 42
0

0.5

1
Jitter #1

40 41 42
0

0.05

0.1

0.15

40 40.5 41 41.5
0

0.5

1

40 41 42
0

0.1

0.2

0.3

70 75
0

0.5

1
Jitter #2

70 75
0

0.1

0.2

0.3

70 75
0

0.5

1

70 75
0

0.2

0.4

0.6

Figure 3: Comparison of two control strategies using a sim-
ple line topology: client! router n1 ! router n2 ! server.
Two jitters are injected at time 40 ms and 70 ms. x-axis is
time (ms) and y-axis is normalised load. Red numbers rep-
resent the average load during a jitter period.

To study how a control strategy responds to a sudden in-
crease in workload (a.k.a. jitters), we perform another exper-
iment where we use a simple line topology: client! router
n1 ! router n2 ! server. The client maintains a stable flow
of the request rate l and injects two 10-millisecond jitters
(of rate 6l) at time 40 millisecond and 70 millisecond re-
spectively. The first two rows in figure 3 show the time se-
ries of the workload on two routers using passive strategy,
namely PAS n1 and PAS n2. Similarly, the last two rows are
for the two routers using proactive control, namely PRO n1
and PRO n2. The two right columns zoom in at two moments
when the jitter just happens (at 40 and 70 ms respectively).

For passive control, the first router PAS n1 takes most of
the load (i.e., 88%) and exhibits consistent behaviours in

both jitters. However, the routers using proactive control
show an interesting variation when handling two jitters. For
the first jitter, although router PRO n1 successfully offloads
31.8% load to PRO n2, it apparently also experiences high
load for a period of 2 ms (i.e., 40 - 42 ms). After the first jit-
ter, PRO n1 enters into a conservative mode, therefore when
the second jitter arrives, the load curve on PRO n1 is much
flatter and the load peak does not appear at all since it proac-
tively offloads more tasks on PRO n2. As a result, PRO n2
absorbs about 36.7% load in the second jitter. Even after two
jitters, PRO n1 remains in the conservative mode until 130
ms, which explains why there is a small amount of load that
has been continuously transferred to PRO n2. After 130 ms,
PRO n1 returns to its normal mode. Technically, the mode
shift is because all the timestamps of jitters have been purged
out from circular buffer bufl by constant requests.

By checking the second and third columns, we are able
to gain an even better understanding on what actually hap-
pens when a jitter arrives. For both jitters, proactive control
responses faster than the passive one, since the load curve
on the second router starts rising earlier and faster. For the
second jitter, proactive responses even faster since it is in
a conservative mode. Whereas for passive control, PAS n2
only starts taking some load at 74 ms, 4 ms later after the
second jitter arrives at PAS n1.

To summarise, our evaluations have clearly showed that
proactive control possesses the following attractive proper-
ties which make it an ideal solution for balancing computa-
tion load in an ISP network: 1) fully distributed with very
loose cooperation with one-hop neighbours; 2) good capa-
bility of utilising resources in a neighbourhood; 3) high re-
sponsiveness to workload jitters.

5. CONCLUSION
We studied two control strategies in this paper. Based

on the proactive control, we designed a fully distributed,
low complexity, and responsive load controller to avoid po-
tential computation congestions when executing in-network
services. Our preliminary results showed that the proposed
solution C3PO can effectively take advantage of available re-
sources in a neighbourhood to balance the service load and
further reduce service latency and request drop rate.

However, this work is only our initial attempt in manag-
ing dynamic services in future 5G-enabled ISP networks, we
acknowledge there are many aspects have not be explored
and require further investigation. First, our model and some
assumptions are highly simplified, therefore how the real-
world complexity impacts our design needs to be investi-
gated. Second, even though C3PO tries to prevent the queue
from growing infinitely long, there might be cases that a sys-
tem enters into a blocking state due to e.g., device failures,
attacks, and etc. A more thorough analysis on such cases
and system performance is definitely needed in order to de-
sign the corresponding protection mechanisms. Thrid, as
our future research, we plan to extend the current NDN plat-
form [3] to implement C3PO. We will perform a more thor-
ough evaluation after a realistic deployment in a production

network. Fourth, we assumed that the network had enough
storage to host all the services. Although in practice, a sim-
ple LRU algorithm can be used given a cache is full, a more
careful investigation on how caching strategies impact the
performance of service execution is definitely needed.

6. REFERENCES
[1] Telefonica’s view on virtualized mobile networks.

(2015) http://www.ict-ijoin.eu/wp-content
/uploads/2015/03/6b_berberana_telefonica.pdf.

[2] E. Cuervo, et al., “Maui: Making smartphones last
longer with code offload,” in ACM MobiSys’10, 2010.

[3] V. Jacobson, et al., “Networking named content,” in
ACM CoNext, 2009.

[4] E. Nordström, et al., “Serval: An end-host stack for
service-centric networking,” in NSDI’12, 2012.

[5] A. Sathiaseelan, et al., “Scandex: Service centric
networking for challenged decentralised networks,” in
ACM DIYNetworking workshop, 2015.

[6] T. Braun, A. Mauthe, and V. Siris, “Service-centric
networking extensions,” in ACM SAC, 2013.

[7] H. Han, et al., “Multi-path tcp: A joint congestion
control and routing scheme to exploit path diversity in
the internet,” IEEE/ACM ToN, 2006.

[8] L. Vicisano, et al., “Tcp-like congestion control for
layered multicast data transfer,” in INFOCOM, 1998.

[9] L. Wang, et al., “Effects of cooperation policy and
network topology on performance of in-network
caching,” IEEE Communication Letters, 2014.

[10] W. Wong, et al. “Neighborhood Search and Admission
Control in Cooperative Caching Networks,” in IEEE
GLOBECOM, 2012.

[11] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. Katz, S. Shenker, and I. Stoica,
“Mesos: A platform for fine-grained resource sharing
in the data center,” in USENIX NSDI,2011.

[12] E. Kalyvianaki, et al., “Adaptive resource provisioning
for virtualized servers using kalman filters,” ACM
TAAS, 2014.

[13] P. Barham, et al., “Xen and the art of virtualization,”
SIGOPS, 2003.

[14] A. Madhavapeddy and D. J. Scott, “Unikernels: Rise
of the virtual library operating system,” Queue, 2013.

[15] L. Saino, et al., “Icarus: a caching simulator for icn,”
in SIMUTOOLS, 2014.

[16] L. Wang, et al., “Pro-diluvian: Understanding
scoped-flooding for content discovery in
information-centric networking,” in ACM ICN, 2015.

[17] L. Wang, et al., “FairCache: Introducing Fairness to
ICN Caching,” in IEEE ICNP, 2016.

[18] J. Mineraud, et al., “Hybrid Renewable Energy
Routing for ISP Networks,” in IEEE INFOCOM,
2016.

