
Bandwidth-aware Service Placement in
Community Network Clouds

Mennan Selimi
UPC

Barcelona, Spain
mselimi@ac.upc.edu

Arjuna Sathiaseelan
Cambridge University

Cambridge, UK
arjuna.sathiaseelan@cl.cam.ac.uk

Llorenç Cerdà-Alabern
UPC

Barcelona, Spain
llorenc@ac.upc.edu

Luís Veiga
INESC-ID / IST Lisboa

Lisbon, Portugal
luis.veiga@inesc-id.pt

Liang Wang
Cambridge University

Cambridge, UK
liang.wang@cl.cam.ac.uk

Felix Freitag
UPC

Barcelona, Spain
felix@ac.upc.edu

Abstract—Seamless computing and service sharing in commu-
nity networks (CNs) have gained momentum due to the emerg-
ing technology of community network micro-clouds (CNMCs).
However, deploying and running services in CNMCs confront
enormous challenges to cope with, such as the dynamic nature
of micro-clouds, limited capacity of nodes and links, asymmetric
quality of wireless links, geographic singularity based deployment
model rather than network QoS based, etc. CNMCs have been
increasingly used by network-intensive services which exchange
significant amounts of data between nodes, therefore their per-
formance heavily relies on the available bandwidth resource in a
network. This paper proposes a novel bandwidth-aware service
placement algorithm which aims to replace the current random
placement adopted by Guifi.net. Our experimental results show
that the proposed BASP algorithm consistently outperforms the
random placement in Guifi.net by 35% regarding its bandwidth
gain. More promisingly, as the number of services increases, the
gain tends to increase accordingly. Furthermore, we quantify the
performance and effects of our algorithm with a real service such
as live video-streaming service, in a real production CN. Our real
experimental results show that when using our BASP algorithm,
the video chunk loss in the peer side decreases up to 3%.

Index Terms—community network cloud; service placement;

I . I N T R O D U C T I O N

Community networks (CNs) or Do-It-Yourself networks are
built in a bottom-up and fully decentralized fashion, and are
usually maintained by their own users. Early in the 2000s,
community networks already gained momentum in response
to the growing demands for network connectivity in rural and
urban communities. One successful effort of such a network is
Guifi.net1, located in the Catalonia region of Spain. Guifi.net
is defined as an open, free and neutral community network
built by its members: citizens and organizations pool their
resources and coordinate efforts to build and operate a local
network infrastructure. Guifi.net was launched in 2004 and
till today it has grown into a network of more than 30,000
operational nodes, which makes it the largest community
network worldwide [1]. Figure 1 shows the evolution of total
inbound and outbound Guifi.net traffic to the Internet for the
last two years. Pink colour represents incoming traffic from

1http://guifi.net/

Figure 1. Guifi.net Traffic

Internet and yellow represents outgoing traffic. For two years,
the traffic has tripled and peaks are as a result of a new users
and bandwidth-hungry services in the network.

Similar to other community networks, Guifi.net aims to
create a highly localized digital ecosystem. However, the
predominant usage we have observed, is to access cloud-based
Internet services external to a community network. For instance,
more than 50% of user-oriented services consumed in Guifi.net
go through gateway proxies which provide Internet connectivity
hence impose a heavy burden on the limit backbone links [2].
For a very long time in the past, user-oriented services had
not been developed locally because of the lack of streamlined
mechanisms to exploit all the available resources within a com-
munity network as well as other technological barriers. With the
adoption of community network micro-clouds2, i.e. the platform
that enables cloud-based services in community networks, local
user-oriented services gained a huge momentum. Community
network users started creating their own homegrown services
and using alternative open source software for many of today’s
Internet cloud services, e.g., data storage services, interactive
applications such as Voice-over-IP (VoIP), video streaming,
P2P-TV, and etc. In fact, a significant number of services were
already locally deployed and run within Guifi.net including
GuifiTV, Graph servers, mail servers, game servers [3]. All

2http://cloudy.community/



these services are provided by individuals, social groups, small
non-profit or commercial service providers.

Because Guifi.net nodes are geographically distributed, given
this set of local services, we need to decide where these services
should be placed in a network. Obviously, without taking
into account the underlying network resources, a service may
suffer from poor performance, e.g, by sending large amounts of
data across slow wireless links while faster and more reliable
links remain underutilized. Therefore, the key challenge in
community network micro-clouds is to determine the location
of deployment, i.e. servers at certain geographic points in the
network, with the different services multiplexed on a shared
infrastructure. Although conceptually straightforward, it is
challenging to calculate an optimal decision due to the dynamic
nature of community networks and usage patterns. In this work
we aim to address the following question: "Given a community
network cloud infrastructure, what is an effective and low-
complexity service placement solution that maximises end-to-
end performance (e.g., bandwidth)?" Our preliminary results
show that the proposed algorithm consistently outperforms
the current random placement adopted in Guifi.net by 35%
regarding its bandwidth gain. More promisingly, as the number
of services increases, the gain tends to increase accordingly.
Furthermore, we deploy our algorithm, driven by these findings,
in a real production community network and quantify the
performance and effects of our algorithm with a real service
such as live video-streaming service. Our real experimental
results show that when using our BASP algorithm, the video
chunk loss in the peer side decreases up to 3%.

The rest of the paper is organized as follows. In Section
II we describe and characterize the performance of QMP
network. Section III defines our system model and presents
the bandwidth-aware placement algorithm. In Section IV we
discuss the evaluation results. In Section V we present a real
video-streaming service deployment and discuss the evaluation
results. Section VI describes related work and section VII
concludes and discusses future research directions.

I I . N E E D F O R L O C A L I Z E D S E RV I C E S

In this section, we characterize wireless community networks
by presenting our experimental measurements in a production
example over five months, which exposes the necessity of
deploying localized services [4] and justifies our motivation of
proposing an intelligent placement algorithm.

A. QMP Network: A Brief Background
The network we consider, began deployment in 2009 in

a quarter of the city of Barcelona, Spain, called Sants, as
part of the Quick Mesh Project3 (QMP). In 2012, nodes from
Universitat Politècnica de Catalunya (UPC) joined the network,
supported by the EU CONFINE 4 project. We shall refer to this
network as QMPSU (from Quick Mesh Project at Sants-UPC).
QMPSU is part of the Guifi community network which has
more than 30.000 operational nodes. At the time of writing,
QMPSU has around 61 nodes, 16 at UPC and 45 at Sants.
There are two gateways, one in UPC Campus and another in

3http://qmp.cat/Home
4https://confine-project.eu/

Sants, that connect QMPSU to the rest of Guifi.net (see Figure
2). A detailed description of QMPSU can be found in [5],
and a live monitoring page updated hourly is available in the
Internet 5.

Typically, QMPSU users have an outdoor router (OR) with
a Wi-fi interface on the roof, connected through Ethernet to
an indoor AP (access point) as a premises network. The
most common OR in QMPSU is the NanoStation M5, which
integrates a sectorial antenna with a router furnished with
a wireless 802.11an interface. Some strategic locations have
several NanoStations, that provide larger coverage. In addition,
some links of several kilometers are set up with parabolic
antennas (NanoBridges). ORs in QMPSU are flashed with the
Linux distribution which was developed inside the QMP project
which is a branch of OpenWRT6 and uses BMX6 as the mesh
routing protocol [6].

B. Characterization: Bandwidth-Hungry
In the following, we characterize the network performance

of QMP network. Our goal is to determine the key features
of the network and its nodes; in particular to understand the
network metrics that could help us to design new heuristic
frameworks for intelligent service placement in community
networks [7]. Measurements have been obtained by connecting
via SSH to each QMPSU OR and running basic system
commands available in the QMP distribution. This method has
the advantage that no changes or additional software need to
be installed in the nodes. Live measurements have been taken
hourly over the last 5 months, starting from October 2015 to
February 2016. We use this data to analyse main aspects of
QMP network.

Figure 3 shows the node and link presence. We define the
presence as the percentage a given node or link is observed
over the captures. A capture is an hourly network snapshot that
we take from the QMP network. Overall, 90 different nodes
were detected. From those, only 61 were alive during the entire
measurement period, leading to a presence higher than 95%.
Around 30 nodes were missed in the majority of the captures
(i.e., presence less than 10%). These are temporarily working
nodes from other mesh networks and laboratory devices used
for various experiments. Figure 3 also reveals that 56% of
links used between nodes are unidirectional and others are
bidirectional.

Figure 4, depicts the Empirical Cumulative Distribution
Function (ECDF) of the average traffic sent in each of the
links in the busy hour. The overall average traffic observed is
70 kbps. Figure 5 shows the average traffic in both directions
of the three busiest links.

We characterize the wireless links of the QMP network
by studying their throughput. Figure 6 shows the average
throughput distribution of all the links. The figure shows that
the link throughput can be fitted with a mean of 21.8 Mbps. At
the same time Figure 6 reveals that the 60% of the nodes have
10 Mbps or less throughput. In order to see the variability of
the throughput, Figure 7 shows the throughput averages in both
directions of the three busiest links (same links as in Figure

5http://dsg.ac.upc.edu/qmpsu/index.php
6https://openwrt.org/
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Figure 2. QMPSU network. Two main gateways
are underlined.
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Figure 3. Node and link presence.
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Figure 4. Link traffic in the busy hour ECDF.
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Figure 5. Traffic in the three busiest links.

0.0

0.2

0.4

0.6

0.8

1.0

1 10 100
Link throughput [Mbps] (log10 scale)

EC
D

F
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Figure 7. Throughput in the three busiest links.

5). The nodes of three busiest links are highlighted on the top
of the figure. When we compare Figure 7 and Figure 5, we
observe that the throughput is slightly affected by the traffic
in the links. Solid and dashed lines are used to identify the
measurements on each direction of the links. It is interesting to
note that the asymmetry of the throughputs measured in both
directions it not always due to the asymmetry of the user traffic.
For instance (node GSgranVia255), around 6am, when the user
traffic is the lowest and equal in both directions, the asymmetry
of the links throughputs observed in Figure 4 remains the same.
We thus conclude that this asymmetry must be due to the link
characteristics, as level of interferences present at each end, or
different transmission powers.

A significant amount of applications that run on Guifi.net
and QMP network are network-intensive (bandwidth and delay
sensitive), transferring large amounts of data between the net-
work nodes [3]. The performance of such kind of applications
depends not just on computational and disk resources but also
on the network bandwidth between the nodes on which they
are deployed. Therefore, the placement of such services in the
network is of high importance. Here are some observations
(features) that we captured from the measurements in QMP
network:

• QMP network is highly dynamic and diverse due to many
reasons, e.g., its community nature in an urban area; its
decentralised organic growth with extensive diversity in
the technological choices for hardware, wireless media,
link protocols, channels, routing protocols etc.; its mesh

nature in the network etc. The current network deployment
model is based on geographic singularities rather than QoS.
The network is not scale-free. The topology is organic and
different w.r.t. conventional ISP network.

• The resources are not uniformly distributed in the network.
Wireless links are with asymmetric quality for services
(30% of the links have a deviation higher than 30%). We
observed a highly skewed traffic pattern (Figure 4) and
highly skewed bandwidth distribution (Figure 6).

Currently used organic (random) placement scheme in
Guifi.net community network is not sufficient to capture the
dynamics of the network and therefore it fails to deliver the
satisfying QoS. The strong assumption under random service
placement, i.e., uniform distribution of resources, does not hold
in such environments. Furthermore, the services deployed have
different QoS requirements. Services that require intensive
inter-component communication (e.g streaming service), can
perform better if the replicas (service components) are placed
close to each other in high capacity links [8]. On other side,
bandwidth-intensive services (e.g., distributed storage, video-
on-demand) can perform much better if their replicas are as
close as possible to their final users (e.g., overall reduction
of bandwidth for service provisioning). Our goal is to build
on this insight and design a network-aware service placement
algorithm that will improve the service quality and network
performance by optimizing the usage of scarce resources in
community networks such as bandwidth.



I I I . B A N D W I D T H - AWA R E P L A C E M E N T

The deployment and sharing of services in community
networks is made available through community network micro-
clouds (CNMCs). The idea of CNMC is to place the cloud
closer to community end-users, so users can have fast and
reliable access to the service. To reach its full potential, a
CNMC needs to be carefully deployed in order to utilize the
available bandwidth resources.

A. Assumptions

In a CNMC, a server or low-power device is directly
connected to the wireless base-station providing cloud services
to users that are either within a reasonable distance or directly
connected to base-station. These nodes are core-graph nodes
what we call in Guifi.net. In Guifi.net core-graph is formed by
removing the terminal nodes of the base graph (i.e. leaf nodes
or clients).

It is important to remark that the services aimed in this
work are at infrastructure level (IaaS), as cloud services in
current dedicated datacenters (we assume QMP nodes are core-
graph nodes). Therefore the services are deployed directly
over the core resources of the network and accessed by base-
graph clients. Services can be deployed by Guifi.net users or
administrators.

The services we consider can be centralized or distributed.
The distributed services can be composite services (non-
monolithic) built from simpler parts, e.g., video streaming.
These parts or components of service would create an overlay
and interact with each other to offer more complex services.
A service may or may not be tied to a specific node of the
network. Each nodes can host one or more services.

In this work we assume an offline service placement ap-
proach where a single or a set of applications are placed "in
one shot" onto the underlying physical network. We might
rearrange the placement of the same service over the time
because of the service performance fluctuation (e.g. weather
conditions, node availability, changes in use pattern, and etc.).
We do not consider real-time service migration.

B. Formulation and Notations

We call the community network the underlay to distinguish
it from the overlay network which is built by the services.
The underlay network is supposed to be connected and we
assume each node knows whether other nodes can be reached
(i.e., next hop is known). We can model the underlay graph as:
G (OR,L) where OR is the set of outdoor routers present in
the CNs and L is the set of wireless links that connects them.

Let fi j be the bandwidth of the path to go from node i to
node j. We want a partition of k clusters: S S1,S2,S3, ...,Sk
of the set of nodes in the mesh network. The cluster head i
of cluster Si is the location of the node where the service will
be deployed.The partition maximizing the bandwidth from the
cluster head to the other nodes in the cluster is given by:

argmaxS

k

Â
i=1

Â
j2Si

fi j (1)

Algorithm 1 Bandwidth-aware Service Placement (BASP)
Require: G(Vn,En) . Network graph

S S1,S2,S3, ...,Sk . k partition of clusters
bwi . bandwidth of node i

1: procedure P E R F O R M K M E A N S(G,k)
2: return S
3: end procedure
4: procedure F I N D C L U S T E R H E A D S(S)
5: clusterHeads list()
6: for all k 2 S do
7: for all i 2 Sk do
8: bwi 0
9: for all j 2 setdi f f (S, i) do

10: bwi bw+ estimate.route.bandw(G, i, j)
11: end for
12: clusterHeads maxbwi
13: end for
14: end for
15: return clusterHeads
16: end procedure
17: procedure R E C O M P U T E C L U S T E R S(clusterHeads,G)
18: S0  list()
19: for all i 2 clusterHeads do
20: clusteri list()
21: for all j 2 setdi f f (G, i) do
22: bw j estimate.route.bandw(G, j, i)
23: if bw j is best from other nodes i then
24: clusteri j
25: end if
26: S0  clusteri
27: end for
28: end for
29: return S0
30: end procedure

C. Proposed Algorithm: BASP
We designed a bandwidth-aware algorithm that allocates

services taking into account the bandwidth of the network.
We take a network snapshot (capture) from QMP network
regarding the bandwidth of the links 7. Our bandwidth-aware
service placement algorithm BASP (see Algorithm 1) runs in
three phases.

(i) Initially, we use the naive k-means partitioning algorithm
in order to group nodes based on their geo-location. The idea
is to get back clusters of locations that are close to each
other. The k-means algorithm forms clusters of nodes based
on the Euclidean distances between them, where the distance
metrics in our case are the geographical coordinates of the
nodes. In traditional k-means algorithm, first, k out of n nodes
are randomly selected as the cluster heads (centroids). Each
of the remaining nodes decides its cluster head nearest to it
according to the Euclidean distance. After each of the nodes
in the network is assigned to one of k clusters, the centroid
of each cluster is re-calculated. Grouping nodes based on geo-
location is in line with how Guifi.net is organized. The nodes

7http://tomir.ac.upc.edu/qmpsu/index.php?cap=56d07684



in Guifi.net are organized into a tree hierarchy of zones [9].
A zone can represent nodes from a neighborhood or a city.
Each zone can be further divided in child zones that cover
smaller geographical areas where nodes are close to each other.
From the service perspective we consider placements inside a
particular zone.

(ii) The second phase of the algorithm is based on the
concept of finding the cluster head maximizing the bandwidth
between the head and member nodes of the cluster, formed in
the first phase of the algorithm. The cluster heads computed
in this phase are the ones having the maximum bandwidth to
the other nodes in the cluster Sk. The cluster heads are node
candidates for service placement.

(iii) The third and last phase of the algorithm includes
reassigning the nodes to the selected cluster heads having the
maximum bandwidth.

Regarding computational complexity, the naive brute force
method can be estimated by calculating the Stirling number
of the second kind [10] which counts the number of ways
to partition a set of n elements into k nonempty subsets, i.e.,
1
k! Âk

j=0(�1) j�k�n
k
�

jn ) O(nkkn
). However, for BASP, finding

the optimal solution to the k-means clustering problem if k and
d (the dimension) are fixed (e.g., in our case n= 54, and d = 2),
the problem can be exactly solved in time O(ndk+1 logn),
where n is the number of entities to be clustered. The
complexity for computing the cluster heads in phase two is
O(n2

), and O(n) for the reassigning the clusters in phase three.
Therefore, the overall complexity of BASP is O(n2k+1 logn),
which is significantly smaller than the brute force method.

I V. A L G O R I T H M I C B E H AV I O U R & P E R F O R M A N C E

Solving the problem stated in Equation 1 in brute force for
any number of N and k is NP-hard. For this reason we came
up with our heuristic. Initially we used k-means algorithm for
a first selection of the clusters. Then, we limit the choice of
the cluster heads to be inside the sets of clusters obtained
using k-means. Inside these clusters we computed the cluster
heads having the maximum bandwidth to the other nodes.
To emphasise the importance of phase two and three, in this
section we compare BASP to Naive K-Means which partitions
the nodes into k groups such that the sum of squares from
nodes to the assigned cluster heads (centroids) is minimized.
At the minimum, all cluster heads in Naive K-Means are at the
mean of their Voronoi sets (the set of nodes which are nearest
to the cluster heads).

Our experiment is comprised of 5 runs and the presented
results are averaged over all the successful runs. Each run con-
sists of 15 repetitions. Figure 8 depicts the average bandwidth
to the cluster heads obtained with Naive K-Means algorithm
and our BASP algorithm. Figure reveals that for any number
of k, our BASP algorithm outperforms the Naive K-Means
algorithm. For k=2 the average bandwidth to the cluster head
is increased from 18.3 Mbps (obtained with naive k-means)
to 27.7 Mbps (obtained with our BASP algorithm) i.e., 40%
increase. The biggest increase of 50% is when k=7. Based
on the observations from the Figure 8, the gap between two
algorithms is growing as k increases. K increases as network
grows.

Figure 8. Average bandwidth to the cluster heads

Note that our heuristics enables us to select nodes (cluster
heads) that provide much higher bandwidth than any other
random or naive approach. But, if we were about to look
for the optimum bandwidth within the clusters (i.e., optimum
average bandwidth for the cluster), then this problem would
end up to be an NP-hard. Finding the solution is NP-hard,
because finding the optimum entails running our algorithm
for all the combinations of size k from a set of size n .
This is a combinatorial problem that becomes intractable
even for small sizes of k or n (e.g., k = 5, n = 54). For
instance, if we would like to find the optimum bandwidth
for a cluster of size k=3, then the algorithm would need to
run for every possible (non repeating) combination of size 3
from the set of size 54. That is for 54 nodes we would end
up having 25K combinations (choose(54,3)), or 25K possible
nodes to start with. We managed to do this and the optimum
average bandwidth obtained was 62.7 Mbps. The optimum
bandwidth obtained for k = 2 was 49.1 Mbps, and for k = 1
was 16.9 Mbps. However the computation time took very long
(65 hours for k = 3, 30 minutes for k = 2 etc.), comparing to
BASP where it took 23 seconds for k = 3 and 15 seconds for
k = 2. Table I shows the BASP improvement over Naive K-
Means algorithm. Furthermore, Table I shows some centrality
measures and some graph properties obtained for each cluster
head. To summarize, BASP is able to achieve good bandwidth
performance with very low computation complexity.

Correlation with centrality metrics: Figure 9 shows the
neighborhood connectivity graph of the QMP network.The
neighborhood connectivity of a node n is defined as the average
connectivity of all neighbors of n. In the figure, nodes with
low neighborhood connectivity values are depicted with bright
colors and high values with dark colors. It is interesting to note
that the nodes with the highest neighborhood connectivity are
the the cluster heads obtained with our BASP algorithm. The
cluster heads (for k=2 and k=3) are illustrated with a rectangle
in the graph. A deeper investigation into the relationship
between service placement and network topological properties
is out of the scope of this paper and will be reserved as our
future work.

V. C L O U DY: I N T E G R AT I N G BA S P W I T H A R E A L
S E RV I C E H U B F O R C O M M U N I T Y N E T W O R K S

In order to foster the adoption and transition of the com-
munity network cloud environment, we provide a community



Table I
C E N T R A L I T Y M E A S U R E S F O R C L U S T E R H E A D S

k=1 k=2 k=3 k=5
Clusters [node id] C1 [27] C1 [20] C2 [39] C1 [20] C2 [39] C3 [49] C1 [20] C2 [4] C3 [49] C4 [51] C5 [39]

Head degree 20 6 6 6 6 10 6 10 10 12 6
Neighborhood Connectivity 7.7 9.6 9.6 9.6 9.6 10.8 9.6 8.7 10.8 8.1 9.6

Diameter 6 5 3 4 3 5 4 2 3 1 3
Naive K-Means Bandwidth [Mbps] 16.6 18.3 23 23.4

BASP Bandwidth [Mbps] 16.9 27.7 32.9 38.5
BASP Running Time 7 sec 15 sec 23 sec 30 sec

cloud GNU/Linux distribution, codenamed Cloudy 8. This
distribution contains the platform and application services of
the community cloud system. Cloudy is the core software of our
micro-clouds, because it unifies the different tools and services
of the cloud system in a Debian-based Linux distribution. Each
community cloud user who contributes infrastructure to the
cloud is encouraged to install the Cloudy distribution on his/her
on-premise device at home. Cloudy is open-source and can be
downloaded from public repositories 9. Cloudy is meant to be
useful and usable for the end-user, to be installed on any kind of
on-premise devices, which then can become part of community
network cloud. Therefore, Cloudy has been installed on desktop
PCs, but also on low-resource single-board-computers, such as
RaspberryPI and Beagle Board Black4.

Cloudy’s main components can be considered a layered
stack, with services residing both inside the kernel and the
user-level. Figure 10 indicates some of the already integrated
types of services on the Cloudy CN distribution. An example
of these services are the ones we consider in this paper, the
video streaming service such as PeerStreamer.

Cloudy includes a tool for users, to announce and discover
services in the CNMCs based on Serf, which is a decentralized
solution for cluster membership and orchestration. On the
network coordination layer the BASP, having knowledge about
the underlying network topology, decides about the placement

8http://cloudy.community/
9http://repo.clommunity-project.eu/images/
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Figure 9. Neighborhood Connectivity in QMP network

of the service announced via Serf (see Figure 10). After that,
the service can be discovered by the other users.
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A. UseCase: Live video-streaming service
PeerStreamer10 is an open source live P2P video streaming

service and mainly used in our Cloudy distribution as the live
streaming service example. This service is built on a chunk
based stream diffusion, where peers offer a selection of the
chunks that they own to some peers in their neighborhood. The
receiving peer acknowledges the chunks it is interested in, thus
minimizing multiple transmissions of the same chunk to the
same peer. Chunks consist of parts of the video to be streamed
(by default, this is one frame of the video). PeerStreamer
differentiates between a source node and peer node. Source
node is responsible for sending the video chunk data to the
peers in the network. In our case, both the source and peers
are located in Docker containers in the nodes distributed over
the QMP network [8].

B. Evaluation in real production community network
In order to understand the gains of our network-aware service

placement algorithm in a real production community network,
we deploy our algorithm in real hardware connected to the
nodes of the QMP network, located in the city of Barcelona.

10http://peerstreamer.org/



We use 20 real nodes connected to the wireless nodes
of QMP. These nodes are co-located in either users homes
(as home gateways, set-top-boxes etc) or within other infras-
tructures distributed around the city of Barcelona. Nodes are
deployed to use the wireless links of each community network
that operate in the ISM frequency bands at 2.4 GHz and 5
GHz. The hardware of the nodes consists of Jetway devices,
which are equipped with an Intel Atom N2600 CPU, 4 GB of
RAM and 120 GB SSD. They run an operating system based
on Cloudy, which allows running several services on one node
simultaneously implemented as Docker or Linux containers
(LXC). Containers of Cloudy contains some of pre-integrated
distributed applications, which the community network user
can activate to enable services inside the network. For our
experiments, we use the live video streaming service, which
is based on PeerStreamer.

As the controller node we leverage the experimental infra-
structure of Community-Lab11. Community-Lab provides a
central coordination entity that has knowledge about the
network topology in real time and allows researchers to deploy
experimental services and perform experiments in a real and
production community network. The nodes of QMP where
we are running the live video streaming service are part of
Community-Lab.

In our experiments we connect a live streaming camera
(maximum 512 kbps bitrate, 30 frame-per-second) to a local
PeerStreamer instance which acts as the source for the P2P
streaming. The source is running in a Docker container. The
source is responsible for converting the video stream into chunk
data that is sent to the peers. In the default configurations of
PeerStreamer a single chunk is comprised of one frame of the
streaming video. We choose as a source a stable node with
good connectivity and bandwidth to the camera in order to
minimize the video frame loss from the networked camera.
The location of the source in such a dynamic network is of
high importance. Placing the source across slow wireless links
impacts the QoS and QoE that peers will perceive.

In order to determine the impact of our algorithm when
placing the source node, we measure the average chunk loss
percentage at the peer side. Chunk loss metric defines the
percentage of chunks that are lost and not arrived in time. This
way helps us to understand the impact of the network on the
reliable operation of live-video streaming service.

Our experiment is composed of 20 runs, where each run
has 10 repetitions, and is averaged over all the successful runs
(90% of the runs were successful). In the 10% of the runs
the source was not able to get the stream from the camera, so
peers did not receive the data. The measurements we present
consists of 2 weeks of experiments, with roughly 100 hours
of actual live video distribution and several MBytes of logged
data. The presented results are from one hour of continuous
live streaming from the PeerStreamer source.

Figure 11 shows the average chunk loss for different cluster
sizes. The data reveals that for any number of cluster k, our
BASP algorithm outperforms the currently adopted random
placement in Guifi.net. For k=1, using our BASP algorithm

11https://community-lab.net/

Figure 11. Average video chunk loss in QMP

the average chunk loss is decreased from 12% to 10%. This is
the case when we have one source node streaming to the 20
peers in the network. Based on the observations from Figure 11,
the gap between the two algorithms is growing as k increases.
For instance, when k=3, we get 3% of improvement regarding
chunk loss.

Regarding the network interferences that may be caused by
other users concurrent activities which can impact the results
of our experiments, we reference to our earlier work [5] which
investigated these issues.

V I . R E L AT E D W O R K

Service placement is a key function of cloud management
systems. Typically, by monitoring all the physical and virtual
resources on a system, service placement aims to balance load
through the allocation, migration and replication of tasks.

Data centers: Choreo [11] is a measurement-based method
for placing applications in the cloud infrastructures to minimize
an objective function such as application completion time.
Choreo makes fast measurements of cloud networks using
packet trains as well as other methods, profiles application
network demands using a machine-learning algorithm, and
places applications using a greedy heuristic, which in practice
is much more efficient than finding an optimal solution. In
[12] the authors proposed an optimal allocation solution for
ambient intelligence environments using tasks replication to
avoid network performance degradation. Volley [13] is a system
that performs automatic data placement across geographically
distributed datacenters of Microsoft. Volley analyzes the logs
or requests using an iterative optimization algorithm based on
data access patterns and client locations, and outputs migration
recommendations back to the cloud service.

Distributed Clouds: There are few works that provides
service placement in distributed clouds with network-aware
capabilities. The work in [14] proposes efficient algorithms for
the placement of services in distributed cloud environment.
The algorithms need input on the status of the network,
computational resources and data resources which are matched
to application requirements. In [15] authors propose a selection
algorithm to allocate resources for service-oriented applica-
tions and the work in [16] focuses on resource allocation in
distributed small datacenters.

Service Migration: Regarding the service migration in
distributed clouds, few works came out recently. The authors
in [17] and [18] study the dynamic service migration problem



in mobile edge-clouds that host cloud-based services at the
network edge. They formulate a sequential decision making
problem for service migration using the framework of Markov
Decision Process (MDP) and illustrate the effectiveness of
their approach by simulation using real-world mobility traces
of taxis in San Francisco. The work in [19] studies when
services should be migrated in response to user mobility and
demand variation.

Another related work is [20] which proposed several algo-
rithms that minimize the coordination and overlay cost along
a network. The focus of our work in this paper however is
to design a low-complexity service placement heuristic for
community network clouds to maximise bandwidth.

V I I . C O N C L U S I O N

In this paper, we motivated the need for bandwidth-aware
service placement on community network micro-cloud infras-
tructures. Community networks provide a perfect scenario to
deploy and use community services in contributory manner.
Previous work done in CNs has focused on better ways to
design the network to avoid hot spots and bottlenecks, but did
not related to schemes for network-aware placement of service
instances.

However, as services become more network-intensive, they
can become bottle-necked by the network, even in well-
provisioned clouds. In the case of community network clouds,
network awareness is even more critical due to the limited
capacity of nodes and links, and an unpredictable network
performance. Without a network aware system for placing
services, locations with poor network paths may be chosen
while locations with faster, more reliable paths remain unused,
resulting ultimately in a poor user experience.

We proposed a low-complexity service placement heuristic
called BASP to maximise the bandwidth allocation in de-
ploying a CNMC. We presented algorithmic details, analysed
its complexity, and carefully evaluated its performance with
realistic settings. Our experimental results show that BASP
consistently outperforms the currently adopted random place-
ment in Guifi.net by 35%. Moreover, as the number of services
increases, the gain tends to increase accordingly. Furthermore,
we deployed our service placement algorithm in a real network
segment of QMP network, a production community network,
and quantified the performance and effects of our algorithm.
We conducted our study on the case of a live video streaming
service PeerStreamer integrated through Cloudy distribution.
Our real experimental results show that when using BASP
algorithm, the video chunk loss in the peer side is decreased
up to 3%.

As a future work, we plan to look into service migration, i.e,
the controller needs to decide which CNMC should perform
the computation for a particular user, with the presence of user
mobility and other dynamic changes in the network. In this
problem, the user may switch between CNMCs thus another
question is whether we should migrate the service from one
CNMC to another cloud when the user location or network
condition changes.
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