Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Machine learning for first-order theorem proving

Learning to select a good heuristic

James P. Bridge- Sean B. Holden- Lawrence C.
Paulson

Received: date / Accepted: date

Abstract We applied two state-of-the-art machine learning tectesqgio the problem of
selecting a good heuristic in a first-order theorem prover. &m was to demonstrate that
sufficient information is available from simple feature m@@ments of a conjecture and
axioms to determine a good choice of heuristic, and that tiéce process can be auto-
matically learned. Selecting from a set of 5 heuristics J¢laened results are better than any
single heuristic. The same results are also comparable fartver’'s own heuristic selection
method, which has access to 82 heuristics including the 8 g@ur method, and which
required additional human expertise to guide its desigr @@msion of our system is able to
decline proof attempts. This achieves a significant redadt total time required, while at
the same time causing only a moderate reduction in the nuoflibeorems proved. To our
knowledge no earlier system has had this capability.

Keywords Automatic theorem provingMachine learning First-order logic with equality
Feature selectionSupport vector machinessaussian processes

J. P. Bridge

University of Cambridge, Computer Laboratory, William @&aBuilding, 15 JJ Thomson Avenue, Cambridge
CB3 0OFD, UK

Tel.: +44-1223-763705

Fax: +44-1223-334678

E-mail: jpb65@cl.cam.ac.uk

S. B. Holden

University of Cambridge, Computer Laboratory, William @&aBuilding, 15 JJ Thomson Avenue, Cambridge
CB3 OFD, UK

Tel.: +44-1223-763725

Fax: +44-1223-334678

E-mail: sbhll@cl.cam.ac.uk

L. C. Paulson

University of Cambridge, Computer Laboratory, William @&aBuilding, 15 JJ Thomson Avenue, Cambridge
CB3 0OFD, UK

Tel.: +44-1223-334623

Fax: +44-1223-334678

E-mail: Ip15@cl.cam.ac.uk

2 James P. Bridge et al.

1 Introduction

Theorem provers for first-order logic (FOL) with equalityveathe potential to be largely
automatic, but at present significant expert human inpubearequired to optimize fully the
performance of a prover on a given problem. While the undeglapproach to proof search
employed by a given prover is based on one or more core aigwsijtperformance can be
affected by a number of parameter values and other decisagasding the detail of the
operation of these algorithms. Provers often incorporatear more collections of standard
settings for such parameters and other details; such actioleis known as deuristic
The best heuristic to use will depend on the form of the cdojecto be proved and the
accompanying axioms, however the relationship betweesethad the best heuristic is not
obvious even to those with extensive experience, let alonsérs who wish only to use the
prover as a tool.

In this paper we apply two machine learning methods (seexamele Bishop [3], Duda
et al.[11] and Mitchell [32]) to the problem of heuristic selecatiorhe approach taken is to
use existing, well-established heuristics and to autarabilearn to select a good heuristic
using simple features of the conjecture to be proved and skecéated axioms. This is
related to the method available to the existing E theoremaurSchulz [40]), which is able
to select a heuristic using features but uses a less sapattesdi approach: the features are
used simply to divide problems into separate groups, eastcaged with a best heuristic
selected using prior experimental results. The key diffees between this approach and
our work are as follows. First, in the former the divisiondrgroups restricts features to be
binary or ternary. Second, it must be assumed rather thanndigied that problems within
a group are best solved with the same heuristic. Our apjicatf machine learning to
the problem allows real-valued features to be used, andrdigies in a rigorous manner
and with fewer preconceptions the possible connectiongdeet feature values and the best
heuristic to use.

The task of heuristic selection lends itself well to machie&mning. The connection
between input feature values and the associated prefeawdstic is too complex to be
derived directly; yet for any given sample problem the pref@ heuristic may be found by
running all heuristics. Obtaining labelled training degdhius straightforward given a good
selection of trial problems. In the area of first-order logith equality theThousands of
Problems for Theorem Provers (TPTHyrary (Sutcliffe [43]) provides a readily available
collection of trial problems from many different subjeceas, and it is this library that we
use to construct a training set from which to learn.

While attempts have been made by several researchers tpanate machine learning
methods into FOL theorem provers, we take a different ambréa those attempted previ-
ously. Also, we apply learning methods known to be among th&t powerful available, and
which have not been applied in this context befstgport vector machines (SVMShawe-
Taylor and Cristianini [41]) an@Gaussian processes (GR®asmussen and Williams [36]).
A review of work prior to 1999 can be found in Denzinger et 8]. énd, for example, the
TEAMWORKsystem of Denzinger et al. [8] employs case based reasdrioys [14] uses
instance-based learning and Goller [16] folding architezinetworks. ThéMaLAReasys-
tem of Urban [45] makes use of a method based on naive BayasriggMitchell [32]).
The prior work most similar in its approach to our own has emtiated on learning novel
heuristics; see for example Erkek [12], Fuchs and Fuchs §b8] Schulz [39]. Our work
differs in that, rather than learning the form of the heigigtself, we make use of known
good heuristics and learn to select an appropriate one.

Machine learning for first-order theorem proving 3

It is of note that to date simple machine learning methods Hmen employed with
more success in SAT solvers. We provide a brief review ofvegfework in Appendix A.

Section 2 explains in detail the problem addressed, thets@mbeof a theorem-prover
and heuristics, and the construction of our data @ction 3 introduces the performance
measures used and explains in detail how our learners waned: Section 4 explains the
overall experimental method and how we applied our trainagsdiers to the selection of
heuristics within the theorem-prover. Section 5 discussesesults and Section 6 presents
a comparison with the prover's own automatic heuristict@a method. Section 7 gives
a brief discussion of possible further work, and Sectionctades the paper. Appendix A
briefly reviews related work for SAT solvers, Appendix B pides a summary of the ma-
chine learning methods used and the notation used in the, @k Appendix C presents
some results not included in the main part of the paper.

2 The Problem

Initially we chose an extensive set of proof problems takemfthe TPTP librar§[43], and

a suitable automated theorem prover with which to solve ttf&le problems were taken
from the entire TPTP library at the time the work was done. Gihly filtering applied was

to remove problems that were proved before the proof seadtplogressed to the point
where dynamic featurdsould be measured, and to remove problems for which the prove
reached saturation, as these were generally pathologisakcThis gave us a collection of
6118 problems from which to produce training, validationd &st data.

The theorem prover was capable of employing a number ofrdiffeheuristics. For
reasons discussed below we confined our experiments to atseftthese heuristics. The
prover was run on every problem using each heuristic in thissat in turn and the time
taken to find a proof recorded. A CPU time limit of 100 seconds et during this process.
This provided for each problem a measurement of how effeeach possible heuristic was
when applied to that problem. Throughout the following waate byn the total number of
problems employed.

Our aim was to find a method for automatically selecting tharagpriate heuristic for a
given problem. The data collected as described naturallysiéself to being used within a
standard supervised learning framework, provided that effeatures—that is, a vectox
in some sense characterising the problem—can be extractdaiy given problem. Once
this is achieved there are several potential ways in which gactor can be labelled with a
classificatiory to produce the labelled data

s = [(x1,y1) (X2.¥2) -+ (Xn,¥n) |- (1)

The approach used in the present work is to produce a sepataeof labelled data for
each heuristid, such that eacl has a binary label—+1 for class 1 or-1 for class 2—
indicating whether or ndt was the best heuristic, in the sense that it led to the fastest,
for that problent:

1 The full sets of training, validation and test data used inveark can be obtained from the UCI Machine
Learning Repository (Bache and Lichman [1]).

2 We used version 3.2.0 (July 2006) of the TPTP library.

3 Some of our features—referred to in what followsdymamic features-were measured only after the
proof search had run for some time. This is explained in gredtail in Subsection 2.2.

4 An alternative way in which to construct a machine learningbpem involves learning to predict the
actual time takerby a given heuristic to produce a proof. We performed son@iréxperiments using GP

4 James P. Bridge et al.

Table 1 The five heuristics used and their identifying labels witthie E theorem prover. The final column
states the number of times each was selected by E for thestasded in its design

Heuristic Labelling within E Selections
1 G_E__021.K31_F1 PI_AE S4 CS_SP_S2S 2442
2 H___081_B31_F1 PI_AE_S4_CS_SP_SOY 437
3 H___047_K18_F1_PI_AE R4 _CS_SP_S2S 377
4 G_E__008_K18_F1_PI_AE_CS_SP_SOY 329
5 G_E__008_K18_F1 PI_AE R4 CS_SP.S25 321

In the following subsections we provide some further detaiarding our experimental
method.

2.1 Theorem Prover and Heuristics

Our work is based on the E theorem prover (versi@®@Bingtom, Schulz [40]). This prover
is widely used and has been found in competition to have geofbpnance. Importantly
for the present work it is also open source and actively stupgdy its author; these were
significant issues in choosing to employ it as, while manyeptal features and related
measures were available in the code, it was necessary tdyntioelicode in order to measure
some of our features both before and during the proof seaceesgs.

The E theorem prover used has 82 built-in heuristics. Thésgmts a problem in that to
attempt to learn to select from among all possible heusstiould represent an insurmount-
able computational effort; we need at the very least to renpiftover using each possible
heuristic on a large number of problems from the TPTP lihriaraddition to then training
classifiers for each heuristic. We therefore focused on dlenset of heuristics; namely,
the five heuristics most often selected by E for the TPTP problbeing useg Table 1
lists the five heuristics chosen using this approach acegrth their labelling within E.
While this labelling is rather uninformative to the non-erp—for example, in the labelling
for heuristic 1,_PI denotes a preference for initial clauses aspl denotes simultaneous
paramodulation—we refer the reader to Bridge [4] and Scf0}for a more detailed de-
scription of these heuristics.

Our aim was to predict automatically which of the five heigistvas best for any given
problem, in the sense that it would lead to a proof most gui¢kbwever for some problems
none of the five heuristics could find a proof within the tirmaitiallowed. We therefore in-
troduced a further heuristic—referred to as heuristic Ofefesent this case. The selection
of heuristic 0 for a given problem is interpreted as an initicathat the problem is too
difficult for any of the heuristics available, and that we sliatherefore reject the problem
without devoting time to a proof search. Heuristic 0 is thus heuristic that immediately
gives up, and is considered the best heuristic when noneedfi¢ristics 1 to 5 are able
to find a proof within the allowed time of 100 CPU seconds. la fibllowing we refer to
heuristics 0 to 5 using the notation HL,. .., H5.

regression, which suggested that this approach is unltkgbyove feasible for this data, although it has been
used successfully in applying machine learning to SAT selygee Appendix A).

5 An alternative, which we have not explored, might be to ceansubset of heuristics that as a collection
solve the largest number of problems.

Machine learning for first-order theorem proving 5

Table 2 Description of the static features used

Feature number Description

1 Fraction of clauses that are unit clauses.
Fraction of clauses that are Horn clauses.
3 Fraction of clauses that are ground Clauses.
4 Fraction of clauses that are demodulators.
5 Fraction of clauses that are rewrite rules (oriented deratars).
6 Fraction of clauses that are purely positive.
7 Fraction of clauses that are purely negative.
8 Fraction of clauses that are mixed positive and negative.

9 Maximum clause length.
10 Average clause length.
11 Maximum clause depth.
12 Average clause depth.
13 Maximum clause weight.
14 Average clause weight.

2.2 Features of Conjectures and Axioms

A problem is initially presented to a theorem prover as a@ctmje and a set of axioms. we
need to extract a vector of features from the problem description. In fact the probis
presented as a set of clauses derived from the axioms an@ga¢ion of the conjecture to
be proved. There are many ways in which a set of features cdefb@d over a collection
of clauses; for example, one feature might denote the ptiopoof clauses that are Horn
clauses. Our first set of features is summarized in TableeBgtifeatures were derived from
the size and structure of the clauses, but no meaning wahattdo elements such as the
function or variable names. As these features are deriviéglgrfrom the description of the
problem, prior to the start of any proof search, we refer tortlasstatic features

We also explored the possibility that running a proof sediocta short period of time
might yield new information that is relevant to choosing addeuristic. The E theo-
rem prover employs thgiven clause algorithnf{see for example Denzinger et al. [10]).
A search is conducted based on the negated conjecture aagitimes, the aim being to de-
rive the empty clause and thus demonstrate inconsistermyig@nd Putnam [7], Huth and
Ryan [24]). During the search for the empty clause, two settanises are maintained. One
set—theprocessed clausesconsists of clauses for which all possible inferencesiwite
clause set have been tried. The second set is thatmbcessed clause$he unprocessed
clauses initially consist of the negated conjecture andiiiems. As the proof search pro-
gresses new clauses arise from inferences and these aeel jalathe unprocessed clause
set. In the given clause algorithm clauses are selectedtamérae from the unprocessed
set and then all inferences possible between the selectidenr clause and the processed
clause set are made.

It seems reasonable to expect that features obtained basin @ontents of the two
sets of clauses after a certain degree of inference has beguated might yield useful in-
formation for selecting a heuristicWe therefore also explored the usedghamic features
which are measured using the proof state some time aftertioé pearch has commenced.

6 There is a variation of the given clause algorithm that wamétuced by the Otter (now superseded by
Prover9) theorem prover (McCune [30]). We only considenision employed by E in this paper.

7 We acknowledge Stephan Schulz (private email communitatidio suggested to us that our dynamic
feature number 2 might be relevant. This conjecture is dised further in Section 7.

6 James P. Bridge et al.

Table 3 Description of the dynamic features used. The set of preckskuses is denoted Byand the set
of unprocessed clauses by The set of axioms is denoted By context_sr_count, factor_count and
resolv_count are variables within E

Feature number Description

1 Proportion of generated clauses kept. (Subsumed orl tciaiases are discarded.)
2 Sharing factor. (A measure of the number of shared terms.)
3 IPl/[PUU

4 Ul/IA

5 Ratio of longest clause lengthsrandA.

6 Ratio of average clause lengthsArandA.

7 Ratio of longest clause lengthstihandA.

8 Ratio of average clause lengthsurandA.

9 Ratio of maximum clause depthsRrandA.

10 Ratio of average clause depth$iandA.

11 Ratio of maximum clause depthsUnandA.

12 Ratio of average clause depthdjirandA.

13 Ratio of maximum clause standard weight®iandA.

14 Ratio of average clause standard weight8 andA.

15 Ratio of maximum clause standard weightt/iandA.

16 Ratio of average clause standard weightd andA.

17 Ratio of the number of trivial clauses|f®)|.

18 Ratio of the number of forward subsumed clausg®fto

19 Ratio of the number of non-trivial clauses|R).

20 Ratio of the number of other redundant clause®to

21 Ratio of the number of non-redundant deleted clausg? to
22 Ratio of the number of backward subsumed clauség|to
23 Ratio of the number of backward rewritten clausefto

24 Ratio of the number of backward rewritten literal clause|.
25 Ratio of the number of generated clauseffo

26 Ratio of the number of generated literal clausel®to

27 Ratio of the number of generated non-trivial clausg®to
28 context_sr_count/|P|.

29 Ratio of paramodulations t®.

30 factor_count/|P|.

31 resolv_count/|P|.

32 Fraction of unit clauses id.

33 Fraction of Horn clauses (.

34 Fraction of ground clauseslih

35 Fraction of demodulator clausesun

36 Fraction of rewrite rule clauses [id|.

37 Fraction of clauses with only positive literalsn

38 Fraction of clauses with only negative literaldun

39 Fraction of clauses with positive and negative literals i

Dynamic features were measured using both the processashantcessed clause sets af-
ter a specified number (in this work 100) of given clauses reshlselected and processed.
Table 3 summarizes the dynamic features used. The fact #ndtame two distinct sets of
clauses—processed and unprocessed—from which to drawdpsosome increase in flex-
ibility in designing potentially useful features, and heribe set of dynamic features is
somewhat larger than the set of static features.

In generating the dynamic features we need to run the theprewer, and hence we
need to decide which heuristic to use. We used heuristic 1 tases to generate the dy-
namic features; this is the heuristic most often selecteé lry auto mode. Using a fixed
heuristic leads to consistency in the generation of featiihile there is some possibility

Machine learning for first-order theorem proving 7

Table 4 Imbalance in the training, validation and test sets. Thitetahows the proportion of positive exam-
ples in each set of examples used

Heuristic Training set Validation set Testset All examples

0 0.420 0.421 0.408 0.417
1 0.182 0.170 0.178 0.178
2 0.075 0.087 0.081 0.079
3 0.122 0.122 0.123 0.122
4 0.099 0.095 0.110 0.101
5 0.102 0.104 0.100 0.102

that this introduces a bi&snote that any system will need to face this problem. It isdtbp
that running the prover for only a short time to generate dyindeatures will limit any
adverse effects due to the use of a single heuristic.

After gathering the data it was found that static feature & dmamic feature 21 were
redundant, in the sense that they took the same value forallgms. These features were
deleted from the dat.

2.3 Training, Optimization and Test Data

The prover was applied to each problem using each of the fieal fbeuristics in turn,
producing for each heuristic the time in seconds requirdihtba proof, or 100 if no proof
was found. This data was then used to construct six furthier Ber each fixed heuristig,

a corresponding set was derived with each feature vecteliéabt-1 if h found a proof for
the corresponding problem and was the fastest to do selaf h failed to find a proof or
was not the fastest. The sixth data set corresponded tcstielj problems were labelled
+1 if none of the five heuristics found a proof ef. otherwise'?

Each data set of 6118 problems was then split into three subREee first half formed
atraining setof 3059 examples. The second half was split into two furtle¢s & the usual
manner: avalidation set of 1529 examples used for parameter optimization, aedtset
of 1530 examples used for computing performance. Note ligatnianner in which the data
is generated, with one set for each heuristic, naturallgdea sets containing relatively few
positive examples: with six possible outcomes represeyetthe six heuristics each indi-
vidual classifier might be expected to have five times as maggtive samples as positive
ones. Table 4 summarizes the actual degree of imbalance ohatha.

The data were normalized such that each feature in eacingaet had zero mean and
unit variance across the set. Features in the validationtestidsets were then normalized
using the same offsets and scalings as applied to theirspmmeling training sets.

Table 5 provides basic performance data for the five fixediiges. This data denotes
the number of theorems in the third subset of problems—thathe subset reserved for
computing performance—that each heuristic is able to prawd the total time required

8 The values obtained for dynamic features might dependglyam the heuristic used to generate them.
For example, say heuristic A generates 100 clauses andi@a@000 in the relevant time period, but
heuristic B generates 1000 and simplifies 100. We might éxihet heuristic A is the more likely to be
successful.

9 This has also been observed in related work on applying madearning to SAT solvers (see Xu et
al. [47]).

10 An alternative method, which we have not explored, woulddatel all successful heuristics positively.

8 James P. Bridge et al.

Table 5 Performance of the individual heuristics in terms of the benof theorems proved within the time
limit and the total time taken in seconds. Numbers are peavidr the test set (1530 examples) and for the
combination of validation and test sets (3059 examples)

Test set only Combined set

Heuristic Number proved Time Number proved Time

1 774 79,336 1,514 162,029
2 695 87,005 1,352 177,530
3 722 83,409 1,424 168,593
4 726 83,438 1,421 169,598
5 673 88,130 1,339 176,959

to do so, including 100 seconds for each problem not solvékinvthe time limit. It also
contains equivalent data for the combination of the secealid@ation) and third sets.

For the purposes of placing our results in context it is aériest also to note the perfor-
mance that would be obtained using a system capable of abtagsing the best possible
heuristic. For the test set this would result in 906 theorprosed in 65593 seconds, and
for the combined set,¥91 theorems proved in 1384 seconds.

3 Machine Learning Methods

The machine learning algorithms used are complex and trelslef their operation are
extensively documented elsewhere. We will not describmtimegreat detail; Appendix B
provides a brief introduction to both SVMs and GP classifiansl definitive references for
the interested reader. We do however present in this seasipects of our experiments that
are specific to our own work, particularly regarding the nueasient of performance and
the selection of algorithm-specific parameters.

In the following, we denote by a vector of features corresponding to a single problem
as described in Section 2.2, and yothe corresponding label. We denote a data set having
n labelled examples bg as in Equation 1. We will denote the heuristic to which a set
corresponds by adding a numerical subscript, and theipartid which it corresponds by
adding the superscript ‘train’, ‘val’ or ‘test’ so, for exate, the validation set for heuristic
2 is denoteds?'.

3.1 Measurement of Performance

We use three measures of performance in our experimentait®ey P the number of
true positives obtained using a validation or testsset sizem. Similarly, denote byP~
the number of false positivebl™ the number of true negatives, aNd the number of false
negatives. The first measure is #heuracy
Pt 4+N*

—
While this is a common performance measure, it is not the méstmative when applied
to problems having unbalanced classes, such as the prob&®msslered here. We therefore
also employ théMatthews correlation coefficieriBaldi et al. [2])

PNt —P N~

V(PT+P)(PT+N-)(NT+P)(NT+N-)

acqs) =

M(s) =

Machine learning for first-order theorem proving 9

where the denominator is set to 1 if any sum term is zero. Tldasure has the value 1
if perfect prediction is attained, O if the classifier is penfiing as a random classifier, and
—1 if the classifier exactly disagrees with the data. Finallg,use theé=1 score(He [22]).
Define theprecision p=P*/(P™ 4+ P~) and therecall r = P*/(P" +N~). The F1 score is

Fi(s) — 2PC
p+r

and takes values between 0 (worst) and 1 (best).

3.2 Support Vector Machines

We used the softwar8VMLight(Joachims [25]) in our experiments. In order to apply an
SVM, a specific kernel function must be chosen. (See AppeBdixXor further information.)
On the basis of preliminary experiments (see Bridge [4])rdm#al basis function (RBF)
kernel, defined as

K(x,X') = exp(=yllx—x|?) 2)

was selected. The RBF kernel function has a single paramgterd the SVM fitting pro-
cess is controlled by two further parameters. The pararfisgeverns the trade-off between
margin and training error, and thus the extent to which wevalleng to tolerate misclas-
sified training examples. (This is discussed further in Apjpe B.1; it is an example of a
regularizationparameter.) Theost factor jsets the relative weights for positive and neg-
ative samples; setting appropriately is important when dealing with imbalancethdss
mentioned above and illustrated in Table 4. In our experisdre cost factor was set using
the method of Morik et al. [33] as

. Number of negative examples
" Number of positive examplés

A grid-search optimisation procedure was used to find valoey andC; the procedure
used is essentially a standard one for the experimentaingadf SVMs (Hsuet al. [23])
and involves searching over a rangd pfC) values, selecting the pair leading to a maximum
in an estimate of the corresponding performance; in thie tes accuracy, F1 or Matthews
score. In order to estimate performance we applied 10-finldified cross-validation (Ko-
havi [27]) to the combination of the training and validatisets as follows. The combined
setstY = gy gl was split into 10 subsets of approximately equal size, radiirtg the
relative numbers of positive and negative examples in eabbet. Denote bgCV theith
subset and bg) the combination of the remaining subsets wherithéas been removed.
Then, for each subset in turn, an SVM was trained usﬁ?(gand P, P~,NT andN~— were
found usings®V as a test set. The latter values were accumulated over thglif0asd the
final values used to obtain a performance estimate for a pal).

The final classifiers in each case were produced by se@iagd y to their optimal
values, and then training a single SVM using the whole®f. Testing to establish a final
performance value was performed usgf§t

The value ofy was varied between2° and 2 in logarithmic steps, the value doubling
at each step. Similarly, the value 6fwas varied between=2 and 2°. The process was
not repeated with finer steps in the value€aindy as the results indicated that the peaks
in estimated performance were not sharp. Additionally, duthe use of a finite number
of samples for both learning and validation the variatiorthef performance measure on a

10 James P. Bridge et al.

small scale is not smooth, and so it is not possible to coatisly refine the values @@
andy in the same manner as might be used to find the maximum of a mwahematical
function.

This procedure was repeated for the full feature set, thi Stature set alone and for
the dynamic feature set alone.

3.3 Gaussian Process Classifiers

We used th&sPML library (Rasmussen and Williams [36]) in our experimentsm$ ini-
tial experiments suggested that results were rather ifisent® the mean and covariance
functions used. We therefore used the zero mean functioorijunction with thesquared

exponentiafunction
X=X
cov(x,X) = ag%ex _x=xF”
(x,X) p< o2

as it appears to be a common and effective choice, and asnilasiy to the RBF kernel
provides for some degree of comparability with the SVMs useldas already been noted
that we conduct our experiments using the full set of featuaad also the static or dynamic
features only. With the selection of good features in mind,imvfact employed the squared
exponential covariance function wittutomatic relevance determination (ARD)

cov(x,x') = Uzexp<—%(x —X)TH?(x— x’)>

whereH =diag hi hy ... hn] andmis the number of features. The ARD principle involves
estimating them hyperparametens; (see Appendix B), which then provide an indication of
the importance of the corresponding features. If a largeeva obtained foh;, this is an
indication that the similarity measure between a pair dfifevectorsc andx’ is insensitive

to differences in théth feature. The feature is therefore of limited relevancel, the value
of 1/h; provides a direct measure of the relevance of fedture

We used the Laplace inference method as this proved morie skem the Expectation
Propagation alternative and moderately better perforrttiag Variational Bayes. We used
the logistic likelihood function. Hyperparameters? h; ... hy] were initialized to O for
the purposes of optimization, and optimization was limitedLOO function evaluations;
increasing this limit offered little improvement.

The model selection and hyperparameter estimation task3® classifier are typically
addressed by maximizing the marginal likelihood. This is @&pproach taken here, and it
does not require us to use a validation set as is the case whetructing an SVM. We did
however find that a validation set was useful for the follggvieason. As a GP classifier
produces an output indicating the probability that sonstiould be classified 1 it is usual
to choose a threshotdor the output and to assigato +1 when the output is greater thain
or —1 otherwise. Oftenis set to 05, however we found that this is often a suboptimal value
and therefore used the validation set to optimize it. Spesdifi, for a given performance
measure the value bfvas varied between 0 and 1 and the corresponding measureitamnp
for the validation set. The value formaximizing this performance was then used as a final
value for testing. It is unusual to see this method appliethendesign of SVMs, where
outputs produced are arbitrary reals and a threshold of 86d as standard. Consequently
optimization of the threshold was not applied to the SVMspémpdix C provides some
further discussion of this method, demonstrating that:uhiéorm use oft = 0.5 leads to

Machine learning for first-order theorem proving 11

reduced performance; optimal valued ér measure#(s) and F1s) tend to coincide; and
accuracy is, as expected, an inappropriate performancsurestor this data.

4 Experiments
4.1 Experiment 1: Classifier Performance

Ouir first experiment was a direct application of the classfie the data, resulting in a set of
six classifiers, each predicting whether or not the cormedjpg heuristic should be selected
for a given problem. At this stage the aim is merely to show e learned predictions can
be better than if a random classifier were used; that is, traething has been gained from
the learning process.
In addition to training the classifiers using all featurestveéned classifiers using only

the static features, and using only the dynamic featuresdiardo establish whether one set
appeared more useful than the other.

4.2 Experiment 2: Combining Classifiers for Heuristic Sttet

In order to meaningfully be applied to general theorem prgyroblems, the separate clas-
sifiers need to be combined into a heuristic selection peodethe classifiers were perfect
then for any problem one, and only one, classifier would netupositive result, with heuris-
tic 0 indicating a problem that cannot be proved within tiestilimit by any of heuristics 1
to 5. With perfect classifiers, selecting a heuristic is ausase of observing which heuristic
classifier gives a positive result.

In practice the classifiers are very unlikely to be perfeot. some problems more than
one classifier will return a positive result, while for oth@o classifiers may return a positive
result. A mechanism is needed to deal with such cases. With®¢M and GP classifiers
there is a natural way to achieve this. The outpi®) is in both cases a real value; arbitrary
in the case of SVMs, and in the intenjal 1] for GPs. In both cases we choose a threshold
t, typically 0 for SVMs or 05 for GPs, and assign an inpxtto +1 if f(x) >t orto —1
otherwise. The distance

d(x) = f(x) ~t

provides a natural measure of the commitment a classifieesklabelling« as+1, and

thus in choosing which of heuristics 1 to 5 to employ we singgject the one for which
d:(x) is largest. In our experiments this includes cases whgpe is negative for all five
classifiers.

Incorporating heuristic 0 introduces some further conggian. Preliminary experiments
showed that treating it in common with the other heuristeg] thus selecting it when it had
the largestk (x) even when that value was negative, led to far too many prablesing re-
jected. Heuristic 0 was therefore only selected {k) was positive as well as being greater
than that for all other classifiers. Experiments were rurhlvath and without heuristic 0
being a candidate for selection.

12 James P. Bridge et al.

Table 6 Performance measured using accuracy, F1 score and Mattoefficient of individual SVM and
GP classifiers, using optimizgg,C) for SVMs and optimized thresholds for GPs. Results are shesimg
all features, and the static and dynamic features indiViiguia the GP results, italic text indicates that the
result is equal to the SVM result, and bold text indicates the result improves on the SVM result

Support vector machines

All features Static Dynamic
Heuristic Acc F1 Matt Acc F1 Matt Acc F1 Matt
0 081 077 061 080 075 059 079 074 057
1 0.76 048 035 077 045 031 081 0.36 0.26
2 092 030 023 092 029 022 092 029 0.22
3 0.86 047 039 082 043 035 0.87 042 0.33
4 0.89 040 032 087 042 034 089 042 034
5 088 039 032 08 040 034 088 0.38 0.30
Gaussian process classifiers
All features Static Dynamic
Heuristic Acc F1 Matt Acc F1 Matt Acc F1 Matt
0 0.80 073 057 079 072 056 071 0.71 047
1 0.84 045 034 083 044 032 083 045 0.29
2 092 023 019 092 023 0.15 092 0.212 0.12
3 0.88 044 035 088 039 0.28 0.88 040 0.32
4 090 037 031 089 037 033 089 038 031
5 090 033 027 090 032 026 090 024 0.17
5 Results

5.1 Classifier Performance

Table 6 shows the best performance measures obtained vetr@ngrSVMs and GPs as de-
scribed above. Here, we assessed the performance of tedietaon the test set, employing
values for(y,C) and thresholds chosen using the validation set.

Two conclusions can be drawn from these results. Firstetisdittle difference in per-
formance between SVMs and GPs, although we might argue WisisSappear slightly
preferable for F1 and Matthews scores while GPs appearrpl#éein terms of accuracy.
Second, the performance changes only negligibly accotdimdnich of the three sets of fea-
tures is used, although we might argue that there is someada&ion when using dynamic
features only, particularly in the Matthews score.

We chose not to analyse these results further, for examplxamining the statistical
significance of the apparent changes according to whichf$ettures is used, as it is not
our aim here to focus on classifier performance, eitherivel&6VM versus GP) or absolute;
rather, we want to know how the choices made by the classé#ftast theorem proving, and
we address this in the next subsection.

Two final points are perhaps noteworthy. First, while optiation of the threshold for
GP classifiers is rarely undertaken in the literature, m$uout to be a critical step for this
problem. We will not elaborate further on this point herewbwer Appendix C presents a
full discussion. Second, while it appears that little iséajained by the inclusion of dynamic
features, this is perhaps to be expected given our earBeussion in Section 2.2 regarding
the need to use a single heuristic to generate them.

Machine learning for first-order theorem proving 13

Table 7 Performance of classifiers when used for selection of hizgisNumbers are explained within the
text

SVM with y andC optimized ong’® U ™" and performance assessed usifig only.

No HO With HO HO, positive margin
Number Time Number Time Number Time
All 827/827 73,549/73,549 700/709 22,003/23,005 716/7413,128/25,593

Static 833/822 72,845/74,350 726/718 26,784/28,093 2B9/7 28,608/29,116
Dynamic 810/809 75,268/75,286 667/666 23,152/23,075 70X/ 27,946/27,815

GP with thresholds optimized usirsﬁ" and performance assessed usgf only.

No HO With HO HO, positive margin

Number Time Number Time Number Time

All 816 74,973 720 35,264 724 36,467
Static 804 75,590 698 34,937 702 35,339
Dynamic 812 75,551 536 18,679 592 21,622

5.2 Combining Classifiers for Heuristic Selection

Table 7 shows how the classifiers perform when used to sederistics. Once again we
provide results for classifiers trained using all featustatic features only, and dynamic
features only. We also give results when heuristic 0 is neduahen it is treated in common
with heuristics 1 to 5, and when it is only selected if in awditit has positived; (x). The
time in seconds includes 100 seconds for each failed praoftie SVM the results are
shown in pairs. In each pair the first result was obtained Witl) optimized using F1, and
the second witlty,C) optimized using Matthews.

Comparing first with the performance of individual, fixed histics as shown in the rel-
evant (test set only) columns of Table 5, we see that wheneauinérs are forced to make
a choice of heuristic—that is, HO is not available—they eutprm any fixed heuristic in
terms of both the number of theorems proved and the totaltten. The SVM trained us-
ing static features is the best-performing combinatiore heroving 833 theorems in 72,845
seconds.

Overall, the dynamic features once again appear to perfoonsemthan the static or
combined sets, the static features being preferable wétls¥M and all features preferable
with the GP. We might argue that the SVM performs slightlytérethan the GP, although
there is no clear distinction.

When HO is available, such that our system can decline tanatta proof, we see only
a moderate reduction in the number of theorems proved, butichrarger reduction in
the time spent. Our classifiers are therefore effectivedyiilying problems for which the
available heuristics are likely to be of limited effectiems; to our knowledge, this ability
has not previously been demonstrated. Selecting HO onlynitheas positive margin leads,
as expected, to more theorems being proved with a corresgpimtrease in total time
taken.

6 A further experiment: comparison with E’'s auto mode

It seems reasonable to ask how our approach compares witauESsnatic selection of
heuristics. This is complicated somewhat by the fact thaidses from 82 possible heuris-

14 James P. Bridge et al.

Table 8 Comparison of heuristic selection using SVMs trained wittieatures and limited to heuristics H1
to H5, versus E’s auto mode using all 82 heuristics. Numbelsackets show the size of the corresponding
set. See the text for a detailed explanation of the remainimgbers

Number proved Time taken
E auto SVM E auto SVM
82 heuristics 5 heuristics 82 heuristics 5 heuristics
H; (281) 270 259 1,670 3,084
Hy (124) 114 107 1,127 1,883
Hz (200) 198 195 497 799
Hj (135) 126 123 1,346 1,650
Hs (166) 152 146 1,969 2,410
Hi (122) 12 1 11,123 12,157
H2 (105) 3 1 10,258 10,501
Hs (105) 4 3 10,213 10,418
Hy (86) 3 0 8,477 8,600
Hs (206) 0 1 20,600 20,593
Totals 882 836 67,278 72,094

tics whereas we have limited our work to 5. Any comparisorurthier complicated by the
fact that we wished to use the same training, validation astidata as in the experiments
already described. Recall that these data were generateglths times taken for heuristics
H1 to H5 to prove each theorem, within an upper limit of 100os@s. The data are there-
fore dependent on both the machine and the version of E usedcdmparison we now
describe was performed at a much later date than the cotistraf the three sets of data;
consequently we no longer had use of the original hardware,vehat follows has been
constructed with this in mind in order to obtain a meaningfuiparison.

Forn=1,...,5 let SVM, be the SVM trained to predict whether heurigtits the best
to use and let SVM(x) be its output before thresholding when applied to a feataotorx.
Also, define

Ch = {x € $*YSVMp(x) > SVMn(x) for m+#n},

the set of theorems in the test set that should, accordiniget®&¥Ms, be addressed using
thenth of the heuristics H1 to H5. We partitid®y, into two further sets

Hn = {x € Cy|at least one of H1 to H5 proveg

and
Hn = Chy\Hn = {x € Cy|none of H1 to H5 proves}

denoting theorems provable by at least one of the SVM-s&ddoturistics, and theorems
not provable by any of them, respectively when the data setoniginally constructed.

Table 8 compares heuristic selection using SVMs trained walitfeatures and limited
to heuristics H1 to H5, versus E’s auto mode using all 82 stios. LetS be the set cor-
responding to each row in the table; thatSs; H; for the first row and so on. Also, lét
denote the SVM-selected hypothesis corresponding to theswm for example on the row
for S=H3 we haveH = H3. The columns in Table 8 are interpreted as follows:

— For the E in auto mode columns, we show the number of theoranSsthat E can
prove, and the time taken by E to prove these theorems, iimgjud0 seconds each for
theorems irSthat it fails to prove.

Machine learning for first-order theorem proving 15

— For the SVM columns, we show the number of theoremStimat theH can prove, and
the corresponding time taken, again including 100 secamrdsech unproved theorem.

Note that while the data used to define the sktandH,, was the original data, as described
above, the entries on the table were generated using trentlyravailable machine. For this
reason, the number of theorems proved by the SVMs foHthsets can be non-zero—in a
small number of cases the faster machine allows a theorempodved within 100 seconds
using one of heuristics H1 to H5, which previously could not.

Itis immediately apparent that, while E outperforms ourmoetin this comparison, the
difference is in fact rather slight; in particular, it shdle noted that E has at least three
significant advantages in this experiment:

— E’s auto mode has access to 82 heuristics, and our metho@dhased this to 5. Some
of the 82 will have been indispensable for proving certagotems, and it is likely that
many of E’s full complement are there to address rare speasgs within the TPTP
library.

— Our approach is fully automatic: there is no human interieenin the tuning process,
whereas such intervention was required in constructingrigthod for selecting heuris-
tics.

— E was optimized using an earlier version of the entire TPBiRty, potentially including
problems ins®s, whereas our method learns without access to ag{ff

The last of these points merits further explanation. Inaffthe test set used by E in this
case is not independent; E has a built in advantage, havid@teess to at least some of
the test set during its design, whereas our method is sefeleéiuristics for TPTP problems
of which it has no prior knowledge. (We are assuming here dhatsplit of the data did
not result in a test set containing no problems from the waref the TPTP library used in
optimizing E; this would seem to be extremely unlikely.) Imechine learning terms, it is
likely that some of E’s performance lead is the resulbeérfitting (see Bishop [3]).

7 Discussion and Further Work
7.1 Finding Optimal Feature Sets

The work presented in this paper was originally motivatedluyscussion regarding appli-
cations of machine learning to theorem proving that migtitfinlly be explored (Schulz,
private email communication). Specifically:

“Use meta-learning on the proofstate to recognize .. .exjias over time .. .there is
a tantalizing result that proof states leading to a prookhaiter a few seconds, a
much lower sharing factor (on average) than proof seardfaddil.”

We have demonstrated that machine learning can effectbeepplied to theorem proving.
While we have not studied the sharing factor (dynamic featwrmber 2) specifically in
terms of its effectiveness in identifying a heuristic, wednound that dynamic features in
general have provided little or no increase in performanbemused in addition to static
features. However, it would be interesting to conduct maeegal further work on the
selection of good features.

Modern machine learning methods can be tolerant to the ukegd numbers of fea-
tures, even if some are redundant. Even so, results may ievatgpby selecting an optimal
set of features to use. Determining which features are faigni may also provide useful

16 James P. Bridge et al.

information as to which aspects of a problem are importaheuristic development. From
the results above it is clear that the full set of featurestmreduced without making a ma-
jor negative impact on performance, either in terms of diassion or theorem-proving. It
is also clear that the possible reduction in the number dtifea may be considerable—51
features for the full set versus 13 for the static featurdg on

It is infeasible to consider all possible subsets of featimea systematic way. However
there are a number of approaches that may be taken to featactien (Guyon and Elisse-
eff [18]). With the SVM machine learning approach, the setecof optimal features was
investigated in our early work by removing features one ana,tobserving the effect this
had on the whole machine learning and heuristic selectiongss, and then determining
which feature to permanently remove. One conclusion wasothlg a few features appear
necessary, and it thus became feasible to do an exhaustivef &l subsets of up to 3 fea-
tures. The results of this investigation can be found in\Mé do not reproduce them here
as they were obtained using an incompatible experimentapse

It was with these early results in mind that the GP classifieaur experiments were
trained using the squared exponential ARD kernel—this édecan provide an automatic
assessment of the significance of each feature. Howevé iresults obtained to date there
is little clear indication that any fixed small, subset of ddeatures is identified by this
approach. Nonetheless, feature selection in this probéenains an interesting area for fu-
ture work, with both SVMs and GPs. We would particularly likeapply the more robust
approach of Chu et al. [5] in the context of GPs, andhdtiple Kernel Learning (MKL)
technique (Lanckriet et al. [28]) as a means of identifyiragpdj related sets of features,
rather than individual features, as in the work of Pilkingtd al. [35].

In addition to determining the best subset of features fromexisting set it would be
interesting to consider adding further features to thos#euconsideration; for example,
properties of the signature such as maximum and averageantmber of symbols, or the
use of absolute values rather than ratios in defining dynéemitires.

7.2 Alternative Class Labels

The learning methods used in our work were designed from titgebto perform binary
classification using two specified labels to denote the eladsis of interest to ask whether
improved results might be obtained if a more subtle labglbh classes were used, either
by modifying the SVM and GP algorithms, or by applying al¢foms designed specifically
with such labellings in mind. For example, rather than Ilbglan example as-1 if a
heuristic is fastest and 1 otherwise, we could perhaps explore a real-valued |aigethat

is more informative in the case where two heuristics solveollpm in very similar times.
Alternatively, as this problem can also be seen as a mualtisctlassification problem it
might be of interest to explore methods such as the mulsisd&P classifier of Williams and
Barber [46].

7.3 Further Comparison with E’s Auto Mode

In Section 6 we compared our learned selection of a heurigticE’s auto mode. It would
perhaps be interesting to extend this by examining how @rnkr compares with E on the
set of examples for which E itself only selects from our sdtafristics. This would provide

Machine learning for first-order theorem proving 17

an indication of whether the problems for which E selectswibc outside of our set are
also problems for which our heuristics are ineffective.

7.4 Application of Heuristic HO

It would be interesting to explore whether our approachaeorig heuristic HO—indicating

that a problem is too difficult to be attempted—might be usealinanner similar to the way
in which machine learning has been used by portfolio SAT esslv(Portfolio SAT solvers

are discussed in Appendix A.) Specifically, by learning tesesuch a heuristic for each
of a collection of different FOL provers, we might use theufdsg classifiers to select
automatically a suitable solver for a given problem.

8 Conclusions

We applied two powerful machine learning techniques to #ek tof heuristic selection
within a theorem-prover. We find that our learners perforridoeghan any single heuris-
tic to which they have access, in terms of both the number @frdms proved and the
overall time taken. In addition, we find that their perforrcanmemains comparable to that
of the prover’s own selection method despite the fact thatdtter has several advantages:
significant human expertise was required in its design waseoair learners require no inter-
vention; it has access to 82 heuristics whereas we use ataflmdy 5 of these; and it is
likely that it had access during the tuning process to at @we of the problems on which
it was tested, whereas the learners are assessed only darpsafot seen during training. If
we allow our system to decline to attempt a proof, we see omfpderate reduction in the
number of theorems proved but a much larger reduction initie tequired; to our knowl-
edge this is an ability that has not previously been dematestr Finally, evidence is found
to suggest that smaller subsets of features might providgacable performance; this is a
subject for future work.

A Machine Learning for SAT Solvers

Severalportfolio solvershave used simple methods—typically some form of linearesgjon (see for ex-
ample Bishop [3] and Hastie et al. [21])—in order to selecoler from a portfolio. Many use features
ultimately derived from those suggested by Nudelman e84l. [

Haim and Walsh [19] use a simple approach based on linea regession to predict the cost of solving
an instance. They divide their features into two kinds. tFfesatures related to the structure of an instance
and based on measures such as the average size of a clauséractibn of binary clauses. Second, features
related to the behaviour of the search process, and base@asunes such as the size of the backjumps or
the fraction of the variables unassigned when backtractauogrs.

SATzilla2007 (Xu et al. [47]) is a portfolio solver using gd regression to predict the running time
of a given algorithm. (This is often referred to asempirical hardnesgpproach.) It uses 48 features de-
rived from those presented in [34] and a hierarchical legrmiethod combining ridge regression with sparse
multinomial logistic regression, the latter for predigtivhether or not an instance is satisfiable. (A similar
method is used by Haim and Walsh [20] who, instead of leartorgelect from a portfolio of solvers, learn
to select from a portfolio of 9 restart strategies.) Furtthevelopments of SATzilla2007 employ a more so-
phisticated performance measure as an alternative tormginie, and a more complex hierarchical classifier.
SATzilla2012 (Xu et al. [49]) introduces further feature@ (et al. [48]); there are 138 features in total derived
from the preprocessed CNF formulae, and including measmtrelated to size, graph structure, balance,
presence of Horn formulae, DPLL probing, clause learningyey propagation and other relevant properties.

18 James P. Bridge et al.

It again departs from the empirical hardness approach byagimg multiple instances of the cost-sensitive
classification model of Ting [44] to predict which of a pairsafivers is preferred.

Kadioglu et al. [26] describe a portfolio method that usesshme 48 basic features as SATzilla2007 in
conjunction with thek-nearest neighbouk{NN) learning algorithm [21]. They also explore the use &f-di
tance weighting in th&-NN approach, and a further method by which examples aréecks and a different
value ofk assigned to each cluster.

Finally, Samulowitz et al. [38] explore the use of multinaiogistic regression for solvinguantified
Boolean formulae (QBFsYhey address the problem of choosing variable selectiarisies while executing
a modified version of the Davis-Putman-Logemann-Loveldgdrahm (Davis et al. [6]). They employ 78
features including many that are also appropriate for S&bl@ms [34] but also some more specific to QBFs.

B Machine Learning Methods

We use a standard notation when describing machine leateamiques, corresponding essentially to that
of Bishop [3]. Scalarg € R are denoted using lower case, vectwrsR" using bold lower case and matrices
X e R™M using upper case and an alternative font. The transpasésafenoted” and vectors are column
vectors by default.

We denote a data $&thavingn labelled examples by

ST

= [(leY1) (x2,¥2) - (Xnv)’n)]
and we define the corresponding
X=[X1 X2 ... Xn]

and
Y =[V1¥2 ... ¥n].

B.1 Support Vector Machines

Support vector machines (SVMsE kernel-based sparse classifiers, and are describeginm@t1]. In this
appendix we give a brief introduction. We try to keep the tecél requirements to a minimum, assuming
that the interested reader will refer to the suggested ssuin particular we do not describe in detail the
theory of constrained optimization (see for example Luenydre29]) required to fully understand the training
algorithm.

The SVM method is based on transforming the feature spadainorg the feature vectorsto a new
space, typically of much higher dimension, using a mapgin@he underlying idea is that by making a good
choice of® we make it easier to separate the two classes using a hyperipléhe larger space. Further, we
select the hyperplane that, in addition to separating tleectasses, is as far away as possible fromxarig
the training ses.

The general expression for the distance of a pdi(i) to a hyperplanef (x) = 0 in the transformed
space igf(x)| where

f(x) =w' &(x) +h. (3)
Here,w is normal to the hyperplane, and whgw|| = 1 the offsetb is the distance from the origin to the
hyperplane. An SVM classifies a new inpuby computing

y=sgn(f(x)) 4)

where the sgn function tales the valué for arguments greater than 0, and otherwise. We can alternatively
define themarginof a training exampléxi, ;) as

M(xi) =i f(xi).

This quantity is positive when s@fi(xi)) = y; and negative otherwise; its magnitude corresponds to the
distance ofx; from the hyperplane. The training process therefore ire®lehoosing appropriate values for
w andb, such that the corresponding hyperplane separates tteesland is as far away as possible from any

11 1t is common in the machine learning literature to refer toaining setwhen the object in question is
more correctly aequenceThis should not however be the cause of any confusion in fafiatvs.

Machine learning for first-order theorem proving 19

training feature vectox;. This corresponds to maximizing the smallest margin, and ttan be described as
an optimization procedure

arg max{min M(X;)} .

w,b !

While this optimization problem is not in a form that is conient to solve, we can rewrite it as
.
arg min| = ||w]| (5)
w.b 2
subject to the constraints

M(xi)>1fori=1,...,n. (6)

This is a quadratic optimization with linear inequality straints and can be solved by the standard method
(Luenberger [29]) of introducing Lagrange multipliexrs> 0 and forming the Lagrangian

L(w,b,a) = S|w|[2 nO(-Mx- 1
(w.b.a) = 5 |Iw| azl i(M(xi) —1).

Differentiating with respect tav andb and setting to zero yields the dual problem

n n n
argmax| § aj — aiajyy;®7 (x)(x))
B8 g e

subject to the constraints
ai>0fori=1,...,n

and
n

i;am =0.

This dual problem can be solved for using any suitable numerical solver. One consequence tifigset
JdL(w,b,a)/dw = 0 is that we obtain the condition

W= .;yi aiP(x). @)

It should in fact not be surprising that admits such a representation. Informally, assume sleaintains
samples in both the positive and negative classes. Labetahsformed vector(x) for the positive class
z" and those for the negative cIazsjs. Any vector joining a pointg" to a pointzj* must pass through the
dividing hyperplane, so there must be a point lying in thedilig hyperplane given by

=7 +Bz; %)

wheref lies between 0 and 1. Taking all paz$ and zj we can find a set of values fg§ such that the
resulting points are on the dividing hyperplane. We can tiegresent any point on the dividing hyperplane as
a linear combination of the, and this includes the vecter normal to and lying on the dividing hyperplane.
A linear combination of they is also a linear combination of the transformed vectb(s;), and thus the;
in (7) exist as claimed. We could of course restrict this argat to using only examples near the dividing
hyperplane, in contrast to methods such as Rosenblattepon [37] where all examples are used, and this
idea is made rigorous below.

Substituting (7) into (3) we see that the trained SVM can h@essed entirely in terms of as

f(x) = _iyi ai®T (x)P(x) +b.)

It is possible to show using thi€arush-Kuhn-Tuckeiconditions [29] for the optimization problem that its
solution has the property
ai(M(xj)—1)=0fori=1,...,n.

Comparing with the constraint (6) this implies that we haye# 0 only for the examples—known asip-
port vectors—for which ®(x;) is closest to the hyperplane. Consequently the SVM is intjpmasparse
technique.

20 James P. Bridge et al.

Table 9 Some common SVM kernel functions

Linear Polynomial
xTx! ("X +c¢) d
Sigmoid tanh Radial Basis

tanh(s"X' +¢) exp(—yllx—x'|[?)

Equation (8) hides a potential problem: valubgx) can exist in a space of high, perhaps even infi-
nite dimension, and consequently the inner proddctgx;)®(x) might be computationally intractable. We
therefore avoid the direct computation of such inner preglby introducing &ernel function

Kp(x.X') = T (x)(x)

with associated parameter valygs/Vhile it might be supposed that this offers little or no bighe remark-
able theorem of Mercer (Mercer [31]) characterizes thetfans ® for which a corresponding exists, and
the kernel is usually much easier to compute than the ekplicer product. (We can in fact proceed without
knowing what function® corresponds to a givel.) In addition, there are well-defined transformations al-
lowing new kernels to be defined from known ones (see ShawiTand Cristianini [42]). Table 9 shows
four of the kernel functions most commonly employed in apglySVMs. The linear kernel corresponds to
an untransformed space such as that used by a linear perceptias the advantage that no parameters need
be set, and the corresponding limitation of inflexibilityhé’polynomial kernel generalizes the linear kernel
but is still often insufficiently flexible for complex datah& sigmoid tanh and radial basis kernels provide
better flexibility; in preliminary experiments (Bridge j4he best results for our problem were obtained with
the radial basis kernel. Any parameterassociated with a kernel are usually learned by optimizatiging
a validation set of training data (Het al. [23]) as explained in Section 3.2.

Our final expression for a trained SVM is

n
y=sgn| yiaiKp(xi,x) +b| .
|:izll ifp A

We have until now assumed that it is possible to find a hypeepla the extended space that separates the
positive from the negative examples. This is not alwaysiptessand the SVM algorithm is therefore modified
by the introduction oflack variabless;. Rewriting the basic optimization problem (5) and (6) as

I .
arg min| = ||w|| +C;€i
w.b 2 i=

subject to the constraints
M(xj) >1—¢ andg >0fori=1,...,n

allows misclassifications, witf setting the balance between maximizing margin and minirgimisclassi-
fications. The paramet€is typically learned along with any kernel parameterssing the search procedure
described above.

B.2 Gaussian Process Classifiers

Gaussian process classifiers (Rasmussen and WilliamsyB8j)de an alternative kernel-based approach to
supervised learning forming part of the more general Bayegiamework (Bishop [3]). In this section we
give a brief introduction to Bayesian supervised learnind &aussian process classifiers. The presentation
is deliberately brief, and the interested reader can findlétails in [3,36]; the relevant material on random
processes and on probability can be found in Grimmett ande&er [17].

Many supervised learning techniques are primarily a mefolamsing a vector of parameters associ-
ated with some functiorfi(x; z); in the case of an SVM, the parameters are

2" =[abp]

Machine learning for first-order theorem proving 21

and the associated function is
n
f(x;z) = sgn(Zlyi aiKp (xi,x) + b> .
i=

A training algorithm can be regarded as a funcflfons+— z mapping the training examples to the parameters.
This is however by no means the only way in which the problemtzacast.

The Bayesian framework takes a fundamentally probalailegiproach to learning. It can be shown (Duda
et al. [11]) that to obtain the best possilgleneralisation errordefined as the probability of misclassifying a
new examplex,y), we should use thBayes-optimal classifier

[H1ifPry=+1]x,5) > 1/2
fBayedX) = { —1 otherwise '

A simplification is usually made at this point whereby we ddasthe feature vectors to befixed rather
than random variables. If we now wish to classify a new paihen the expression of interest becomes
Pr(y = +1|y); however we will commit a slight abuse of notation in the hopicreasing the clarity of what
follows for the non-specialist. We will write By = +1y; x, X)—the semicolon indicating that what follows
are not to be considered random variables.

If we have a model such as an SVM or a neural network, havingnpetersz, then we can compute the
desired expression by noting that by the usual operatiomfeiting a marginal distribution

Pr(yly;x,X) = / p(Y;zly;x, X) dz.

Using the definition of conditional probability we can splie integrand to obtain

Pr(yly;x,X) = / Pr(ylz,y;x,X)p(z]y;x, X) dz
' ©)
= / Pr(y|z;x) p(zly; X) dz

where the simplification in the second line follows becasigevides no additional information aboyif we
know x andz, andx provides no additional information abauif we knows. We know from Bayes’ theorem
that

p(zY:X) = 3 PryZX)p(z:X) (10)
Z= /Pr(y\z; X)p(z; X) dz. (11)

Itis usually assumed that examples are independent antica@ndistributed (i.i.d.) and hence
n
Prly|z;X) = |'! Pr(yi|z;xi). 12)
i=

Comparing (9), (10) and (12) we see that (dropping the abusdtation) two fundamental quantities are
required: theprior p(z) and thelikelihood Pr(y|z). The prior quantifies our uncertainty about what the pa-
rameter vector might be in the absence of any data, and dgnaveresponds to &egularisationterm in the
non-Bayesian approach. The likelihood quantifies our uacgy about how labels might appear, and gener-
ally modelsnoisein the data. Having specified these two quantities a classsfieonstructed by evaluating
the integral in (9). This is in general a non-trivial proceBke details of how the prior and likelihood can be
chosen, and how the task of integration can be achieved,e&foubd in [3].

Gaussian process classifiers begin with the following oladien: given that any parameter vector
specifies a functiorf (x;z), and we need to specify a prig(z) and a likelihood Riy|z), why not simply
circumvent the need for parameters and work in terms of a p(ib) and a likelihood Riy| f) defined directly
in terms of functior®

Definition 1 Let cou(x,x’) denote a covariance functithand letp(x) denote amean functionA random
function f is called aGaussian procesi$ for any fixed, finite sequencexs, X2, . ..,Xn) the vector

7= [f(x0), F(X2),., F(xn)]

12 The covariance function takes the place of the kernel fanaised by an SVM. There are certain condi-
tions that the covariance function must posses; see [3@ldtails.

22 James P. Bridge et al.

Table 10 Some common Gaussian process covariance functions

Squared exponential y-exponential

exp(—HX;lile”Z) exp(— (”X]—’(/”)v)

Rational quadratic Neural network
||x—>(’H2)7a 2 i1 2T sx/
(l+ 2al2 S (1+2xT Sx)(1+2x'TSx')
SE prior, | =1 ~-E prior, I =y =1

RQ prior, I=a=1

2 = 2
/
1 1
0
0
=1 B
= =
-1
-2
-3 -2
4 -3
-5 0 5 -5 0 5
T T

Fig. 1 Examples of functions drawn at random from Gaussian prquésss using the covariance functions
in Table 10. In the case of the NN prior the parameter matri-isdiag(o1, 02)

has Gaussian density
p() = (2m) "2(c] Heenp(- 31— w)TC i))
whereC is thecovariance matrix ¢ = cov(x;,X;) and

T =[u(xa) H(x2),.. . H(%n)]

u
is themean vectarWe write f ~ N(,cov) to denote thaf is a Gaussian process.

Table 10 specifies four commonly-encountered covariancetifons, and Figure 1 shows, for each of these

Machine learning for first-order theorem proving 23

covariance functions, four samples from the correspon@iRgwith mearyu(x) = 0. These now correspond
to the priorp(f) introduced above.

For the case of regression (rather than classification) theeps of inference is now quite straightfor-
ward. Assume that examples are modified by additive i.i.dug8in nois& with mean 0 and variance?,
so

y=f(x)+e.
If f is a Gaussian process with megnand covariance cov then aryyvalue generated in this way must
have mearu(x) and variance cd,x) + 2. Similarly, starting with any finite sequence of featuretoes
(x1,X2,...,Xn) and generating the correspondingalues leads to a vectgrhaving a Gaussian density with
meanu wherep; = p(x;) and covariance matri€ whereGjj = cov(x;,Xj) + Oﬁé‘j.

Assume now we have a training seques@nd we wish to predict the output required for a new input
Xnew- By the same argument as in the previous paragraph, thedesity p(yiest, y) is Gaussian with mean
(M (Xtest), M) and covariance

= (COV(XneW7Xnew) c’)
c C
wherec = (COV(Xtest, X1), - - . , COV(Xtest, Xn)). Referring back to (9), we want to compute the conditionat di
tribution p(yesly). However, as we have just shown that the joitesty) is Gaussianthe conditional
distribution is Gaussian alsdlhe identities required to compute the relevant mean amdrigmce are as
follows. Letx be a vector of jointly Gaussian-distributed random variables, havingnye and covariance
matrix such that

P = (2 V2fE] HZexp(00)TE Lk).

If we partitionx such thax = (x1 x2) and writep = ((1 2) and
(1 X2
= (%)
in the corresponding partitioned form, then both the maigifensity p(x1) and the conditional density
p(x1|x2) are also Gaussian. Specificalfy(x1) has meanu; and covarianc& 1, andp(x1|x2) has mean

Y=+ 253 (%o — p2)
and covariance
P R T I W
Applying these results gives the mean and variancgifey conditioned on the training examples, as
Hhest= [(Xtest) +C' CH(y —)
Ot = COV(Xtest Xtest) — €' Cc.

Figure 2 shows a simple example of GP regression in one diorgnssing the same covariance functions
as illustrated in Figure 1. In this figure the training dataevgenerated by selectingvalues uniformly at
random in the interval-2,2]. The corresponding values were then obtained by evaluating the polynomial

1, 7
p(x) =3 5X 2x-',- 2

and adding Gaussian noiseof zero mean and variancelOsuch thaty = p(x) + €. Each graph shows the
same 20 training examples. The solid line shows the reguiltiterpolatorpies; for values ofx in the relevant
range, and the dashed lines show an interval@§sgabove and belowies. Note that the latter widen in
areas where there is little data, and thus give an indicatidhe confidence of our prediction.

Just as for SVM kernels, GP covariance functions may possespmore parametefs These are
typically set by maximizing thenarginal likelihoodor evidence

E(p) = logp(y|p; X)

using some variant of conjugate gradient search; detaildbedound in [36].
In order to extend the method to classification problems vginbwith a Gaussian procegsand define

Prly=+1/f;x) = o(f(x))

where o can be any function that sensibly maps the rangé @i the interval[0,1]. This new process is
then used much as above, although we have the added conoplitiaat asf itself is not directly observed

it must be integrated out of the equations. Unfortunatedy résulting computations are rarely analytically
tractable and we therefore need to resort to approximaéohniques; again we invite the interested reader
to consult [36] for the details.

24 James P. Bridge et al.

SE prior, [=1 ~-E prior, =y =1

-2 -1 0 1 2 -2 -1 0 1 2

Fig. 2 The mean and variance of the predictive distribution for €3&n process regression using the co-
variance functions in Table 10. The dotted line shows thgmwhial p(x) and the crosses show the training
examples. See the text for an explanation of the solid andedblines

Table 11 Performance measured using accuracy, F1 score and Mattiwefficient of individual GP clas-
sifiers using a fixed threshold of= 0.5. Results are shown using all features, and the static andnaig
features individually

All features Static Dynamic
Heuristic Acc F1 Matt Acc F1 Matt Acc F1 Matt
0 075 071 050 077 073 053 072 070 045

084 028 027 083 016 018 0.83 031 0.27
091 016 019 092 004 009 092 014 0.17
0.88 028 028 088 022 023 088 029 0.28
090 004 008 09 010 0.16 090 0.04 0.09
090 0.04 007 09 001 001 09 0.06 0.11

abswWN PR

C The effect of optimizing the GP threshold

Tables 11 and 12 show results corresponding to Tables 6 aodGH classifiers when a fixed threshold of
t =0.5is used, as is generally the case in the literature. Notecthssification performance is reduced, par-
ticularly when measured by the F1 and Matthews scores, whittis work are more relevant than accuracy
as we have imbalanced data. Comparing also with Table 5 wéhae&vhile we still outperform any fixed
heuristic if HO is not included as an option, performancesuced when HO is included.

Figures 3, 4 and 5 show how the accuracy, F1 and Matthews mesagary with the thresholdwhen
measured using the validation sets, for the six individlas$sifiers, and for the three sets of features. Fig-

Machine learning for first-order theorem proving 25

Table 12 Performance of GP classifiers with fixee: 0.5 when used for selection of heuristics

GP with fixedt = 0.5 with performance assessed us§fjj ands®st combined.

No HO With HO HO, positive margin

Number Time Number Time Number Time
All 1582 153,434 958 20,882 1235 50,075
Static 1571 154,429 884 19,264 1257 49,345
Dynamic 1586 154,853 948 22,324 1139 41,821

GP with fixedt = 0.5 with performance assessed us#f§' only.

No HO With HO HO, positive margin
Number Time Number Time Number Time
All 810 74,742 490 10,289 631 22,794
Static 806 75,129 457 9,241 634 23,661
Dynamic 807 75,976 491 10,194 583 20,241
Heuristic 0 Heuristic 1 Heuristic 2
1 1

0.2 [t iy o

\,\
" e
0 —
0 0.5 1 0 0.5 0 0.5 1
Threshold Threshold Threshold
Heuristic 3 Heuristic 4 Heuristic 5
1 1 1
0.2 (,;/'\-\/,\ﬂ\":
/ it N
: . 0 -
0 0.5 1 0 0.5 0 0.5 1
Threshold Threshold Threshold

Fig. 3 Variation of performance measures with thresholevaluated using the validation sets, for classifiers

trained using all features. The solid line shows accurdeydbtted line F1 and the dashed line Matthews

26 James P. Bridge et al.

Heuristic 0 Heuristic 1 Heuristic 2

[N
. 0 T
0 0.5 1 0 0.5 1 0 0.5 1
Threshold Threshold Threshold
Heuristic 3 Heuristic 4 Heuristic 5
1 1 1

0 0.5 1 0 0.5 1 0 0.5 1
Threshold Threshold Threshold

Fig. 4 Variation of performance measures with thresholelvaluated using the validation sets, for classifiers
trained using only static features. The solid line showsuamy, the dotted line F1 and the dashed line
Matthews

ures 6, 7 and 8 show the ROC curves (Fawcett [13]) for the ifilass again evaluated using the validation
sets, and for all three sets of features. Clearly the imicalamthe data leads to accuracy being a somewhat
uninformative performance measure; however it is alsor ¢est the peaks in F1 and Matthews scores tend
to correspond, and thus both measures lead to the same difiticeshold.

Acknowledgements James Bridge acknowledges the support of the Engineerithd?ysical Sciences Re-
search Council (EPSRC) under a Doctoral Training Accountd&ttship EP/P502365/1. We acknowledge
the UCI Machine Learning Repository [1] for their effortsrimaking available such a valuable resource. We
thank two anonymous reviewers for their careful reading @mstructive criticism.

References

1. Bache, K., Lichman, M.: UCI machine learning repositd®913). URL http://archive.ics.uci.edu/ml

2. Baldi, P., Brunak, S., Chauvin, Y., Anderson, C.A.F.,Ib&a, H.: Assessing the accuracy of prediction
algorithms for classification: an overview. Bioinformati¢2000)

3. Bishop, C.M.: Pattern Recognition and Machine LearnBgringer-Verlag (2006)

4. Bridge, J.P.: Machine Learning and Automated Theoremifgo Tech. Rep. UCAM-CL-TR-792, Uni-
versity of Cambridge, Computer Laboratory (2010). URL fittpvw.cl.cam.ac.uk/techreports/UCAM-
CL-TR-792.pdf

5. Chu, W., Ghahramani, Z., Falciani, F., Wild, D.L.: Biorkar discovery in microarray gene expression
data with Gaussian processes. Bioinformafit€l6), 3385-3393 (2005)

Machine learning for first-order theorem proving 27

Heuristic 0 Heuristic 1 Heuristic 2

0.5 1 0 0.5 1 0 0.5 1

Threshold Threshold Threshold
Heuristic 3 Heuristic 4 Heuristic 5
1 1

0.5 1 0 0.5 1 0 0.5 1
Threshold Threshold Threshold

Fig. 5 Variation of performance measures with thresholevaluated using the validation sets, for classifiers
trained using only dynamic features. The solid line showsugacy, the dotted line F1 and the dashed line
Matthews

10.

11.

12.

13.
14.

15.

16.

17.
18.

. Davis, M., Logemann, G., Loveland, D.: A machine progranttieorem-proving. Commun. ACB(7),

394-397 (1962). DOI 10.1145/368273.368557. URL httpi/édm.org/10.1145/368273.368557

. Davis, M., Putnam, H.: A computing procedure for quardifan theory. J. ACM/(3), 201-215 (1960).

DOI 10.1145/321033.321034. URL http://doi.acm.org/143/321033.321034

. Denzinger, J., Fuchs, M., Fuchs, M.: High performance s§flems by combining several Al methods.

In: Proc. Fifteenth International Joint Conference onfhaitil Intelligence (IJCAI) 1997, pp. 102-107.
Morgan Kaufmann (1997)

. Denzinger, J., Fuchs, M., Goller, C., Schulz, S.: Leariom Previous Proof Experience. Technical

Report AR99-4, Institut fiir Informatik, Technische Unisitat Miinchen (1999)

Denzinger, J., Kronenburg, M., Schulz, S.: Discountis&ibuted and learning equational prover. Jour-
nal of Automated Reasoning8, 189-198 (1997). URL http://dx.doi.org/10.1023/A:1005829581.
10.1023/A:1005879229581

Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classifioand edn. Wiley (2000)

Erkek, C.A.: Mixture of experts learning in automateddtem proving. Master’s thesis, Bogazici Uni-
versity (2010)

Fawcett, T.: An introduction to ROC analysis. Patteredgmition Letter27, 861-874 (2006)

Fuchs, M.: Automatic selection of search-guiding rstias for theorem proving. In: Proc. of the 10th
FLAIRS, Daytona Beach, pp. 1-5. Florida Al Research Sodi#dp8)

Fuchs, M., Fuchs, M.: Feature-based learning of seguiding heuristics for theorem proving. Al
Communicationd.1(3-4), 175-189 (1998)

Goller, C.: Learning search-control heuristics fooauted deduction systems with folding architecture
networks. In: Proc. European Symposium on Artificial Nedtvatworks. D-Facto publications (1999)
Grimmett, G., Stirzaker, D.: Probability and Randomdesses. Oxford University Press (2001)
Guyon, I., Elisseeff, A.: An introduction to variabledafeature selection. Journal of Machine Learning
Researcl8, 1157-1182 (2003)

28 James P. Bridge et al.
ROC for set 0 ROC for set 1 ROC for set 2
1 7 1 1
2 08 2 0.8 2 08
o i o
206 206 206
o o o
Q 04 2 04 2 0.4
[} [} ()
2 2 =
=02 =02 =02
0 oL 0
0 0.5 1 0 0.5 1 0 0.5 1
False positive rate False positive rate False positive rate
ROC for set 3 ROC for set 4 ROC for set 5
1 7 1 g 1
2 0.8 2 0.8 2 038
s o <
206 206 206
o o o
2 0.4 2 0.4 a 04
(] (] [}
2 2 =
= 0.2 = 0.2 = 0.2
0 ’ 0
0 0.5 1 0 0.5 1 0 0.5 1
False positive rate False positive rate False positive rate

Fig. 6 ROC curves for the individual heuristic classifiers, eviddausing the validation sets, for classifiers
trained using all features. In each case, a circle indidae®ptimal ROC operating point, a cross the point
corresponding to maximum accuracy, a star maximum F1, ahgsanpaximum Matthews

19.

20.

21.

22.

23.

24.

25.

26.

Haim, S., Walsh, T.: Online estimation of SAT solving ime. In: H. Kleine Bning, X. Zhao (eds.)
Theory and Applications of Satisfiability Testing SAT 20Q&cture Notes in Computer Scieneel.
4996, pp. 133-138. Springer Berlin Heidelberg (2008). DOI1007/978-3-540-79719-72. URL
http://dx.doi.org/10.1007/978-3-540-7971912

Haim, S., Walsh, T.: Restart strategy selection usinghina learning techniques. In: O. Kullmann
(ed.) Theory and Applications of Satisfiability Testing -152009,Lecture Notes in Computer Science
vol. 5584, pp. 312-325. Springer Berlin Heidelberg (20! 10.1007/978-3-642-02777-20. URL
http://dx.doi.org/10.1007/978-3-642-027773P

Hastie, T., Tibshirani, R., Friedman, J.: The ElemeftStatistical Learning, 2nd edn. Springer Series
in Statistics. Springer (2009)

He, H.: Learning from imbalanced data. IEEE TransastmmKnowledge and Data Engineerigf9),
1263-1284 (2009)

Hsu, C.W., Chang, C.C., Lin, C.J., et al: A practical guid support vector classification. Tech. rep.,
Department of Computer Science, National Taiwan Unive(&003)

Huth, M., Ryan, M.: Logic in Computer Science: Modelliagd Reasoning about Systems, 2nd edn.
Cambridge University Press (2004)

Joachims, T.: Making large-scale SVM learning prattita B. Scholkopf, C. Burges, A. Smola (eds.)
Advances in Kernel Methods - Support Vector Learning, cidppp. 169-184. MIT Press, Cambridge,
MA (1999)

Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowit,, Sellmann, M.: Algorithm selection and
scheduling. In: J. Lee (ed.) Principles and Practice of @aimt Programming CP 201Lecture Notes

in Computer Sciencevol. 6876, pp. 454—-469. Springer Berlin Heidelberg (201DpI 10.1007/978-3-
642-23786-735. URL http://dx.doi.org/10.1007/978-3-642-237863%

Machine learning for first-order theorem proving 29

ROC for set 0 ROC for set 1 ROC for set 2
7 1 1
1} 2 0.8 2 08
o i o
2 £ o6 2 06
o o o
a 2 0.4 2 04
[} [} ()
2 2 =
= =02 =02
0 0t 0
0 0.5 1 0 0.5 1 0 0.5 1
False positive rate False positive rate False positive rate
ROC for set 3 ROC for set 4 ROC for set 5
1 g 1 g 1
2 0.8 2 0.8 2 038
s o <
206 206 206
o o o
2 04 2 0.4 2 0.4
(] (] [}
2 2 =
= 0.2 = 0.2 = 0.2
0 ol 0
0 0.5 1 0 0.5 1 0 0.5 1
False positive rate False positive rate False positive rate

Fig. 7 ROC curves for the individual heuristic classifiers, eviddausing the validation sets, for classifiers
trained using only static features. In each case, a cirdieates the optimal ROC operating point, a cross the
point corresponding to maximum accuracy, a star maximunafd a plus maximum Matthews

27. Kohavi, R.: A study of cross-validation and bootstrapdocuracy estimation and model selection. In:
Proceedings of the 14th International Joint Conference wifiddal Intelligence (IJCAI'95), vol. 2, pp.
1137-1143. Morgan Kaufmann (1995)

28. Lanckriet, G.R.G., Bie, T.D., Cristianini, N., Jordawvi,l., Noble, W.S.: A statistical framework for
genomic data fusion. Bioinformati&)16), 2626—2635 (2004)

29. Luenberger, D.G.: Linear and Nonlinear Programmingini€r Academic Publishers (2003)

30. McCune, W.: Prover9 and Mace4 (2005-20M})tp: //www.cs.unm.edu/ “mccune/prover9/

31. Mercer, J.: Functions of positive and negative type heit tonnection with the theory of integral equa-
tions. Philosophical Transactions of the Royal Society afidon209, 415-446 (1909)

32. Mitchell, T.: Machine Learning. McGraw Hill (1997)

33. Morik, K., Brockhausen, P., Joachims, T.: Combinindistiaal learning with a knowledge-based ap-
proach — a case study in intensive care monitoring. In: hatéonal Conference on Machine Learning
(ICML), pp. 268-277. Bled, Slowenien (1999)

34. Nudelman, E., Leyton-Brown, K., Hoos, H., Devkar, A.pBam, Y.: Understanding random SAT: Be-
yond the clauses-to-variables ratio. In: M. Wallace (edindtples and Practice of Constraint Program-
ming CP 2004)ecture Notes in Computer Scienwel. 3258, pp. 438—452. Springer Berlin Heidelberg
(2004). DOI 10.1007/978-3-540-3020138. URL http://dx.doi.org/10.1007/978-3-540-302038

35. Pilkington, N.C.V., Trotter, M.W.B., Holden, S.B.: Migle kernel learning for drug discovery. Molec-
ular Informatics31(3—4), 313-322 (2012)

36. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processedachine Learning. Adaptive Computation
and Machine Learning. The MIT Press (2006)

37. Rosenblatt, F.: Principles of Neurodynamics: Peroegtand the Theory of Brain Mechanisms. Spartan
Books (1962)

38. Samulowitz, H., Memisevic, R.: Learning to solve QBF.: Broceedings of the 22nd national con-
ference on Atrtificial intelligence - Volume 1, AAAI'07, pp.58—260. AAAI Press (2007). URL
http://dl.acm.org/citation.cfm?id=1619645.1619686

30

James P. Bridge et al.

True positive rate

True positive rate

ROC for set 0 ROC for set 1 ROC for set 2

7 1 1

2 0.8 2 08
i o

206 2os
‘@ ‘@
o o

2 04 2 04
[} ()
2 =

=02 =02

0 0

0 0.5 1 0 0.5 1 0 0.5 1
False positive rate False positive rate False positive rate
ROC for set 3 ROC for set 4 ROC for set 5

1 g 1 7 1

0.8 2 038 2 038
[<

0.6 206 206
‘D)
o o

0.4 2 0.4 2 0.4
(] [}
2 =

0.2 = 0.2 = 0.2

0 0% 0

0 0.5 1 0 0.5 1 0 0.5 1
False positive rate False positive rate False positive rate

Fig. 8 ROC curves for the individual heuristic classifiers, eviddausing the validation sets, for classifiers
trained using only dynamic features. In each case, a cindieates the optimal ROC operating point, a cross
the point corresponding to maximum accuracy, a star maxiflimand a plus maximum Matthews

39.

40.
41.

42.

43.

44,

45.

46.

47.

48.

49.

Schulz, S.: Learning Search Control Knowledge for Eqnat Deduction. No. 230 in DISKI. Akademis-
che Verlagsgesellschaft Aka GmbH Berlin (2000)

Schulz, S.: E — a brainiac theorem prover. Al Commuroeatl5(2/3), 111-126 (2002)

Shawe-Taylor, J., Cristianini, N.: Support Vector Miaels and Other Kernel-Based Learning Methods.
Cambridge University Press (2000)

Shawe-Taylor, J., Cristianini, N.: Kernel Methods fattern Analysis. Cambridge University Press
(2004)

Sutcliffe, G.: The TPTP Problem Library and Associatgdastructure: The FOF and CNF Parts, v3.5.0.
Journal of Automated Reasonidg(4), 337-362 (2009)

Ting, K.M.: An instance-weighted method to induce camtsitive trees. |IEEE Transactions on Knowl-
edge and Data Engineeriigy(3), 659-665 (2002)

Urban, J.: MaLARea: a Metasystem for Automated Reagonitharge Theories. In: J. Urban, G. Sut-
cliffe, S. Schulz (eds.) Proceedings of the CADE-21 Worlsbo Empirically Successful Automated
Reasoning in Large Theories, no. 257 in CEUR Workshop Pdiegs, pp. 45-58 (2007)

Williams, C.K.l., Barber, D.: Bayesian classificatioitwGaussian processes. IEEE Tramsaction on
Pattern Analysis and Machine Intelligen26(12), 1342—1351 (1998)

Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzillRortfolio-based algorithm selection for SAT.
Journal of Artificial Intelligence Resear@®, 565-606 (2008)

Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Featurdsr SAT (2012). Available at
www.cs.ubc.ca/labs/beta/Projects/SATzilla/

Xu, L., Hutter, F., Shen, J., Hoos, H., Leyton-Brown, 8atzilla2012: Improved algorithm slection based
on cost-sensitive classification models. In: A. Balint, Ael@/, D. Diepold, S. Gerber, M. Jarvisalo,
C. Sinz (eds.) Proceedings of SAT Challange 2012: SolveBamthmark Description®epartment of
Computer Science Series of Publications/@l. B-2012-2, pp. 57-58. University of Helsinki (2012)

