
Program Composition in Isabelle/UNITY

Sidi O. Ehmety and Lawrence C. Paulson
Cambridge University Computer Laboratory

J J Thomson Avenue – Cambridge CB3 0FD – England
Tel. (44) 1223 763584 – Fax. (44) 1223 334678

{soe20,lcp }@cl.cam.ac.uk

Abstract

We describe the mechanization of recent examples
of compositional reasoning, due to Charpentier and
Chandy [4]. The examples illustrate a new theory for com-
position proposed by Chandy and Sanders [2, 3], based
on the so-calledexistentialand universalproperties. We
show that, while avoiding hand proof mistakes, a such com-
positional reasoning can be mechanized quite straightfor-
wardly.

We also present the mechanization of some theoretical
results [5] concerning existential properties and their
relation with theguaranteesconcept. The result is a new
module added to the existing Isabelle/UNITY theory for
composition.

Keywords: program composition, universal and existential
properties, UNITY, Isabelle.

1. Introduction

Compositional proof is one of the many methods that
have been introduced for reasoning about concurrent sys-
tems. It explores the possibility of deriving a system’s prop-
erties from those of its components.

Paulson has mechanized a version of the concurrent pro-
gramming formalism UNITY [6, 7] and extended it with
Chandy and Sanders’s compositional theory [2, 3], using
the Isabelle [8] proof tool. The resulting system, which in-
cludes all relevant definitions and basic theorems of UNITY
as well as numerous illustrative examples, is what we call
Isabelle/UNITY [9].

The present work is a continuation of Paulson’s. It
concerns the Isabelle/UNITY theory for composition. We
mechanize two examples illustrating universal and existen-
tial composition. Auniversalproperty is one that holds in a
system provided all components have the property. Anexis-
tentialproperty is one that holds in a system provided some

components have the property.
We tried to be as close as possible to the original for-

malization. However, we have made improvements and
corrected mistakes. In addition to simplifications, we pro-
pose improvement in the specification regarding treatment
of variables (visibility conditions). This improvement leads
to more abstract specifications. Furthermore, unlike the
original formalization, where systems are described ax-
iomatically, we have followed a definitional approach: sys-
tems have been first defined and then proved to be correct,
i.e. they satisfy their specification. In the second exam-
ple the definition has suggested a stronger specification. In
the same example, the proof of one auxiliary theorem was
wrong and we have had to invent one.

The theoretical issues we have mechanized concern the
existence of theweakest existential property, which is
shown [5] to be sufficient for expressing guarantees. A vari-
ant of rely/guarantee specification, theguaranteesprimitive
is useful for making assumptions over environments. The
mechanization has a high degree of automation: in a few
lines we achieve 5 pages of proofs.

Paper outline. The paper begins with an overview of
UNITY (Section 2). It describes the two examples of Char-
pentier and Chandy [4] (Sections 3 and 4) then the theoret-
ical results of [5] (Section 5). Finally, the paper concludes
(Section 6).

2. Isabelle/UNITY

The UNITY formalism is made of a programming lan-
guage and an associated logic. Isabelle/UNITY is a set-
theoretic interpretation of UNITY in higher-order logic.
Thanks to the well-known equivalence between sets and
predicates, the correspondence between the two formalisms
is straightforward. The difference is basically notational:
predicates (p, p ∨ q, p → q, ∀x p, . . .) vs. sets (A, A ∪ B,
A ∪ B,

⋂
xA, . . .). For further discussion the reader can

refer to Paulson [9]. We continue our presentation using set
theory notation.

UNITY programs. A program consists of aninitial con-
dition and a set ofatomic guarded-assignments(actions).
Both are expressed over a common set ofdeclared vari-
ables. The set of actions always containsskip, the action
that does no state changes. The execution model resembles
an infinite loop during which actions are selected nondeter-
ministically for execution.

UNITY logic. The logic divides program properties into
two categories:safetyandprogress. Safety properties in-
cludeco1 (constrains),stable andinvariant:

A coB ≡ {F | ∀act ∈ ActsF. act“A ⊆ B}
stableA ≡ A coA
invariantA ≡ {F | InitF ⊆ A ∧ F ∈ stableA}

whereInitF andActsF denote the initial condition and
the set of commands of the programF , respectively. The
conditionInitF and the parametersA andB denote sets
of states and they represent state predicates. The operation
act“A denotes the image of the setA under the relationact.
A program property is represented as the set of programs
satisfying that property. The statement ‘programF satisfies
propertyX ’ is written ‘F ∈ X ’.

Progress properties includetransient, ensures and
7→ (‘leads-to’): F ∈ transientA means that some ac-
tion of F takesA to A; it falsifiesA. The atomic progress
propertyA ensuresB is expressed as the conjunction of
transient (A − B) with (A − B) co (A ∪ B). The tran-
sient part means that we cannot haveA withoutB forever.
Theco part means that the state remains inA until it enters
B. Finally 7→ is defined to be the transitive anddisjunctive
closure ofensures.2

The PSP (progress-safety-progress)law we are using

F ∈ A 7→ A′ F ∈ B coB′

F ∈ (A ∩B′) 7→ (A′ ∩B) ∪ (B′ −B)

is proved and is slightly stronger than the usual one.

Composition. In addition of its initial state (InitF) and
actions (ActsF), a programF also contains an allowed ac-
tions part (AllowedActsF). Two programsF andG are
compatible, notedF ok3G, if and only if (by definition):

(ActsG) ⊆ (AllowedActsF)∧(ActsF) ⊆ (AllowedActsG)

1Charpentier and Chandy [4] writeA nextB instead.
2Thus contrary to Charpentier and Chandy [4] our inductive definition

of 7→, from Misra [6], is based onensures. The two definitions are equiv-
alent.

3ok corresponds to the∗ and
√

notations in the papers [4] and [5]
respectively.

This notion ofallowed actionslimits the programs with
which a component can be composed. It is needed for ex-
pressing local variables. Compatibility of a family of com-
ponents is writtenOKi∈I Fi and means that they are mutu-
ally compatible with each other.

Programs are composed by forming the intersection of
their initial states and allowed actions and the union of their
actions. Composition of two programs is writtenF tG and
of a family of similar programs is written

⊔
i∈I Fi.

Existential and universal properties are defined as fol-
lows:

ex propX ≡ ∀F G.F okG→ F ∈ X∨G ∈ X → FtG ∈ X

uv propX ≡ ∀F G.F okG→ F ∈ X∧G ∈ X → FtG ∈ X

For example,initially andtransient properties are
existential, whileco, stable andinvariant are universal.
In general,7→ properties are neither universal nor existen-
tial. However, Chandy and Sanders [3] have pointed out
that they can be reduced to combinations of existential and
universal properties.

Proof method. UNITY is embedded in Isabelle/HOL,
from which it inherits the logic as well as a powerful arsenal
of tactics. Examples of these tactics aresimp tac which
performs simplification by rewriting;blast tac which
proves goals by classical reasoning; andauto tac which
combines the two previous tactics. In addition, there are
also two UNITY specialized tactics:constrains tac and
ensures tac for proving, respectively, safety and progress
properties when a program is specified. In this work, these
tactics are only used to prove properties of components
from their definitions. A property of a composed program
is deduced from the universal and existential characteristics
of that property and other natural deduction rules.

3. The Toy Example

Consider anI-indexed family of components sharing a
global variable: a counterC. Each component also has a
local counterc and performs a certain actiona. Compo-
nents increase their local counters and the global counter
by one each time they perform the actiona. Clearly, each
ci records the number of actions performed by component
i. Using compositional reasoning we want to prove system
correctness, thatC always equals the sum ofci:

invariantC = Σi=I−1
i=0 ci.

We present two mechanizations of this example. One
is a set-theoretical translation of the original specification.
The other, differing in treatment of variables, may be seen
as an abstraction of the former. The following sections dis-
cuss these two variants.

3.1. Component Specification

The formal specification of componenti [4] consists of
three safety properties:

init(ci = 0 ∧ C = 0)

∀k. stable (C = ci + k)

For all variablesv, other thanci andC, ∀k. stable (v = k)

The first property fixes the initial values of bothC andci at
zero. The second means that componenti always increases
C andci by the same value. The last states that component
i changes no variables other thanci andC.

For comparison, the Isabelle versions of these properties
are given below, for any componentcomp i:

comp i ∈ initially {s | s(c i) = 0 ∧ s(C) = 0} (1)

comp i ∈ stable {s | s(C) = s(c i) + k} (2)

comp i ∈ stable
⋂
v

{s | v 6= (c i) ∧ v 6= C→ s(v) = k} (3)

Note that in(3) we use intersection instead of a universal
quantification overv. The Isabelle versions are implicitly
universally quantified over their free variables.

We don’t start from the specification above. We first de-
fine a component program (see Figure 1) and then, for cor-
rectness, we prove the safety properties.

datatype var = c nat | C
types state = var⇒ int

(*The original definition of action a*)
act i ≡ {(s, s′) | s′ = s(c i := s(c i) + 1, C := s(C) + 1)}

(*Component’s initial state*)
init ≡ {s | s(C) = 0 ∧ s(c i) = 0}

(*Component’s allowed actions*)
allowed ≡

⋃
F ∈ preserves(λs.s(c i)). ActsF

comp i ≡ mk program(init, act i, allowed)

(*Our alternative definition of action a*)
act′ i ≡ {(s, s′) | s′(c i) = s(c i) + 1 ∧ s′(C) = s(C) + 1)}

Figure 1. Component program in Isabelle.

Thedatatype declaration defines the space of variables
using disjoint sum so thatC 6= c i andc i 6= c j for any
i 6= j. Thetypes declaration introduces component states
as total functions from variables to integers. The constant
act i denotes the action of componenti. The relational no-
tation means that the action starts at a states and ends at
states′, which coincides withs everywhere except inc i
andC, wheres′(c i) ≡ s(c i) + 1 ands′(C) ≡ s(C) + 1.
This definition, which utilises the := notation for func-
tion updating4, is suggested by property (3): the action of

4s(x := u, y := v) denotes multiple simultaneous updates.

componenti can change no variables other thanC andc i.
Finally, the constantcomp denotes the program. It is defined
using the Isabelle/UNITY built-in three-argument function
mk program. The first argument is the component’s initial
state: s(C) = 0 ∧ s(c i) = 0. The second is the compo-
nent’s set of actions:act and theskip command, which is
implicitly added bymk program. The third argument is the
component’s set of allowed actions. It can be interpreted as
follows: componenti can be composed with any program
F whose actions leave the local variablec i unchanged; in
other words they preservec i. The lambda abstraction in
preserves is needed because Isabelle usually represents
variables as functions over states rather than having a type
of variables.

From the component definition, we prove the desired
safety properties:(1) is derived directly from the defini-
tion while (2) and(3) are proved automatically by one call
to constrains tac.

As we can see, the definition ofact′ says nothing about
s′ outsideC andc i. Takingact′ as the action of a com-
ponent, properties(1) and (2) still hold. And instead of
property(3), which no longer holds, we have the following
(general) one, for any programF :

F ok (comp i)→ F ∈ stable{s | s(c i) = k} (4)

which derives a weak form (but sufficient) of property(3),
see the next Section.

The main difference between the two specifications, i.e.
(1), (2), and(3) vs. (1), (2), and(4), is that the former
restricts the variables that componenti can modify toC and
c i and only them, while the latter allows components to
have and modify additional (local or global) variables. Thus
the latter can be seen as abstraction of the former.

3.2. System Specification

Another difference between the two program descrip-
tions appears in the system specification. With the former,
we first prove that components are compatible thanks to
property(3), i.e. for any integerI, OKi<I (comp i). Then
we can express the system’s invariant as follows:(⊔

i<I

comp i

)
∈ invariant{s | s(C) = sum c I s},

wheresum c I s definesΣi=N−1
i=0 s(c i).

Using the latter specification, the invariant is instead ex-
pressed as follows:

OKi<I (comp i)→(⊔
i<I

comp i

)
∈ invariant{s | s(C) = sum c I s}

since components are no longer compatible by definition.

Note that from property(4) we derive the following one

OKi<I (comp i)→ ∀i. i < I →

comp i ∈ stable

(⋂
j<I

{s | j 6= i→ s(c j) = k}

)

whose conclusion is weaker than property(3).
In both cases, the proof of the invariant is easy. It relies

on the following Isabelle/UNITY theorems:

Init

(⊔
i∈I

Fi

)
=

(⋂
i∈I

InitFi

)
(⊔
i∈I

Fi ∈ stableA

)
= (∀i ∈ I. Fi ∈ stableA)

which mean thatinitially properties are existential and
stable properties are universal.

We provide these facts as well as technical lemmas about
sum to Auto tac, which does the rest of work automati-
cally.

4. The Priority System

The priority system consists of a set of conflicting com-
ponents. Each of them is constantly looking to perform an
action that requires it to have priority over all its neighbors.
The resulting conflicts are managed in such a way that (a) no
conflicting components are given priority at the same time
and that (b) each component is given priority in turn. This
priority mechanism is modelled by a directed finite graph
(thepriority graph) whose nodes represent the components
and whose arrows represent priorities between them. The
graph is kept acyclic when altering priorities.

For brevity, we abbreviate the expressions ’high-
est/lowest priority over all its neighbors’ by ’highest/lowest
priority’.

We use relations to represent graphs. This is because
relations provide a concise way for representing all the con-
cepts we need and Isabelle proves most of the theorems
about relations automatically. Another advantage of using
relations is that in a finite universe, acyclicity coincides with
well-foundedness. As a consequence, one of the general
theorems about graphs we need is simply a result of well-
founded relations and it already exists in Isabelle.

Charpentier and Chandy [4] assume first an undirected
graphP that is given as a functionN which associates to
each vertex the set of its neighbors. Then they define a pri-
ority graph as any directed graph without symmetric arrows
covering all edges ofP . We instead simply consider a prior-
ity graph as any relationr. When we want to ignore orien-
tation we form its symmetric closure, say(symcl r). This
is because ifr is a priority relation overP , thenN , which
representsP , is the function that associates to each vertex

i the set((symcl r)“{i}) − {i}, where(symcl r)“{i} de-
notes the image of the set{i} under the relation(symcl r)
and− denotes set difference. Thus we can use this defi-
nition instead of assumingP . However we have to be sure
that the changes made onr will never modify the undirected
graphN (see property(10), page 6).

As with the toy example, the component’s specifica-
tion includes a rule constraining the visibility of variables.
Note that here variables are functions over states. Pre-
cisely, they are boolean functions: variable(arrow i j) =
λr. (i, j) ∈ r represents priority between componentsi
and j: (arrow i j) corresponds to thei → j notation in
the Charpentier and Chandy’s paper and means thati has
priority over j. Normally a UNITY variable is either lo-
cal to one program or is global. In this example, we have
the rare case where variables are shared between some pro-
grams:arrow i j can be modified by bothi andj and by
no other component. We interpret this situation as follows:
(arrow i j) is global in bothi andj, but local in their com-
position. We define a new meta constructor that takes a
program and then imposes a more restrictive set of allowed
actions upon it. This constructor, calledlocalize, which
takes as first argument a variablev, satisfies the following
three equalities:

Init (localize v F) = InitF

Acts (localize v F) = ActsF

AllowedActs (localize v F) =

(AllowedActsF) ∪

 ⋃
G∈preserves(v)

(ActsG)

This operation gives the ability to form

(comp i)
⊔

(comp j) and to make (arrow i j) local to
that composition.

Finally we divide the specification into two theories
(modules), separating between what are general facts about
graphs (auxiliary) and what are component specifications.

4.1. General Properties of Graphs

Figure 2 presents the theory. The declarationtypes in-
troduces the typevertex of vertices which we then assert
(in rules) to be finite.UNIV is a polymorphic constant de-
noting the universal set in Isabelle and here it is constrained
to represent that of vertices. Theconstdefs part contains
the needed definitions. The definition of the symmetric clo-
sure of a relation is standard. The figure omits the types of
constants. Note that a relationr implicitly represents the
priority graph with vertex setUNIV and edge setr. The
neighbors function is defined as previously commented. Its
correctness properties are, for any verticesi andj:

i 6∈ (N i r) and(i ∈ (N j r)) = (j ∈ (N i r)).

Like many others simple properties of this section, they are
trivially derivable from the definition. ConstantR defines

types vertex

rules (* We assume that ...*)
(*...the universe of vertices is finite*)
finite vertex univ finite(UNIV :: (vertex)set)

constdefs (* Constant definitions *)
(* symmetric closure and neighbors *)
symcl r ≡ r ∪ (r−1)
N i r ≡ ((symcl r)“{i})− {i}

(* predecessors and successors of i *)
R i r ≡ r“{i}
A i r ≡ r−1“{i}

(* reachable and above vertices;
orginal notations are R* and A* *)

reach i r ≡ r+“{i}
above i r ≡ (r+)−1“{i}

(* changing priorities of a vertex i *)
incident i r ≡ r ∩ {(x, y) |x = i ∨ y = i}
reverse i r ≡ (r − (incident i r)) ∪ (incident i r)−1

(* Derive *)
derive i r q ≡

(symcl r) = (symcl q) ∧ (A i r) = ∅ ∧ (R i q) = ∅ ∧
∀ k k′. k 6= i ∧ k′ 6= i→ ((k, k′) ∈ r) = ((k, k′) ∈ q))

derive′ i r q ≡ (A i r) = ∅ ∧ q = (reverse i r)

Figure 2. General properties of graphs.

the set of vertices directly reachable from vertexi (i’s suc-
cessors). ConstantA defines the set of vertices from whichi
is directly reachable (i’s predecessors). The sets(reach i r)
and(above i r), respectively, denote(R i r+) and(A i r+).
They correspond toR∗ andA∗ in Charpentier and Chandy’s
paper [4]. We have changed the notation because it can be
confused with reflexive transitive closure of a relation.

The following facts are trivially derivable:

(i ∈ (reach j r)) = (j ∈ (above i r))

acyclic r = ∀ i. i 6∈ (above i r) = ∀ i. i 6∈ (reach i r)

And the others,

((above i r) = ∅) = ((A i r) = ∅) and

((reach i r) = ∅) = ((R i r) = ∅),

rely on the following general result of relations((r+)“{i} =
∅) = (r“{i} = ∅). Note that(A i r = ∅) means that vertex
i has the highest priority inr while (R i r = ∅) means that
it has the lowest priority.

One of the main lemmas of this section is

acyclic r →
((above i r) 6= ∅ → ∃ j ∈ (above i r). (A j r) = ∅). (5)

It states that everyabove set has a maximal vertex
and it corresponds to the well-known theorem of well-
foundedness. Because the universe of vertices is finite, so is
relationr and henceacyclic r = wf r.

Constantreverse defines the operation which inverts
the orientation of all arrows incident oni: outgoing arrows
become incoming and incoming arrows become outgoing.

The definition ofderive is taken from Charpentier and
Chandy [4]. It relates two relationsr andq, with respect to
a vertexi. The relationsr andq are equal up to the arrows’
orientation,(symcl r) = (symcl q). All arrows incident
on i (if any) are outgoing inr (A i r = ∅) and incoming inq
(R i q = ∅). Everywhere else, relationsr andq are the same.
Our alternative definition isderive′. The equivalence of
the two is proved automatically byAuto tac .

The other main lemma of this section is

derive k r q → ∀ i. (reach i q) ⊆ (reach i r) ∪ {k}. (6)

It states that ifq is derived fromr, with respect to vertex
k, then the reachability of vertices inq is smaller than the
union of what is reachable inr and the singleton{k}. The
proof is done by induction on the transitive closure ofr;
recall that(reach i r) = r+“{i} and so the induction is
essentially on the length of the path through the graph.

4.2. Component Specification

Figure 3 presents the component’s specification in Isa-
belle. The component’s states are declared to be relations
over vertices. The unspecified constantinit represents a
component’s initial state. Constantshighest andlowest
define priorities. Constantact defines the unique action of
a component. Possession of the highest priority is its pre-
condition. Thereverse operation guarantees lowest prior-
ity as post-condition. The constantcomp i denotes the pro-
gram with its initial conditioninit, actionsact and un-
constrained allowed actionsUNIV. Recall thatmk program
implicitly adds askip command.

types state = (vertex × vertex) set

consts init :: state

constdefs

highest i r ≡ (A i r) = ∅

lowest i r ≡ (R i r) = ∅

act i ≡ {(s, s′) | s′ = (reverse i s) ∧ (highest i s)}

comp i ≡ mk program({init}, {act i}, UNIV)

Figure 3. Component Program in Isabelle.

From Charpentier and Chandy’s paper [4], a component
should (a) wait until it has the highest priority over all its

neighbors; (b) not introduce cycles in the graph, by having
the lowest priority after eventually performing the action;
(c) yield priority to its neighbors in finite time.

The first and second items are safety properties. Our
specification is a set-theoretical translation of the original
ones:

comp i ∈ {s | (arrow i j)(s) = b} − {s | highest i s} co
{s | (arrow i j)(s) = b} (7)

comp i ∈ {s | highest i s} co
{s | highest i s} ∪ {s | lowest i s} (8)

Both are proved byconstrains tac.
The last item is expressed as a progress property. Ac-

cording to Charpentier and Chandy, it would be

transient{s | highest i s},

which means that the conditionhighest i s will eventually
be falsified by the actionact. The axiom implicitly as-
sumes a connected graphs, since otherwise it would fail:
consider the case wherei is an isolated vertex (has no neigh-
bors). We propose instead the following weaker specifica-
tion5:

comp i ∈
transient ({s | highest i s} − {s | lowest i s}) . (9)

Note that when vertexi is isolated thenlowest i s =
highest i s, otherwiselowest i s → ¬highest i s and
highest i s → ¬lowest i s. This property is proved by
the ensures tac tactic, which prove progress properties
from the component definition.

From the paper [4], the locality constraint corresponds to
the following safety property, for anyi, j, andk:

comp i ∈ {s | j 6= i ∧ k 6= i ∧ (arrow j k)(s) = b} co
{s | (arrow j k)(s) = b}

whereb is a boolean, and is proved byconstrains tac.
As in the toy example, our alternative rule for locality is

F ok (localize (arrow i j) (comp i t comp j))→
F ∈ stable {s| (arrow i j)(s) = b}

for any programF .
In addition we prove that the the undirected graph (func-

tion N) remains unchanged:

comp i ∈ stable
⋂
j

{s | N j s} (10)

5Note the equality ({s| highest i s} − {s| lowest i s}) =
{s| highest i s ∧ ¬lowest i s}.

4.3. System Specification

The informal specification of the priority system requires
that no conflicting components are given priority at the
same time (a safety property) and that each component is
given priority in turn (a progress property):

system ∈ stable
⋂
i

{s | (highest i s) → ∀ j ∈ (N i s) . ¬highest j s} (11)

system ∈ {s | acyclic s} 7→ {s | highest i s} (12)

Compared with Charpentier and Chandy [4], properties
(11) and (12) are expressed slightly differently. The for-
mer is originally expressed as invariant. But they implicitly
assume an initial state satisfying that property. This can be
simplified asstable. Charpentier and Chandy do not prove
this (universal) safety property and simply say that it is easy.
Indeed it is: we prove it by applyingconstrains tac and
thenAuto tac.

According to Charpentier and Chandy, the left-hand
side of 7→, in property(12), would beUNIV rather than
{s | acyclic s}, which would be proved to be invariant and
introduced later in the proof as hypotheses using substitu-
tion axiom. However, the proof of invariance of acyclicity
again requires the assumption that initial state is acyclic.
Our specification avoids such complications.

This progress property is neither universal nor existen-
tial. However we show that it can be derived from com-
binations of existential and universal properties, using the
ensures primitive, PSP law, etc. We simplify the proof in
the following steps:

Safety. Two main properties are proved here:
First is that theabove set of any componenti that does

not have priority does not increase, for anyj:

system ∈ {s | ¬highest i s} ∩ {s | j 6∈ above i s} co
{s | j 6∈ above i s}

This property is equivalent to, for any (set of vertices)x:

system ∈ {s | ¬highest i s} ∩ {s | (above i s) = x} co
{s | (above i s) ⊆ x} (13)

Note that ‘above set’ represents all those components on
which a component depends, directly (neighbors) or indi-
rectly.

Charpentier and Chandy [4] give a detailed proof that
relies on a universal (co) property and lemma(6). Here
the constrains tac tactic proves it directly for all com-
ponents. We introduce lemma(6) and use the equivalence
(j ∈ reach i s) = (i ∈ above j s).

The second property is stability of acyclicity:

system ∈ stable {s | acyclic s} . (14)

It is proved as the disjunction of(13) and the following
universal property:

system ∈ {s | highest i s} co
{s | highest i s} ∪ {s | lowest i s} (15)

The proof uses the following (four) rules for rewriting:

(acyclic s) = ∀ i. i 6∈ (above i s)

(highest i s) = ((above i s) = ∅)

(lowest i s) = ((reach i s) = ∅)

(j ∈ reach i s) = (i ∈ above j s)

Finally, the property

system ∈ stable {s | maximal s} , (16)

wheremaximal is an abbreviation for

∀ i. above i s 6= ∅ → (∃ j ∈ (above i s). (highest j s)) ,

is derived from(14). As discussed in lemma(5), in finite
universes acyclicity coincides with well-foundedness (max-
imality). This is an important property: any non-priority
component always has a component above it that has high-
est priority.

Progress. Any component with priority will eventually
escape every ‘above set’:

system ∈ {s | highest i s} 7→
⋂
j

{s | i 6∈ above j s} (17)

The original proof is based on the weak axiom
transient {s | highest i s} and can not be followed. The
new proof relies on the property

system ∈ {s | highest i s} 7→ {s | lowest i s} (18)

and on{s | lowest i s} ⊆
⋂
j{s | i 6∈ above j s}, which

means that a lowesti can never be in any ‘above set’. To
prove property(18) we reduceA 7→ B to A ensuresB.
Unfolding theensures definition yields two properties:

system ∈ transient {s | highest i s} − {s | lowest i s}

system ∈ {s | highest i s} − {s | lowest i s} co
{s | highest i s} ∪ {s | lowest i s}

The first property is existential and its proof relies on(9).
The second, a universal property, is obtained from(15) by
strengthening the left-hand side.

PSP. The fundamental property here is that any ‘above
set’ will eventually decrease and is proved from(13), (16)
and(17) using the PSP law, for anyi:

x 6= ∅ →
system ∈ {s | (above i s) = x} ∩ {s | acyclic s} 7→

{s | (above i s) ⊂ x} .

Here⊂ denotesproper subsetrelation. The proof is not
difficult: from safety properties(13) and(16) we have that
the setabove i s doesn’t increase and that there is always a
componentj in it that has highest priority. Progress prop-
erty (17) tells us thatj will eventually be removed from
(above i s). However the proof includes annoying rewrit-
ing steps.

For example, the previous property becomes

x 6= ∅ → system ∈ {s | (above i s) = x}∩(⋃
j

{s | j ∈ (above i s)} ∩ {s | highest j s}

)
7→ {s | (above i s) ⊂ x}

after simplification, since acyclicity coincides with max-
imality, and after expressing maximality using set opera-
tions.

Charpentier and Chandy mistakenly suggest rewriting
property(17) to

x 6= ∅ → system ∈ {s | (above i s) = x}∩
{s | j ∈ (above i s)} ∩ {s | highest j s} 7→

{s | j 6∈ x}

by strengthening the left-hand side, weakening the right-
hand side and introducingx. The problem is thatx is con-
stant. And on the left-hand side we havej ∈ x. That means
we havej ∈ x 7→ j 6∈ x where bothj andx are constant.
Our proof corrects this mistake.

Finally, the system progress property(12) is proved as
suggested in the paper [4], by induction on the size of the
above set.

5. Weakest Existential Property

This section describes some theoretical issues relating
existential properties and guarantees. By definitionF ∈
(X guaranteesY) means that for all programG such that
F okG, if F t G satisfiesX thenF t G also satisfiesY .
The parametersX andY are program properties: safety,
progress or evenguaranteesproperties. Unlike many other
rely/guarantee specifications here bothX and Y refer to
the same system. As a result,guaranteesproperties satisfy
many of the rules of implication.

Charpentier and Chandy [5] show that for any program
propertyX one can construct theweakest existential prop-
ertystronger thanX6. To prove this result they suggest two
definitions:

wxX ≡
⋃
{Y |Y ⊆ X ∧ (ex propY)}

wx
′X ≡ {F | ∀G.F okG→ F tG ∈ X}.

Herewx corresponds toE in Charpentier and Chandy’s pa-
per. The definition ofwx′ is slightly different, since here
composition (t) is commutative.

Then, in 10 propositions and 5 pages of proofs, they pro-
ceed by showing thatwxX is the weakest existential prop-
erty stronger thanX, and thatwx′X is also the weakest ex-
istential property stronger thanX. And from the uniqueness
of such a weakest property, they conclude thatwx = wx′.

We mechanize this proof in few lines, since we directly
prove thatwx = wx′. Thewx correctness properties, for any
X,

(wxX) ⊆ X ∧ ex prop (wxX)∧
∀Z. (ex propZ) ∧ Z ⊆ X → Z ⊆ (wxX),

are proved by one call toAuto tac each, while the equality
wx = wx′ is shown in an 11-step proof.

Charpentier and Chandy’s main result [5] statesguaran-
teesin term of wx: (X guaranteesY) = wx (X → Y).
The 1-step proof uses the equalitywx = wx′ and the
definition of guarantees. Finally, as corollary we have
ex prop(XguaranteesY).

6. Conclusion

Our mechanization of the two examples improves the
original specification and corrects its mistakes. The treat-
ment of variables illustrated in the toy example leads to
more abstract specifications. For example, it allows the con-
dition ‘locala, b, c’ to be a refinement of ‘locala’. With
weaker specification, several proofs in the priority example
have had to be invented.

The higher degree of automation in the proofs of the the-
oretical results shows that the effort needed for the rigour
of mechanized proof is becoming more and more modest.
Mechanical tools are proving many technical details auto-
matically that previously required human intervention. We
have started to mechanize the notation ofweakest guaran-
teesby Chandy and Sander [3]. The first undertaken proofs
include a good degree of automation.

6Charpentier and Chandy [5] give a counterexample showing that there
is no unique universal property stronger thanX.

Acknowledgements

Thanks to the U.K.’s Engineering and Physical Sciences
Research Council, who funded this research, grant GR/M
75440 ‘Compositional Proofs of Concurrent Programs’.

References

[1] David Aspinall. Proof general: A generic tool for proof
development. In S. Graf and M. Schwartzbach, editors,
Tools and Algorithms for the Construction and Analysis
of Systems 6th International Conference, TACAS 2000,
LNCS 1785. Springer, 2000. On the Internet athttp:
//www.proofgeneral.org/ .

[2] K. Mani Chandy and Beverly A. Sanders. Predicate
transformers for reasoning about concurrent computa-
tion. Science of Computer Programming, 24:129–148,
1995.

[3] K. Mani Chandy and Beverly A. Sanders. Rea-
soning about program composition. Technical
Report 2000-003, CISE, University of Florida,
2000. available viahttp://www.cise.ufl.edu/
˜sanders/pubs/composition.ps .

[4] Michel Charpentier and K. Mani Chandy. Examples
of program composition illustrating the use of univer-
sal properties. In José Rolim, editor,Parallel and Dis-
tributed Processing, LNCS 1586, pages 1215–1227,
1999.

[5] Michel Charpentier and K. Mani Chandy. The-
orems about composition. In R. Backhouse and
J. Nuno Oliveira, editors,Mathematics of Program
Construction: Fifth International Conference, LNCS
1837, pages 167–186. Springer, 2000.

[6] Jayadev Misra. A logic for concurrent program-
ming: Progress. Journal of Computer and Soft-
ware Engineering, 3(2):273–300, 1995. Also at
URL ftp://ftp.cs.utexas.edu/pub/psp/
unity/new_unity/progress.ps.Z .

[7] Jayadev Misra. A logic for concurrent program-
ming: Safety. Journal of Computer and Soft-
ware Engineering, 3(2):239–272, 1995. Also at
URL ftp://ftp.cs.utexas.edu/pub/psp/
unity/new_unity/safety.ps.Z .

[8] Lawrence C. Paulson.Isabelle: A Generic Theorem
Prover. Springer, 1994. LNCS 828.

[9] Lawrence C. Paulson. Mechanizing UNITY in Isabelle.
ACM Transactions on Computational Logic, 1(1):3–32,
2000.

