
LiteLab: Towards Efficient Large-scale Network
Experiment

Liang Wang1 Jussi Kangasharju2

Cambridge University, UK University of Helsinki, Finland

Abstract—Large-scale network experiments is a challenging
problem. Simulations, emulations, and real-world testbeds all
have their advantages and disadvantages. In this paper we
present LiteLab, a light-weight platform specialized for large-
scale networking experiments. We cover in detail its design,
key features, and architecture. We also perform an extensive
evaluation of LiteLab’s performance and accuracy and show that
it is able to both simulate network parameters with high accuracy,
and also able to scale up to very large networks. LiteLab
is flexible, easy to deploy, and allows researchers to perform
large-scale network experiments with a short development cycle.
We have used LiteLab for many different kinds of network
experiments and are planning to make it available for others
to use as well.

I. INTRODUCTION

For network researchers, large-scale experiment is an im-
portant tool to test distributed systems. A system may exhibit
quite different characteristics in a complex network as opposed
to behavior observed in small-scale experiments. Thorough
experimental evaluation before real-life deployment is very
useful in anticipating problems. This means that the system
should be tested with various parameter values, like different
network topologies, bandwidths, link delays, loss rates and so
on. It is also useful to see how the system interacts with other
protocols, e.g. routers with different queueing policies.

Due to the large parameter space, researchers usually need
to run thousands of experiments with different parameter
combinations. As Eide pointed out in [1], replayability is
critical in modern network experiments. Not being able to
replay an experiment implies the results are not reproducible,
which makes it difficult to evaluate a system, because the
results from different experiments are not comparable.

A simulator has been a popular option due to its simplicity
and controllability. It also has other benefits like reproducible
results and low resource requirements. However, a simulator
is only as good as the models used. Choosing the right
granularity of abstraction is a tradeoff between more realistic
results and increased computational complexity.

Experiments on real systems can overcome many problems
of simulators, because all the traffic flows through a real
network with real-world behavior. However, running large-
scale real-world experiments requires a lot of resources. Vir-
tualization may help, but configuring and managing large
experiments is still difficult.

Recently, high performance clusters are becoming common,
virtualization technology advances, and overlay networks seem

to become the de facto paradigm for modern distributed
systems. All these emerging technologies change the way we
build and evaluate networked systems.

In this paper, we present LiteLab, our flexible platform for
large-scale networking experiments. We show its design, func-
tionalities, key features and an evaluation of its accuracy and
performance. With LiteLab, researchers can easily construct
complex network on a resource-limited infrastructure.

LiteLab is easy to configure and extend. Each router and
links between them can be configured individually. New
queueing policies, caching strategies and other network mod-
els can be added in without modifying existing code. The
flexible design enables LiteLab to simulate both routers and
end systems in the network. Researchers can easily plug in
user application and study system behaviors. LiteLab takes
advantages of overlay network techniques, providing a flexible
experiment platform with many uses. It helps researchers
reduce the experiment complexity and speeds up experiment
life-cycle, and at the same time, provides satisfying accuracy.

The organization of this paper is as follows. Section II dis-
cusses choices and existing solutions for network experiment
platforms. Section III shows the design of LiteLab and its key
features. We evaluate our platform and also provide some use
cases in Section IV. We conclude the paper in Section V.

II. BACKGROUND

There are generally two methodologies to evaluate a system:
model-based evaluation and experiment-based evaluation. The
first tries to derive numeric performance values by applying
analytical models. However, as the systems become larger and
more distributed, system analysis becomes more complex. In
most cases, it is impossible to build a mathematically tractable
model. Experiment-based evaluation tackles this problem and
we can identify three main forms of experiment-based evalua-
tion: simulation, emulation, and real network testbeds. Below
we present examples of these and discuss their pros and cons.
After presenting LiteLab, we return to a comparison between
LiteLab and the approaches below in Section IV-F.

A. Simulator: NS2 and NS3

NS2 [2] is one of the most famous among general purpose
simulators [2], [3]. It provides lots of models for many kinds
of network settings. Users can implement their own model
in C++ and plug it into NS2. Experiment configuration and
deployment are done with Tcl/Tk scripts. NS3 has more

Li
te

La
b

 A
rc

hi
te

ct
ur

e

Jo
b

53

Jo
b

66

Jo
b

78

Jo
b

88

Jo
b

95

......

Jo
b

91

Overlay Subsystem

......

Agent Subsystem

SRouter

Caching

Queueing

Node Agent

Mapping

Job Control

Fig. 1: LiteLab Architecture

features and tunable parameters to allow more realistic set-
tings. However, increased complexity and detailed models
significantly increase computational overheads.

B. Emulator: Emulab

Emulab [4] tries to integrate simulation, emulation and live
network into a common framework. The aim is to combine the
control and ease of use from simulation to emulation with the
realism from live network. Users can configure the topology
according to the experiment needs. The multiplexed virtual
nodes are implemented with OpenVZ, a container-based vir-
tualization scheme. Emulab uses VLAN and Dummynet [5]
to emulate wide-area links within the local-area network. It is
also able to mix traffic from Internet, NS3 and emulated links
together. Emulab can also multiplex NS3 into the experiment
in order to maximize the resource utilization. Emulab’s way of
combining many advanced techniques makes its configuration
and setup quite complicated.

C. Internet: PlanetLab

PlanetLab [6], [7] is a platform for live network experi-
ments. The generated traffic goes through the real Internet
and is subject to real-life dynamics. PlanetLab takes advantage
of its many geographically distributed sites and provides
researchers a realistic environment very close to the true
Internet. However, as PlanetLab is a public facility accessible
by many researchers, all the experiments are multiplexed on
the same infrastructure. Therefore experiments are subject
to nondeterministic factors, and usually not repeatable. The
experiment configuration also lacks the flexibility of Emulab.

III. LITELAB ARCHITECTURE

We now present the architecture of LiteLab, resource allo-
cation mechanisms, and mechanisms for running experiments.

A. General Architecture

The goal of LiteLab is to provide an easy to use, fully-
fledged network experiment platform. Figure 1 shows the gen-
eral system architecture. LiteLab consists of two subsystems:
Agent Subsystem and Overlay Subsystem, presented below.

We first illustrate how LiteLab works by describing how an
experiment is performed on this experiment platform.

All experiments are jobs in LiteLab and are defined by a
job description archive provided by a user. An archive can
contain multiple configuration files which specify the details

of the experiment, e.g., network topology, router configuration,
link properties, etc. The Agent Subsystem has one leader
node which is responsible for starting and managing jobs
(see Section III-C). We use the Bully election algorithm for
selecting the leader dynamically.

Second, the user submits the job to LiteLab which processes
the job description archive, determines needed resources and
allocates necessary physical nodes from the available nodes.
We have developed and run LiteLab on our department’s
cluster, but the design puts no constraints on where the nodes
are located.1 Nodes with lighter loads are preferred.

Third, LiteLab informs the selected nodes and deploys an
instance of the Overlay Subsystem on them (see below).
The Overlay Subsystem is started to construct the network
specified in the job description archive.

Finally, LiteLab starts the experiment, and the job is saved
into the JobControl module, which continuously monitors its
state. If a node is overloaded, LiteLab will migrate some
SRouters to other available nodes to reduce the load. If an
experiment successfully finished, all the log files are automat-
ically collected for post processing.

B. Agent Subsystem

The Agent Subsystem provides a stable and uniform exper-
iment infrastructure. It hides the communication complexity,
resource failures and other underlying details from the Overlay
Subsystem. It is responsible for managing physical nodes, allo-
cating resources, administrating jobs, monitoring experiments
and collecting results. The main components of the Agent
Subsystem are NodeAgent, JobControl and Mapping.

1) NodeAgent represents a physical node, thus there is one-
to-one mapping between the two. It has two major roles
in LiteLab. First, it serves as the communication layer of
the whole platform. Second, it presents itself as a reliable
resource pool to Overlay Subsystem. We use the Bully
algorithm to elect a leader responsible for managing the
resources and jobs.

2) JobControl manages all the submitted jobs in LiteLab.
After pre-processing, JobControl allocates the resources
and splits a job into multiple tasks which are distributed
to the selected nodes. The job is started and continuously
monitored.

3) Mapping maps virtual resources to physical resources.
The goal is to maximize resource utilization and perform
the mapping quickly. It is also a key component to
guarantee the accuracy. Mapping module runs an LP
solver to achieve the goal.

C. Resource Allocation: Static Mapping

Resource allocation focuses on the mapping between virtual
nodes and physical nodes, and it is the key to platform scal-
ability. We have subdivided the resource allocation problem
into two sub-problems: mapping problem (below) and dynamic
migration (Section III-D).

1For geographically dispersed nodes, strong guarantees about network
performance may be hard or impossible to provide.

The mapping should not only maximize the resource uti-
lization, but also guarantee there is no violation of phys-
ical capacity. We take four metrics into account as the
constraints: CPU load, network traffic, memory usage and
use of pseudo-terminal devices. Deployment of the software-
simulated routers (SRouter) must respect the physical con-
straints while optimize the use of physical resources.

Suppose we have m physical nodes and n virtual nodes.
We first construct an m ⇥ n deployment matrix D. All the
elements in D have binary values. If Di,j is 1, then virtual
node i is deployed on physical node j, otherwise Di,j is 0. We
denote Ci as the CPU power, Mi as the memory capacity, U
as egress bandwidth and V as ingress bandwidth of physical
node i. We also denote cj , mj , uj and vj as virtual node j’s
requirements for CPU, memory, egress and ingress bandwidth
respectively.

We model the processing capability of a node in terms of
its CPU power:

nX

j=1

Di,j ⇥ cj Ci, 8i 2 {1, 2, 3..m} (1)

Total memory requirements from virtual nodes running on
the same machine should not exceed its physical memory:

nX

j=1

Di,j ⇥mj Mi, 8i 2 {1, 2, 3..m} (2)

The aggregated bandwidths are also subject to physical
node’s bandwidth limit:

nX

j=1

Di,j ⇥ uj Ui, 8i 2 {1, 2, 3..m} (3)

nX

j=1

Di,j ⇥ vj Vi, 8i 2 {1, 2, 3..m} (4)

A virtual node can only be deployed on one physical node,
and the total number of virtual nodes is fixed. Two natural
constraints follow:

mX

i=1

Di,j = 1, 8j 2 {1, 2, 3..n} (5)

mX

i=1

nX

j=1

Di,j = n (6)

Our mapping strategy is to use as few physical nodes as
possible, and give preference to less loaded nodes. In other
words, we try to deploy as many virtual nodes as possible on
physical nodes with the lightest load. We define node load L:

L = w1 ⇥ avg cpu load+ w2 ⇥ traffic

+w3 ⇥memory usage+ w4 ⇥ user activities
(7)

The four metrics are given different weights to reflect
different level of importance. In our case, we set w1 >

LP solver

Mapping Module

799 352279002

PHY #

1

0

556100 221 27

57332129500

Activity Traffic MemoryCPU

Node States

......

2

V_BW

4

112156

SR #

38

21

32 2

221

U_BW MemoryCPU

Job Requirement

Constraints
1) CPU constraints
2) Memory constraints
3) Traffic constraints
4) Natural constraints

10

0

0

02

0

0

1

7

1

0

0

1

0

1

8

0

0

00 0

0

0

1 0

1

0

0

...

0

0

n

0

0

4

0m

1

...5

0

0

0

0

0 0

0

6

...

0

1

2

0

1

3

0

SR
PHY

Deployment Matrix

Fig. 2: Inputs and output of Mapping module

w2 > w3 > w4, but this choice is rather arbitrary; Emulab
uses a similar rationale [4]. In our evaluation, we have found
that our simple rule for the weights is sufficient, but further
study would be required to gain more understanding on their
importance.

Larger L implies heavier load. We give each machine a
preference factor pi equal to the reciprocal of its load, L�1.
Node with the lightest load has the largest preference index.

We formalize the mapping problem into a linear program-
ming problem (LP). The objective function is as follows:

max

mX

i=1

nX

j=1

pi ⇥Di,j (8)

subject to the constraints in equations (1)–(6).
Each node sends its state information to the leader, which

then has global knowledge needed for solving the LP problem.
Our LP solver is a python module, which takes node states and
job description as inputs, and outputs the optimal deployment
matrix. Figure 2 shows how Mapping module works.

We also adopted other mechanisms into our LP solver
to further improve the efficiency by reducing the problem
complexity. We discuss these in detail in Section IV-C.

D. Resource Allocation: Dynamic Migration

The static mapping cannot efficiently handle the dynamics
during an experiment. For example, a node overloaded by
other users’ activities may skew our experiment results. We
use dynamic migration to solve these problems.

Dynamic migration is implemented as a sub-module in
NodeAgent. It keeps monitoring the load (defined by e.q (7))
on its host. If NodeAgent detects a node is overloaded, some
tasks will be moved onto other machines without restarting
the experiments. Migration is not able to completely mask the
effects from other users, but can alleviate the worst problems.
Currently, we only implement very basic migration. Thorough
testing and more features are part of our future work.

E. Overlay Subsystem

Overlay Subsystem constructs an experiment overlay by
using the resources from Agent Subsystem. One overlay
instance corresponds to a job, therefore LiteLab can have
multiple overlay instances running in parallel at the same time.
JobControl module manages all the created overlays.

ingress N queue

ingress 0 queue

ingress 1 queue

...
..

Link Properties
Queueing Policy
Traffic Shaping

......

i_0 i_1 i_2 i_n
egress 0 queue

egress 1 queue

egress N queue

...
..

Aggregated Traffic Shaping

User-defined ihandlers

User Application

recv() send()

Fig. 3: Logical structure of SRouter

The most critical component in Overlay Subsystem is
SRouter, which is a software abstraction of a realistic router.
Due to its light-weight, multiple SRouters can run on one
physical node. Users can configure many parameters of
SRouters, e.g., link properties (delay, loss rate, bandwidth),
queue size, queueing policy(Droptail, RED), and so on.

1) Queues: Figure 3 shows SRouter architecture and how
the packets are processed inside. SRouter maintains a TCP
connection to each of its neighbors. The connection repre-
sents a physical link in real-world. For each link, SRouter
maintains a queue to buffer incoming packets. In the job
description archive, user can specify the link delay, loss rate
and bandwidth for each individual link. All these properties
are modelled within the SRouter so that they are not subject
to TCP dynamics.

SRouter maintains three FIFO queues inside: iqueue, equeue
and cqueue. All incoming packets are pushed into iqueue
before being processed by a chain of functions. All outgoing
packets are pushed into equeue. Aggregated traffic shaping
is done on these two queues. If a packet’s destination is the
current SRouter itself, then it enters into cqueue. Later, the
packet will be delivered to user application.

2) Processing Chain: We borrowed the concept of chains
of rules from iptables when we designed SRouter. If a packet
waiting in the ingress queue gets its chance to be processed,
it will go through a chain of functions, each of which can
modify the packet. We call such a function an ihandler. If an
ihandler decides to drop the packet, then the packet will not
be passed to the rest of the ihandlers in the chain.

The default ihandler is bypass handler, and is always the
last one in the chain. It simply inserts an incoming packet into
cqueue or equeue. If a packet reaches the last ihandler, it will
be either delivered to the next hop or to the user application.

Users can insert their own ihandlers into SRouter to process
incoming packets. SRouter has a very simple but powerful
mechanism to load user-defined ihandlers. User only needs to
specify the path of the folder containing all the ihandlers in
job description archive. After LiteLab starts a job, SRouter
will load them one by one, in the specified order.

3) VID: To be neutral to any naming scheme, LiteLab uses
logical ID (VID) to identify a SRouter. A VID can be an
integer, a float number or an arbitrary string. By using VID, we
do not need to allocate separate IP address for each SRouter.

Every VID is mapped to <IP:PORT> tuple and an SRouter
maintains a table of such mappings. These mappings are also
a key to enabling dynamic migration, because LiteLab can
migrate an SRouter onto another node by simply updating the
VID mapping table.

4) Routing: Routing in LiteLab is also based on VID. In
LiteLab, an experimenter can use his own routing algorithm
either by plugging in ihandlers or by defining a static routing
policy. LiteLab has three default routing mechanisms:

1) OTF: Uses OSPF [14] protocol. Given the topology file
as input, the routing table is calculated on the fly when
an experiment starts. The routing table construction is
fast, but the routes are not symmetric.

2) SYM: Symmetric route is needed in some experiments.
In such cases, LiteLab uses Floyd-Warshall algorithm
[15] to construct routing table. In the worst case, Floyd-
Warshall has time complexity of O(|V |3) and space
complexity of ⇥(|V |2). Therefore, the construction time
might be long if the topology is extremely complex.

3) STC: This method loads the routing table from a file,
avoiding the computational overheads in the other two
methods and giving full control over routing.

5) User Application: ihandler provides a passive way to
interact with SRouters. Besides ihandler, SRouter has another
mechanism for users to interact with it: user application. This
feature makes it possible to use SRouter as a functional end-
system. In the beginning of an experiment, LiteLab will also
start the user applications running on SRouters after they
successfully load all the ihandlers.

SRouter exposes two interfaces to user application: send and
recv. Equivalent to standard socket calls, a user application can
use them sending and receiving packets. Currently, we have a
synchronous version implemented, an asynchronous version is
in our future work. User applications can also access various
other information like VID, routing table, link usage, etc.

In a nutshell, LiteLab is highly customizable and extensible.
It is very simple to plug in user-defined modules without
modifying the code and substitute default modules. SRouter
can also be used as end-system instead of simply doing routing
task. When used as end-system, user-implemented applications
can be run on top of it.

IV. EVALUATION

We performed thorough evaluation on LiteLab to test its
accuracy, performance and flexibility. In following sections,
we present how we evaluates various aspects of LiteLab and
how we adapted it to get around practical issues. We also give
some use cases to illustrate the power of the platform.

A. Accuracy: Link Property

In terms of accuracy, we have two concerns with using
software-simulated router on general purpose operating sys-
tem. First, is SRouter able to saturate the emulated link if it
is operating at full speed? Second, can SRouter emulate the
link properties (delay, loss rate and bandwidth) accurately?

TABLE I: Accuracy of SRouter’s bandwidth control as a
function of link bandwidth and packet size.

Bandwidth Packet Observed Value
(Kbps) Size bw (Kbps) % err
56 64 55.77 0.41

1518 57.62 2.89
384 64 382.56 0.37

1518 387.96 1.03
1544 64 1539.23 0.31

1518 1546.32 0.15
10000 1518 9988 0.12
45000 1518 44947 0.12

We performed a series of experiments to test the accuracy
and precision of SRouter. We used different values for band-
width, delay, packet loss, and packet size in the evaluation. Our
test nodes run Ubuntu SMP with kernel 3.0.0-15-server. The
operating system clock interrupt frequency is 250HZ. We set
up an experiment where we use two SRouters as end-systems,
each running both a server and a client.

In bandwidth limit experiments, we used one-way traffic.
A server keeps sending packets to a client on the other node.
Table I summarizes the experiment results. With 1518 B pack-
ets, SRouter can easily saturate a 100 Mbps link. With 64 B
packets, two directly connected SRouters can exchange 10000
packets (625 KB) per second. This low number stems mainly
from our use of Python to implement LiteLab. Although C
would be faster, we opted for Python in the interest of sim-
plicity and flexibility. We also tested a multi-hop scenario and
observed only negligible additional decreases in bandwidth.

Compared with the results in [4], SRouter is much better
than nse [16] and close to dummynet. One reason why
dummynet has slightly better accuracy is it increases the
clock interrupt frequency of the emulation node to 10000HZ,
40 times of ours, which improves the precision accordingly.
Another reason is that dummynet works at the kernel level
thus has no user-level overheads. Based on the results, SRouter
makes a reasonable tradeoff between accuracy and complexity.
It shows that application layer isolation is able to provide
satisfying accuracy and precision. We can increase experiment
scale greatly without sacrificing too much reality.

Table II summarizes the results from delay test. We used
the same topology as in the bandwidth limit test, with the
difference that traffic is two-way and there is no bandwidth
limit. In an ideal situation, the observed value should be twice
the set value. The results show that as the delay increases,
the error drops even though the standard deviation (stdev) also
increases. Both small and large packets suffer from large error
rate when the delay is less than 10ms. We also noticed that
a high-speed network (10 Gbps) can provide better precision
than a low-speed network (1 Gbps) in both experiments and
comparing with previous work [4].

Table III summarizes the experiments for packet loss ob-
served by the customer. The accuracy of the modeled loss rate
mainly relies on the pseudo-random generator in the language.

TABLE II: Accuracy of SRouter’s delay at maximum packet
rate as a function of 1-way link delay and packet size.

OW Delay Packet Observed Value
(ms) Size RTT stdev % err
0 64 0.190 0.004 N/A

1518 0.221 0.007 N/A
5 64 10.200 0.035 2.00

1518 10.230 0.009 2.30
10 64 20.212 0.057 1.06

1518 20.185 0.015 0.92
50 64 100.209 0.060 0.21

1518 100.218 0.031 0.22
300 64 600.189 0.083 0.03

1518 600.273 0.034 0.04

TABLE III: Accuracy of SRouter’s packet loss rate as a
function of link loss rate and packet size.

Loss Rate Pakcet Observed Value
(%) Size loss rate (%) % err
0.8 64 0.802 0.2

1518 0.798 0.2
2.5 64 2.51 0.4

1518 2.52 0.8
12 64 11.98 0.1

1518 11.97 0.2

TABLE IV: Time to construct realistic ISP networks. OTF:
routing table is calculated on the fly; STC: routing table is
pre-computed and loaded by routers

ISP # of routers # of links OTF STC
Exodus 248 483 1.5s 16s
Sprint 604 2279 4.6s 141s
AT&T 671 2118 4.2s 204s
NTT 972 2839 10.1s 312s

B. Scalability: Topology

Being able to quickly construct new topologies certainly
improves efficiency. Compared to Emulab and PlanetLab, Lite-
Lab’s configuration and setup is lighter. Nodes are identified
with VIDs and no additional IP addresses are needed.

To test how fast LiteLab can construct an experiment
network, we used both synthetic and realistic topologies,
deployed on 10 machines. For realistic topologies, we used
4 ISPs’ router-level networks from Rocketfuel Project [17].
Table IV shows the time used in constructing these networks
using two different routing table computing methods (OTF and
STC from Section III-E). The result shows LiteLab is very
fast in constructing realistic networks, most of them finished
within 5 seconds. Even for the largest network NTT, the time
to construct is only about 10 seconds.

In some cases, the experimenters need symmetric routes.
As we mentioned in Section III, network constructed with
OTF cannot guarantee symmetric routes. SYM is impractical
for complex topologies, so STC is the only option, although
much slower than OTF. The first bottleneck is transmitting
the pre-computed routing file to the local machine; the second
bottleneck is loading the routing table into the memory. There
are several ways to speed up STC: first, storing the routing
file in local file system; second, using more physical nodes.

We also used synthetic network topologies in the evaluation.

 0

 10

 20

 30

 40

 50

 60

 200 400 600 800 1000

Ti
m

e
(s

ec
on

ds
)

of nodes

Avg. degree = 4
Avg. degree = 8
Avg. degree = 16

(a) Random (Erdős-Rényi)

 0

 10

 20

 30

 40

 50

 60

 200 400 600 800 1000
Ti

m
e

(s
ec

on
ds

)
of nodes

Avg. degree = 4
Avg. degree = 8
Avg. degree = 16

(b) Scale-free (Barabási-Albert)

Fig. 4: Time to construct synthetic networks of different type.

of PHY # of SR Naive (s) Heur (s)
128 100 1.30 0.03
128 200 3.23 0.08
128 400 5.37 0.23
128 800 11.61 1.00
256 100 1.93 0.03
256 200 4.62 0.08
256 400 9.47 0.23
256 800 22.24 0.98

TABLE V: Efficiency of LP solver as a function of different
network size. PHY:physical nodes, SR:SRouters

The purpose is to illustrate the relation between construction
time and network complexity. We chose Erdős-Rényi model
to generate random network and Barabási-Albert model to
generate scale-free network. Figure 4 shows the results of 50
different synthetic networks with the different average node
degrees. The number of nodes increases from 100 to 1000.
In the biggest network, there are about 16000 links. From
the results, we can see given the node degree, the time to
construct network increases linearly as the number of nodes
increases in random network. However, the growth of time
is slower in scale-free network because the nodes with high
degree dominate the construction time.

C. Adaptability: Resources Allocation

As mentioned, we use an LP solver to map virtual nodes to
physical nodes. The LP solver module uses CBC2 as engine,
takes node states and job requirements as inputs, and outputs
a deployment matrix. We tested how well our LP solver scales
by giving it different size of inputs. Table V shows the results.

The size of deployment matrix is the product of the number
of physical nodes and the number of SRouters. The results
(Naive column in Table V) show that as the deployment matrix
grows, the solving time increases. It implies that even for a
moderate overlay network, solving times can be significant if
there are a lot of physical resources.

To reduce solving time, we must reduce matrix size. We
cannot reduce the number of SRouters in the experiment, but
can limit the number of physical nodes. Algorithm 1 shows
our heuristic algorithm which attempts to limit the number of
physical nodes. The algorithm picks the minimum number of
nodes needed to satisfy the aggregate resource requirements of
the experiment and then attempts to solve the LP. Because the
actual requirements like CPU or memory of a single SRouter

2https://projects.coin-or.org/Cbc

0 1 2

43 5

6 7 8

Physical nodes 0 00m 00 000 0 00

...

00

0

0

02

0

0

0

7

0

0

0

0

0

0

0

0

0

8

0

0

00 0

0

0

1 0

1

0

0

0

0

0

n

0

0

0 0

0

4

04

0

...5

0

0

00

0

0

0 0

0

6

3

0

0

0

2

0

0

3

0

SR
PHY

Deployment Matrix
Select minimum node set
satisfying job requirement

Fig. 5: Reduce deployment matrix size by selecting minimum
physical node set that satisfies the job requirement.

Input: job requirements R, physical nodes L
Output: minimum physical node set S
Calculate overall job requirement R
Order nodes from lightest to heaviest load into L
foreach node N in L do

Add N to S
Calculate capacity of S: C
if R < C then

Solve LP
if optimal solution exists then break
;
else R 2⇥ R ;

end
end
Algorithm 1: Heuristic to improve mapping efficiency

cannot be split onto two physical nodes, it is possible that the
LP has no solution. We then double the aggregate resources
required, add more physical nodes, and attempt to solve the LP
again. Eventually a solution will be found or the problem will
be deemed infeasible, i.e., although the aggregate resources
are sufficient, it is not possible to find a mapping which
satisfies individual node and SRouter constraints. In our tests,
we discovered that the optimal solution is in most cases found
on the first try. Figure 5 shows how the matrix size is reduced.

The efficiency of the LP solver with heuristic algorithm is
also shown in Table V (Heur column). By comparing with
naive LP solver, the solving time is significantly reduced and
it is independent of the number of available physical nodes.

D. Application: Use Cases

We have used LiteLab as an experiment platform in many
projects. Compared to other platforms, LiteLab speeds up ex-
periment life-cycle without sacrificing accuracy, especially for
very complex experiment networks. We have tested LiteLab
in the following situations:

1) Router experiment: new queueing and caching algo-
rithms can be plugged into LiteLab and test its perfor-
mance with various link properties.

2) Distributed algorithms: LiteLab is also a good platform
for studying distributed algorithms, gossip and various
DHT protocols can be implemented as user applications.

3) Information-centric network experiments: various rout-
ing and caching algorithms can be easily tested on
complex networks, using realistic ISP networks.

E. Limitations

LiteLab aims at being a flexible, easy-to-deploy experiment
platform and in this goal, it must make some tradeoffs regard-
ing accuracy and performance. In terms of accuracy, the main
factor is the precision of the system interrupt timer, especially
when simulating low-level link properties. Increasing timer
frequency, like in [4], will improve accuracy, but requires root
privileges and possible recompilation of the kernel. LiteLab
runs in user space and does not require root privileges.

Overall system load will also affect LiteLab’s performance.
LiteLab attempts to avoid these issues by selecting lightly
loaded nodes and migrating tasks from heavily loaded nodes,
however it cannot completely eliminate external effects from
other processes running on the test platform. Any platform on
a shared infrastructure suffers from this same problem and the
only solution would be to use a dedicated infrastructure.

SRouter’s processing power is another limitation as it can
only process about 10000 packets per second. Adding more
user-defined modules will further slow down SRouter. This
limitation stems mainly from our choice of Python as im-
plementation language and a C implementation would yield
better performance. Using Python has made the development
of LiteLab a lot easier and less error-prone than using C.
This means that LiteLab is not well-suited for low-level, fine-
grained protocol work. However, for studying system-level
behavior and performance of a large-scale system, it is better
suited than existing platforms.

F. Comparison

We now compare features and capabilities of LiteLab with
the three other existing approaches. LiteLab is a time- and
space-shared experiment platform. It leverages the existing
nodes available to the experimenters and attempts to maximize
utilization of all available physical resources.

Compared to NS2/3 (and other simulators like [3], [18],
[19]), LiteLab runs over a real network and allows deployment
of user applications on top of the experiment platform. LiteLab
allows experimenting with very large topologies with relatively
little physical resources. Specific-purpose simulators, e.g., [9]–
[12], are lighter than NS2/3, but are limited to a single
application. Parallel simulation [13] may offer a solution to
the scalability issues of simulators.

Compared with Emulab, LiteLab runs on generic hardware
and does not require any particular operating system or root
privileges. Emulab is more accurate in simulating certain
network-level parameters, but LiteLab is able to run a much
larger experiment with the same hardware because multiple
SRouters can run on a single physical node. Work of Rao et
al. [8] is close to our approach. However, their work focuses
on a specific application whereas LiteLab is a generic network
experimentation testbed.

LiteLab is very similar to PlanetLab, with a few key dif-
ferences. PlanetLab runs on a dedicated infrastructure whereas
LiteLab can leverage any existing infrastructure. PlanetLab has
the advantage of using a real network between the nodes, but
at the same time, is not able to guarantee network performance
between nodes. LiteLab, on the other hand, can configure the
network properties with very good accuracy and allow better
repeatability for experiments.

V. CONCLUSION

In this paper, we have presented LiteLab, a light-weight
network experiment platform. It combines the benefits from
both emulation and simulation: ease of use, high accuracy, no
complicated hardware settings, easy to extend and interface
with user application, various operating parameters to reflect
realistic settings.

LiteLab is a flexible and versatile platform to study system
behavior in complex networks. It makes large-scale experi-
ments possible even with limited physical resources. LiteLab
also shortens experiment life-cycle without sacrificing the re-
alism, makes researcher’s work more efficient. We are making
LiteLab available for download and use of others in the future.

REFERENCES

[1] E. Eide, “Toward replayable research in networking and systems,” in
NSF Workshop on Archiving Experiments to Raise Scientific Standards.
Salt Lake City, UT: NSF, May 2010.

[2] “UCB/LBNL/VINT network simulator - ns (version 2).” [Online].
Available: http://www-mash.cs.berkeley.edu/ns/

[3] A. Varga, “The omnet++ discrete event simulation system,” Proceedings
of the European Simulation Multiconference (ESM’2001), June 2001.

[4] B. White, et al. “An integrated experimental environment for distributed
systems and networks,” in Proceedings of OSDI. Dec. 2002.

[5] L. Rizzo, “Dummynet: a simple approach to the evaluation of network
protocols,” Comput. Commun. Rev., vol. 27, pp. 31–41, January 1997.

[6] B. Chun, et al. “Planetlab: an overlay testbed for broad-coverage
services,” Comput. Commun. Rev., vol. 33, pp. 3–12, July 2003.

[7] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A blueprint
for introducing disruptive technology into the internet,” SIGCOMM
Comput. Commun. Rev., vol. 33, pp. 59–64, January 2003.

[8] A. Rao, A. Legout, and W. Dabbous, “Can realistic bittorrent
experiments be performed on clusters?” in IEEE Peer-to-Peer
Computing Conference, 2010.

[9] “Peersim: A peer-to-peer simulator, web site.” [Online]. Available:
http://peersim.sourceforge.net

[10] R. Buyya and M. Murshed, “Gridsim: a toolkit for the modeling and
simulation of distributed resource management and scheduling for grid
computing,” Concurrency and Computation: Practice and Experience,
vol. 14, no. 13-15, pp. 1175–1220, 2002.

[11] I. Baumgart, B. Heep, and S. Krause, “Oversim: A flexible overlay
network simulation framework,” in IEEE Global Internet Symposium,
2007, may 2007, pp. 79 –84.

[12] W. Yang and N. Abu-Ghazaleh, “GPS: A general peer-to-peer simulator
and its use for modeling bittorrent,” in Proc. of MASCOTS, 2005.

[13] R. M. Fujimoto, “Parallel discrete event simulation,” in Proc. of Winter
Simulation Conference, 1989. pp. 19–28.

[14] J. Moy, RFC 2328: Open Shortest Path First Version 2 (OSPF V2),
Apr. 1998.

[15] R. W. Floyd, “Algorithm 96: Ancestor,” Commun. ACM, vol. 5, no. 6,
pp. 344–345, Jun. 1962.

[16] K. Fall, “Network emulation in the vint/ns simulator,” in Proc.
Symposium on Computers and Communications, 1999.

[17] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with rocketfuel,” in ACM SIGCOMM, 2002.

[18] A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM: NDN simulator
for NS-3,” in Tech. Rep, 2012.

[19] R. Chiocchetti, D. Rossi, and G. Rossini, “ccnSim: an Highly Scalable
CCN Simulator,” in IEEE ICC, Jun. 2013.

