On the Representation of Datatypes in Isabelle/ HOL

N. Volker

FernUniversitat Hagen, Germany

Abstract

Representation of datatypes is a necessary prerequisite if one wants to prove rat-
her than postulate the characteristic theorems of datatypes. This paper introduces
two notions of representation functions for types and shows how representations
of composed types can be calculated from representations of their constituents.
Together with a representation of basic types due to Paulson [6], this provides a
basis for the mechanization of datatypes in Isabelle/HOL.

0 Introduction

Datatypes are important ingredients of many theories modelling computations. We will
be concerned here with datatypes which are generated from a number of elements and
functions, the constructors. This means that every element of the type can be written as
a constructor term, i.e. as an application of constructors to constructors. Furthermore,
our datatypes will be freely generated by the constructors, i.e. the constructors are
distinct and injective. This implies that every element of the datatype is denoted by
a unique constructor term. As a consequence, such types enjoy a structural induction
theorem and allow the definition of functions by primitive recursion.

In the categorical setting, these types arise as initial elements in certain categories
of algebras ([2]). Therefore, one also speaks of initial algebras. Other names used are
recursive or inductive types without laws. We will simply call them datatypes.

The dual kind of types are characterized by destructor functions whose domain is
the carrier of the type. An example for such a “co-datatype” are infinite lists. Although
parts of our discussion should carry over to co-datatypes, we will not consider them
here.

Currently, the Isabelle/HOL system provides a datatype definition package which
has a number of shortcomings:

1. The properties of the new types are postulated axiomatically.

2. The declaration of a type T may not contain applications of type operators to
T. This forbids definitions like

(a,'b) Tree = LEAF 'a | NODE ("b, ("a, 'b) Tree List) (1)

3. There is no support for mutually recursive datatypes.

We will outline in this paper an approach which aims to prove the characteristic theo-
rems of the new datatype. This is achieved by representing types by sets of a certain
type which was introduced by Paulson [6] for exactly this purpose. Our main contri-
bution is the derivation of representations of type expressions from representations of

its constituents. This construction based on a generalization of the map function from
lists to an arbitrary datatype.

The type ('a, 'b) Tree models trees with arbitrary finite branching and elements of
"a resp. 'b in the leafs resp. nodes. This example is inspired from a slightly simpler
datatype in [1]. That article discusses some basic questions concerning automatic
support for datatypes in another higher order proof assistant, namely the HOL system
[5].

We are currently working on an implementation along the lines suggested in this
paper. We stress that this paper reports on work in progress and does not claim to be
the final word on representations of datatypes in higher order logic.

1 Map for arbitrary datatypes

At several places of our exposition, we will make use of the fact that for every datatype
T one can define a function T_map which is the 7" analogue of the wellknown function
map on lists. Since the definition of the general mapping function is technically some-
what involved, we will illustrate it first by a couple of examples. Recall that lists can
be defined by the datatype declaration

'a List = [] | Cons('a, 'a List) (2)

For the type T = List, the function T_map agrees with map, i.e. we have

List_map : (‘@ = 'b) = (alist = ’'bList)
and
List_nap / [] .
List_map f (Cons (z, 2s)) = Cons(f z, List_map f zs)

Intuitively, List_map preserves the structure given by the list constructors [] and Cons,
but changes the values of those constructor arguments whose type in (2) is ‘a.
For the datatype Tree defined above, the type of the mapping function is:

Tree_map : [a; = 'by, ‘ag = "bo] = ((a1, 'az) Tree = (b, "by) Tree)

Again, the function Tree_map is defined by primitive recursion. The recursive occur-
rence of Tree within List is reflected by an application of List_map to Tree_map (fi, f2):

Tree_map (f1, f2) (LEAF a;) = LEAF (/i @)
Tree_map (fi, f2) (NODE (ag, ts)) = NODE(f; az,List_map (Tree_map (fi, f2)) ts)

For 0-ary datatypes, i.e. unparameterized types such as nat, the mapping function
is the identity on that type. Next, we will show how to define the function T_map f
for the case of an arbitrary one parameter datatype ‘a 7" with m constructors. The
declaration of such a type has the form

/(l T = CI(T1,17---) | |Cm(Tm717...) (3)

where T} ; is the j’th argument type of constructor C;. Of course, the number of type
arguments can vary from constructor to constructor and can also be zero. Every T; ; is

a type expression build up from the type variable 'a, recursive occurrences of ‘a T and
previously defined datatypes. Note that T is only allowed to occur with the parameter
"a, i.e. instantiations of T are not allowed.

Let f be some function from a type A to another type B. Then the mapping of f
over T

Tmapf : AT = BT
preserves constructors. For a constructor C; with & > 0 arguments, we therefore have
Tmap f (Ci(xi1y--y @ig)) = Ci(h-Tix @i, ..., h-Tig ip)

for certain functions i_T} ;. On 0-ary constructors, the function 7 _map f is the identity.
As indicated by the notation, the function h_T; ; depends on the type 7} ; in (3).
For a type expression Ty, h_Ty is defined by induction on the structure of Ty as follows:

h_('a) = f (4)
h-("a T) = T_map f
h((Ty,...,T)D) = Dmap(h_Ty,...,h_T))

D stands here for an arbitrary previously datatype of some arity /.
For a general n-ary datatype T, the type of the mapping function is

Tmap : ['a1="b1,...,7a¢,="0,] = ((ar,...,7a,) T = ("b1,...,"0,) T)

The general definition of T _map (fi,. .., f.) follows exactly the same scheme as for the
case n = 1. The definition of the auxiliary functions h_T; ; stays the same except that
equation (4) is replaced by setting

h-(a;) = fi

fori=1,...,n.
Although it is not usual in higher order logic, the product and sum type themselves
can be defined as datatypes:
'a +'b = 1Inl'a | Inr'b
'a x b = (a,’b)

Their mapping operators are characterized by the following equations

Sum_map (f,¢) (Inl) = Inl (f a)
Sum_map (f,¢) (Inr b) = Inr (g b)
Prod_map (f,9) (a,b) = (fa, gb) (5)

A treatment of the generalized mapping function in the categorical framework can
be found in [4].

2 Another generic function

For the definition of representing sets, we will be interested in computing the range of

T_map (fi,...,fn). It turns out that this can be expressed in terms of another generic
function
T_set : [‘ayset,.../a,set] = (‘ar,..., a,) T set)

which can be defined for an arbitrary n-ary datatype T'. Intuitively, T_set (Aq, ..

will consist of those elements of 7" which can be generated from the sets (A, ..

The meaning of ‘generated’ will be made precise using inductive definitions.
First, let us consider the example of the type List. The function

7An)
5 A

9 nj.

List_set : (‘a set) = ((‘a List) set)

should take a set A into the set of all lists with elements in A. This set is characterized
by the following two introduction rules

[a € A; | € List_set A]
[] € List_set A4 Cons (a, [) : List_set A

Note how each rule corresponds to the typing of one List constructor. In fact, we can
derive every rule systematically from the typing rule of the corresponding constructor
by simply replacing the name List by List_set and 'a by A.

For a general datatype ("ay, ..., 'a,) T with m constructors, we obtain analogously
m introduction rules for T_set (Ay,..., A,) from the typing rules of the constructors
by replacing the name T by T_set and ’a; by A; for i € [1,...,n].

By the principle of inductive definition, a finite number of rules such as the ones
above uniquely specifies a set, c.f. chapter 4 of [8] and the literature cited there. This
set is the intersection of all the sets which comply to those rules.

Support for inductive definitions in higher order logic proof systems has been des-
cribed in [3] and [6]. Both approaches implement inductively defined sets as least fixed
points.

Our interest in T_set stems from the equality:

range (T _map (fi,...,f,)) = 7T_set (range fi,...,range f,) (6)

We note the fact that T_set is obviously monotonic.

3 Representations of types

The principal means to add new types in Isabelle/HOL without risking inconsistencies is
the subtype facility. This function is similar to the HOL systems new_type_definition
and allows to define a new type T which is isomorphic to a nonempty subset S of an
existing type RT. Isomorphic here means that there exists an injective function Trep
from the new type T onto its representing set 5. In the subtype package, the new
type is declared and constants are introduced for the representation function Trep
and an inverse abstraction function Tpe. The inverse relationship between these two
functions and the fact that the representing set S is the image of the representation
function are postulated as axioms.

RT
T_rep

T _abs

Figure 1: Definition of new types using subtype

The use of the subtype declaration is the only way to avoid the introduction of
non trivial axioms in the definition of a datatype T in Isabelle/HOL. It implies the
following subdivision of our task:

1. Construct a representing set §.

2. Define the new type T by a subtype declaration. This requires a proof that 5 is
not empty.

3. Define the constructors by using the abstraction and representation functions.
4. Generate and prove the characteristic theorems.

In the following, we will be considering not just the representation of a single type but
of a whole class C of types. Such a representation associates every type T in C with a
representation function Trep. Obviously, we require the representation functions to be
injective.

Because we will need to combine representations, all the representation functions
should ideally have the same target type Rep. However, there is a problem here.
Consider the family A of types defined by

A, = (o * ... x 'a,)

Clearly a type 17 can only be embedded in another type T3 if all type variables of T}
also occur in T5. This implies that it is not possible to embed all elements of A in one
type. For a general class C, the best we can ask for is that a type T parameterized by
n different types variables ("ay, ..., 'a,) has a representation:

Trep @ (ar,...,"'ay) T = (‘ay+...4 a,) Rep (7)

Of course, repeated type parameters only have to occur once in the representation type.
In particular, if all type parameters of a type are instantiated to one type parameter,
we can expect a representation

Trep : (a,...,"a) T = 'a Rep (8)
Lastly, unparameterized types T such as nat should be representable by functions

Trep @ T = 'aRep

Our aim is now to find representations of type expressions built from types for which
we already have a representation. As an example, consider the type

(("a, 'b) Tree) List

which occurs in the definition of type Tree. Intuitively, a representation of a list ¢s of
trees should be formed by first representing all elements of ts and then representing the
resulting list of representations. This suggests a different notion of a representation of
a parameterized type 7', namely as a function which turns a T-structure of represen-
tations into a representation. Formally, this means that for a n-parameter datatype T’
we are looking for an injective function

Tgep : (‘a Rep,..., a Rep) T = ’a Rep ()

n

Given such a function, this would allow us to define
(("a, 'b) Tree) Listyep = Listpep oList_map Treerep

More generally, a representation of a type expression could be derived from represen-
tations of its constituents by setting

((Tl,...7 Tn) T) = Tgpp © T—map(Tlrep7---7 anep) (10)

rep

The injectivity of this function follows from the easily proven fact that the mapping
Ty_map of injective functions over some type Ty is again injective.

Can we construct Tgrgp from a given representation function Trep? Instantiating
(8) gives us

Trep : (‘aRep,...,’a Rep) = ('a Rep) Rep

If we compare this with the type in (9), we note that the target type should be ‘a Rep.
This suggests that we require an injective function

Rep_flat : (‘a Rep) Rep = ’a Rep

The name is borrowed from the function flat which flattens a list of lists by concate-
nation. Assuming the existence of such a function Rep_flat, we can simply define the
desired function Tgep by

Trep = Rep_flat o Trep

The injectivity of Trep follows of course from the fact that the composition of injective
functions is injective.

Unfortunately, there are types Rep which we might want to use as a representation
type, but for which no such injection Rep_flat exists. A prominent example is the
type of endomorphic functions

'a Funy = (‘a = 'a)
Its “flattening’ function is of type

Funi_flat : (‘e = 'a) = (‘e = 'a)) = (‘e = 'a)

Now, for arbitrary types 77 and 75, the HOL type Ty = T contains all set theoretic
functions from T; to T5. However, it is wellknown in set theory that only one-element
sets S allow an injection of type (S = S) = 5. This follows from the fact that for S
with a cardinality strictly greater than one the cardinality of 5 = 5 is always greater
than the cardinality of 5.

Hence there exists no injective function Funi_flat of the type required above. The
same argument also shows immediately that the function space operator has no _REP
representation. This is in contrast to the fact that it is easy to construct a representation

Funyep : (‘a = 'b) = (‘a 4+ 'b) Funy

After constructing Trep from T'rep, assume now conversely that we are given a repre-
sentation function Tgrgp of type (9). Let

In,; : 'a; = ‘a1 +...+ ",

be the ¢’th injection into the n-fold sum. Further, assume the existence of an embedding
7 : 'a = 'aRep

Then we can define a representation function T'rep of type (7) by setting
Trep = Trep 0o Tmap (1 oIn,y,...,7 oIn,,)

The two kinds of representation functions are therefore equivalent in the sense that we
can calculate one from the other under suitable assumptions about the representation
type Rep. Note that the two notions coincide for types without constants.

The above section describes only some basic requirements of type representations.
We are currently investigating the usefulness of further properties like monad axioms
for Rep, c.f. [7].

4 Representation of some basic types

For the derivation of representing sets for datatypes, we require at least representations
of a number of basic types. These types are the polymorphic type ‘a, the unit type
unit and the sum and product types. The necessity to represent these types stems from
the fact that semantically the bars and commas in a datatype declaration correspond
to the sum resp. product of types. The constructor names are simply the tags of the
sum. An empty argument list corresponds to the unit type. The representation of 'a
is necessary for the treatment of type variables.

A construction of representations for these four types has been given by L. Paulson
in [6]. It was implemented by him in the theory Univ which is part of the standard
Isabelle-94 HOL library. Rather than listing this theory here, we will just summarize
some of its main features. Details can be found in the cited paper resp. in the theory
files.

In Univ.thy, the type used for representation is called item. It corresponds to
the type Rep of the previous section. We will not go into the definition of this type

itself. For our discussion here, the main point of the type item is the existence of three
functions

Leaf : 'a = 'a item
Numb : nat = ’'a item
$: ['a item, 'a item] = 'a item (infix)

which are injective and have disjoint ranges. Hence these functions generate a subset of
’a item which is isomorphic to a datatype with these three functions as constructors.

Function Leaf corresponds to the function 7 from above. It provides a represen-
tation of 'a. More generally, n different type variables ’ay, ..., a, are represented by
setting

'ajrep = Leaf olIn,;

fori e [l,...,n].
Function Numb provides a representation of natural numbers. In particular, this can
be used to define a representation of the unit type by

unitggp = Numb(0)
Using the bijection
A fab.f (fst ab) (snd ab)

between two-parameter functions and functions with pairs as parameters, we can trans-
form operator $ into a REP- representation of the product type:

Prodpgp = ‘eitem % ‘aitem = ‘aitem
Prodgep = A ab.(fst ab) $ (snd ab) (11)

For the definition of a representation of +, injections

In0(A) = Numb(0)$ A
Ini(A) = Numb(1l)$ A4

are defined. Since these functions have disjoint images, one obtains the following REP-
representation of the sum type

Sumggp = ‘aitem + ‘citem = ‘aitem
Sumpgp = sum_case In0O Inil

For the representation of type expressions, it is important that we can define an injec-
tion:

item_flat : (‘a item) item = ’‘a item

Its effect on the subset of ’a item spanned by the three functions Leaf, Numb and $ is
given by the primitive recursive equalities

item_flat (Leaf a) = a
item flat (Numb n) = Numb n
item flat (M $ N) = item flatM $ item flatN

For the derivation of map functions on datatypes, an item map function is useful. Again,
we do not give its definition but only note the following equalities:

item map f (Leaf a) = Leaf (f a)
item map f (Numb n) = Numb n
itemmap f (M $ N) = itemmapfM $ itemmapf N

The two functions item_flat and item map are at the time of this writing not part of
the standard Isabelle distribution.

Because of the injectivity of representation functions, the range of T'rep can serve as
a representing set for a type 7. For the following range calculations, note the equality

rangs (f 0g) = /" (range g) (12)
It uses the image operator ” defined by
f7A4 = UaeAASf a}
The range of a general type instantiation can be computed as follows:
range ((71,...,7T,) T) rep
= { equation (10) }

Tgep ” range (Trep © T-map (T rep;--+> Tnrep))
= { equations (12,6) }
Trep 7 T_set (range T'rep,---,range T rep)

This expression can be evaluated further for concrete T. In the case of the sum type,
we have

Prod_set (A4, B) = Uac A Ube B .{(a,b)} (13)
which implies
range (A * B),q
= { derivation above }
Prodpep 7 (Prod_set (range Ayep, range Brep))
= { equations (13,11), simplifications }
U a € range Ayep. |J b € range Brep.{a $ b}
= { definition of <*> below }
range Arep <#> range Brep
where the binary operator <x*> is defined by:
X<>Y = UaceAdA. UbeB. {a$b}

Analogously, we can derive:

range (A + B) = range Arep <t> range Brep

rep
where the binary operator <4 is given by:
X <> Y = In0”X UIn1l”Y

Note that the two operators <*> and <4> are obviously monotonic.

5 The representing set of a datatype

We will now explain how the little representation theory of the preceding sections can
be used to construct representing sets for datatypes. Instead of showing this abstractly,
we will demonstrate it for the case of the type Tree and trust that the reader can infer
the general procedure. Recall the definition of Tree:

('a,'b) Tree = LEAF 'a | NODE (", ("a, 'b) Tree List)

As mentioned before, the bars and the commas in a datatype declaration correspond
to sum and product of types. This means that we can interpret this type declaration
as an isomorphism of types

('a,"b) Tree = 'a + 'b x ('a, 'b) Tree List (14)

This isomorphism suggests that the range of the representation function of both sides
should be the same, i.e.

range (("a,'b) Tree) = range (‘"a + b * (‘a, 'b) Tree List) ., (15)

rep

Let

R = range(('a,'b) Tree)
Using the representation calculus developed in the previous sections, equation (15) can
be reduced to:

R = range(Leaf oInl)
<4> (range (Leaf oInr) <x> Listpgp ” List_set R)

Because of the monotonicity of the occurring operations on set, the abstraction of the
right hand side over R is a monotonous function. Hence Tarski’s fixed point theorem
implies the existence and uniqueness of a smallest solution R to this equality, c.f. [6]
or the theory Lfp in the standard Isabelle/HOL distribution. This set is used as the
representing set of (‘a, ') Tree.

In general, the construction of the representing set requires that we already have
representation functions of all the types occurring in the definition of a datatype T
except of course for T itself.

Instead of the definition of R as a least fixed point, an equivalent characterization
using inductive sets is also possible. In our example, we get the following two rules

rs € List_set R
InO (Leaf (Inl a)) € R Ini (Leaf (Inr b) $ Listggp rs)

In general, if there are more than two constructors, it is necessary to distinguish them
by suitable combinations of In0 and Ini.

6 Definition of type and constructors

According to our work-plan from section 3, we can now declare the type Tree by a
subtype definition using R as representing set. The non-emptiness of R follows easily
from equality (??). For a general datatype T, it requires at least one constructor whose
argument types do not contain recursive occurrences of 7.

From the subset declaration of Tree, we obtain a representation function Treerep
and an inverse abstraction function Treeaps. The typing of Treerep agrees with the
general typing (7). Per construction, the ranges of the representing functions of the
two types in (14) are equal. Note that nothing is said about the equality of the repre-
sentation functions themselves.

The constructors of a new type T are obtained by

1. representing the arguments,
2. combining the results using $ and In0/In1 and
3. abstracting into 7.

In the case of type Tree, this results in

LEAF : 'a = ('a,’b) Tree

NODE : ['b, ('a, 'b) Tree] = (‘a,’b) Tree
LEAF a = Treeaps (In0 (Leaf (Inl a)))
NODE (b,ts) = Treeaps (Inl (Leaf (Inr a)

$ Listrep (List_map Treeyep 5))

0-ary constructors are represented using Numb(0), i.e. the representation of the only
element of the unit type.

7 Theorems

For a datatype T, the induction theorem expresses the wellknown principle of structural
induction over type T. For its proof, note that the inductive characterization of the
representing set gives us an induction theorem for that set. The induction theorem for
T is obtained directly by lifting this theorem to T using T aps. For our example type,
it reads as follows:

V a. P (LEAF a)
Vb. V ts. ts € List_set {{. P t} — P (NODE (b, ts))
YV t. Pt

Primitive recursive functions are the unique functions solving certain functional equa-
lities. In our example, this means that for a pair of functions

h : 'a='c
hy : ['b, (a,’b) Tree List,c List] = ‘¢

there exists a unique function f satisfying

f (LEAF a) = ha
f (NODE (b, ts)) = he(b, ts, List_map [ts)

Theorems justifying primitive recursion can be proven by an inductive construction of
the graph of the function, c.f. [3].

In [1], a different notion of primitive recursion is suggested. In the case of type
Tree for example, it is required that given

hh 'a = 'c
hy : ['b, ('a,’b) Tree List, 'd] = 'c
h3 . /d

hy : [('a,’b)Tree, ('a,’b) Tree List, ‘¢, 'd] = 'd

there exists a unique pair of functions f and g satisfying

f (LEAF a) = ha

f (NODE (b, ts)) = hy (b, ts, g ts)

g (] = Is

f (Cons (¢, ts)) = ha(t,ts, ft, gts)

For the type Tree, we have proven that this agrees with our notion of primitive recursive
functions. It seems that this also holds for arbitrary datatypes, but we have not proven
this formally yet.

8 Concluding remarks

We have presented an approach to the representation of datatypes which applies also to
datatypes T with recursive occurrences of T inside of type expressions. Our approach is
based on two generic functions T _map and T_set which can be defined for an arbitrary
datatype T. The use of these functions has led us also to a different formulation of the
induction theorem and of primitive recursive functions than usual.

The discussion of representations in the first four sections applies also to co-datatypes
and to mutual recursive types. By suitable adjustments of the material in the last sec-
tions, an extension of our approach to these types should be possible.

Acknowledgements

I would like to thank M. Cieliebak for his comments.

References

[1] E. Gunter. Why we can’t have SML-style datatype declarations in HOL. In L.J.M.
Claesen and M.J.C. Gordon, editors, Higher Order Logic Theorem Proving and its

Applications, volume A-20 of IFIP Transactions, pages 561-568, Leuven, Belgium,
1992. North-Holland.

[2] J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Initial algebra
semantics and continuous algebras. Journal of the ACM, 24:68-95, 1977.

[3] John Harrison. Inductive definitions: automation and application. Proceedings
of the 1995 International Workshop on the HOL theorem proving system and its
applications, Aspen Grove, Utah. 1995. To appear.

[4]

E. Meijer, M.M. Fokkinga, and R. Paterson. Functional programming with bananas,
lenses, envelopes and barbed wire. In John Hughes, editor, Functional Programming
and Computer Architecture, volume 523 of Lecture Notes in Computer Science.
Springer-Verlag, 1991.

M.J.C. Gordon and T.F. Melham. Introduction to HOL. Cambridge University
Press, 1993.

Larry Paulson. Co-induction and co-recursion in higher-order logic. Technical
Report 304, Computer Laboratory, University of Cambridge, England, 1993.

Philip Wadler. Monads for functional programming. In Lecture notes for Markt-
oberdorf Summer School on Program Design Calculi, Springer-Verlag, 1992.

G. Winskel. The Formal Semantics of Programming Languages: An Introduction.
Foundations of Computing. The MIT Press, 1993.

