
Coding Binding and Substitution Explicitly

in Isabelle

Christopher Owens

Laboratory for Foundations of Computer Science,

Department of Computer Science, King’s Buildings,

The University of Edinburgh, EH9 3JZ, UK.

Abstract

Logical frameworks provide powerful methods of encoding object-logical bind-
ing and substitution using meta-logical λ-abstraction and application. However,
there are some cases in which these methods are not general enough: in such cases
object-logical binding and substitution must be explicitly coded. McKinna and Pol-
lack [MP93] give a novel formalization of binding, where they use it principally to
prove meta-theorems of Type Theory. We analyse the practical use of McKinna-
Pollack binding in Isabelle object-logics, and illustrate its use with a simple example
logic.

1 Introduction

In this paper we address the problem of coding logics in Isabelle (and other logical
frameworks). In some logics, meta-logical binding is unsuitable for coding object-logical
binding. For example, as we explain later, logics for programming languages which
include features such as pattern matching are difficult to code using meta-binding. We
advocate the use of the binding system due to McKinna and Pollack [MP93] to code
binding explicitly in these cases. The aim of this paper is to give enough meta-theoretical
background and practical examples to facilitate the coding of a logic in Isabelle using
McKinna-Pollack binding, and to motivate and evaluate the choice of McKinna-Pollack
binding.

In the remainder of this section, we discuss some motivating examples, and compare
systems which allow us to code binding and substitution explicitly, explaining why we
choose the system due to McKinna and Pollack. In Section 2 we describe McKinna-
Pollack binding and give an example of its use, together with several meta-theorems
which capture its behaviour. In Section 3 we expand on the example, and discuss
features of the implementation of the system in Isabelle. In Section 4, we return to our
motivating concern and examine how McKinna-Pollack binding can encode logics for
programming languages. Finally, in Section 5, we summarize our results and evaluate
the possible uses of McKinna-Pollack binding style in Isabelle.

Most Isabelle code is omitted from this document. However, this should not disguise
the fact that this paper is about an Isabelle implementation. The logic is built on Isabelle
HOL. When we give a grammar, it is implemented in Isabelle as the obvious datatype

declaration. Similarly, inductive definitions are coded in the obvious way in Isabelle, as
are primitive recursive definitions. Where the translation from the page to Isabelle is
not immediate, the implementation is explained. The Isabelle code is available by ftp
from ftp.dcs.ed.ac.uk in directory /home/ftp/pub/cao/IUW, and on the world-wide
web as http://www.dcs.ed.ac.uk/home/cao/IUW.

1.1 Motivation

Much research has been devoted to coding logics in logical frameworks and generic the-
orem provers [PE88, DFH95]. Most of these encodings use meta-level λ-abstraction to
encode object-level binding, meta-application to encode object-substitution, and meta-
variables to represent object variables. However, some logics can be difficult or cumber-
some to encode in this manner. In particular, difficulties with logics for programming
languages arise because of their sophisticated binding and scoping features.

Throughout the rest of this paper we will use an encoding of a version of the Simple
Theory of Types [Chu40] to provide examples. Judgements are of the form Γ ` P , where
Γ is a list of declarations either of the form v: τ (variable v has type τ) or v: σ = M
(variable v is term M of (polymorphic) type σ). Declarations may make reference to
earlier declarations, for example in the context x: τ → τ; y: τ → τ = λb: τ. xb, the
declaration of y refers to the earlier declaration of x.

Consider this judgement:

x: τ = M; y: τ ′ = M ′ ` P

If we were to use meta-binding to represent the binding of x and y, we might encode
this judgement in the following way:

ValDec(M,λx.ValDec(M ′, λy. Judge(P)))

However, as we shall see, type-checking rules and rules of the logic are only con-
cerned with the last declaration in the context, which in this coding is the inner-most
declaration: it is not clear how to express such rules with this coding. We would like
to represent the judgement as the obvious abstract syntax tree (the empty context is
written •):

`

�������
@
@
@

; P

�
�
� @

@
@

; y: τ ′ = M ′

�
�
� @

@
@

• x: τ = M

In order to use this scheme, we must encode the binding that occurs in declarations
explicitly. Adding further scoping features—let-expressions, local declarations, let rec
declarations—accentuates the problem.

Now we show that we cannot use meta-binding to bind variables within terms. Con-
sider a logic for a language which includes pattern matching, having a construct such
as the Standard ML case expression. Each pattern can bind an arbitrary number of
variables, and so we must “compile” a case-expression into some internal form, where
each variable is bound separately. Let us take as an example the following expression:

case e of (x, y) => x + y

This might compile into the following form:

CaseExp(e,PatBind(λx.PatBind(λy.PatAndExp((x, y), x + y))))

This translation would be done by print- and parse-translations. The same ML expres-
sion is also represented by another compiled form:

CaseExp(e,PatBind(λy.PatBind(λx.PatAndExp((x, y), x + y))))

There are two objections to representing pattern matching in this manner:

• Although the two compiled forms above would appear the same after print trans-
lation, they cannot be unified. Furthermore, we must add rules which equate the
different compiled forms of an expression.

• The parse- and print-translations are difficult to program. More importantly, it is
very difficult to establish that they have been programmed correctly.

These problems arise from the fact that pattern matching should be a single binding
which binds many variables at once. This is not the same as multiple bindings of single
variables. With such a “compiled” coding, it is difficult to satisfy ourselves that the
logic actually represents expressions as we intend.

By coding binding explicitly, we can represent case-expressions just as the grammar
of the language suggests:

CaseExp(e,Match((x, y), x + y))

The translations are trivial, each syntactically distinct expression has a unique repres-
entation, and the correctness of the representation is a non-issue.

1.2 Systems of Explicit Binding and Substitution

Rather than using increasingly arcane and counter-intuitive codings, our approach is to
axiomatize binding. We consider three possible systems.

De Bruijn binding [dB72] eliminates α-conversion by using indices rather than names
for bound variables—terms which are α-variants in name-carrying systems are syntactic-
ally identical in de Bruijn systems. De Bruijn binding is widely used, for example in
Type Theory (for example by Altenkirch [Alt93]), and in theorem provers (including
Isabelle [Pau94a]).

Unfortunately, de Bruijn terms are very difficult to read, and they are usually trans-
lated to and from a name-carrying form for display and input. This can be done by
providing a software front-end to perform the translation, but Gordon [Gor93] encodes

the translation within the framework of the theorem prover. However, any method of
translation adds another layer of processing on top of the naked de Bruijn terms: this
adds complexity and reduces clarity and abstraction. It is also the case that many formal
systems are defined using names (for example, Standard ML [MTH90]), and we should
be wary of the faithfulness of an encoding of a logic based on such a formal system if
the encoding does not use names.

The “standard” method of binding is originally due to Curry and Feys [CF58] and
is given a clear exposition by Hindley and Seldin [HS86]. Standard binding systems
define the substitution (λx.M)[N/y] as λz.M [z/x][N/y] for some fresh z (at least in
the case that capture would occur). Stoughton [Sto88] observes that since M [z/x] is not
a sub-term of λx.M , substitution cannot be defined by recursion on the structure of
terms, and must instead be defined by recursion on the size of terms. This complicates
proof considerably. He proposes a system which performs the substitutions in parallel,
M [z/x,N/y], which means that substitution can then be defined by recursion on the
structure of terms, since M certainly is a sub-term of λx.M .

We regard this difficulty in defining substitution as a clue that the substitution
operation is the wrong place to worry about variable capture, and that capture should
instead be avoided in the construction of the terms, allowing substitution to be defined
simply. The system used in this paper is due to McKinna and Pollack [MP93]: it uses
names for bound variables. The theory of this style of binding is further developed by
McKinna [McK]. A side-effect of this care in term construction is that α-conversion is
rarely necessary: it comes “for free”.

2 McKinna-Pollack Binding

McKinna and Pollack give a system of binding and substitution in which variables are
divided into two disjoint classes, intended to represent free and bound variables. The
two classes of variable are referred to as f-variables (f , f ′, intended to represent free
variables—McKinna and Pollack call these parameters) and b-variables (b, b ′, repres-
enting bound variables—called simply variables by McKinna and Pollack). It is syn-
tactically impossible for an f-variable to be bound in a term, and it is an important
meta-theorem (to be formalized later as Theorem 7) that no b-variable occurs free in a
valid deduction.

In McKinna-Pollack binding, both classes of variables are names and not de Bruijn
indices. Specifically, all we know about them is that there are infinitely many of them
(in the sense that one can always pick a fresh one). Typically, f- and b-variables will
be picked from the same set of identifiers, with a constructor wrapped around them.
Isabelle itself splits variables into free and bound variables [Pau94b, Section 6.5], but in
Isabelle, bound variables are represented by de Bruijn indices.

The grammar for simply-typed lambda terms which we will use in our example logic
is given in Figure 1. We assume that the set of constants is disjoint from the sets of b-
and f-variables. We write object equality as “≈” in order to differentiate it from Isabelle
meta-equality (≡) and Isabelle HOL equality (=). Hilbert’s description operator (“any”)
is written ε. The type Ω is the type of truth-values. Terms with no free b-variables are
called b-closed.

ty ::= Ω
ty

1
→ ty2

constant ::= ⊃
ε
≈

term ::= fvar
bvar
constant
λbvar : ty . term
term1 term2

Figure 1: simply-typed lambda terms.

(BSubstF) f [N/b] = f
(BSubstB) b′[N/b] = if (b = b′, N, b′)
(BSubstC) const [N/b] = const
(BSubstLda) (λb′: τ.M)[N/b] = if (b = b′, λb′: τ.M, λb′: τ.M [N/b])
(BSubstApp) (M M ′)[N/b] = M [N/b] M ′[N/b]

Figure 2: b-substitution.

2.1 Substitution and Closedness

There are two notions of substitution. Substitution of a term for a b-variable (b-
substitution, written M [N/b]) is defined by primitive recursion on terms by the rules
in Figure 2. Since f-variables, b-variables and constants are disjoint, b-substitution at
f-variables and constants does nothing. As in standard substitution, a binding of a vari-
able will shadow substitution for it (the rule BSubstLda with b = b′). However, unlike
standard substitution, we do not α-convert to avoid capture in the substituted term
(BSubstLda with b 6= b′). This is because we know that a b-closed term has no free
b-variables—and, in particular, the variable bound by the λ-abstraction is not free in
the substituted term.

Substitution of a term for an f-variable (f-substitution, written M [f = N]) is defined
by primitive recursion on terms by the rules in Figure 3. This is simply textual substi-
tution: everywhere the f-variable f appears in M , it is replaced by N . In particular,
substitution at λ-abstractions does not need to take into account shadowing of the
substitution by the binding: since λ can only bind b-variables, it can never shadow
a substitution for an f-variable. We can think of f-variables as “holes” in terms, and
f-substitution M [f = N] as plugging a term N into all the holes labelled f in M .

The following theorem shows the connection between the two kinds of substitution.
We write b ∈ M to mean that b-variable b occurs free in M , and f ∈ M to mean
that f-variable f occurs in M—effectively meaning “occurs free” because f-variables can

(FSubstF) f ′[f = N] = if (f = f ′, N, f ′)
(FSubstB) b[f = N] = b
(FSubstC) const [f = N] = const
(FSubstLda) (λb: τ.M)[f = N] = λb: τ.M [f = N]
(FSubstApp) (M M ′)[f = N] = M [f = N] M ′[f = N]

Figure 3: f-substitution.

(BClosedF) f ∈ BClosed

(BClosedC) const ∈ BClosed

(BClosedLda)
M [f/b] ∈ BClosed f 6∈ M

λb: τ.M ∈ BClosed

(BClosedApp) M ∈ BClosed M ′ ∈ BClosed

M M ′ ∈ BClosed

Figure 4: the set BClosed.

never be bound in terms. The formal definitions are left to the interested reader: they
are very simple.

Theorem 1 (Factorisation.) Given f 6∈ M :

M [N/b] = M [f/b][f = N]

Proof: By induction on M .

�

We are now in a position to give a formal definition of b-closed terms. The set
BClosed is given inductively by the rules in Figure 4.

In the rule BClosedLda we require f 6∈ M : this is the usual form for rules in the
McKinna-Pollack style. We are careful to maintain b-closedness of terms (free occur-
rences of b have been substituted away in M [f/b]). The side-condition ensures that b
is not identified with any f-variable occurring in M by the substitution M [f/b]—this
would be a form of variable capture.

In this case we are only concerned with the b-closedness of the term, and so do not
care if f and b are identified. We can define BClosed′ in exactly the same way as BClosed,
but omitting the side-condition on the λ rule (McKinna and Pollack use this definition
of b-closedness). The sets BClosed and BClosed′ can then be proved identical by a messy
induction on the size of terms. In general, however, when we define a relation we wish
to avoid this kind of capture, and so the side-condition cannot be omitted.

Theorem 2 (Substitution preserves b-closedness.)

1. For any f-variable f , if M and N are b-closed terms, then M [f = N] is b-closed.

2. If λb: τ.M and N are b-closed terms, then M [N/b] is b-closed.

The converse of neither part of this theorem holds: if f 6∈ M , then M [f = N] = M ,
which tells us nothing about N , and similarly if b 6∈ M , M [N/b] = M .

An attempt to prove this theorem by induction on the definition of BClosed will fail.
This is because in the rule BClosedLda, we only require that there exists a suitable f .
The induction hypothesis for the λ case tells us that there is an f ′ such that M [f ′/b][f =
N] ∈ BClosed, but we are attempting to prove M [f = N][f ′/b] ∈ BClosed for every f ′.
This problem is common when proving properties of McKinna-Pollack-style relations.

Intuitively, since M [f/b] is b-closed for some fresh f , it is in fact b-closed for every
possible f . We define the set BClosed′′ in the same way as BClosed, but with the following
λ rule:

(BClosedBLda)
∀f.M [f/b] ∈ BClosed′′

λb: τ.M ∈ BClosed′′

Surprisingly, it is not necessary to require f to be fresh. The quantifier in the
hypothesis of this rule means that BClosed′′ cannot (currently) be declared as an Isabelle
inductive set: it must be hand-coded as a least fixed point. We now show that the sets
BClosed′′ and BClosed are identical. It is immediate that BClosed′′ ⊆ BClosed, since if
the hypothesis holds for every f , there certainly exists a fresh f such that it holds. To
prove BClosed ⊆ BClosed′′, we must introduce the notion of renaming. A renaming is a
finite map from f-variables to f-variables. We lift renamings ρ to be operations on terms,
ρ∗(), in the obvious way.

Theorem 3 If M ∈ BClosed, then, for all renamings ρ, ρ∗(M) ∈ BClosed′′.

Proof: By induction on the definition of BClosed. All the cases are simple, except the
λ case. This case boils down to deducing ρ∗

0
(M)[f0/b] ∈ BClosed′′ for arbitrary ρ0, f0.

The induction hypothesis is ∀ρ. ρ∗(M [f ′/b]) ∈ BClosed′′, where f ′ 6∈ M . We instantiate
ρ in the induction hypothesis with ρ0 + {f ′ 7→ f0}, and the result follows by equational
reasoning.

�

Corollary 4

BClosed = BClosed
′′

Proof: We already know BClosed′′ ⊆ BClosed. We can deduce BClosed ⊆ BClosed′′ from
the previous theorem with ρ = ∅.

�

Such proofs are generally possible for relations defined in McKinna-Pollack style. We
can now use the induction rule for BClosed′′ to prove properties of BClosed, as required.

Finally, we are in a position to prove Theorem 2.

Proof of Theorem 2: Part 1 is an induction on BClosed′′. It requires the following
lemma:

N ′ ∈ BClosed ⊃ M [N/b][f = N ′] = M [f = N ′][N [f = N ′]/b]

In turn, this requires the lemma N ∈ BClosed ⊃ M [N/b] = M .
Part 2 follows from part 1 by the Factorisation Theorem (Theorem 1).

�

We show that BClosed correctly formalizes the set of b-closed terms.

Theorem 5 Given a term M , M ∈ BClosed if and only if b 6∈ M for every b-variable
b.

Proof: This is proved by induction on the size of M .

�

We have no further use for the test b ∈ M , and only use BClosed from now on. Before
moving on, note that we could have defined b ∈ M to be f ∈ M [f/b], where f 6∈ M .

2.2 Type-checking and Contexts

Having developed the machinery of McKinna-Pollack substitution, we move on to a first
application: type-checking.

The type system is an adaptation of HOL’s. The grammar for types allows only
monomorphic types: generalised types such as A → A (the type of functions from any
type to itself) are admitted by using Isabelle free meta-variables to stand for types, (so
A is an Isabelle free meta-variable in A → A). The constants are genuinely polymorphic;
that is, they may have more than one type.

Declarations of terms are also polymorphic. They are written f : ∀α1, . . . , αn. τ = M .
This indicates that M may have any type of the form τ ′ where τ ′ is τ with each αi

replaced by a type. The variables αi may also appear in M , as in the declaration
f : ∀α. α → α = λb: α. b. In fact, then, f : ∀α1, . . . , αn. τ = M is simply syntactic sugar
for Val(f, S) where S is the declaration scheme ∀α1, . . . , αn. 〈〈τ,M〉〉. Binding of the
αi in declaration schemes is coded as Isabelle meta-binding in the usual Isabelle way.
Declaration schemes are formed from two constructors: basic schemes are just types
paired with a term of that type; abstracted schemes are schemes quantified over a
variable:

BasicSch :: "[Ty, Term] => Scheme" ("<<_, _>>")

AbsSch :: "(Ty => Scheme) => Scheme" (binder "SCH " 100)

The relation InstType(∀α1, . . . , αn. 〈〈τ,M〉〉, τ ′) holds when τ ′ can be obtained from τ
by instantiating the variables α1, . . . , αn. Similarly, InstTerm(∀α1, . . . , αn. 〈〈τ,M〉〉,M ′)
holds when M ′ can be obtained from M by instantiating α1, . . . , αn. Their definitions
are omitted, but are simple.

Declarations of types for f-variables are written f : τ : the type τ is not polymorphic.
Contexts are lists of declarations of either form. Notice that contexts declare terms and
types for f-variables, not b-variables.

The typing judgement is defined inductively by the rules in Figure 5.

TypesOf(⊃) = {Ω → Ω → Ω}
TypesOf(ε) = {(A → Ω) → A,A is a type}
TypesOf(≈) = {A → A → Ω, A is a type}

(LookupVbl) τ ∈ LookupTypes(Γ; f : τ, f)

(LookupVal)
InstType(S, τ)

τ ∈ LookupTypes(Γ; Val(f, S), f)

(LookupWeak)
τ ∈ LookupTypes(Γ, f)

τ ∈ LookupTypes(Γ; dec, f)
f not declared by dec

(TypF)
τ ∈ LookupTypes(Γ, f)

Γ ` f : τ

(TypC)
τ ∈ TypesOf(const)

Γ ` const : τ

(TypLda)
Γ; f : τ ` M [f/b]: τ ′ f 6∈ M

Γ ` λb: τ.M : τ → τ ′

(TypApp) Γ ` M : τ → τ ′ Γ ` M ′: τ
Γ ` M M ′: τ ′

Figure 5: the typing judgement.

Now we define what it means for a context Γ to be valid, written ` Γ. We say a
declaration f : ∀α1 . . . αn. τ = M is well-typed in Γ if and only if for every instance τ ′ of
τ and corresponding instance M ′ of M , Γ ` M ′: τ ′. Declarations of the form f : τ are
always considered to be well-typed. A context Γ; dec is valid exactly when Γ is valid
and dec is well-typed in Γ (the empty context is valid, too, of course).

The typing rules only deduce a type for b-closed terms. This is formalized as the
following theorem.

Theorem 6

1. If Γ ` M : τ then M ∈ BClosed.

2. If ` Γ then, for every declaration of the form f : ∀α1 . . . αn. τ = M occurring in Γ,
M ∈ BClosed.

Proof:

1. By induction on the definition of the typing judgement.

2. A simple corollary of part 1, since ` Γ means that all terms in Γ are well-typed.

�

3 A Version of the Simple Theory of Types

The version of the Simple Theory of Types we implement is similar to that implemented
in HOL [GM93] and to an early version of Isabelle HOL [Pau90]. It contains both λ-
binding and also binding of terms in declarations within a context, and so illustrates
the use of McKinna-Pollack binding.

Judgements in the logic are of the form Γ ` P , meaning “P holds in the presence of
context Γ.” Recall that contexts give types to f-variables and declarations of values for
f-variables. We ensure type-correctness of judgements by ensuring that axioms are well
typed, and that rules preserve well-typedness, as is usual.

The rules and axioms of the system are given in Figure 6. Rules whose only hypo-
theses are well-formedness conditions are considered to be axioms.

3.1 Declarations

We can look-up declarations via the rule Lookup:

Γ ` M ≈ M ′ f 6∈ M ′ InstTerm(S,M)

Γ; Val(f, S) ` f ≈ M ′

Notice that M is evaluated in the context Γ: any occurrences of f in M refer to a
previous declaration in Γ.

We give an atomic weakening rule for contexts. The declaration dec is a single value
or type declaration which declares the f-variable f .

Γ ` P dec well-typed in Γ f 6∈ P

Γ; dec ` P

This rule is provably equivalent to weakening by a many declarations at once.
The logical connectives T, F, ∧, ∨, ¬, ∀ and ∃ are declared in a standard context

which gives their usual HOL definitions. The example proofs given in the .ML files
culminate in the derivation of the usual natural deduction rules for these connectives.

3.2 Equality and Conversion

We encode β-reduction in the usual HOL way: we say that two terms are equal if one
is obtained from the other by reducing a single outer-most β redex. The other rules
for equality mean that it includes the reflexive transitive closure of β-reduction within
terms.

McKinna-Pollack binding style does not require us to explicitly define α-conversion.
As a side-effect, the rule Abs captures α-conversion. For example, Γ ` λx: τ. x ≈ λy: τ. y,
by EqRefl followed by Abs. (Of course, α-conversion is admitted anyway in the Simple
Theory of Types by extensionality, but even in a system where this were not so, α-
conversion would still be admitted by Abs).

The following is a simple consequence of the axiom EtaConv :

` Γ Γ ` H: τ → τ ′

Γ ` (λb: τ.H b) ≈ H

In a standard binding system this rule would have the additional side-condition b 6∈ H—
but since H is well-typed, it is b-closed, and so we need not check this.

Axioms

(EqRefl) ` Γ Γ ` M : τ
Γ ` M ≈ M

(BetaConv)
` Γ Γ ` (λb: τ.M)N : τ

Γ ` ((λb: τ.M)N) ≈ M [N/b]

(OmegaCases)
` Γ

Γ ` ∀P : Ω. (P ≈ T) ∨ (P ≈ F)

(ImpAntiSym)
` Γ

Γ ` ∀P,Q: Ω. (P ⊃ Q) ⊃ (Q ⊃ P) ⊃ (P ≈ Q)

(EtaConv)
` Γ

Γ ` ∀H: τ → τ ′. (λb: τ.H b) ≈ H

(Select)
` Γ

Γ ` ∀P : α → Ω.∀x: α. P x ⊃ P (ε P)

Rules

(Subst)
Γ ` P [f = M] Γ ` M ≈ M ′

P [f = M ′]

(Abs)
Γ; f : τ ` M [f/b] ≈ M [f/b′] f 6∈ M,M ′

Γ ` λb: τ.M ≈ λb′: τ.M ′

(ImpI)

[Γ ` P]
....

Γ ` Q

Γ ` P ⊃ Q

(MP)
Γ ` P Γ ` P ⊃ Q

Γ ` Q

(Lookup)
Γ ` M ≈ M ′ f 6∈ M ′ InstTerm(S,M)

Γ; Val(f, S) ` f ≈ M ′

(Weak)
Γ ` P dec well-typed in Γ f 6∈ P

Γ; dec ` P
dec declares f

Figure 6: The Simple Theory of Types

3.3 Deductions

Unfortunately, the judgement Γ ` P cannot be defined inductively, because of its neg-
ative occurrence in the discharged hypothesis in ImpI. The only practical problem this
causes us is the inability to prove meta-theorems by induction on the definition of Γ ` P
within Isabelle. Informally, we can still do induction on derivations—and we could
formalize this, as Paulson has done for his proof of the completeness of propositional
logic in the Isabelle examples library, but the system would not be usable for real proof.

Theorem 7 (Well-formedness of deductions) Suppose we deduce the following:

Γ1 ` P1 . . . Γn ` Pn

Γ ` P

1. If Γi ` Pi: Ω for every i, then Γ ` P : Ω.

2. If ` Γi for every i, then ` Γ.

3. If Pi ∈ BClosed for every i, then P ∈ BClosed.

4. If M ∈ BClosed for every term M in a Γi, then for every M appearing in Γ,
M ∈ BClosed.

Proof: By inspection, each of these properties holds for each of the rules and axioms
in Figure 6. Hence, by induction on derivations, they hold for all derivations.

�

Corollary 8 1. Suppose we deduce the following:

Γ1 ` P1 . . . Γn ` Pn

Γ ` P

If Γi ` Pi: Ω for every i, then Γ ` P : Ω, ` Γ, P ∈ BClosed, and M ∈ BClosed for
every M occurring in Γ.

2. Property 1 and the properties in Theorem 7 each hold for every node Γ ` P in a
derivation tree.

Proof:

1. Since Γi ` Pi: Ω, then ` Γi, Pi ∈ BClosed and M ∈ BClosed for every M occurring
in a Γi, and therefore Γ ` P : Ω, ` Γ, P ∈ BClosed, and M ∈ BClosed for every M
occurring in Γ.

2. To see that these properties hold of interior nodes of a derivation tree, observe
that each interior node is itself the conclusion of a sub-derivation of the tree.

�

3.4 Implementation

The Isabelle implementation raises issues relating to giving proofs using the logic, rather
than simply meta-proofs about the logic.

The implementation of the substitutivity rule illustrates some of these issues. The
usual McKinna-Pollack coding substitutivity is given in Figure 6. The term P has some
“holes” in it (the f-variable f); these holes are filled by M in the antecedent and M ′ in
the conclusion. Since we are using Isabelle, however, we can use meta-substitution in
this case: a term P with some holes filled by M is P (M) in Isabelle. Since the logic
does not use meta-binding, this is simply textual substitution, as required. The rule
becomes:

Γ ` M ≈ M ′ Γ ` P (M)

Γ ` P (M ′)

There is also a problem with the applicability of some rules in their current form.
Consider attempting to deduce the following.

Γ ` ((λb: τ. b)f) ≈ f

This is simply a β-reduction. However, we cannot apply the BetaConv axiom, since
f is not in the form b[f/b]. Instead, we must first derive the following rule, which is
applicable.

M [N/b] = M ′ ` Γ Γ ` (λb: τ.M)N : τ

Γ ` ((λb: τ.M)N) ≈ M ′

When this rule is applied, we obtain a subgoal b[f/b] = f , which can be solved by
the simplifier.

Now consider performing the substitution b′[N/b]. In the case that b and b′ are
identical, this can be solved immediately to yield N . Suppose b and b′ are not identical
(and are intended to be distinct). Since b and b′ are both implicitly universally quan-
tified meta-variables, b 6= b′ cannot in general be deduced, and so we cannot proceed
any further and must leave the substitution in the form if (b = b′, N, b′). This is a con-
sequence of the use of meta-variables to represent object-variables. We must add b 6= b ′

as an assumption.
In fact, the neatest way to do this is to define a predicate distinct, which says that the

elements of a list are pair-wise distinct. We now simply add the assumption distinct(bs)
to all proofs, where bs is a list containing all those b-variables which appear in the proof.
We must similarly provide the assumption distinct(fs).

In the theory files accompanying this paper, f-variables are formed either from iden-
tifiers or from one of the connectives T, F, ∧, ∨, ¬, ∀ and ∃. This means that the con-
nectives can be proved to be distinct from each other and all other f-variables, without
needing to assert distinct(T,F,∧,∨,¬,∀,∃, . . .).

Not all of Isabelle’s automatic proof procedures may be used with this logic. No
work has yet been performed on automating proof, but we believe it is possible to set
up hyp_subst_tac for this logic. Neither the new simplifier nor the old simplifier can
be used with this logic (because of the side-condition on the reflexivity axiom EqRefl),
however, it should be possible to use the “typed simplifier” TSimpFun, which is used in
Isabelle’s Constructive Type Theory. It may also be possible to configure the classical
reasoning package to work with this logic.

4 Programming Languages

In the Introduction we showed that logics for programming languages are difficult to
code using meta-binding. We now give examples of how they can be implemented using
McKinna-Pollack binding. The features for which we give an account here (let expres-
sions, local declarations, and pattern matching) can be found in many programming
languages. We consider a simple eager statically-bound language with ML-like syntax.

The logic we outline is based on the logic of Section 3. Logical terms may now include
programming language expressions. We also allow the context to contain programming
language declarations. This means that a judgement in the logic would typically be
a statement about programming language expressions in the presence of programming
language declarations.

4.1 Let-Expressions and Local Declarations

Let-expressions and local declarations allow us to limit the scope of certain declarations.
Let-expressions are of the form:

let decs in e end

Here, decs is a list of declarations. It differs from the list of declarations in the context
in two ways:

• It declares values for b-variables, not f-variables. McKinna-Pollack binding relies
on the fact that no f-variable binding occurs within a b-variable binding, and
a let-expression might occur within another construct that binds b-variables (a
λ-abstraction, for instance).

• We will primarily be concerned with the left-most declaration in decs . So for
convenience, we insist that the list associates to the right: the left-most declaration
is the outer-most.

The rules for let-expressions allow declarations to be moved to and from the con-
text. They are complicated by the fact that local declarations will mean that a single
declaration can bind more than one variable.

One such complication is that we will need a multiple b-substitution operation,
X[f1/b1, . . . , fn/bn]. We only use this operation to substitute f-variables for b-variables,
and so we can perform the substitutions of fi for bi in any order (or in parallel) since
they cannot affect each other.

The operation dec〈f1/b1, . . . , fn/bn〉 replaces binding occurrences of bi by fi, and
replaces bound occurrences of bi with fi. For example:

(val bj = e; decs)〈f1/b1, . . . , fn/bn〉
=

val fj = e; decs [fj/bj]〈f1/b1, . . . , fn/bn〉

In order to avoid variable capture, we require that fi 6= fj when bi 6= bj . Thus dec〈fi/bi〉
is a declaration which declares f-variables f1, . . . , fn and which has exactly the same
shape as dec.

Let us write X〈f1/b1, . . . , fn/bn〉 as X〈fi/bi〉 and X[f1/b1, . . . , fn/bn] as X[fi/bi].
Here is one rule for let-expressions, when dec declares b-variables b1, . . . , bn:

Γ; dec〈fi/bi〉 ` (let decs in e end)[fi/bi] ≈ M fi 6∈ decs ,M, e

Γ ` let dec; decs in e end ≈ M

The rule accounts for the scope of the declaration dec by requiring that fi 6∈ M : this
means that dec cannot capture variables in M when it is moved to the context.

Local declarations are of the form:

local decs in decs ′

end

Again, decs declares b-variables, and associates to the right. Local declarations can
appear in two places:

• They may form part of the context. In this case decs ′ would declare f-variables
and would associate to the left (as is usual for declarations in the context).

• Alternatively, they may form part of a let-expression or appear in the local part
of a local declaration. In this case, decs ′ would declare b-variables and would
associate to the right.

The rules for local declarations move the declarations to and from the context, and
are similar to the rules for let-expressions.

We can no longer say that the terms in a declaration are b-closed, as we did in The-
orem 7 (4). Now, instead, we must say that the declaration as a whole is b-closed. For
example local decs in decs ′ end is b-closed if decs is b-closed and decs ′[f1/b1, . . . , fn/bn]
is b-closed, where decs declares b1, . . . , bn.

4.2 Pattern Matching

We consider the case-expression case e ofmatch , where match is pat 1=>e1| . . . |patn=>en.
For simplicity we assume that patterns are exhaustive and non-overlapping.

Each pattern pat i can bind an arbitrary number of b-variables, which may appear in
ei. Suppose pat i binds variables bi,1: τi,1 . . . bi,mi

: τi,mi
. Considering pat i as an expres-

sion, we know the following:

∀bi,1: τi,1 . . . bi,mi
: τi,mi

. case pat i of match ≈ ei

Call this term CaseRule(i, case e of match). It is b-closed by virtue of the fact that the
universal quantifier binds every free b-variable which occurs in pat i. We can thus give
the following rule within Isabelle:

` Γ P = CaseRule(i, case e of match) Γ ` P : Ω

Γ ` P

The term CaseRule(i, case e of match) is expressed as a primitive recursive function
within Isabelle. It is easy to program: the least trivial step it must make is to determine
the b-variables bound by pattern i.

5 Conclusions

Logics with explicit coding of binding and substitution are considerably more complex
than logics which rely on meta-binding. However, they may be necessary if:

• there is no known way to code the logic using meta-binding;

• the encoding using meta-binding is unacceptable (because its correctness is difficult
to establish, for example); or

• some proofs will need induction over terms.

These observations hold for all systems with explicit binding, not just McKinna-Pollack
binding.

McKinna-Pollack binding has a well-developed and attractive meta-theory. Although
rules in this style may look odd at first sight, they are in fact very easy to formulate—
with experience they are simpler to formulate than rules for “standard” binding (al-
though terms containing two classes of variables can on occasion be unwieldy).

In this paper we have shown that logics for programming languages may contain
features which mean that they cannot reasonably be coded using meta-binding and
substitution. We have further shown that McKinna-Pollack binding provides an effective
way to code these logics.

6 Acknowledgements

Thanks to James McKinna for his patience in explaining his ideas to me. Thanks to
Stephen Gilmore and Stuart Anderson for their patience in explaining my ideas to me.
This work was partly supported by a SERC/EPSRC studentship. This document uses
Paul Taylor’s diagram macros.

References

[Alt93] Thorsten Altenkirch. Constructions, Inductive Types and Strong Normaliz-
ation. PhD thesis, Department of Computer Science, The University of Ed-
inburgh, 1993. Published as CST-106-93; also published as LFCS Technical
Report ECS-LFCS-93-279.

[CF58] Haskell B. Curry and Robert Feys. Combinatory Logic, volume I. North-
Holland, Amsterdam, 1958.

[Chu40] Alonzo Church. A formulation of the Simple Theory of Types. The Journal
of Symbolic Logic, 5:56–68, 1940.

[dB72] N.G. de Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser
Theorem. Indagationes Mathematicae, 34(5):381–392, 1972.

[DFH95] Jöelle Despeyroux, Amy Felty, and André Hirschowitz. Higher-order abstract
syntax in Coq. In Typed Lambda Calculi and Applications, TLCA ’95, number

902 in Lecture Notes in Computer Science, pages 124–138, Edinburgh, 1995.
Springer-Verlag.

[GM93] M.J.C. Gordon and T.F. Melham. Introduction to HOL. Cambridge University
Press, Cambridge, 1993.

[Gor93] Andrew D. Gordon. A mechanisation of name-carrying syntax up to alpha-
conversion. In HUG’93 Higher Order Logic Theorem Proving and its Ap-
plications, Vancouver, Lecture Notes in Computer Science. Springer-Verlag,
1993.

[HS86] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and
The Lambda-Calculus. London Mathematical Society Student Texts. Cam-
bridge University Press, Cambridge, 1986.

[McK] James McKinna. Typed λ-calculus formalised: Church-Rosser and Standard-
isation theorems. Manuscript in preparation.

[MP93] James McKinna and Robert Pollack. Pure type systems formalized. In
M. Bezem and J.F. Groote, editors, Proceedings of the International Con-
ference on Typed Lambda Calculi and Applications, TLCA’93, number 664
in Lecture Notes in Computer Science, pages 289–305, Utrecht, March 1993.
Springer-Verlag.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard
ML. MIT Press, Cambridge, Massachusetts 02142, 1990.

[Pau90] Lawrence C. Paulson. A formulation of the Simple Theory of Types (for
Isabelle). In P. Martin-Löf and G. Mints, editors, COLOG-88: International
Conference on Computer Logic, number 417 in Lecture Notes in Computer
Science, pages 246–274. Springer-Verlag, 1990.

[Pau94a] Lawrence C. Paulson. Isabelle — A Generic Theorem Prover. Number 828
in Lecture Notes in Computer Science. Springer-Verlag, 1994.

[Pau94b] Lawrence C. Paulson. The Isabelle Reference Manual. University of Cam-
bridge Computer Laboratory, 1994.

[PE88] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceed-
ings of the SIGPLAN ’88 Conference on Programming Language Design and
Implementation, 1988.

[Sto88] Allen Stoughton. Substitution revisited. Theoretical Computer Science,
59:317–325, 1988.

