
Combining Model Checking and Deduction for I�O�Automata

Olaf M�uller� and Tobias Nipkowy

TU M�unchenz

Abstract

We propose a combination of model checking and interactive theorem proving where the

theorem prover is used to represent �nite and in�nite state systems� reason about them

compositionally and reduce them to small �nite systems by veri�ed abstractions� As an

example we verify a version of the Alternating Bit Protocol with unbounded lossy and

duplicating channels� the channels are abstracted by interactive proof and the resulting

�nite state system is model checked�

� Introduction

The purpose of this paper is to combine the two major paradigms for the veri�cation of dis�
tributed systems� model checking and theorem proving� The advantages of each approach are
well known� model checking is automatic but limited to �nite state processes� theorem proving
requires user interaction but can deal with arbitrary processes� Recently attempts have been
made to combine the strength of both methods by using the deductive machinery of theorem
provers to reduce �large� correctness problems to ones that are small enough for model check�
ing� The key idea is abstraction whereby the state space is partitioned to obtain a smaller
automaton which is amenable to model checking� Of course the abstraction has to be sound
w�r�t� the property we want to check� if the abstracted automaton satis�es the property so
should the original automaton�

In our approach the theorem prover provides a common representation language and tools
for

� both �nite and in�nite state systems�

� checking the soundness of abstractions�

� reasoning about systems in a compositional manner�

Our work is based on Lynch and Tuttle�s Input�Output�Automata �IOA	
��
 as model of
distributed processes which have been embedded in the theorem prover Isabelle�HOL
��
� We
are interested in verifying safety properties of IOA� These safety properties are not expressed by
temporal logic formulae but again by IOA� Hence we need to check that the traces of one IOA C
�the implementation	 are included in the traces of another IOA A �the speci�cation	� Assuming
that C is in�nite or at least too large to check traces�C 	 � traces�A	 automatically� we de�ne
an intermediate automaton B which is an abstraction of C and should satisfy traces�C 	 �
traces�B	 � traces�A	� Thus we achieve the following division of labor� traces�C 	� traces�B	�

�Research supported by DFG� Leibniz Programm�
yResearch supported by ESPRIT BRA ����� Types�
zAddress� Institut f�ur Informatik� Technische Universit�at M�unchen� �	
�	 M�unchen� Germany� Email�

fMueller�Nipkowg�Informatik�TU�Muenchen�De

i�e� the soundness of the abstraction� is proved interactively in Isabelle� traces�B	 � traces�A	 is
veri�ed automatically by a model checker� �nally� transitivity of� yields the desired traces�C 	�
traces�A	�

The distinguishing feature of our approach is the ability to reason about the soundness of
arbitrary abstractions because we have the meta�theory of IOA at our disposal� Assuming that
the theorem prover and the formalization of IOA in it are correct� the only remaining source
of errors is the model checker which is treated like an oracle by the theorem prover� Note that
this includes the interface between model checker and theorem prover� which is particularly
critical because we need to ensure that the theorem prover formalizes exactly the logic the
model checker is based on�

The rest of the paper illustrates this approach using a particular example� namely an im�
plementation of the Alternating Bit Protocol using unbounded channels� This is in contrast
to pure model checking approaches where the channels are always of a �xed capacity �usually
�	� The key to the success of our approach is the fact that channels may lose and duplicate�
but not reorder messages� Thus is is possible to �compactify� channels without altering their
behaviour by collapsing all adjacent identical messages� This is what our abstraction from C
to B does� The full picture looks like this�

ABP

Ch

C

�
reduce

�Compositionality
ABP

RedCh

B

�Model Checking

abs
Speci�cation

A

The implementation C contains unbounded channels Ch which are abstracted�compacti�ed
by a function reduce� It is shown interactively that reduce is indeed an abstraction function�
i�e� traces�Ch	 � traces�RedCh	� B is the same as C except that collapsing channels are used�
Compositionality proves that C must be an implementation of B � i�e� traces�C 	 � traces�B	�
Although RedCh is not a �nite state system� it behaves like one if used in the context of the
ABP because at any one time there are at most two di�erent messages on each channel� Thus B
is a �nite state system� Note however� that we never need to prove this explicitly� It is merely
an intuition which is later con�rmed by the model checker when it is given a description of B
and A together with an abstraction function abs between them� The model checker explores
the full state space of B verifying transition by transition that abs is indeed an abstraction� It
is only the successful termination of the model checker which tells us that B is �nite�

��� Related work

Our paper is closely related to the work by Hungar
��
 who embeds a subset of OCCAM in the
theorem prover LAMBDA and combines it with an external model checker� The key di�erence
is that Hungar relies much more on unformalized meta�theory than we do� he axiomatizes
OCCAM�s proof rules instead of deriving them from a semantics� and does not verify the
soundness of his data abstractions�

The literature on abstraction for model checking is already quite extensive �see for example�

�� �� �
	� The general idea is to compute an abstract program given a concrete one together with
an abstraction function�relation� The approach of Clarke et al� is in principle also applicable to
in�nite concrete systems� However� since they compute an approximation to the real abstract
program� the result is not necessarily �nite state� Nevertheless it would be interesting to
rephrase their ideas in terms of IOA and apply them to our example� In this case we would

not give B explicitly but would compute �via the rewriting machinery of the theorem prover	 a
�hopefully �nite state	 approximation of it�

Our work di�ers from most approaches to model checking because we do not check if an
automaton satis�es a temporal logic formula but if its traces are included in those of another
automaton� Although theoretically equivalent� automata can be compared by providing an
explicit abstraction function �or simulation relation	� abs above� The same approach is followed
in
��
 where abstraction functions are also used for reduction� and in
�
 where liveness is taken
into account� If the documentation aspect of an explicit abstraction function is not considered
important� one could also use a model checker which searches for an abstraction function using�
for example� the techniques of
�
� although this is bound to be less e�cient�

Finally there is the result by Abdulla and Jonsson
�
 that certain properties of �nite state
systems communicating via unbounded lossy channels are decidable� which they apply to the
Alternating Bit Protocol� However� in our work the channels can both lose and duplicate
messages� hence their result does not apply directly�

� I�O�Automata in Isabelle�HOL

Isabelle notation� Set comprehension has the shape fe� Pg� where e is an expression and P a
predicate� Tuples are written between angle brackets� e�g� �s � a� t�� and are nested pairs with
projection functions fst and snd � If f is a function of type �� � �� � ��� application is written
f �x � y	 rather than f x y � Conditional expressions are written if �A�B �C 	� The empty list is
written

� and �cons� is written in�x� h �� tl � Function composition is another in�x� e�g� f � g �

��� I�O Automata

An IOA is a �nite or in�nite state automaton with labelled transitions� I�O automata� initially
introduced by Lynch and Tuttle
��
� are still under development� and the formalization we
used represents only a fragment of the theory one can �nd in recent papers
�
� For example�
we do not deal with fairness or time constraints� The details of the formalization can be found
in a previous paper
��
� so that we give only a brief sketch of the essential de�nitions inside
Isabelle�HOL�

An action signature is described by the type

��	signature � ��	set � ��	set � ��	set �

The �rst� second and third components of an action signature S may be extracted with inputs �
outputs � and internals � Furthermore� actions�S	 � inputs�S	� outputs�S	 � internals�S	� and
externals�S	 � inputs�S	�outputs�S	� Action signatures have to satisfy the following condition�

is asig�triple	 �

�inputs�triple	� outputs�triple	 � fg	�

�outputs�triple	 � internals�triple	 � fg	 �

�inputs�triple	� internals�triple	 � fg	

An IOA is a triple with type de�ned by

��� �	ioa � ��	signature � ��	set � �� � � � �	set

and it is further required that the �rst member of the triple be an action signature� the second
be a non�empty set of start states and the third be an input�enabled state transition relation�

IOA��asig � starts � trans�	 �

is asig�asig	� starts 	� fg � is state trans�asig � trans	�

The property of being an input�enabled state transition relation is de�ned as follows�

is state trans�asig �R	�

�
�s � a� t� � R� a � actions�asig		�

�
a � inputs�asig	�
s ��t � �s � a� t� � R	

The projections from an IOA are asig of � starts of � and trans of � The actions of an IOA are
de�ned acts � actions � asig of �

An execution�fragment of an IOA A is a �nite or in�nite sequence that consists of alternating
states and actions� In Isabelle it is represented as a pair of sequences� an in�nite state sequence
of type nat � state and an action sequence of type nat � �action	option� Here the option
datatype is de�ned as ��	option � None j Some��	 using an ML�like notation� A �nite
sequence in this representation ends with an in�nite number of consecutive Nones� Using this
representation� a step of an execution�fragment �as � ss� is �ss�i	� a� ss�i � �	� if as�i	 �
Some�a	� Formally�

is execution fragment�A� �as � ss�	 �

n a� �as�n	 � None
 ss�Suc�n		 � ss�n		�
�as�n	 � Some�a	
 �ss�n	� a� ss�Suc�n		� � trans of �A		

An execution of A is an execution�fragment of A that begins in a start state of A� If we
�lter the action sequence of an execution of A so that it has only external actions� we obtain a
trace of A� The traces of A are de�ned by

traces�A	 � f�lter��a�a � externals�asig of �A		� as	 � �ss � �as � ss� � executions�A	g

where �lter replaces Some�a	 by None if a is not an external action�

��� Composition and Re�nement

I�O automata provide a notion of parallel composition� In Isabelle this mechanism is realized
by a binary operator k� The de�nition simply re�ects the fact that each component performs
its locally de�ned transition if the relevant action is part of its action signature� otherwise it
performs no transition�

A k B �

�asig comp�asig of �A	� asig of �B		�
f�u� v� � u � starts of �A	� v � starts of �B	g�
f�s � act � t� � �act � acts�A	� act � acts�B		�

if �act � acts�A	� �fst�s	� act � fst�t	� � trans of �A	� fst�s	 � fst�t		�
if �act � acts�B	� �snd�s	� act � snd�t	� � trans of �B	� snd�s	 � snd�t		g�

where an action signature composition is needed�

asig comp�S�� S�	 �

��inputs�S�	 � inputs�S�		� �outputs�S�	� outputs�S�		�
outputs�S�	 � outputs�S�	� internals�S�	 � internals�S�	�

Action signature composition presumes compatibility of actions� which is de�ned by

compatible�S�� S�	 �

�outputs�S�	 � outputs�S�	 � fg	 �
�actions�S�	 � internals�S�	 � fg	 �
�actions�S�	 � internals�S�	 � fg	

and is trivially extended to compatibility of automata�
For the aim of re�nement� we make use of abstraction functions which Lynch and Tuttle

call �weak possibility mappings�� The set of these maps is described by the following predicate�
which takes a function f �from concrete states to abstract states	� a concrete automaton C �
and an abstract automaton A�

is weak pmap�f �C �A	�
�
s� � starts of �C 	� f �s�	 � starts of �A		 �
�
s t a� reachable�C � s	��s � a� t� � trans of �C 	

 if �a � externals�asig of �C 		� �f �s	� a� f �t	� � trans of �A	� f �s	 � f �t			

The following theorem proved in Isabelle states that the existence of an abstraction function
from C to A implies that the traces of C are contained in those of A�

IOA�C 	� IOA�A	�
externals�asig of �C 		 � externals�asig of �A		�
is weak pmap�f �C �A	

 traces�C 	 � traces�A	

��� Renaming

As in
��
 we de�ne an operation for renaming actions� The motivation for this is modularity�
name clashes can be avoided and generic components can be plugged into di�erent environments�

rename � ��� �	ioa � �� � ��	option	 � ��� �	ioa

In contrast to
��
 we de�ne the action renaming function with type � � ��	option instead
of � � �� Therefore it does not have to be injective� which facilitates reasoning about such
functions�

rename�A� f 	 �

��fact � �act �� f �act	 � Some�act �	 � act � � inputs�asig of �A		 g�
fact � �act �� f �act	 � Some�act �	 � act � � outputs�asig of �A		 g�
fact � �act �� f �act	 � Some�act �	 � act � � internals�asig of �A		g��

starts of �A	�
f�s � act � t� � �act �� f �act	 � Some�act �	 ��s � act �� t� � trans of �A	g�

� Speci�cation

The Alternating Bit Protocol
�
 is designed to ensure that messages are delivered in order�
from a sender to a receiver� in the presence of channels that can lose and duplicate messages�
This FIFO�communication can be speci�ed by a simple queue and therefore a single automaton
Spec� As we are aiming for a �nite state system� we have to consider an additional point� The
sender bu�er of the implementation will not be able to store an unbounded number of incoming
messages� Restricting the number of input actions to yield a �nite sender bu�er is not allowed
because of the input�enabledness of IOA�

What we really need is an assumption about the behaviour of the environment� namely that
it will only send the next message if requested to do so by an explicit action Next issued by
the system� In the IOA�model this can be expressed by including an environment IOA which
embodies this assumption� Therefore the speci�cation is a parallel composition of two processes�

Speci�cation � Env k Spec

and the interaction between them is shown in Fig� �� The two components Env and Spec are
described in the following subsections�

��
��
Env ��

��
Spec�

�
�

S msg

Next
R msg

Figure �� The Speci�cation

��� The Environment

Env models the assumption that the environment only outputs S msg when allowed to do so
by Next � The state of Env is a single boolean variable send next � initially true� which is set to
true by every incoming Next � S msg is enabled only if send next is true and sets send next to
false as a result�

Next input S msg�m	 output
post� send next � pre� send next

post� �send next �

where we use the following format to describe transition relations�

action �input j output j internal	
pre� P
post� Q

Predicate P is the constraint on the state s that must hold for the transition to apply� If it is
true� it is omitted� Predicate Q relates the state components before and after the transition�
we refer to the state components after the transition by decorating their names with a �� If no
state component changes� post is omitted�

��� The Speci�cation

The state of the IOA Spec is a message queue q � initially empty� modelled with the type �		list �
where the parameter 	 represents the message type� The only actions performed in the abstract
system are� S msg�m	� putting message m at the end of q � R msg�m	� taking message m from
the head of q � and Next � signaling the world outside to send the next message� Formally�

Next output S msg�m	 input R msg�m	 output
pre� true post� q � � q�
m
 pre� q � m �� rst

post� q � � rst

� Implementation

The system being proved correct also contains the component Env described in the previous
section�

Implementation � Env k Impl

Impl represents the Alternating Bit Protocol and is itself a parallel composition of � processes�

Impl � Sender k S Ch k Receiver k R Ch

��
��
Env ��

��
Sender ��

��
Receiver

�
�
�
�S Ch

�
�
�
�R Ch

�
� �

�
�
�
�
�� �

�
�
�
�
�R
�

�
�
�
�
���

�
�
�

�
�I

�
Next

S msg

S pkt R pkt

S ackR ack

R msg

Figure �� The Implementation

a sender� a receiver� and proprietary channels for both� The �data�ow� in the system is depicted
in Fig� �

Messages are transmitted from the sender to the receiver with a single header bit as packets
of type bool�	� The type of system actions� �		action� is described in Isabelle by the following
ML�style datatype�

�		action � Next j S msg�		 j R msg�		 j S pkt�bool � 		 j
R pkt�bool � 		 j S ack�bool	 j R ack�bool	

��� The Sender

The state of the process Sender is a pair�

Field Type Initial Value

message� �		option None
header � bool true

The Sender makes the following transitions�

Next output
pre� message � None

S msg�m	 input
post� message � � Some�m	 � header � � header

S pkt�b�m	 output
pre� message � Some�m	 � b � header

R ack�b	 input
post� if b � header

then message� � None � header � � �header
else message� � message � header � � header

Note that the presence of Env � i�e� the fact that the sender can control the �ow of incoming
messages via Next � enables us to get by with a bu�er of length � �modelled by �		option	 in
the sender� Next is only sent if the bu�er is empty� i�e� message � None�

��� The Receiver

The state of the process Receiver is also a pair� di�ering from the Sender only in the initial
value of the header variable�

Field Type Initial Value

message� �		option None
header � bool false

The Receiver makes the following transitions�

R msg�m	 output
pre� message � Some�m	
post� message� � None � header � � header

R pkt�b�m	 input
post� if b 	� header �message � None

then message� � Some�m	 � header � � �header
else message� � message � header � � header

S ack�b	 output
pre� b � header

Note that R pkt does not change the state unless message � None� This ensures that the
receiver has passed the last message on via R msg before accepting a new one� Alternatively�
one could add the precondition message � None to S ack which would preclude the sender
getting an acknowledgment and sending a new message before the receiver has actually passed
the old one on�

��� The Channels

The channels� R Ch and S Ch� have very similar functionality� Roughly speaking� messages are
added to a queue by an input action and removed from it by the corresponding output action�
In addition� there can be no change at all in order to model the possibility of losing messages�
in case of the adding action� and of duplicating messages� in case of the removing action� The
only di�erences between the channels are the type of the messages delivered� packets for S Ch
and booleans for R Ch� and the speci�c names for input and output actions� S pkt and R pkt
or S ack and R ack � respectively� Therefore both channels can be designed as instances of a
generic channel using the renaming function described in section ��

This is done by introducing a new datatype ��	act � S��	 j R��	 of abstract actions and
de�ning an IOA Ch with a single state component q � ��	list by the following transition relation�

S�a	 input R�a	 output
post� q � � q � q � � q�
a
 pre� q 	�

 � a � hd�q	

post� q � � q � q � � tl�q	

In Isabelle we use a set comprehension format to describe transition relations� In the case of
Ch it looks like this�

Ch trans � f�s � act � s �� � case act of
S�a	 � s � � s � s � � s�
a

R�a	 � s 	�

 � a � hd�s	 �

�s � � s � s � � tl�s		 g

An automatic translation of the pre�post style into the set comprehension format is possible
and desirable but not the focus of our research�

The concrete channels are obtained from the abstract channel by rename�Ch� S acts	 and
rename�Ch�R acts	� where

S acts � �		action � �bool � 		 act option
R acts � �bool	action � �bool	 act option

map the concrete actions to the corresponding abstract actions� For example S acts is de�ned
by S acts�S pkt�b�m		 � Some�S��b�m�		� S acts�R pkt�b�m		 � Some�R��b�m�		 and
S acts�act	 � None for all other actions act �

� Abstraction

What we are aiming for is a �nite�state description of the Alternating Bit Protocol that is
re�ned by the given implementation described in the previous section� To achieve this� we have
to remove two obstacles�

�� The channel queues have to be �nite�

�� The message alphabet has to be �nite�

��� Finite Channels

Our attention is focused on this requirement� We de�ne an abstract version RedCh of Ch and
an abstraction function reduce from Ch to RedCh and prove is weak pmap�reduce�Ch�RedCh	�
The idea is based on the observation that at most two di�erent messages are held in each channel�
This is easily explained� each message is repeatedly sent to S Ch� until the corresponding
acknowledgment arrives� Once we switch to the next message� S Ch can only contain copies of
the previous message� Hence� S Ch�s queue is always of the form old�new�� The same is true
for R Ch� Thus� if all adjacent identical messages are merged� the channels have size at most
�� Fortunately� this reasoning never needs to be formalized but is implicitly performed by the
model checker�

����� Re�nement of Channels

A compacting channel RedCh is obtained from Ch if new messages are only added provided
they di�er from the last one added� Thus RedCh is identical to Ch except for action S �

S��	 input
post� q � � q � if a 	� hd�reverse�q		� q �

then q � � q�
a

else q � � q

By renaming RedCh we obtain the collapsed versions of R Ch and S Ch� called R RedCh and
S RedCh� Notice that the description is a priori not �nite� as q is an unbounded list� Finiteness
is only implied by the context� i�e� the behaviour of the protocol�

With the de�nition of an abstraction function reduce

reduce�

	 �

reduce�x �� xs	 � case xs of

 �
x

y �� ys � if �x � y � reduce�xs	� x �� reduce�xs		

we get the following re�nement goal�

is weak pmap�reduce�Ch�RedCh	

The proof of this obligation is rather straightforward� proceeding by case analysis on the type of
actions� Using some lemmata on how reduce behaves when combined with operators like � or

tl � most cases are automatically solved by the conditional and contextual rewriting of Isabelle�
Finally� using the meta�theorem

is weak pmap�abs �C �A	

 is weak pmap�abs � rename�C � f 	� rename�A� f 		

we get the appropriate re�nement results for the concrete channels S Ch� R Ch and their
collapsed versions S RedCh and R RedCh�

����� Compositionality

In order to extend this re�nement result from the channels to the whole system� we have to
prove some compositionality theorems for re�nements� Lynch and Tuttle
��
 established the
required lemma on the level of trace inclusions� We decided� however� to prove it on the level
of abstraction functions for reasons of simplicity�

IOA�C�	 � IOA�C�	 � IOA�A�	 � IOA�A�	�
externals�asig of �C�		 � externals�asig of �A�		�
externals�asig of �C�		 � externals�asig of �A�		�
compatible�C��C�	 � compatible�A��A�	 �
is weak pmap�f �C��A�	 � is weak pmap�g �C��A�	

 is weak pmap���c�� c����f �c�	� g�c�	��C� k C��A� k A�	

Unfortunately� trace inclusion does not imply the existence of an abstraction function� Hence
the above theorem is not as general as the corresponding one about traces� in particular since
is weak pmap�id �A�A	 only holds if A has no internal actions� We intend to formalize and
prove compositionality on the trace level in the near future�

Performing the proofs of abstraction and compositionality in Isabelle� we encountered a
mismatch between the time required for the re�nement proof and that required for the compat�
ibility checks� Nearly half the time ���� min on a SPARC station ��	 was needed to establish
that no component causes a name clash of input�output actions� These checks� although auto�
mated� are expensive if performed by a theorem prover� Partly this is caused by our decision to
have rename translate action names in the opposite direction one would expect �see section ���	�
something we may need to rethink�

��� Finite Message Alphabet

The second requirement� the problem of abstracting out data from a data�independent program
has already been addressed by Wolper
��
� In his paper he shows how to reduce an in�nite
data domain to a small �nite one if data independence is guaranteed and the properties to be
checked are expressible in propositional temporal logic� In
�
 and
��
 this method is applied
to the Alternating Bit Protocol� There� only three di�erent message values are needed to verify
the protocol�s functional correctness�

Basically� a program is data�independent if its behaviour does not depend on the speci�c
data it operates upon� A su�cient condition for a program described by an IOA to be data
independent is that everywhere in the automaton the transitions are independent of the value
of messages being transmitted� An inspection of our description of the protocol shows that it
satis�es the condition�

In contrast to
�
 our speci�cation is not given as a collection of temporal formulae� but in
terms of I�O automata� Thus� the methods above are not directly applicable to our formaliza�
tion and until now� we have not investigated how to transfer them formally into our setting�
However� it is intuitively plausible that Wolper�s theory of data�independence holds generally�

independently of the respective formalization� That is why we analogously restricted our model
checking algorithm to deal with only three di�erent message values�

A formal treatment of data�abstraction in Isabelle�HOL needs a modi�cation of the way we
model data� Currently the diversity of data is modelled by polymorphic types�� But since types
are a meta�level notion and cannot be talked about �e�g� quanti�ed	 in HOL� even formalizing
data independence seems to be impossible� Using object�level sets instead of polymorphism
would cure this problem but is likely to complicate the theory�

� Model Checking

The task of the model checker is to verify that B � the implementation with collapsing channels
re�nes A� the speci�cation� It is done by a generic ML�function check

check�actions � internal � startsB �nextsB � startA� transA� abs	

where actions � ��	list is the list of all actions� internal � �� bool recognizes internal actions of
B � startsB � ��	list is the list of start states of B � nextsB � � � �� ��	list produces the list of
successor states in B � startsA � � � bool recognizes start states of A� transA � � � �� � � bool
recognizes transitions of A� and abs � � � � is the abstraction function�

It is easy to translate Isabelle�s predicative description of A�s transitions automatically
into an ML�function transA� For nextsB this is only possible if the predicates have a certain
recognizable form� for example disjunctions of assignments of values to the state components�
Otherwise how are we to compute the set of next states satisfying an arbitrary predicate� If ��
the state space of B �as opposed to the set of reachable states�	 is in�nite� this is impossible�
That is the main reason why we need to specify B � i�e� RedCh explicitly� otherwise we could
have described RedCh implicitly in terms of Ch and reduce�

The abstraction function abs is given by

abs�s	 � l�R�message	�if �R�header � S �header � l�S �message	� tl�l�S �message			

where l � ��	option � ��	list is de�ned by the equations l�Some�x		 �
x
 and l�None	 �

�
To distinguish between components of the receiver state and the sender state that have the
same �eld names� we use a dotted identi�er� notation� e�g� S �header and R�header �

It is also possible to generate abs automatically as a set of corresponding state pairs as
done in
��
� This would not allow the explicit documentation of abs � but it would mean a step
forward towards fully automatic support ! the major advantage of model checking�

check itself realizes the predicate is weak pmap�abs �B �A	 by simply performing full state
space exploration� Beginning with startsB the algorithm examines all reachable states� checking
for every transition �s�� a� s�� � trans of �B	 that either �abs�s�	� a� abs�s�	� � trans of �A	
�if a is external	 or abs�s�	 � abs�s�	 �if a is internal	�

At the moment the ML�code for the di�erent arguments of check is still generated manually�
However� we intend to automate this� subject to the restrictions on B described above� It should
also be noted that check is just a prototype which should be replaced by some optimized model
checker� for example the one described in
�
�

References

�
 P� Abdulla and B� Jonsson� Verifying programs with unreliable channels� In Proc� �th
IEEE Symp� Logic in Computer Science� pages ���"���� IEEE Press� �����

�It is not true that a polymorphic IOA is automatically data independent� HOL�formulae may contain the

polymorphic equality
�� which destroys data independence�

�
 S� Aggarwal� C� Courcoubetis� and P� Wolper� Adding liveness properties to coupled �nite�
state machines� ACM Transactions on Programming Languages and Systems� ����	����"
���� �����

�
 K� Bartlett� R� Scantlebury� and P� Wilkinson� A note on reliable full�duplex transmission
over half�duplex lines� Communications of the ACM� ����	����"���� �����

�
 E� M� Clarke� O� Grumberg� and D� E� Long� Model checking and abstraction� In Proc�
��th ACM Symp� Principles of Programming Languages� pages ���"���� ACM Press� �����

�
 D� Dams� O� Grumberg� and R� Gerth� Abstract interpretation of reactive systems� Ab�
stractions preserving
CTL�� �CTL� and CTL�� In E��R� Olderog� editor� Programming
Concepts� Methods and Calculi �PROCOMET	� pages ���"���� North�Holland� �����

�
 J��C� Fernandez and L� Mounier� �On the Fly� veri�cation of behavioural equivalences
and preorders� In K� G� Larsen� editor� Proc�
rd Workshop Computer Aided Veri�cation�
volume ��� of Lect� Notes in Comp� Sci�� pages ���"���� Springer�Verlag� �����

�
 R� Gawlick� R� Segala� J� Sogaard�Andersen� and N� Lynch� Liveness in timed and untimed
systems� Technical Report MIT�LCS�TR����� Laboratory for Computer Science� MIT�
Cambridge� MA�� December ����� Extended abstract in Proceedings ICALP����

�
 S� Graf and C� Loiseaux� A tool for symbolic program veri�cation and abstraction� In
C� Courcoubetis� editor� Computer Aided Veri�cation� volume ��� of Lect� Notes in Comp�
Sci�� pages ��"��� Springer�Verlag� �����

�
 P� Herrmann� T� Kraatz� H� Krumm� and M� Stange� Automated veri�cation of re�nements
of concurrent and distributed systems� Technical Report ���� Fachbereich Informatik�
Universit#at Dortmund� �����

��
 P� Herrmann and H� Krumm� Report on analysis and veri�cation techniques� Technical
Report ���� Fachbereich Informatik� Universit#at Dortmund� �����

��
 H� Hungar� Combining model checking and theorem proving to verify parallel processes� In
C� Courcoubetis� editor� Computer Aided Veri�cation� volume ��� of Lect� Notes in Comp�
Sci�� pages ���"���� Springer�Verlag� �����

��
 R� Kurshan� Reducibility in analysis of coordination� In K� Varaiya� editor� Discrete Event
Systems� Models and Applications� volume ��� of Lecture Notes in Control and Information
Science� pages ��"��� Springer�Verlag� �����

��
 N� Lynch and M� Tuttle� Hierarchical correctness proofs for distributed algorithms� Techni�
cal Report MIT�LCS�TR����� Laboratory for Computer Science� MIT� Cambridge� MA��
�����

��
 N� Lynch and M� Tuttle� An introduction to Input�Output automata� CWI Quarterly�
���	����"���� �����

��
 T� Nipkow and K� Slind� I�O automata in Isabelle�HOL� In Proc� TYPES Workshop �����
Lect� Notes in Comp� Sci� Springer�Verlag� To appear�

��
 K� Sabnani� An algorithmic technique for protocol veri�cation� IEEE Transactions on
Communications� ����	����"���� �����

��
 P� Wolper� Expressing interesting properties of programs in propositional temporal logic�
In Proc� �
th ACM Symp� Principles of Programming Languages� pages ���"���� ACM
Press� �����

