
On the Representation of Datatypes in Isabelle�HOL

N� V�olker

FernUniversit�at Hagen� Germany

Abstract

Representation of datatypes is a necessary prerequisite if one wants to prove rat�
her than postulate the characteristic theorems of datatypes� This paper introduces
two notions of representation functions for types and shows how representations
of composed types can be calculated from representations of their constituents�
Together with a representation of basic types due to Paulson ���� this provides a
basis for the mechanization of datatypes in Isabelle�HOL�

� Introduction

Datatypes are important ingredients of many theories modelling computations� We will
be concerned here with datatypes which are generated from a number of elements and
functions� the constructors� This means that every element of the type can be written as
a constructor term� i�e� as an application of constructors to constructors� Furthermore�
our datatypes will be freely generated by the constructors� i�e� the constructors are
distinct and injective� This implies that every element of the datatype is denoted by
a unique constructor term� As a consequence� such types enjoy a structural induction
theorem and allow the de�nition of functions by primitive recursion�

In the categorical setting� these types arise as initial elements in certain categories
of algebras ������ Therefore� one also speaks of initial algebras� Other names used are
recursive or inductive types without laws� We will simply call them datatypes�

The dual kind of types are characterized by destructor functions whose domain is
the carrier of the type� An example for such a 	co
datatype� are in�nite lists� Although
parts of our discussion should carry over to co
datatypes� we will not consider them
here�

Currently� the Isabelle�HOL system provides a datatype de�nition package which
has a number of shortcomings


�� The properties of the new types are postulated axiomatically�

�� The declaration of a type T may not contain applications of type operators to
T � This forbids de�nitions like

��a� �b� Tree � LEAF �a j NODE ��b� ��a� �b� Tree List� ���

�� There is no support for mutually recursive datatypes�

We will outline in this paper an approach which aims to prove the characteristic theo

rems of the new datatype� This is achieved by representing types by sets of a certain
type which was introduced by Paulson ��� for exactly this purpose� Our main contri

bution is the derivation of representations of type expressions from representations of



its constituents� This construction based on a generalization of the map function from
lists to an arbitrary datatype�

The type ��a� �b� Tree models trees with arbitrary �nite branching and elements of
�a resp� �b in the leafs resp� nodes� This example is inspired from a slightly simpler
datatype in ���� That article discusses some basic questions concerning automatic
support for datatypes in another higher order proof assistant� namely the HOL system
����

We are currently working on an implementation along the lines suggested in this
paper� We stress that this paper reports on work in progress and does not claim to be
the �nal word on representations of datatypes in higher order logic�

� Map for arbitrary datatypes

At several places of our exposition� we will make use of the fact that for every datatype
T one can de�ne a function T map which is the T analogue of the wellknown function
map on lists� Since the de�nition of the general mapping function is technically some

what involved� we will illustrate it �rst by a couple of examples� Recall that lists can
be de�ned by the datatype declaration

�a List � � � j Cons ��a� �a List� ���

For the type T � List� the function T map agrees with map� i�e� we have

List map 
 ��a � �b� � ��a List � �b List�

and

List map f � � � � �
List map f �Cons �x � xs�� � Cons �f x � List map f xs�

Intuitively� List map preserves the structure given by the list constructors � � and Cons�
but changes the values of those constructor arguments whose type in ��� is �a�

For the datatype Tree de�ned above� the type of the mapping function is


Tree map 
 ��a� � �b��
�a� � �b�� � ���a��

�a�� Tree � ��b��
�b�� Tree�

Again� the function Tree map is de�ned by primitive recursion� The recursive occur

rence of Tree within List is re�ected by an application of List map to Tree map �f�� f��


Tree map �f�� f�� �LEAF a�� � LEAF �f� a��
Tree map �f�� f�� �NODE �a�� ts�� � NODE �f� a�� List map �Tree map �f�� f��� ts�

For �
ary datatypes� i�e� unparameterized types such as nat� the mapping function
is the identity on that type� Next� we will show how to de�ne the function T map f

for the case of an arbitrary one parameter datatype �a T with m constructors� The
declaration of such a type has the form

�a T � C��T���� � � �� j � � � j Cm�Tm��� � � �� ���

where Ti�j is the j �th argument type of constructor Ci � Of course� the number of type
arguments can vary from constructor to constructor and can also be zero� Every Ti�j is



a type expression build up from the type variable �a� recursive occurrences of �a T and
previously de�ned datatypes� Note that T is only allowed to occur with the parameter
�a� i�e� instantiations of T are not allowed�

Let f be some function from a type A to another type B � Then the mapping of f
over T

T map f 
 A T � B T

preserves constructors� For a constructor Ci with k � � arguments� we therefore have

T map f �Ci �xi��� � � � � xi�k �� � Ci �h Ti�� xi��� � � � � h Ti�k xi�k �

for certain functions h Ti�j � On �
ary constructors� the function T map f is the identity�
As indicated by the notation� the function h Ti�j depends on the type Ti�j in ����

For a type expression Ty � h Ty is de�ned by induction on the structure of Ty as follows


h ��a� � f

h ��a T � � T map f

h ��T�� � � � �Tl�D� � D map �h T�� � � � � h Tl�

���

D stands here for an arbitrary previously datatype of some arity l �
For a general n
ary datatype T � the type of the mapping function is

T map 
 ��a� �� b�� � � � �
�an �

� bn � � ���a�� � � � � �an�T � ��b�� � � � � �bn�T �

The general de�nition of T map �f�� � � � � fn� follows exactly the same scheme as for the
case n � �� The de�nition of the auxiliary functions h Ti�j stays the same except that
equation ��� is replaced by setting

h ��ai � � fi �

for i � �� � � � � n�
Although it is not usual in higher order logic� the product and sum type themselves

can be de�ned as datatypes


�a � �b � Inl �a j Inr �b
�a � �b � ��a� �b�

Their mapping operators are characterized by the following equations

Sum map �f � g� �Inl a� � Inl �f a�
Sum map �f � g� �Inr b� � Inr �g b�
Prod map �f � g� �a� b� � �f a� g b� ���

A treatment of the generalized mapping function in the categorical framework can
be found in ����



� Another generic function

For the de�nition of representing sets� we will be interested in computing the range of
T map �f�� � � � � fn�� It turns out that this can be expressed in terms of another generic
function

T set 
 ��a� set� � � � �
� an set� � ��a�� � � � �

�an� T set�

which can be de�ned for an arbitrary n
ary datatype T � Intuitively� T set �A�� � � � � An�
will consist of those elements of T which can be generated from the sets �A�� � � � � An��
The meaning of �generated� will be made precise using inductive de�nitions�

First� let us consider the example of the type List� The function

List set 
 ��a set� � ���a List� set�

should take a set A into the set of all lists with elements in A� This set is characterized
by the following two introduction rules

� � � List set A

�a � A� l � List set A�

Cons �a� l� 
 List set A

Note how each rule corresponds to the typing of one List constructor� In fact� we can
derive every rule systematically from the typing rule of the corresponding constructor
by simply replacing the name List by List set and �a by A�

For a general datatype ��a�� � � � � �an�T with m constructors� we obtain analogously
m introduction rules for T set �A�� � � � � An� from the typing rules of the constructors
by replacing the name T by T set and �ai by Ai for i � ��� � � � � n��

By the principle of inductive de�nition� a �nite number of rules such as the ones
above uniquely speci�es a set� c�f� chapter � of ��� and the literature cited there� This
set is the intersection of all the sets which comply to those rules�

Support for inductive de�nitions in higher order logic proof systems has been des

cribed in ��� and ���� Both approaches implement inductively de�ned sets as least �xed
points�

Our interest in T set stems from the equality


range �T map �f�� � � � � fn�� � T set �range f�� � � � � range fn� ���

We note the fact that T set is obviously monotonic�

� Representations of types

The principal means to add new types in Isabelle�HOL without risking inconsistencies is
the subtype facility� This function is similar to the HOL systems new type definition

and allows to de�ne a new type T which is isomorphic to a nonempty subset S of an
existing type RT � Isomorphic here means that there exists an injective function Trep

from the new type T onto its representing set S � In the subtype package� the new
type is declared and constants are introduced for the representation function Trep

and an inverse abstraction function Tabs� The inverse relationship between these two
functions and the fact that the representing set S is the image of the representation
function are postulated as axioms�



T

T_abs

T_rep

S

RT

Figure �
 De�nition of new types using subtype

The use of the subtype declaration is the only way to avoid the introduction of
non trivial axioms in the de�nition of a datatype T in Isabelle�HOL� It implies the
following subdivision of our task


�� Construct a representing set S �

�� De�ne the new type T by a subtype declaration� This requires a proof that S is
not empty�

�� De�ne the constructors by using the abstraction and representation functions�

�� Generate and prove the characteristic theorems�

In the following� we will be considering not just the representation of a single type but
of a whole class C of types� Such a representation associates every type T in C with a
representation function Trep� Obviously� we require the representation functions to be
injective�

Because we will need to combine representations� all the representation functions
should ideally have the same target type Rep� However� there is a problem here�
Consider the family A of types de�ned by

An � ��a� � � � � � �an�

Clearly a type T� can only be embedded in another type T� if all type variables of T�

also occur in T�� This implies that it is not possible to embed all elements of A in one
type� For a general class C� the best we can ask for is that a type T parameterized by
n di�erent types variables ��a�� � � � �

�an� has a representation


Trep 
 ��a�� � � � �
�an �T � ��a� � � � ��� an � Rep ���

Of course� repeated type parameters only have to occur once in the representation type�
In particular� if all type parameters of a type are instantiated to one type parameter�
we can expect a representation

Trep 
 ��a� � � � � �a�T � �a Rep ���

Lastly� unparameterized types T such as nat should be representable by functions

Trep 
 T � �a Rep



Our aim is now to �nd representations of type expressions built from types for which
we already have a representation� As an example� consider the type

���a� �b� Tree� List

which occurs in the de�nition of type Tree� Intuitively� a representation of a list ts of
trees should be formed by �rst representing all elements of ts and then representing the
resulting list of representations� This suggests a di�erent notion of a representation of
a parameterized type T � namely as a function which turns a T 
structure of represen

tations into a representation� Formally� this means that for a n
parameter datatype T
we are looking for an injective function

TREP 
 ��a Rep� � � � �� a Rep� �z �
n

�T � �a Rep
���

Given such a function� this would allow us to de�ne

���a� �b� Tree� Listrep � ListREP � List map Treerep

More generally� a representation of a type expression could be derived from represen

tations of its constituents by setting

��T�� � � � �Tn� T �rep � TREP � T map �T�rep� � � � �Tn rep� ����

The injectivity of this function follows from the easily proven fact that the mapping
Ty map of injective functions over some type Ty is again injective�

Can we construct TREP from a given representation function Trep� Instantiating
��� gives us

Trep 
 ��a Rep� � � � � �a Rep� � ��a Rep� Rep

If we compare this with the type in ���� we note that the target type should be �a Rep�
This suggests that we require an injective function

Rep flat 
 ��a Rep� Rep � �a Rep

The name is borrowed from the function flat which �attens a list of lists by concate

nation� Assuming the existence of such a function Rep flat� we can simply de�ne the
desired function T REP by

TREP � Rep flat � T rep

The injectivity of T REP follows of course from the fact that the composition of injective
functions is injective�

Unfortunately� there are types Rep which we might want to use as a representation
type� but for which no such injection Rep flat exists� A prominent example is the
type of endomorphic functions

�a Fun� � ��a � �a�

Its ��attening� function is of type

Fun� flat 
 ���a � �a� � ��a � �a�� � ��a � �a�



Now� for arbitrary types T� and T�� the HOL type T� � T� contains all set theoretic
functions from T� to T�� However� it is wellknown in set theory that only one
element
sets S allow an injection of type �S � S� � S � This follows from the fact that for S
with a cardinality strictly greater than one the cardinality of S � S is always greater
than the cardinality of S �

Hence there exists no injective function Fun� flat of the type required above� The
same argument also shows immediately that the function space operator has no REP

representation� This is in contrast to the fact that it is easy to construct a representation

Fun rep 
 ��a � �b� � ��a � �b� Fun�

After constructing T REP from Trep� assume now conversely that we are given a repre

sentation function TREP of type ���� Let

In n�i 
 �ai � �a� � � � �� �an

be the i �th injection into the n
fold sum� Further� assume the existence of an embedding

� 
 �a � �a Rep

Then we can de�ne a representation function Trep of type ��� by setting

Trep � TREP � T map �� � Inn��� � � � � � � Inn�n�

The two kinds of representation functions are therefore equivalent in the sense that we
can calculate one from the other under suitable assumptions about the representation
type Rep� Note that the two notions coincide for types without constants�

The above section describes only some basic requirements of type representations�
We are currently investigating the usefulness of further properties like monad axioms
for Rep� c�f� ����

� Representation of some basic types

For the derivation of representing sets for datatypes� we require at least representations
of a number of basic types� These types are the polymorphic type �a� the unit type
unit and the sum and product types� The necessity to represent these types stems from
the fact that semantically the bars and commas in a datatype declaration correspond
to the sum resp� product of types� The constructor names are simply the tags of the
sum� An empty argument list corresponds to the unit type� The representation of �a

is necessary for the treatment of type variables�
A construction of representations for these four types has been given by L� Paulson

in ���� It was implemented by him in the theory Univ which is part of the standard
Isabelle
�� HOL library� Rather than listing this theory here� we will just summarize
some of its main features� Details can be found in the cited paper resp� in the theory
�les�

In Univ�thy� the type used for representation is called item� It corresponds to
the type Rep of the previous section� We will not go into the de�nition of this type



itself� For our discussion here� the main point of the type item is the existence of three
functions

Leaf 
 �a � �a item

Numb 
 nat � �a item

� 
 ��a item� �a item� � �a item �infix�

which are injective and have disjoint ranges� Hence these functions generate a subset of
�a item which is isomorphic to a datatype with these three functions as constructors�

Function Leaf corresponds to the function � from above� It provides a represen

tation of �a� More generally� n di�erent type variables �a�� � � � �

�an are represented by
setting

�ai rep � Leaf � In n�i

for i � ��� � � � � n��
Function Numb provides a representation of natural numbers� In particular� this can

be used to de�ne a representation of the unit type by

unit REP � Numb���

Using the bijection

� f ab� f �fst ab� �snd ab�

between two
parameter functions and functions with pairs as parameters� we can trans

form operator � into a REP
 representation of the product type


Prod REP � �a item � �a item � �a item

Prod REP � � ab� �fst ab� � �snd ab� ����

For the de�nition of a representation of �� injections

In��A� � Numb��� � A

In��A� � Numb��� � A

are de�ned� Since these functions have disjoint images� one obtains the following REP

representation of the sum type

Sum REP � �a item � �a item � �a item

Sum REP � sum case In� In�

For the representation of type expressions� it is important that we can de�ne an injec

tion


item flat 
 ��a item� item � �a item

Its e�ect on the subset of �a item spanned by the three functions Leaf� Numb and � is
given by the primitive recursive equalities

item flat �Leaf a� � a

item flat �Numb n� � Numb n

item flat �M � N � � item flatM � item flatN



For the derivation of map functions on datatypes� an item map function is useful� Again�
we do not give its de�nition but only note the following equalities


item map f �Leaf a� � Leaf �f a�
item map f �Numb n� � Numb n

item map f �M � N � � item map f M � item map f N

The two functions item flat and item map are at the time of this writing not part of
the standard Isabelle distribution�

Because of the injectivity of representation functions� the range of Trep can serve as
a representing set for a type T � For the following range calculations� note the equality

range �f � g� � f � �range g� ����

It uses the image operator � de�ned by

f � A �
S

a � A� ff ag

The range of a general type instantiation can be computed as follows


range ��T�� � � � �Tn� T �rep

� f equation ��	
 g

TREP � range �TREP � T map �T� rep� � � � �Tn rep��

� f equations �����
 g

TREP � T set �range T� rep� � � � � range Tn rep�

This expression can be evaluated further for concrete T � In the case of the sum type�
we have

Prod set �A�B� �
S
a � A�

S
b � B � f�a� b�g ����

which implies

range �A � B�rep

� f derivation above g

ProdREP � �Prod set �rangeArep� rangeBrep��

� f equations ������
� simpli
cations g
S

a � range Arep �
S

b � range Brep �fa � bg

� f de
nition of ��� below g

range Arep ��� range Brep

where the binary operator ��� is de�ned by


X ��� Y �
S

a � A �
S

b � B � fa � bg

Analogously� we can derive


range �A � B�rep � range Arep ��� range Brep

where the binary operator ��� is given by


X ��� Y � In� �X � In� �Y

Note that the two operators ��� and ��� are obviously monotonic�



� The representing set of a datatype

We will now explain how the little representation theory of the preceding sections can
be used to construct representing sets for datatypes� Instead of showing this abstractly�
we will demonstrate it for the case of the type Tree and trust that the reader can infer
the general procedure� Recall the de�nition of Tree


��a� �b� Tree � LEAF �a j NODE ��b� ��a� �b� Tree List�

As mentioned before� the bars and the commas in a datatype declaration correspond
to sum and product of types� This means that we can interpret this type declaration
as an isomorphism of types

��a� �b� Tree � �a � �b � ��a� �b� Tree List ����

This isomorphism suggests that the range of the representation function of both sides
should be the same� i�e�

range ���a� �b� Tree� rep � range ��a � �b � ��a� �b� Tree List�rep ����

Let

R � range ���a� �b� Treerep�

Using the representation calculus developed in the previous sections� equation ���� can
be reduced to


R � range �Leaf � Inl�
��� �range �Leaf � Inr� ��� ListREP � List set R�

Because of the monotonicity of the occurring operations on set� the abstraction of the
right hand side over R is a monotonous function� Hence Tarski�s �xed point theorem
implies the existence and uniqueness of a smallest solution R to this equality� c�f� ���
or the theory Lfp in the standard Isabelle�HOL distribution� This set is used as the
representing set of ��a� �b� Tree�

In general� the construction of the representing set requires that we already have
representation functions of all the types occurring in the de�nition of a datatype T

except of course for T itself�
Instead of the de�nition of R as a least �xed point� an equivalent characterization

using inductive sets is also possible� In our example� we get the following two rules

In� �Leaf �Inl a�� � R

rs � List set R

In� �Leaf �Inr b� � ListREP rs�

In general� if there are more than two constructors� it is necessary to distinguish them
by suitable combinations of In� and In��



� De�nition of type and constructors

According to our work
plan from section �� we can now declare the type Tree by a
subtype de�nition using R as representing set� The non
emptiness of R follows easily
from equality ����� For a general datatype T � it requires at least one constructor whose
argument types do not contain recursive occurrences of T �

From the subset declaration of Tree� we obtain a representation function Treerep
and an inverse abstraction function Treeabs� The typing of Treerep agrees with the
general typing ���� Per construction� the ranges of the representing functions of the
two types in ���� are equal� Note that nothing is said about the equality of the repre

sentation functions themselves�

The constructors of a new type T are obtained by

�� representing the arguments�

�� combining the results using � and In��In� and

�� abstracting into T �

In the case of type Tree� this results in

LEAF 
 �a � ��a� �b� Tree
NODE 
 ��b� ��a� �b� Tree� � ��a� �b� Tree
LEAF a � Treeabs �In� �Leaf �Inl a���
NODE �b� ts� � Treeabs �In� �Leaf �Inr a�

� ListREP �List map Treerep ts��

�
ary constructors are represented using Numb���� i�e� the representation of the only
element of the unit type�

� Theorems

For a datatype T � the induction theorem expresses the wellknown principle of structural
induction over type T � For its proof� note that the inductive characterization of the
representing set gives us an induction theorem for that set� The induction theorem for
T is obtained directly by lifting this theorem to T using Tabs� For our example type�
it reads as follows


� a� P �LEAF a�
� b� � ts � ts � List set f t � P tg �� P �NODE �b� ts��

� t � P t

Primitive recursive functions are the unique functions solving certain functional equa

lities� In our example� this means that for a pair of functions

h� 
 �a � �c

h� 
 ��b� ��a� �b� Tree List�� c List� � �c

there exists a unique function f satisfying

f �LEAF a� � h� a

f �NODE �b� ts�� � h� �b� ts � List map f ts�



Theorems justifying primitive recursion can be proven by an inductive construction of
the graph of the function� c�f� ����

In ���� a di�erent notion of primitive recursion is suggested� In the case of type
Tree for example� it is required that given

h� 
 �a � �c

h� 
 ��b� ��a� �b� Tree List� �d � � �c

h� 
 �d

h� 
 ���a� �b� Tree� ��a� �b� Tree List� �c� �d � � �d

there exists a unique pair of functions f and g satisfying

f �LEAF a� � h� a

f �NODE �b� ts�� � h� �b� ts � g ts�
g � � � h�
f �Cons �t � ts�� � h� �t � ts � f t � g ts�

For the type Tree� we have proven that this agrees with our notion of primitive recursive
functions� It seems that this also holds for arbitrary datatypes� but we have not proven
this formally yet�

	 Concluding remarks

We have presented an approach to the representation of datatypes which applies also to
datatypes T with recursive occurrences of T inside of type expressions� Our approach is
based on two generic functions T map and T set which can be de�ned for an arbitrary
datatype T � The use of these functions has led us also to a di�erent formulation of the
induction theorem and of primitive recursive functions than usual�

The discussion of representations in the �rst four sections applies also to co
datatypes
and to mutual recursive types� By suitable adjustments of the material in the last sec

tions� an extension of our approach to these types should be possible�

Acknowledgements

I would like to thank M� Cieliebak for his comments�

References

��� E� Gunter� Why we can�t have SML
style datatype declarations in HOL� In L�J�M�
Claesen and M�J�C� Gordon� editors� Higher Order Logic Theorem Proving and its

Applications� volume A
�� of IFIP Transactions� pages ��� ���� Leuven� Belgium�
����� North
Holland�

��� J� A� Goguen� J� W� Thatcher� E� G� Wagner� and J� B� Wright� Initial algebra
semantics and continuous algebras� Journal of the ACM� ��
�� ��� �����

��� John Harrison� Inductive de�nitions
 automation and application� Proceedings
of the ���� International Workshop on the HOL theorem proving system and its
applications� Aspen Grove� Utah� ����� To appear�



��� E� Meijer� M�M� Fokkinga� and R� Paterson� Functional programming with bananas�
lenses� envelopes and barbed wire� In John Hughes� editor� Functional Programming
and Computer Architecture� volume ��� of Lecture Notes in Computer Science�
Springer
Verlag� �����

��� M�J�C� Gordon and T�F� Melham� Introduction to HOL� Cambridge University
Press� �����

��� Larry Paulson� Co
induction and co
recursion in higher
order logic� Technical
Report ���� Computer Laboratory� University of Cambridge� England� �����

��� Philip Wadler� Monads for functional programming� In Lecture notes for Markt�

oberdorf Summer School on Program Design Calculi� Springer�Verlag� �����

��� G� Winskel� The Formal Semantics of Programming Languages� An Introduction�
Foundations of Computing� The MIT Press� �����


