
Annotation Issues in Isabelle

Sara Kalvala sk@cl.cam.ac.uk

Department of Computer Science, Warwick University

Coventry, CV4 7AL, UK

August 13, 1995

Abstract

Mechanized proof tools have not been eagerly adopted by the potential user community.

This lack of penetration is sometimes attributed to the fact that the employment of theorem

provers for formal verification is often thought to be a difficult and involved task. As a

consequence, many researchers are addressing the issue of usability, and are working towards

straightforward and effective ways of interacting with proof tools.

One way I propose to achieve better applicability of provers is to develop a method to

incorporate useful domain knowledge into the proof process, facilitating the use of particular

pieces of ad-hoc information. In this talk I present a general method to exploit such additional,

informal information in the Isabelle proof cycle, and discuss some technical issues in the

programming involved.

1 Introduction

Theorem-proving tools are set out as reasoning tools for a variety of domains by representing
properties to be reasoned about as proof goals, exploiting the intuition that the process of proving
these goals allows one to reason about the correctness of the original property. The idea is that
representing a domain by way of symbols and manipulating the symbols without reference to their
meaning can provide an impartial, rigorous method of describing and ascertaining properties of
the domain.

While this approach underlies the many advances in the use of formal methods, it has left a
large methodological gap between theorem proving (an exercise in manipulation of form, of syntax)
and the domain of application itself (the meaning of properties being modelled). This separation
of form and meaning does not take into account the fact that the use of provers involves more
information than what can be properly described in the (often thought of as constricted) logical
notation, such as suppositions and explanations of a more informal, ad-hoc nature. While such
information is not integral to the proof on a purely logical level, it is instrumental in mapping
formulae and proofs to models in the domain of discourse, which in turn can help proving a goal
and understanding the proof.

Missing from the current technology for mechanized proofs is a better facility for incorporating
this kind of ad-hoc information. In most cases, proof systems in use provide the logical kernel
and leave it up to the user to structure the proof. Other systems incorporate domain heuristics
available a priori and integrate them into proof search without much direction as to characteristics
of the particular problem being tackled.

Even when the formal proof is complete, another aspect of the proof process is to convince
others of the veracity of this proof. For a proof to be most insightful, it must have some intuitive
validity. Not only must a theorem be obtained, but the proof process must be informative. The
proof itself must be amenable to examination. One must understand why a conjecture is correct,
and not only be told that it is. Without such an explanation, the formality imposed in automated
reasoning systems can actually become a burden, by cluttering a proof or a specification with many
(to a human reviewer) irrelevant details. Ultimately, the mechanical aspects of the proof may not
be as important as the intuition behind the proof structure when the goal is to understand the
correctness of the result.



domain

level

formal

level

logic

level

Human Guide

Prover Interface

Proof Engine

Books

Specifications
Expert

Advice

Presentations

Reports

?

6

R U ?

6

�

�

Figure 1: Layered view of proofs

The informal semantics of the domain provides the glue that links the processes of specification,
proof, and journal description of the proof. In current methodologies, it is up to the user to
provide this glue, with very limited mechanical support. The consequence of this lack of support
is that aspects of symbolic manipulation and the necessity to confront minute details can result
in cumbersome proof processes where the actual meaning of what one wants to define and prove
often gets lost.

I refer to the many aspects of problem definitions that cannot be easily expressed in the logical
notation as extra-formal information. Extra-formal information can be thought of as partway
between vague, unstructured informal knowledge and that kind of information present in formal
specifications. This information is usually transmitted via documentation or through consultation,
and is not traditionally supported mechanically.

The role of extra-formal information can be understood by regarding any complex mechanized
proof as composed of layers, as illustrated in Figure 1. In the established approach, the mech-
anized proof as such is performed in the formal level through the interaction between the proof
system and the human guiding the system. In an even lower level, this proof is built upon the
underlying implementation of the logic, details of which are usually hidden from the human guide
but necessary for the correct working of the theorem prover. However, there is also the context

in which the particular proof exists in: explanations as to what are the assumptions, what will
be achieved by proving any particular goal, how it can be explained intuitively, and so on. The
processes that occur at this level are the ones that involve the extra-formal information. This
type of information is usually relegated to commentary which is attached to the specification of
the problem or a journal-style description of the proof, where non-essential technical details can
also be hidden.

This last layer has not traditionally been identified, and has usually been assumed to be the
province of the “experts” who apply the proof system in a certain domain. These experts must,
in fact, be conversant in both the domain being reasoned about as well as the intricacies of the
proof system used. The use of formal proof systems usually involves concurrent activity at two
levels: one manipulates proof goals using logical steps, but one is often interested not in the formal
proof per se but in what it means, what insights it provides. A related concept applies to anyone
attempting to understand someone else’s proof: while the fact that the proof has been performed



in some respectable theorem prover provides some assurance of correctness, they still would like
to understand the structure of the proof, in the form of an informal justification.

The method of achieving this triple-layered view of proofs is the theme of this paper. In
the method being put forward, the integration between theorem proving and domain reasoning is
facilitated by recognising explicitly the role of extra-logical information, and providing mechanisms
for manipulating this information through new, semantic rules linked to the proof rules that make
up the formal (syntax-based) proof system. The concrete way to achieved this linkage is through
annotations, integral parts of the data structures underlying theorem provers which store extra-
formal information, and which therefore allow the information to be mechanically manipulated.
Annotations provide the kind of support necessary to develop formal proofs that confirm the more
intuitive notions underlying the verification process.

2 Related work

The usefulness of extra-formal information for both proof development and proof explanation has
been put forward in Section 1. These ideas are not radically new: other researchers have also
realized the importance of adding informal, ad-hoc information to the proof process.

Wegbreit discusses many of the issues which independently guided the current work, in the
context of program verification [Weg76], and motivates a need for the “explicit link between the
specifications and executable instructions” needed for correct instantiations and guiding of proofs.
Wegbreit supplies this link in the form of justifications, intermixed with code and correctness spec-
ifications in the program. These justifications provide information on how the correctness proof
can be obtained. Justifications document the connection between instructions and specifications,
and are used to suggest instantiations and cases that structure the proof. For example, when
a final assertion uses a quantified variable e, justifications provide information on how e can be
constructed, either from the variables in the initial assertion or from the values obtained in the
executable statements.

Another example of the use of annotations in program verification is provided by Dershowitz
[Der83]. Dershowitz proposes annotating programs with purpose and suggest statements. The
purpose statement describes the intent of the code following it; suggest statements are weaker
than assertions, in the sense that they may or may not be correct but can be fine-tuned into
an assertion. The assertions being suggested are desired invariants; they are compared with the
assertions generated by actually analysing the program.

The original Boyer-Moore theorem prover has been modified to allow better user guidance.
Before, the user could control the proof process only in an indirect way—by programming its rule
base in a certain order. To enhance user guidance even more, the Boyer-Moore system has been
augmented to include an explicit hint facility [BM88]. Possible hints include specifying which
definitions to expand, whether induction should be used or not, etc. Having alternative induction
schemes makes the theorem prover potentially more powerful when it is considering what induction
should be used on a given conjecture. The hint facility thus makes it easier to lead the theorem
prover towards a proof.

Each of these works (introducing the terms justifications, annotations, and hints) have ad-
dressed the same issue, namely the addition of ad-hoc information into formal descriptions and
uniform procedures. However, none of them have described a truly general theory for using extra-
formal information. The approach described in this paper is intended to subsume these other
methods.



3 Generic annotation structures

One common characteristic of the previous research described in the last section is that annota-
tions were being used as a useful trick for solving particular problems, rather than an interesting
theoretical concept which could be seen as a foundation for applied theorem proving. The re-
search described in this paper is aimed at developing a common framework within which the more
specialised approaches to the use of extra-formal information can be embedded.

First it is necessary to identify a desiderata for such a scheme, and to develop a general
methodology, ideally as independent as possible of any particular implementation. So, taking into
account the experiments described in the last chapter, one may identify several characteristics of
an extension designed for improving interaction:

Generality Different application-specific provers are developed with the claim that they ease
the proof process in a particular domain. Annotations can be conjectured to alleviate this
necessity. Thus, one solution to having a myriad of theorem provers is to develop annotation
mechanisms in general-purpose provers and make them more geared to specific applications
in a way similar to application-specific provers. The first step in developing a theory of
annotations is to make the idea generic, and examine not how particular annotations can be
supported but how arbitrary kinds of annotations can be integrated into proof systems.

Programability As a consequence of the generality, one would want such a system to be adapted
to ones own needs in a straightforward way, without the necessity of re-implementing the
whole prover, or understanding internal details. For this to happen, one can think of several
steps in the use of such a system: for each application domain, one would define once and
for all a taxonomy of annotations, and their mechanisms of use. Then, for any particular
proof endeavour in this domain, one would already have the infra-structure to write logic
formulas and their associated annotations.

Uniformity A clean and tidy extension of theorem provers should identify the points in the proof
cycle in which extra-formal information is made available and in which it is used. These
should be the parts of the prover that must be affected for any taxonomy of annotations
being built. There should be a few ‘hooks’ in well defined points of the proof methodology,
such as the writing of a definition, the choice of next proof step, etc. at which the designer
of the proof environment can specify the role of the particular family of annotations being
implemented.

Outreach The proof development process has several phases: problem definition, proof develop-
ment, re-proof, and documentation. The methodology should allow a seamless transfer of
extra-formal information throughout these phases. For example, a comment can be gleaned
in a CAD tool, used as a hint in the proof of correctness, and then available in the final
documentation of the product. Information must flow in several directions in a proof devel-
opment: from specification to proof effort, from proof back to specification (in case of proof
failure), from proof development and specification to documentation, etc.

User-friendliness The support for annotations should be built in such a way that the process of
entering annotations and using them should be natural rather than a new complication for
the person trying to develop a proof. That would make it possible for slots for annotations to
be filled in at the same time as the problem is being described, or in the proof development
process. There can be several different front-ends for these phases, and they should be made
to support the particular taxonomy of annotations.

Transparency The presence of a taxonomy of annotations should be optional, as should be the
use of annotations even when a taxonomy is built for the application. Being a methodology
to extend a theorem prover, the original prover should still be seen as a complete system on
its own. Also, one should be able to switch the use of annotations on-and-off. For example,
one may want to look at all the annotations making part of a specification when attempting



L1•

v
•

s

L2•

v
•

s
B•

v
•

s

-
�

	
?

Figure 2: Example production with attribute dependencies

a proof the first time, but not when re-running the proof. Annotations should not clutter
up proof scripts when they are not needed.

A well-known paradigm that support these characteristics is Knuth’s specification of attribute

trees, an extension of syntax trees for programming languages [Knu68]. The syntax of a language is
represented by a usual context free grammar, to which are added attributes which associate values
with non-terminals. Syntax rules are then expanded with semantic rules for the computation of
attributes. The attributes can be computed in either of the two directions of following a parent-
child link, as illustrated in Figure 2. Attributes and rules for computing them provide a method
for embedding semantic notions into formal proofs.

My plan is to carry this idea over to proof systems. One often talks about proof trees, so there
is a natural counterpart to the world of grammars and trees; the tree-building rules in syntax
trees are the productions, while in the world of proofs they are the inference rules. There is an
important distinction in the two domains as to how the tree is built: while syntax trees were
studied particularly in the context of automatic parsing and compiling, proof trees are developed
interactively, and the process of developing the proof often makes use of much expertise. As a
consequence, the kind of information which could be added to proof trees differs significantly from
the semantics which gets associated with syntax trees. However, there are many insights into
proof annotations that can be obtained from Knuth’s work. One is that semantic information can
be either synthesised or inherited by a node in the tree. In terms of proof trees, this means that
at any point in the proof process one can make use of information pertaining to the subgoal one is
examining, but once a proof step is executed one may also provide feedback regarding the overall
proof effort and even the original specification of the problem and definitions used.

Another paradigm to be considered is provided by the Curry-Howard isomorphism [Dum77].
Propositions in the logic can be extended with proof terms, which represent a procedure to obtain
the proof. Proof terms are often described as “annotations”, but they represent a very specific,
restricted instantiation of the kind of annotations being proposed. Proof terms cannot be entered
at random by the human guiding the proof, but they have to be derived formally through the
proof process. They are associated with the whole body of the theorem, rather than being local to
particular points of the term structure representing theorems. Nevertheless, they provide insight
into how annotations can be transmitted through a proof tree created by inference rules.

4 Implementing annotations

In the previous section I discussed what kind of extension to theorem provers I would consider
useful as a way of providing support for extra-formal information in a general, clean way. These
ideas, to be shown feasible, must be translated into practice. In this section I briefly summarise
my results in augmenting the HOL theorem prover with annotations, and then discuss progress in
implementing them in the Isabelle prover.



4.1 Annotations in HOL

HOL is a general-purpose proof system in the LCF tradition [GM93]. The mapping of the idea of
programmable generic annotations to the HOL system has been direct and not very complicated.
The resulting proof environment has several of the desired properties from the desiderata. The
system is described in detail elsewhere [Kal94]; here it will be described briefly, and factors which
have made the implementation work will be pointed out.

Comments inserted in the specification (definitions and axioms that define the problem) are
brought to bear in the proof development phase, and comments typed in during the proof process
make part of the display of the final proof. For example, Figure 3 shows how an annotation
suggesting a case analysis on a particular variable is mapped into the execution of the appropriate
proof tactic when that annotation is active.

The annotations themselves are entered and visualised by extending the parsing and pretty-
printing facilities available in HOL. In the example of Figure 3, annotations are printed by being
enclosed in [* and *].

The behaviour on the case-analysis annotation is one of many easily programmable ones.
Figure 4 shows how simple automation through the processing of annotations is programmed,
showing the datatype for the taxonomy of annotations and how to process each kind of annotation.
Other functions that make part of the taxonomy of annotations are syntax information, book-
keeping on annotations, etc. These obligations for customisation of the annotation infra-structure
are programmed as two SML modules satisfying the signatures shown in Figure 5. The datatype of
annotations itself can be arbitrary, apart from the one restriction that it must support an equality
test.

One can conclude that it has been reasonably straightforward to implement annotations in
HOL; many factors contributed to this success. The LCF-style proof checking paradigm pro-
vides complete extensibility and programmability through Standard ML, therefore supporting a
methodology of experimenting with controlling the proof. In particular, the existence of modules
in SML was felicitous, at it made it possible to parametrise the complete prover for a taxonomy
of annotations to be entered at a later stage. This, and the easy way of declaring datatypes,
illustrates the support SML provides for this kind of programming.

Another factor that helped this work is the proof-checking approach behind HOL. Automation
is not inbuilt into HOL, which makes it possible to experiment with different degrees of mechani-
sation of proof procedures using annotations. The interaction with HOL is direct (one guides it
by asking it to something, rather than by thwarting its default behaviour), and it is clear to see
how annotations can be part of the proof cycle.

Another characteristic of HOL that has been exploited successfully is the distinction between
the datatypes of a goal and a theorem. This means that it has been possible to process annotations
in one way when creating subgoals from a goal (where the annotations are inherited top-down)
and in another when theorems are combined to built a new resulting theorem (where annotations
are synthesised bottom-up). It should be noted in the standard HOL system the explicit tree of
subgoals is not kept, for reasons of efficiency. However, it has been easy to extract the tree data
structure of proofs. Even without annotations, proof tree visualisations help understand how the
proof is organised, and where any relevant lemmas fit into the overall proof.

Slind has incorporated these ideas into the distribution version of HOL, making annotations
an integral aspect of user interaction. However, he has annotations only at the proof tree level,
rather than in the term level. The full functionality of annotations is not achieved, as some of
the characteristics of extra-formal information arises from a close inter-meshing with subterms of
formal descriptions.

So what can be learnt about the generic annotation mechanism vis-a-vis this implementation?
One criticism made to the fact that it has been easy to implement the ideas in HOL has been, of
course, that the way I envision annotations to work is coloured by the experience in implementing
them in HOL. Therefore, one way to show the generality of the use of annotations, I plan to use
them in several proof systems. For this purpose, in the rest of this paper I discuss the beginnings
of my work in implementing annotations in Isabelle.



(--‘(?c. b = c * a) /\

(?c. a = c * b) ==>

(a = b) [* cases: b = 0 *]‘--)

val it = () :unit

- expand (DISCH_TAC);

new goal:

(--‘a = b [* cases: b = 0 *]‘--)

[(--‘?c. b = c * a‘--)]

[(--‘?c. a = c * b‘--)]

case analysis on b = 0

new goals:

(--‘a = b‘--)

[(--‘~ (b = 0) ‘--)]

[(--‘?c. b = c * a‘--)]

[(--‘?c. a = c * b‘--)]

(--‘a = b‘--)

[(--‘b = 0‘--)]

[(--‘?c. b = c * a‘--)]

[(--‘?c. a = c * b‘--)]

val it = () :unit

-

Figure 3: Partially automated proof



datatype note = conjecture of string

| input_constraint of string

| behavioral_factor of string

| case_analysis of string

| label of string

| analogy of string

| induct

| suggestion of string ;

...

fun process_each_note (case_analysis x) =

(print ("case analysis on "^x^"\n";

apply_tac "ASM_CASES_TAC (--‘" ^x^ "‘--)THEN REDUCE_NOTE_TAC")

| process_each_note (induct) =

(print "suggested: INDUCT_TAC\n\n" )

| ...

Figure 4: Annotations used for automating proof

signature note_sig =

sig

eqtype note

val empty_note : note

val make_note : string list -> note

val pp_note : note -> unit

val join_notes : note -> note -> note

val show_note : note -> unit

end;

signature hook_sig =

sig

val hook_in : (term_plus list * term_plus) -> string -> unit

end;

Figure 5: Signature for annotation instantiation



datatype term =

Const of string * typ * note

| Free of string * typ * note

| Var of indexname * typ * note

| Bound of int * note

| Abs of string *typ * term * note

| op $ of term* term * note;

datatype thm =

Thm of {sign: Sign.sg, maxidx: int,

hyps: term list, prop: term,

anno: note};

Figure 6: Term and theorem structure with annotations

4.2 Annotations in Isabelle

Since implementing annotations in HOL, I have started using the Isabelle theorem prover [Pau94].
I am currently adapting the mechanism for using annotations to Isabelle. While Isabelle differs
from HOL in several relevant ways, which make this work challenging, both systems share many
ideas, both being tactic-based provers under the so-called LCF tradition. The commonalities
between them facilitate the transfer the methodology from one to the other.

Extending Isabelle in the same way as was done in HOL is easy. The core of the implementation
of Isabelle—the term structure—is incremented with a new field, called note, as illustrated in
Figure 6. A field with the same type is also added to the datatype for theorems. The total
implementation of this idea is more tedious: all the discriminators, destructors and constructors
for terms and theorems have to be recoded to account for this field, as well as the parsing and
pretty-printing code.

On the other hand, terms in Isabelle exist at two levels: the object logic and the meta logic.
One may think that annotations can be more superficial, in a way similar to the addition of proof
terms in first order logic (Isabelle theory FOLP). While in FOLP proof terms exist at the outer
level, it is possible to bring them deeper into the term structure of propositions. Thus deciding at
which level annotations should exist is an interesting question.

The next phase is to prototype a mechanism for transmission of annotations. It is here that
some of the unique characteristics of Isabelle come into play. For one, the tree-structure of proofs
is not as obvious as in HOL, and therefore the tree-like ancestry of subgoals cannot be directly
used for the inheritance of annotations. Proofs are produced not by refining goals into subgoals
(though it appears to be so at the user level), but by refining one meta-theorem into another. That
is, when the proof state consists of a ‘goal’ A and the user applies a tactic to produce the subgoals
B1 and B2, Isabelle does the refinement of theorem “A ⇒ G” to the theorem “[B1, B2] ⇒ G”,
where G is the initial goal.

One particular difficulty in transmitting annotations in an Isabelle proof is that tactics cannot
be used directly to transmit them. HOL is characterized by a large number of tactics, each one
corresponding to a particular inference in the forward direction. Isabelle, on the other hand, has a
small set of tactics, and it lets the resolution and lifting mechanism take care of the book-keeping
involved in creating the subgoals. On the other hand, it might be possible to make use of the
mechanisms already in place for unification, particularly if the proof-term style is used.

These and other issues have to be examined in further detail before an implementation is made.
It is expected that users of the Isabelle system will have some input as to what kind of annotations
they would find useful, and how they would envisage interacting with them.



5 Summary

Annotations are enhanced comments that can be added to terms to store information of different
types, and can provide a useful method for enhancing the proof environment. I have previously
described a methodology for implementing annotations in the HOL system. In this talk I will
discuss the issues that arise in their implementation in Isabelle, and show how they can be used to
deal with several issues that are of interest to many Isabelle users, such as visualizing the structure
of proofs and the use of proof terms.

References

[BM88] Robert S. Boyer and J. Strother Moore. A Computational Logic Handbook. Academic
Press, 1988.

[Der83] Nachum Dershowitz. The Evolution of Programs. Birkhauser, 1983.

[Dum77] Michael Dummett. Elements of Intuitionism. Oxford University Press, 1977.

[GM93] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A theorem proving

environment for higher order logic. Cambridge University Press,, 1993.

[Kal94] Sara Kalvala. Annotations in formal specifications and proofs. Formal Methods in

Systems Design, 5(1/2), July 1994.

[Knu68] Donald Knuth. Semantics of context-free languages. Mathematical Systems Theory, 2(2),
1968.

[Pau94] Lawrence Paulson. Isabelle: A generic theorem prover, volume 828 of Lecture Notes in

Computer Science. Springer-Verlag, 1994.

[Weg76] Ben Wegbreit. Constructive methods in program verification. Technical Report CSL-
76-2, XEROX Palo Alto Research Center, 1976.


