
Barendregt’s λ-Cube in Isabelle

Marco Benini
Computational Architectures Laboratory

Computer Science Department – University of Milan

June 6, 1995

Abstract

We present an implementation of Barendregt’s λ-Cube in the Isabelle
proof system. Isabelle provides many facilities for developing a useful
specification and proving environment from the basic formulation of for-
mal systems. We used those facilities to provide an environment where
the user can describe problems and derive proofs interactively.

1 Introduction

This paper describes a prover for typed λ-calculus. In particular we focus our
attention to the eight variants in the Barendregt’s system. There already exist
other theorem provers for typed λ-calculus, but they don’t pursue our goals.
The principal aspect of most of them is efficiency of proof search. Instead, what
we want to develop was an user friendly framework, where one could experiment
with λ-calculus.

We have chosen to describe Barendregt’s λ-cube because it contains the most
used typed λ-calculi, and they are formalized in such a way that syntax of terms
and most of the inference rules are identical among calculi.

We developed an extension of the basic syntax of Isabelle to mimic the form
of λ-terms. We complemented the syntax with the appropriate inference rules,
and we wrote some simple tactics to automate elementary proofs in those calculi.

We note that a partial work in the direction we are following, was made
by Tobias Nipkow. In the standard distribution of Isabelle, a theory, Cube, is
provided that implements the Barendregt’s system. But we go further, since his
formalization was based on an older work of Barendregt, and he didn’t develop
specific tactics for λ-calculus, nor documentation for the theory.

This paper can be regarded as a case study in the use of Isabelle as a logical
framework. Our work is not innovative, but it is (we hope) a good example of
a general methodology in the use of modern theorem provers.

This article is divided into three main parts: first, we introduce the basics for
the λ-calculi we worked with; in the second part we describe the main features
of Isabelle we used; in the third part we describe how we got the result we were
speaking above.

1

2 The λ-Cube

We begin presenting the frame where our formalization will take place. This
part is taken from [1, Chapter 5].

2.1 Pure Type Systems

A Pure Type System (PTS) is a triple: PTS = 〈S, A, R〉. S is the set of sorts;
A is the set of axiom, with the form s: t where s, t ∈ S; R is the set of rules,
with the form 〈s, t, r〉 where s, t, r ∈ S.

Given a PTS 〈S, A, R〉, terms are defined by the following abstract grammar:

T = S | V | T T | λV : T.T | ΠV : T.T (1)

where V is a set of variables annotated by sorts.
Let’s define equality between terms: t and s are equal iff one of the following

conditions holds

t ≡ s (2)
t ≡ Z t′ ∧ s ≡ Z s′ ∧ t′ = s′ (3)
t ≡ t′ Z ∧ s ≡ s′ Z ∧ t′ = s′ (4)

t ≡ (λx.t′) ∧ s ≡ (λy.s′) ∧ t′ = s′[y := x] (5)
t ≡ (λx.t′) t′′ ∧ s = t′[x := t′′] (6)

We call rule 5 α-conversion (notation =α) and rule 6 β-reduction (notation →
β

).
The corresponding conversion relation (=

β
) is defined as the reflective, symmetric

and transitive closure of →
β

.
Every term has a type: we denote this fact with t: s, where t is the term,

s is its type (but syntactically, it is a term), and : is a membership relation.
The goal of typed λ-calculus is to infer the type of a term. Inference rules

have the form Γ � t: s, where Γ is the context, i.e. the set of hypothesis, t: s is
the theorem and � is the derivation symbol.

A context Γ is recursively defined according to the following conditions:

Γ = 〈〉 (7)
(Γ = ∆, x: t) ∧ (x is a variable) ∧ (t is a term) ∧ (∆ is a context) (8)

in addition we require that

(Γ = 〈〉, x1: t1, . . . , xn: tn) ⇒ (∀i, j. i
= j ⇒ xi
= xj) (9)

Now is time to give inference rules: we divide them into four groups. The
first one deals with context management; the second one takes terms to parts
according to the principal functor; the third one contains the treatment of equal-
ity; the fourth one treats the product type (Π).

2

Let our PTS be 〈Sorts, Axioms, Rules〉 and let be s ∈ Sorts. The first set
of rules is the following:

(axiom [proviso: a ∈ Axioms])
〈〉 � a

(10)

Γ � A: s
(start)

Γ, x: A � x: A
(11)

Γ � A: B Γ � C: s
(weakening)

Γ, x: C � A: B
(12)

Clearly this rules are useful to manage assumptions: in a backward proof
style, rule 10 is the ending point; rule 11 discards used assumptions, while
rule 12 discards unused assumptions.

The second set of rules manages the principal functor of a term:

Γ � C: A Γ � F : (Πx: A. B)
(application)

Γ � F C: B[x := C]
(13)

Γ, x: A � B: C Γ � (Πx: A. C): s
(abstraction)

Γ � (λx: A. B): (Πx: A. C)
(14)

The third set contains only one rule; its goal is to deal with equality that,
in our treatment, is β-conversion:

Γ � A: B
(conversion [proviso: B =

β
C])

Γ � A: C
(15)

And the last set is devoted to the product type:

Γ � A: s1 Γ, x: A � B: s2
(s1, s2, s3 [proviso: 〈s1, s2, s3〉 ∈ Rules])

Γ � (Πx: A. B): s3

(16)

2.2 The λ-Cube

Now is time to introduce the particular typed λ-calculi we are interested in.
They are referred as the λ-cube because they are partially ordered by the inclu-
sion relation, and, graphically, the order forms a cube.

From the formal point of view, the above cited inclusion relation is reflected
in the presence or absence of some inference rules.

3

λ→

λ2

λP

λP2

λω

λω

λPω

λC

�

� �

�

�

� �

�

�
���

�
���

�
���

�
���

Figure 1: The λ-cube in the standard orientation

The systems in the λ-cube are formalized as PTS as follow:

λ-? = 〈{∗, �}, {∗: �}, {〈∗, ∗, ∗〉}∪ R〉 (17)

Each system, λ-?, is specified as a set of rules, R, of the form 〈s1, s2, s2〉.
The eight systems in the λ-cube are:

System Corresponding R
λ→ ∅
λ2 {〈�, ∗, ∗〉}
λP {〈∗, �, �〉}
λP2 {〈∗, �, �〉, 〈�, ∗, ∗〉}
λω {〈�, �, �〉}
λω {〈�, ∗, ∗〉, 〈�, �, �〉}

λPω {〈∗, �, �〉, 〈�, �, �〉}
λC {〈∗, �, �〉, 〈�, ∗, ∗〉, 〈�, �, �〉}

The specific rules for each system determine the way term and types may depend
from each other. We will not analyze the systems and the related properties.
Barendregt’s works (see [1], [2]) are the right reference if you are interested in
the theory. We are presenting an implementation of these ideas, so we show as
much as needed in order to get our results.

However we have to note that there is an obvious strategy of proof devel-
opment in some systems: if the principal functor of a term is not a product
type specification then we can proceed applying the appropriate rule from the
second set; if the principal functor is a variable then the only way to solve the
goal is by application of rules in the first set. In other words, proof strategies
for non-product terms are independent from the calculus. But we can develop
deterministic proof strategies in particular calculi. In λ→, for example, product
type can be inferred only by the 〈∗, ∗, ∗〉 rule. We will return on this point later,
when we will describe tactics.

4

The three main problem in typed λ-calculus are type checking, typing, and
type inhabiting. They are easily described; let ?X be an unknown λ-term, let
A, B be λ-terms, and Γ a suitable context:

• Type checking means to decide whether Γ � A: B is true or false.

• Typing means to decide the formula ∃?X.Γ � A: ?X .

• Type inhabiting means to decide the formula ∃?X.Γ �?X : B.

Type checking is, apparently, somewhat simpler than typing or inhabiting.
We will show that carefully designed tactics can solve all these problems in the
same way, using meta-variables for unknowns.

3 Isabelle

The basic Isabelle system provides a framework for developing proof systems.
This framework, called Pure Isabelle, can be specialized for a particular logic
system defining a theory, which contains rules, axioms and syntax of our logic.
The meta-logic for these systems is the logic of Pure Isabelle, that is Intuitionistic
Higher-Order Logic.

Now we will describe some relevant aspects of theories in Isabelle.

3.1 Theories

Theories are used to describe a logic, or a problem. We focus our attention to
the description of logics. To describe a logic means to give a syntax, a set of
axioms and a set of inference rules.

3.1.1 Syntax

Syntax is specified giving types, constants, and translations rules.
To give types we declare, in the theory specification, a types and an arities

sections. For example to specify natural numbers, we could declare:

types
nat 0

arities
nat :: term
nat :: ord

The first declaration means that nat is a type constant, which belongs to logical
terms and to the set of ordered types. We can also declare type constructors,
such as sets of terms:

5

types
set 1

arities
set :: (term) term
set :: (term) ord

The meaning of these declarations is that a set of type term (whose notation
is (term) set), is a term and it is ordered.

Constants are declared in the consts section of a theory file. For example,
let’s define some arithmetic constants:

consts
"0" :: "nat"
succ :: "nat => nat"
"+" :: "[nat, nat] => nat" ("_ + _" [0 ,1] 0)

We say that 0 is constant, and its type is nat, i.e. it is a natural number; succ
is a function from naturals to naturals; + is a function from a pair of natural
numbers to naturals, and its syntax is not +(a, b), but a + b, and it associate
on the left, i.e. a + b + c is parsed as (a + b) + c.

Mixfix declarations (like the syntax of +) are not enough powerful to specify
complex syntaxes, so we need translations rules. For example, let’s consider the
universal quantifier over natural numbers:

consts
forall :: "(nat => bool) => bool"
"@all" :: "[id, nat] => bool" ("(ALL _ . _)")

translations
"(ALL x . E(x))" == "forall(%x.E(x))"

The constant forall takes as argument a function from natural numbers to
booleans, and the intended meaning is that, if this function, let’s say f , is
everywhere true, then forall (f) is true, and it is false otherwise. To setup the
syntax properly, we define another costant, @all, that takes as arguments an
identifier and an expression of type nat; then the parser translates this notation
to forall (λx.E), and then it accepts such an expression because it agrees with
the syntax of the forall declaration. The printing process reverse the effect of
our translation, so every term whose principal functor is forall is written out
according to the syntax of @all.

3.1.2 Axioms and Inference Rules

Axioms and inference rules are specified as meta-level expressions.
As an example, let’s give some axioms for the natural numbers:

6

rules
succ_inj "succ x = succ y --> x = y"
succ_zero "ALL x. ~(succ x = 0)"

We have used some predefined constants, such as ALL and -->, along with
their syntaxes. Let’s now give an inference rule, for example the induction over
natural numbers:

rules
induct "[| P(0); (P(x) ==> P(succ x))|] ==> (ALL x. P(x))"

The meaning of meta-level implication (==>), is “from the assumption(s), we
can prove”. So we can read the induction rule as: “from the assumption P (0)
and, if we can prove P (succx) from P (x), then is proved ∀x.P (x).

3.2 Proofs

Proofs in Isabelle consist in setting a goal and applying inference rules to reduce
goals into subgoals or to prove a subgoal.

Inference rules, being nothing more than meta-level expressions, cannot be
applied directly, but they are resolved against the goal.

For example, given the induction rule, we want to prove ∀x.(x = 0)∨(∃y.x =
succ (y)). We setup the previous formula as the goal, then we match the conclu-
sion of the induction rule with the goal, obtaining two subgoals: (0 = 0)∨(∃y.0 =
succ (y)) and (succ (x) = 0) ∨ (∃y.succ (x) = succ (y)), given the assumtion
∀x.(x = 0)∨ (∃y.x = succ (y)). The first subgoal is true, because 0 = 0, and the
second is true, making x and y equal.

Resolution is not the only way to use inference rules, in fact, we can use def-
initions (expressions of the form A == B), to rewrite our terms, we can simplify
expressions using conversion rules, and so more.

We call tactics all of these proof methods.

3.3 Tactics and Tacticals

Inference rules of object-logics are meta-theorems. To avoid confusion, and to
develop an higher level of understanding of proving techniques, we call tactics
the inference rules of the meta-level. Some tactics are primitives, i.e. they are
not derived, nor they are derivable. For example, resolution is a primitive tactic.
Other tactics are complex, and their behaviour is the sum of lots of primitive
inferences composed in a proper way. Simplification is an example of such a
tactic.

When we develop a new theory, an obvious step is to set up some proof
methods. For example, Peano arithmetic is defined when we give the syntax of
arithmetic expression and the axioms. But arithmetic can be effectively used
only when we develop an inference rule for induction; and we can use properly
Peano arithmetic only when we have a tactic to automate the application of
such a rule.

7

Syntax Behaviour
THEN Sequence
ORELSE Deterministic choice
REPEAT Non-deterministic repetition
DEPTH FIRST Depth first searching strategy
BREADTH FIRST Breadth first searching strategy
BEST FIRST Heuristic searching strategy
FILTER Filter goals before applying tactic

Table 1: Some common tacticals

Proof methods can be thought as specialized inference rules, but also as proof
strategies. Strategies can be thought as inference rules, performing “long” steps
in the development of a proof.

Strategies are not fundamental because everything we can do with them,
in principle, can be done without. But they are the instrument to implement
in a modern theorem prover the idea of “obviously”. Often, when we look
at an handwritten proof, we see “the proof of the last assertion is trivial”;
startegies are the way to perform such steps, without expanding a mechanical
proof. Strategies are also a method to search for proofs, using a more refined
approach than the try-all-possibilities method.

In both cases, strategies are implemented combining the existing tactics in
some way to produce a new, well-formed tactic. To combine tactics we use some
operators, called tacticals, that guarantee to preserve soundness.

Some common and useful tacticals are listed in table 1.

4 Our Implementation

Now let’s see how to implement the λ-cube as an Isabelle’s theory.
Our approach is standard: we begin with the definition of types and sorts,

then we setup the syntax properly, and finally, the inference rules. With the
theory so defined, we can start to develop tactics and theorems.

4.1 Theory Definition

Our theory will be named Lambda, and it will be based over the most basic
theory of Isabelle, Pure.

Lambda = Pure +
...

8

4.1.1 Syntax

We need three different types: terms, contexts, and typings, i.e. a couple of
terms. The only “true” type is term, the other ones are useful only for syntac-
tical purposes. So we declare term a subtype of logic, inheriting what Pure
offers for the treatment of this type.

...
types
term context typing

arities
term :: logic

...

The syntax of a derivation is:

Derivation = Context � Typing (18)

When Context is void we admit a shorter syntax form for 18:

ShortDerivation = Typing

which is equivalent to EmptyContext � Typing. The resulting declarations to
Isabelle are:

...
consts
Trueprop :: "[context, typing] => prop" ("(_/ |- _)")
Trueprop1 :: "typing => prop" ("(_)")
...

translations
(prop) "x:X" == (prop) "|- x:X"
...

The type of the derivation syntactical structure is prop, because its semantic
value is a meta-level truth value. So, Trueprop is used also to reflect object-level
truth into the meta-level.

The syntax of typings and contexts are:

Typing = Term : Term (19)

Context = EmptyContext | (20)
Meta-Variable |
Meta-Identifier |
Context Typing

We allow a bit of syntactical sugar: the empty context can be written as <>.
The implementation of such a grammar is straightforward:

9

...
consts
...
Has_type :: "[term, term] => typing" ("(_:_)")

MT_context :: "context" ("")
Void_context :: "context" ("<>")
"" :: "id => context" ("_ ")
"" :: "var => context" ("_ ")
Context :: "[context, typing] => context" ("_ _")
...

translations
...
(context)"<>" => (context)""
...

The translation rule is one-way; we can write the empty context as <>, but it
is always printed as the null string.

The syntax of λ-terms is:

Term = ∗ | (21)
� |

λVariable:Term.Term |
ΠVariable:Term.Term

To implement bindings in λ and Π constructions, we use two internal represen-
tations, with higher order functions:

Πx: A.B = Prod(A, λx.B) (22)

λx: A.B = Abs(A, λx.B) (23)

Here the λ to the left is typed, while the one to the right is untyped, i.e. a
meta-level abstraction operator.

We allow the usual definition of the free product type:

A → B = Πx: A.B , x
∈ FreeVars(B) (24)

With these premises, our implementation of the syntax of terms is:

...
consts
...
star :: "term" ("*")
box :: "term" ("[]")
"^" :: "[term, term] => term" (infixl 20)
Abs, Prod :: "[term, term => term] => term"

10

Lam :: "[idt, term, term] => term"
("(3Lam _:_./ _)" [0,0] 10)

Pi :: "[idt, term, term] => term"
("(3Pi _:_./ _)" [0,0] 10)

"->" :: "[term, term] => term" (infixr 10)
translations
...
"Lam x:A. B" == "Abs(A, %x. B)"
"Pi x:A. B" => "Prod(A, %x. B)"
"A -> B" => "Prod(A, _K(B))"

...
ML
val print_translation = [("Prod",dependent_tr’("Pi","op->"))];

4.1.2 Axioms and Inference Rules

Now we present inference rules of our object-level. To simplify the theory, we
define only λC, and we distinguish among the other theories in tactics.

...
rules
axiom " *:[]"
start_s " G |- A:* ==> \

\ G x:A |- x:A"
start_b " G |- A:[] ==> \

\ G x:A |- x:A"
weak_s "[| G |- B:C; \

\ G |- A:* |] ==> \
\ G x:A |- B:C"
weak_b "[| G |- B:C; \

\ G |- A:[] |] ==> \
\ G x:A |- B:C"

app "[| G |- C:A; \
\ G |- F:Prod(A, B) |] ==> \
\ G |- F^C: B(C)"
abs_s "[| !!x. G x:A |- B(x):C(x); \

\ G |- Prod(A,C):* |] ==> \
\ G |- Abs(A,B):Prod(A,C)"
abs_b "[| !!x. G x:A |- B(x):C(x); \

\ G |- Prod(A,C):[] |] ==> \
\ G |- Abs(A,B):Prod(A,C)"
conv_s "[| G |- A:B; \

\ G |- C:*; \
\ C == B |] ==> \
\ G |- A:C"

11

conv_b "[| G |- A:B; \
\ G |- C:[]; \
\ C == B |] ==> \
\ G |- A:C"

rule_ss "[| G |- A:*; \
\ !!x. G x:A |- B(x):* |] ==> \
\ G |- Prod(A, B):*"
rule_bs "[| G |- A:[]; \

\ !!x. G x:A |- B(x):* |] ==> \
\ G |- Prod(A, B):*"
rule_sb "[| G |- A:*; \

\ !!x. G x:A |- B(x):[] |] ==> \
\ G |- Prod(A, B):[]"
rule_bb "[| G |- A:[]; \

\ !!x. G x:A |- B(x):[] |] ==> \
\ G |- Prod(A, B):[]"

beta "Abs(A, f)^a == f(a)"
end
...

In the next section we will discuss the use of these rules, but now we want to
point out the way conversion rules and =

β
are implemented.

The intended meaning of =
β

is intensional equality, i.e. two λ-expressions are
equal iff they denote the same “function”. Axioms governing such a relation
are reflexivity, symmetry, transitivity, closure under application (both left and
right), and abstraction, α-reduction and β-reduction. The meta-level equality
is already defined to enjoy all these properties, except β-reduction, and so the
need of the axiom beta.

Conversion rules substitute the =
β

relation with meta-level equality. From
an operational point of view, the application of a conversion rule implies that
we have to prove that two terms are equal in the meta-level.

We have to note a little thing: ordering of hypothesis in inference rules is
not important from a logical point of view, but from an operational point of
view it is relevant; if we assume to try solve every time the first subgoal, the
ordering we have given to assumptions guarantees that the smallest number
of unknowns is generated, specially when we have to solve a typing or a type
inhabiting problem.

4.2 Specialized Tactics

What we need now, is to develop some tactics to handle obvious proofs in a
standard way.

To manage contexts we need the rules 10, 11 and 12. We write two low-level
tactics, context s step tac and context b step tac, to treat contexts using

12

the ∗ or the � version of inference rules.

open Lambda;

fun context_s_step_tac n =
(resolve_tac [axiom] n) ORELSE
(resolve_tac [start_s] n) ORELSE
(resolve_tac [weak_s] n);

fun context_b_step_tac n =
(resolve_tac [axiom] n) ORELSE
(resolve_tac [start_b] n) ORELSE
(resolve_tac [weak_b] n);

...

To manage contexts we can write a tactic which, by backtracking, may apply
both of these low-level tactics.

...
fun context_step_tac n = (context_s_step_tac n) APPEND

(context_b_step_tac n);
...

But, it is easy to prove that context b step tac is the only admissible tactic
to apply when we have to prove Γ, x: ∗ � y: A. This consideration leads to the
following tactic:

...
fun context_step_fun (Const("all", _) $ Abs(_, _, x), n) =

context_step_fun (x, n)
| context_step_fun (Const("Trueprop", _) $ x $ _, n) =
context_step_fun (x, n)

| context_step_fun (Const("Context", _) $ _ $ x, n) =
context_step_fun (x, n)

| context_step_fun (Const("Has_type", _) $ _ $
Const("star", _), n) =

context_b_step_tac n
| context_step_fun (_, n) =
(context_s_step_tac n) APPEND
(context_b_step_tac n);

fun context_step_tac n = SUBGOAL context_step_fun n;
...

We note that, in the particular cases of λ→ and λ2, we can develop a deter-
ministic tactic to treat contexts. In fact, it is easy to prove that, when the
goal has the form Γ, x: A � B: C, and A
= ∗, the only admissible tactic is
context s step tac. This leads to:

13

...
fun special_context_step_fun

(Const("all", _) $ Abs(_, _, x), n) =
special_context_step_fun (x, n)

| special_context_step_fun (Const("Trueprop", _) $ x $ _, n) =
special_context_step_fun (x, n)

| special_context_step_fun (Const("Context", _) $ _ $ x, n) =
special_context_step_fun (x, n)

| special_context_step_fun (Const("Has_type", _) $ _ $
Const("star", _), n) =

context_b_step_tac n
| special_context_step_fun (_, n) =
context_s_step_tac n;

fun special_context_step_tac n =
SUBGOAL special_context_step_fun n;

...

Here we want to develop a prover for λ →. Let’s work top-down: let
simply type tac be our prover, it has to repeat proving steps until there are
no more goals to solve. So we have to develop a tactic to choose the right proof
step: let it be operand ss step tac. Now we need to develop an algorithm to
choose the right inference rule to apply to a goal.

Looking at the inference rules, we note that, given a term, only a small set
of rules can be applied to. More specifically, if we have to prove Γ � A: B, we
can apply the following rules, according the principal functor of term A:

Functor Tactics
Variable special context step tac

Application resolve tac [app, conv s]
Abstraction resolve tac [abs s, conv s]

Product resolve tac [rule ss, conv s]

If we ignore the conversion rule, not so useful in λ→, we obtain a deterministic
algorithm to choose the tactic to apply to a goal. Writing down these things in
SML code, we obtain:

...
fun operand_step_fun (Const("all", _) $ Abs(_, _, x), n) =

operand_step_fun (x, n)
| operand_step_fun ((Const("Trueprop", _) $ _ $

(Const("Has_type", _) $
(Const("^", _) $ _ $ _) $ _)), n) =

(resolve_tac [app] n)
| operand_step_fun ((Const("Trueprop", _) $ _ $

(Const("Has_type", _) $
(Const("Abs", _) $ _ $ _) $ _)), n) =

14

(resolve_tac [abs_s] n)
| operand_step_fun ((Const("Trueprop", _) $ _ $

(Const("Has_type", _) $
(Const("Prod", _) $ _ $ _) $ _)), n) =

(resolve_tac [rule_ss] n)
| operand_step_fun (x, n) =
(context_step_fun (x, n));

fun operand_ss_step_tac n =
SUBGOAL (fn (x, i) =>

operand_step_fun (x, i)) n;

val simply_typed_tac = REPEAT_FIRST operand_ss_step_tac;

5 Conclusions

Typed λ-calculus can be automated in Isabelle in a quite natural way. Our
implementation of those theories is not very efficient: we could develop, for
example, variants of the inference rules (the primitive ones) to avoid repetition
in proofs, or we could develop tactics to maintain a database of proven facts
during the proof process to avoid duplication of proofs.

As we said in the introduction, this is a case study in the use of Isabelle: we
are not interested in “the best way” to implement our theory, but in “the most
natural” one.

We think that our work is a good example to show how to use Isabelle to
implement a mathematical theory. It is small , because we have a little number
of rules, and a real syntax, although not very complex. It is clean, because the
mathematical theory of λ-calculus is so, and our implementation is direct.

There are some problems: the first one is absence of semantic. It is possible
to modify slightly our syntax for compatibility with ZF, and to develop, under ZF,
a function mapping from λ-terms to domains. Another problem is the absence
of data-types, and other useful applications of λ-calculus.

Currently we are working on the implementation of Böhm–Berarducci algo-
rithm to represent data structures in λ2.

Perhaps in the near future we will work on enhancements to the theory we
have presented, and we hope to develop a semantic in ZF.

Acknowledgments

This work was developed in the Computational Architectures Laboratory at
Computer Science Department – State University of Milan (Italy). Essential
support was given by Professor Giovanni Degli Antoni.

15

References

[1] H. P. Barendregt. Lambda Calculi with Types, in Handbook of Logic
in Computer Science, Vol. II edited by S. Abramsky, D. Gabbay and
T. S. E. Maibaum, Oxford University Press (preprint 1992).

[2] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, revised
edition. Studies in Logic and the Foundations of Mathematics, North Hol-
land (1984).

[3] Sara Kalvala. A Gentle Introduction to Isabelle, University of Cambridge,
Computer Laboratory.

[4] Lawrence Paulson. Introduction to Isabelle, University of Cambridge, Com-
puter Laboratory.

[5] Lawrence Paulson. The Isabelle Reference Manual, University of Cam-
bridge, Computer Laboratory.

[6] Lawrence Paulson. Isabelle’s Objects-Logics, University of Cambridge,
Computer Laboratory.

[7] Lawrence Paulson. ML for the Working Programmer, Cambridge Univer-
sity Press (1991)

A Theory File

Here is the text of the Lambda.thy file:

Lambda = Pure +
types
term context typing

arities
term :: logic

consts
Trueprop :: "[context, typing] => prop" ("(_/ |- _)")
Trueprop1 :: "typing => prop" ("(_)")
Has_type :: "[term, term] => typing" ("(_:_)")

MT_context :: "context" ("")
Void_context :: "context" ("<>")
"" :: "id => context" ("_ ")
"" :: "var => context" ("_ ")
Context :: "[context, typing] => context" ("_ _")
star :: "term" ("*")
box :: "term" ("[]")
"^" :: "[term, term] => term" (infixl 20)
Abs, Prod :: "[term, term => term] => term"

16

Lam :: "[idt, term, term] => term"
("(3Lam _:_./ _)" [0,0] 10)

Pi :: "[idt, term, term] => term"
("(3Pi _:_./ _)" [0,0] 10)

"->" :: "[term, term] => term" (infixr 10)
translations
(prop) "x:X" == (prop) "|- x:X"
(context)"<>" => (context)""
"Lam x:A. B" == "Abs(A, %x. B)"
"Pi x:A. B" => "Prod(A, %x. B)"
"A -> B" => "Prod(A, _K(B))"

rules
axiom " *:[]"
start_s " G |- A:* ==> \

\ G x:A |- x:A"
start_b " G |- A:[] ==> \

\ G x:A |- x:A"
weak_s "[| G |- B:C; \

\ G |- A:* |] ==> \
\ G x:A |- B:C"
weak_b "[| G |- B:C; \

\ G |- A:[] |] ==> \
\ G x:A |- B:C"

app "[| G |- C:A; \
\ G |- F:Prod(A, B) |] ==> \
\ G |- F^C: B(C)"
abs_s "[| !!x. G x:A |- B(x):C(x); \

\ G |- Prod(A,C):* |] ==> \
\ G |- Abs(A,B):Prod(A,C)"
abs_b "[| !!x. G x:A |- B(x):C(x); \

\ G |- Prod(A,C):[] |] ==> \
\ G |- Abs(A,B):Prod(A,C)"
conv_s "[| G |- A:B; \

\ G |- C:*; \
\ C == B |] ==> \
\ G |- A:C"
conv_b "[| G |- A:B; \

\ G |- C:[]; \
\ C == B |] ==> \
\ G |- A:C"

rule_ss "[| G |- A:*; \
\ !!x. G x:A |- B(x):* |] ==> \
\ G |- Prod(A, B):*"
rule_bs "[| G |- A:[]; \

17

\ !!x. G x:A |- B(x):* |] ==> \
\ G |- Prod(A, B):*"
rule_sb "[| G |- A:*; \

\ !!x. G x:A |- B(x):[] |] ==> \
\ G |- Prod(A, B):[]"
rule_bb "[| G |- A:[]; \

\ !!x. G x:A |- B(x):[] |] ==> \
\ G |- Prod(A, B):[]"

beta "Abs(A, f)^a == f(a)"
end

ML
val print_translation = [("Prod",dependent_tr’("Pi","op->"))];

B ML File

Here is the text of the Lambda.ML file:

open Lambda;

(* Context management tactics *)

fun context_s_step_tac n =
(resolve_tac [axiom] n) ORELSE
(resolve_tac [start_s] n) ORELSE
(resolve_tac [weak_s] n);

fun context_b_step_tac n =
(resolve_tac [axiom] n) ORELSE
(resolve_tac [start_b] n) ORELSE
(resolve_tac [weak_b] n);

fun context_step_fun (Const("all", _) $ Abs(_, _, x), n) =
context_step_fun (x, n)

| context_step_fun (Const("Trueprop", _) $ x $ _, n) =
context_step_fun (x, n)

| context_step_fun (Const("Context", _) $ _ $ x, n) =
context_step_fun (x, n)

| context_step_fun (Const("Has_type", _) $ _ $
Const("star", _), n) =

context_b_step_tac n
| context_step_fun (_, n) =
(context_s_step_tac n) APPEND
(context_b_step_tac n);

18

fun context_step_tac n = SUBGOAL context_step_fun n;

fun special_context_step_fun
(Const("all", _) $ Abs(_, _, x), n) =

special_context_step_fun (x, n)
| special_context_step_fun (Const("Trueprop", _) $ x $ _, n) =
special_context_step_fun (x, n)

| special_context_step_fun (Const("Context", _) $ _ $ x, n) =
special_context_step_fun (x, n)

| special_context_step_fun (Const("Has_type", _) $ _ $
Const("star", _), n) =

context_b_step_tac n
| special_context_step_fun (_, n) =
context_s_step_tac n;

fun special_context_step_tac n =
SUBGOAL special_context_step_fun n;

(* Simple Typed Tactic *)

fun operand_step_fun (Const("all", _) $ Abs(_, _, x), n) =
operand_step_fun (x, n)

| operand_step_fun ((Const("Trueprop", _) $ _ $
(Const("Has_type", _) $
(Const("^", _) $ _ $ _) $ _)), n) =

(resolve_tac [app] n)
| operand_step_fun ((Const("Trueprop", _) $ _ $

(Const("Has_type", _) $
(Const("Abs", _) $ _ $ _) $ _)), n) =

(resolve_tac [abs_s] n)
| operand_step_fun ((Const("Trueprop", _) $ _ $

(Const("Has_type", _) $
(Const("Prod", _) $ _ $ _) $ _)), n) =

(resolve_tac [rule_ss] n)
| operand_step_fun (x, n) =
(context_step_fun (x, n));

fun operand_ss_step_tac n =
SUBGOAL (fn (x, i) =>

operand_step_fun (x, i)) n;

val simply_typed_tac = REPEAT_FIRST operand_ss_step_tac;

19

