
Software Engineering

Computer Science Tripos Part IA, Part II (General) and Diploma
Lent Term, 1997

Lawrence C Paulson
Computer Laboratory

University of Cambridge

Copyright c
 1997 by Lawrence C. Paulson

Software Engineering 1

Contents

1 The Software Crisis: 1968 – 2

2 Critical Software 11

3 The Software Life Cycle 20

4 Formal Methods in Software Development 28

5 Introduction to the Z Specification Language 36

6 Large Software Systems: A Study 44

I Software Engineering 2

Slide 101

Software Development Catastrophes

CONFIRM travel information system $160 million

Denver Airport baggage handling $200 million

London Stock Exchange’s Taurus £400 million

London Ambulance Service despatching £9 million??

average schedule slips by 50%

25% of all large systems are cancelled

3/4 of all large systems are operating failures

Source: Scientific American, September 1994.

These software development projects went badly wrong. Costs are difficult to quantify. Apart
from the direct cost of an abandoned project, there could be litigation, loss of reputation, etc. In the
case of the Denver airport, each day’s delay in opening cost roughly $1.1 million. The system finally
went into operation in October 1995, after a manual backup had been built at a cost of $50 million.

The same article describes $144 million spent on a failed air traffic control system. Another part
of this system is $1 billion over budget!

Taurus was abandoned after it became clear that it would probably never work [23].
The figure for the London Ambulance Service includes £1.5 million for the recent project and

£7.5 million for a previous failed attempt. It is impossible to say whether the ensuing disruption cost
any lives.

Anecdotes prove little, but statistics show that far too many large developments fail. We can
learn from individual disasters that come to light. Many others are hushed up. By comparison: one
could talk of many gruesome plane crashes, but they are a tiny minority of flights; flying is one of
the safest modes of travel.

The software crisis is made worse by the dramatic increase in processor power over the last
several decades. This increase is unprecedented in other technologies. The term ‘software crisis’
was coined in 1968, and we have learned a lot since then, but computers are now many orders
of magnitude larger. Software projects are growing too, and the larger the project, the worse the
problems are. Schedules slip by 100% and the probability of cancellation approaches 50%.

I Software Engineering 3

Slide 102

Anatomy of a Disaster: LAS

� developers inexperienced in safety-critical systems

� ‘fundamentally flawed’ system design

� users excluded from the design process

� extreme time pressure, with no realistic testing

� macho management determined to push through

Source: Steve Flowers in the Guardian 28/4/1994, page 21

This project arose in response to the failure of a previous attempt to introduce computers, which
cost around £7.5 million over three years. It was to be completed withinsix months. The time
pressure meant that changes were made without following proper procedures.

The consortium consisted of Apricot, Systems Options and Datatrak; they made the cheapest
bid. ‘The design ignored the limitations of radio-base systems in urban areas.’ It is essential to liaise
with the intended users of the system, in this case ambulance drivers and despatchers. They know
the most about operational conditions — and they have to use the final system.

There were 81 known errors when the system was put into operation. It ran for a day and a half
before being shut down. After a further 10-day trial it was abandoned. The LAS has reverted to
manual operation. The recent death of an 11-year-old girl, who had to wait nearly an hour for an
ambulance, suggests there is a need for a working computerised system.

An inquiry into this fiasco has led to new guidelines (Poise: Procurement Of Information Sys-
tems Effectively), which are now being applied within the NHS. The report of the inquiry [26] is a
catalogue of errors.

Safety-critical systems must be built to a particularly high standard; see next lecture.

I Software Engineering 4

Slide 103

Anatomy of a Disaster: CONFIRM

� inability to integrate two information systems

� managers hiding serious problems from superiors

� staff sacked for refusing to fudge timetables

� too little liaison between clients & developers

� clients changing requirements late into project

Source: Effy Oz in CACM 10/1994

This system aimed to combine airline, hotel and rental car reservations. It was built by the devel-
opers of SABRE, ‘the world’s most successful airline reservation system.’ But ‘the success of one
system does not always guarantee the good fortune of a more advanced system.’ F. P. Brooks [4] has
written of the ‘second system effect,’ where a successful system leads to an unrealistically compli-
cated second system.

Bad news was buried to an extraordinary degree. At one point, about half the people assigned
to CONFIRM were seeking new positions. A consultant was hired to evaluate the project, but his
report displeased his superiors and was buried. The project staggered on for another year [24].

I Software Engineering 5

Slide 104

Software vs Other forms of Engineering

� Pure design, weightless & intangible.

� Much greater capacity to contain complexity.

� No manufacturing defects, corrosion or ageing.

� Replication does not bring reliability.

� Discrete, not continuous behaviour.

Source: Motor Industry Software Reliability Association (MISRA)

The first two points explain why manufacturers want to use so much software! MISRA are
concerned with cars, but the points particularly apply to aircraft.

We speak of ‘software defects’ but all such defects are inherent in the design. The closest thing
to ageing is obsolescence, when software can no longer be run due to changes in hardware, libraries,
etc.

One cannot make software more reliable by having duplicate copies of it. The Space Shuttle
has four processors running identical software in order to cope withhardwarefailure. There is a
fifth processor running independently written software, to cope with software failure. It has been
observed, though, that independent programming teams make similar mistakes — especially in con-
sidering the most difficult situations.

Discrete behaviour means we cannot interpolate test results. We can test a bridge at extreme
loads and be assured that it will not fail for small loads. With software, every input is a distinct
situation. We have mathematical models for bridges, but not for software.

I Software Engineering 6

Slide 105

Intrinsic Difficulties with Software

� complexity of the required functions

� conformity with existing artifacts & standards

� changeability: demands for additional/revised functions

� invisibility of structure & operation: no useful drawings or models

Source: F. P. Brooks, ‘No Silver Bullet,’ 1987

Complexity. Software is required to take on a great many primitive functions. A big building
does not have to be more complex than a small one — it just has more of the same components.
Scaling up software does not mean repeating components, but increasing complexity.Essential
complexity may be contrasted withaccidentalcomplexity, say of using assembly language.

Conformity. Software must conform to complex interfaces imposed from outside. A compiler
must translate a programming language to machine code, precisely obeying the definitions of the
source and target languages. Electronic mail software must conform to complex network transport
protocols. Systems that interact with the outside world must conform with complex physical artifacts
— a chemical plant, railway network, etc.

Changeability. Software is seen as easy to change. Customers demand new functions, and
change their minds even near the delivery date (if they are allowed to). Old software may require
extensive updating to work with newly available hardware.

Invisibility. Software is invisible and impossible to visualize. Many diagrams can be produced —
control flow, data flow, static structure — but none is obviously fundamental. This makes software
hard to comprehend, and hard to maintain. And the development process is hard to monitor.

I Software Engineering 7

Slide 106

More Intrinsic Difficulties

� As hardware gets cheaper, software seems dearer.

� A long-term project may be chasing a moving target.

� Hardware is built from components, but software is mainly built
from scratch.

� Software is easy to steal, so developers are forced to cut costs.

The first point explains why businesses now buy accounting software off the shelf. It is cheaper
to buy an existing package than to build something in-house. That did not matter earlier, hardware
was the dominant cost.

The second point is that even if the system’s functions are frozen, its environment changes over
time. Hardware is changing rapidly; it can be hard to predict what sort of platform will be available
to run the software in a few years’ time. Porting software to a new environment can be expensive
and introduce errors.

Software components are scarce. Some exceptions are numerical libraries and parser generators
(yacc). Software re-use is a key goal of researchers. Object-oriented programming (OOP) is often
touted as a solution.

How many of you havenever illegally copied software? Losses to the software industry are
enormous, and this limits what they can spend on development.

I Software Engineering 8

Slide 107

Management Difficulties

� incomplete, inconsistent, changing requirements

� senior managers who believe in fairies

� staff who believe in fairies

� unrealistic deadlines

� ‘Adding staff to a late project makes it later.’ (Brooks)

� staff turnover

There is evidence to suggest that managers do not want to hear about problems. So staff are
afraid to report problems, e.g. in the CONFIRM project. Richard P. Feynman, while investigating
the Space Shuttle disaster, found that NASA’s senior management had completely unrealistic beliefs
about the Shuttle’s reliability. They did not know about faults that had been reported repeatedly.

Extreme time pressure is common on many projects, e.g. the London Ambulance Service
despatching system. Shortcuts are taken, tests omitted, and work done at 4am is likely to be done
badly.

Adding staff causes further delays because jobs have to be re-allocated and existing staff have to
spend time training the newcomers. It is not like hiring more bricklayers.

Because software is invisible, all knowledge about a program may reside in one programmer’s
head. If he or she departs, other staff are forced to reverse engineer the program.

Lecture 6 will cover these issues in more detail.

I Software Engineering 9

Slide 108

Course Overview

1. software crisis

2. critical software

3. the software life cycle

4. formal methods

5. the Z specification language

6. very large systems

Read this overview as a partial list of approaches to Software Engineering. Other aspects of the
subject mainly concern management.

Critical softwareis software that simply must not fail. What is reliability and to what extend can
we achieve it?

The software life cycleconsists of several key stages: requirements, design, implementation,
testing, maintenance. The idea that projects go through these stages in strict succession is called the
waterfallmodel of software development. This model is known to be simplistic.

Formal methodsbased on mathematics are being promoted as a means of attaining high reliabil-
ity. This lecture is a survey.

The Z specification languageis one of the most popular formal methods in the UK. This lecture
is an introduction to it.

Very large systemspresent particular problems. This lecture discusses the outcome of a famous
study [8].

I Software Engineering 10

Slide 109

Related Books

? Carlo Ghezzi et al. Fundamentals of Software Engineering.
Prentice-Hall, 1991.

Ian Sommerville. Software Engineering. Addison-Wesley,
1992.

Roger S. Pressman. Software Engineering. McGraw-Hill,
1994.

Nancy Leveson. Safeware: System Safety and Computers.
Addison-Wesley, 1995.

Lauren Ruth Wiener. Digital Woes. Addison-Wesley, 1993.

Ghezzi is the course text. It concisely covers the main issues. Sommerville and Pressman are
also useful. They are broadly similar: massive volumes covering all aspects of software engineering.

Leveson’s book is a serious treatment of system and software safety, aimed at developers and
managers.

Wiener lists some major software failures and discusses the underlying social issues. She is a
journalist (it occasionally shows) and aims for a general audience. Her book is well referenced.

Neumann’sComputer-Related Risks[23] contains extensive listings of computer-related inci-
dents concerning safety, security, privacy, etc. A final chapter tries to draw some conclusions on the
control of risks.

Good for laughs, and some insights, is

John Gall.Systemantics: How Systems Work and Especially How They Fail. Fontana,
1979.

‘Software’s Chronic Crisis’ in the September 1994Scientific American, gives a general overview
of problems and proposed solutions.

Scary is Borning’s article on nuclear war [2].

II Software Engineering 11

Slide 201

Critical Software Failures

U. S. telephone system

Bank of New York

General Motors automated factory

Therac-25 radiotherapy machine

Source: Lauren Ruth Wiener, Digital Woes, 1993.

Wiener [29] lists incidents where software failures have resulted in loss of life, huge amounts
of property, reputations, etc. She notes that software products do not carry warranties, but rather
warranty disclaimers.

Telephone networks in several major United States cities suffered failures in the summer of
1991. The problems were traced to telephone switching software consisting of several million lines
of code. The potential losses are incalculable.

The Bank of New York’s securities transaction software had a storage management fault. During
ninety minutes on 20 November 1985 it lost information on $32 billion in transactions. The Bank
was forced to borrow $23.6 billion from the U. S. Federal Reserve for a day, at a cost in interest of
$5 million. Although the information was later recovered, the bank’s reputation suffered.

The General Motors Hamtramck factory, in Detroit, had 50 automatic guided vehicles to ferry
parts and 260 robots to weld and paint. But a year after its opening in 1985, the plant was still oper-
ating at half its capacity due to software problems. GM was trying to keep up with the Japanese, but
Wiener suggests that they might have looked at worker training and motivation instead of building
robots.

The Therac-25 killed two patients by administering a massive overdose of radiation. A physical
interlock, present on previous models to prevent this occurrence, was omitted on the grounds that
computers do not make mistakes. There were three other serious incidents.

It’s not just software! A bug in the Pentium’s floating-point unit is said to have cost Intel $306
million for replacement chips alone.

II Software Engineering 12

Slide 202

Critical Software

� Safety-critical: charged with protecting human life
– cars & aircraft
– chemical, nuclear plants
– medical equipment

� Mission-critical: charged with an essential task
– telephone routing
– financial transactions
– stock control

� Security-critical: charged with protecting confidential information

If critical software fails, the loss could be intolerable: people could die or a company could
go out of business. The guidelines are not clear: is typesetting software mission critical?– yes
for a publisher, maybe not for other enterprises. Is ambulance despatching safety-critical?– not all
ambulance trips are for emergencies.

Safety-critical software is becoming more and more common. In cars it may control the brakes
and throttle. Software in car engines (e.g. to control fuel injection) is perhaps not safety-critical.

Mission-critical software includes the software that runs a company’s main business. It could
also be taken to include software in household appliances. A modern television or video can contain
megabytes of software. If this fails, the appliance cannot do its job properly. The manufacturer
might be forced to make a hugely expensive recall.

Thesafetyandmissionaspects of software may come into conflict. Safety obviously must take
precedence over property.

Security-critical software is increasingly important to banks and other financial institutions.
There are also applications in the government and military. Note that software might be safe, and
carry out its main functions, but (perhaps by using a faulty cryptographic protocol) allow an intruder
to obtain confidential information.

Lauren Wiener [29] tells the story of a surgeon using a spreadsheet for vital calculations during
an operation. Whether one believes this or not, the story shows how any software could be given a
critical role. Most software is not built to the necessary standard of reliability!

II Software Engineering 13

Slide 203

‘Hard’ Features of Critical Software

Real-time: safety-critical systems must react promptly

Distributed: financial systems often link several sites

Concurrency: many sensors & controls

Environmental: must cope with hardware errors

Human users: must be easy to use correctly

Critical software, ironically, often has the very characteristics that make failures more likely:
real-time constraints, concurrency, and harsh physical environments.

Most safety-critical systems have real-time constraints. The brakes must engage immediately
the brake pedal is pressed. Fly-by-wire aircraft must also respond promptly to their controls. With
mission-critical software less is at stake, but the task must be performed in a reasonable time.

Distributed systems and concurrency make debugging difficult because failures can seldom be
reproduced. Environmental factors cannot affect software directly, but require hardware redundancy
(multiple sensors and processors) that complicate the software. Such systems can be hard to test
under realistic conditions.

There are many examples (not just in software) of designs that make human error more likely.
System designers should resist the temptation to take over the user’s job. For example, ‘envelope
protection’ on aircraft software prevents the pilot from making extreme maneuvers; the aim is to
protect the aircraft, but it limits the pilot’s ability to cope with emergencies.

By contrast, spreadsheets and work processing packages operate on one processor. They in-
teract only with a keyboard and screen in a safe environment. They can be tested by giving away
‘beta-releases’ to willing guinea-pigs. Wiener [29] notes that Microsoft became the world’s biggest
software company by selling this kind of software, not critical software!

II Software Engineering 14

Slide 204

Dependable Systems

Accident: event that causes harm or damage

Hazard: a condition that can cause an accident

Risk: probability � cost (for a particular accident)

Safety: continuous delivery of hazard-free service

Reliability: continuous delivery of proper service

Availability: proportion of time having correct service

A dependable system is safe, reliable & available.

These definitions may look tiresome, but they make real distinctions.Reliability v safety.
Hazard-free service does not have to be proper: a desired function could be disabled for safety
reasons. Reliability measures mean time to failure. Andfailure is the absence of proper service.

A traffic light that shows green in all directions is a hazard. It is much worse than the light’s
going completely dead. But it is not itself an accident and will not necessarily cause an accident.

Correct service does not have to be safe: the specification could be wrong. If there are frequent,
brief failures, we could have high availability together with low reliability. In a telephone network,
this might be acceptable. See Sommerville [25, chapter 21], Bowen and Stavridou [3] or Littlewood
and Strigini [21].

Risk is hard to calculate when the loss involves life and limb. The probability can also be hard
to calculate. The calculation is hardest if the event has never occurred. What is the risk associated
with nuclear war?

A fail-safesystem is one whose design ensures that, upon failure, it enters a safe state. For
instance, a lift car does not fall even if the cable snaps. Of course, things might not go according to
plan. One of the ‘laws of systemantics’ [12] is

A fail-safe system fails by failing to fail safe.

II Software Engineering 15

Slide 205

Achieving Dependability

‘Safety, like justice and democracy, must be seen to be present.’ —
MISRA

� Fault avoidance: prevent faults by construction

� Fault tolerance: cope with faults by redundancy

� Fault removal: a grand name for debugging

� Fault forecasting: try to predict main types of failure, & their
consequences

How can safety be seen when software is invisible? We only get statistics after a system has been
put into service, and it takes a long time before those statistics are scientifically meaningful. All we
can observe is theprocessof producing the system. This process must be above reproach. The
builders of a safety-critical system must employ best practice throughout, as described for example
by Leveson [20].

Fault avoidancerequires following good practice. ‘: : : Safety, like quality, should be built in
rather than added on’ [22]. Programmers should work from a precise, preferably formal, specifica-
tion.

Strongly-typed programming languages eliminate a whole class of errors: type errors. The
programming language should also support modularity — to allow internal data structures to be
hidden from other parts of the program. The compiler must be reliable or it could introduce its own
errors.

An example offault toleranceis the space shuttle. It has five processors. Four run identical
software, and ‘vote’ to ensure they are all in agreement; any mavericks are rebooted. This guards
against hardware errors. You only need three processors; the fourth is a spare. The fifth runs different
software, to take over if the other software fails [29]. On a smaller scale, exception handling can be
used for fault tolerance.

Fault removalalone cannot achieve high reliability. Indeed, all four methods must be used.
Fault forecastingrequires experience and imagination. It is impossible to imagine every possible

way a system could fail.

II Software Engineering 16

Slide 206

Ultra-High Reliability

10�9 failures per hour = 100,000 years between failures

� Debugging suffers from diminishing returns.
– major bugs found first
– fixing minor bugs helps little

� Testing would take 109 hours!
– fixing one bug may cause others
– test conditions must be realistic

Source: Littlewood & Strigini, CACM, 1993

Littlewood and Strigini [21] say ‘The requirement for critical avionic systems of10�9 failures
per hour represents a probability of about 0.1 that at least one such failure will occur in a fleet of
1,000 aircraft over a 30-year lifetime. Since this safety-critical system is likely to be one of many
on the aircraft, such a probability does not seem an unreasonable requirement.’ Can we meet it?

Diminishing returns: debugging does not greatly improve reliability after the main faults have
been removed. In one system, 1/3 of faults occurred only once in 5,000 years. And correcting a fault
runs the risk of introducing others!

Testing: by some fairly complicated statistical analysis, Littlewood and Strigini argue that to
demonstrate that the median time to failure isT requires observing perfect working for timeT. If T
is large, we can only do so by observing many copies running in parallel. (Example: the telephone
system contains many identical switches.) But the testing must be under realistic conditions. Can
we test aircraft software like that?

II Software Engineering 17

Slide 207

Ultra-High Reliability (2)

Other Approaches?

� Past experience with similar products
– how to measure ‘similar?’
– samples too small to be significant

� Reliable components yield a reliable product.
– are there software components?
– redundancy helps less than expected

Littlewood and Strigini consider other approaches to achieving dependability.
A design could be based on a previous, successful design. But does ‘based on’ mean the depend-

ability carries over? Typically a successful design has been used only a few times, so the method
gives us little information.

A product could be constructed from components known to be dependable. This method says
nothing about design errors in joining the components. And the only way to know that components
are dependable is by observing them over a long period of time. This is possible in hardware, where
many standard components exist. But there are few software components.

Redundancy in software means having several different teams code the same functions. This has
been shown to improve reliability, but the improvement is much less than would be expected if the
failure behaviours were independent. This suggests that different teams make similar coding errors
or fail to consider similar unlikely cases.

II Software Engineering 18

Slide 208

High Reliability & Formal Methods

� Formal specification: a precise set of requirements
– defines a notion of correctness
– invariably simpler than the real world

� Correctness proof
– extremely expensive to produce
– small possibility of errors in proofs
– concerns the specification — not the real world

No way to meet ultra-high dependability targets

Formal methods can play an important role in building reliable systems, but they do not solve
the problem.

A formal specification is valuable because it specifies the requirements precisely. But many
existing programmers and managers cannot read the necessary mathematical notations. We must
hope this will change over time, with improved training. A more fundamental limitation is that all
formal specifications represent an approximation of the real world. The world is simply too detailed
to admit a fully formal treatment.

Proofs could be wrong, even if they are produced with the help of tools. There is ultimately no
way of ensuring that a proof is valid. The risk of a faulty proof is small, but we do not know how
this will affect our requirement of ultra-high reliability.

Producing formal proofs requires many months of work by skilled specialists, even with the help
of tools. The cost is dropping but is still prohibitive for most software projects.

We speak of a correctness proof. But all we can prove is that a design meets its specification. The
proof therefore is only as good as the specification. Realistic testing, on the other hand, evaluates
the system in the real world. Thus, formal proof will never eliminate testing.

Littlewood and Strigini conclude that no known method (or combination of methods) can attain
a reliability of 10�9 failures per hour. The best we can hope for is about10�5 failures per hour.
Moreover we have no means ofrecognizingsuch reliability, even if we had it!

II Software Engineering 19

Slide 209

Safety Systems: Some Questions

Do we need it?

Can we do it?

What are we trying to do?

Do we need it?Lauren Wiener [29, Chapter 5] devotes an entire chapter to discussing dubious
proposals for using computers. The Advanced Vehicle Control System has been proposed to take
over driving specially-equipped cars. It would permit ‘platoons of cars, separated by only a few feet,
to zoom along at 90 mph while their drivers read the newspaper.’ Could this ever meet the necessary
standard of dependability? We already have a cheaper and safer version of this idea: a train.

Can we do it?Littlewood and Strigini suggest that software should never be used in a situation
where ultra-high reliability is required. Human reliability is much worse than10�5 failures per hour;
software might still increase overall system dependability by reducing the risk of human error.

But Wiener [29, page 174] notes the increasing tendency of computer systems to remove choices
from users. A school bus carrying sixty girls crashed; its brakes had failed while descending a hill.
The bus was found to be in too high a gear for such a steep descent. Its electronic transmission would
not let the driver change to a lower gear. It was designed to protect the engine from over-revving.

What are we trying to do?Wiener [29, page 14] describes a decision by the Washington State
ferry system to abandon digital controls on its ferries, after several serious malfunctions. But why
were digital controls installed in the first place? Weight is hardly as significant for a ship as it is for
aircraft. Computers are often installed merely for the sake of ‘progress.’ No software project can
succeed unless it has clear goals.

III Software Engineering 20

Slide 301

Stages of Software Development

1. Requirements analysis & definition

2. System & software design

3. Implementation & unit testing

4. Integration & system testing

5. Operation & maintenance

Source: Sommerville, Software Engineering, 1992

Requirements analysis and definition. What should it do? A vague mission statement is refined,
by consultation with users and clients, into a precise specification of services and constraints.

System and software design. How will it work? Services are allocated to hardware and software
modules. The result is the system architecture.

Implementation and unit testing. Program modules are coded and tested individually.
Integration and system testing. Program modules are combined. The entire system is tested

under realistic conditions.
Operation and maintenance. The system is installed. Errors reported at this stage are corrected.
In thewaterfallmodel of software development, a project goes through these stages in order. In

practice this almost never occurs. Errors or omissions in the requirements are frequently discovered
later, which requires returning to stage 1. More elaborate is Boehm’sspiral model, which has a
cyclic structure. Each cycle begins with an assessment of risk; it recognizes that key decisions
(which might include cancellation) will be taken regularly.

Because software is invisible, management sometimes monitor progress through documents de-
livered at each stage: requirements specifications, architecture specifications, detailed designs, etc.
Preparing and reviewing such documents involves a considerable effort, which can slow down the
project and increase its cost. Artificial documents are sometimes produced.

III Software Engineering 21

Slide 302

Getting the Requirements Right

� Vague initial goals

� Iterative extraction & refinement

� Discussions with customer & users

� Rapid prototyping

� Precise requirements documents

Customers are typically not computer specialists, but are experts in their own business. Their
initial goals will be vague, and frequently will contain inconsistencies. They may have unrealistic
expectations of increased profits, etc. They may be unaware of what computers can and cannot do.

The first task is to obtain a precise list of requirements. It will be long, tedious, but essential.
It will drive the entire development process. Mistakes and omissions, if not discovered in time,
could require costly redesign. Some software vendors impose a penalty if the customer requests late
changes.

The usual method of ‘capturing’ requirements is to hold a series of interviews. These should
involve the software developer, the customer and the real users. The paying customer is seldom a
user and frequently there is a clash of interests. For instance, the customer may be unwilling to pay
for facilities that users want, or the customer may want the system to monitor the users’ performance.

Rapid prototypingmeans building a throw-away system that demonstrates the main functions.
Customers and users can then see in action the consequences of their requests, and can change them.
Prototypes can be built using animation packages, scripting languages, and other tools. For demon-
strating a user interface, you can even use paper models! A prototype will probably be inefficient,
unreliable, or hard to maintain. Neither the customer nor management must ever attempt to turn the
prototype into a product.

III Software Engineering 22

Slide 303

Some Requirements Documents

� Requirements definition: statement of user services
– understandable to management & users

� Requirements specification: detailed list of services
– understandable to technical staff

� Software specification: abstract description of units
– formal specification methods
– towards a design

The document titles are largely taken from Sommerville [25]. It does not matter what they are
called, but note their contents and intended readership.

The requirements definition is aimed at customer and developer management. It will be fairly
brief, and clear.

The requirements specification is highly detailed and forms the basis of the contract between the
customer and the developer. It is sometimes called afunctional specification, but it should specify
more than functions (e.g. efficiency constraints). It defines criteria for testing; start preparing a test
plan now.

The software specification describes procedures and functions abstractly, perhaps using formal
methods (mathematical notation). It may specify the components of the state, the inputs and outputs
of each procedure, and a logical description of the relation between the inputs and the outputs.
There is evidence [10] that using formal methods results in a deeper analysis of requirements, while
modestly increasing the cost of the design phase.

An executablespecification may involve describing the system as a functional or logic program,
or using an executable subset of a specification language such as VDM. It is precise and has the
advantage of yielding a prototype. It has the drawback that it is harder to produce and to read than
an abstract specification, and may suggest a poor implementation.

A draft user manualmight be given to customers and users to give them an impression of the
system. This may reveal problems with the requirements.

III Software Engineering 23

Slide 304

The Requirements Specification

� System model: describes system components & their
environment

� Functional requirements: system services

� Non-functional requirements:
– constraints on software
– restrictions on the design

� Hardware: define typical configurations

Sommerville [25] suggests a structure of informal chapters augmented by detailed appendices,
which make up the bulk of the document.

It is essential that the system and its functions should be properly explained in terms of customer
objectives. This guides the developers and reassures the customers that they will get something
worthwhile. An introduction should briefly describe the need for the system. Each requirement
should include an individual justification, unless this is obvious.

This document should not describe how the implementation will be done (except for particular
constraints). It should be complete in that it should describe, for example, the treatment of illegal
inputs. But if several responses are equally valid, it should not specify a particular one merely to be
definite — this is over-specification.

Typical constraints include character sets or protocols to be used, maximum allowed response
times, and programming languages. Critical systems will have reliability constraints. The cost of
both purchasing and using the system will be constrained. Sommerville has a comprehensive chart
on page 92.

Simplicity is the strongest tool for making a project tractable. Needless complexity must be
avoided. This requires discipline and enough knowledge to tell the difference between important
and trivial requests. Always remember KISS (Keep It Simple Stupid).

III Software Engineering 24

Slide 305

Elements of Top-Down Design

� Architectural design. Identify the building blocks

� Abstract specification. Describe their functions and constraints

� Interface design. Precisely define how they fit together

� Component design. Recursively design each block

Source: Sommerville, Software Engineering, 1992

Top-down design involves repeatedly breaking down the problem into smaller components, until
their implementation becomes obvious. Interfaces must be precisely defined so that each component
can be designed and coded separately. Modifying or replacing a component should not affect the
rest of the system provided the component still meets its specification. Other components must not
depend on a component’s internal variables or data representation. Suchinformation hidingrequires
programming language support: modules, packages, etc.

Many design methods have been promoted. Computer-Assisted Software Engineering (CASE)
tools support some of them. They are typically based on graphical notations. Thedata flowapproach
tracks data as it moves through the system. Theentity-relationapproach is concerned with data and
the relations between them, in the tradition of relational databases.Structured designis concerned
with the system components and their interactions.

Components should be coherent, consisting of related functions. Different notions of ‘related’
might yield different partitions of functions into components. You could for instance group all
input/output services into a single component (‘logical association’). However it is usually better to
organise the components around different tasks to be performed (‘functional cohesion’). This leads
to object-oriented design.

Traditional flowcharts have long been regarded as useless, except perhaps for assembly-language
programming.

III Software Engineering 25

Slide 306

Modular Design Strategies

� Functional design. Partition system functions
– the traditional approach
– a central state?

� Object-oriented design. Partition tasks into classes
– objects combine state and functions
– inheritance: new objects from old
– re-usable components?!

The two main design strategies arefunctional(or procedural) design andobject-orienteddesign.
Functional design partitions the system in terms of functions operating on a central state.

Languages such as Modula-2 allow the state to be decentralised. State variables are associated
with the corresponding functions to form a module. Only functions declared to be visible (or ex-
ported) have access to the state. For instance, if the module implements a dictionary that exports
lookupandupdatefunctions, then other modules can call those functions but cannot manipulate the
data structures directly.

Object-oriented design takes this idea further. A collection of state variables and functions de-
fines anobject class. New classes caninherit such attributes from parent classes and add new
attributes. A simple class can serve as the parent (superclass) of many specialised classes (sub-
classes). Thus, we have a sort ofre-usable part, thought by many to be the key to tackling the
software crisis.

Modularity is essential for partitioning a large project among several programmers. Object-
oriented design is exciting much interest. However, inheritance can act against modularity. You
cannot understand a class unless you understand all of its superclasses; changing a superclass could
affect a subclass.Multiple inheritancemeans allowing a class to have more than one superclass; it
offers additional power and complexity.

Object-oriented approaches have a natural feel. However, they are poorly understood in theory
and indeed in practice.

III Software Engineering 26

Slide 307

Implementation Techniques

� ready-made tools: libraries, scripting languages, : : :

� high-level languages

� independently-specified modules

� simple control & data structures

� up-to-date commenting

Code must be correct, clear, maintainable, portable, efficient

Proper tools reduce the need for programming. User interfaces can be built using the TCL/Tk
scripting language. Parsers can be built using yacc. Any programming should be done in a high-level
language.

Strong type checking is now regarded as essential, since it allows the compiler to catch many
trivial errors. The C language has been tightened up; the ANSI standard now makes C strongly
typed.

Modularity is essential too. Modula-2 and Ada provide modules, as do all object-oriented lan-
guages (C++ and Modula-3). Modules allow a top-down approach. All module (or object) specifi-
cations are written first. The compiler can check them for compatibility. Finally, programmers start
to code against these machine-checked specifications.

Code should be as clear and easy to maintain as possible. These goals require a simple program-
ming style and correct commenting. Efficiency is less important, provided it meets requirements
constraints. Portability is not always required and can limit efficiency.

Assembly language is almost never used. It is neither clear nor portable; programmer produc-
tivity is very low. Two arguments in favour of it are speed and access to low-level functions. Both
of these requirements can usually be isolated to small parts of the program, which might indeed be
coded in assembly language. Speed is generally limited by a few bottleneck functions, which can be
discovered usingprofiling tools.

Assembly language has been used in safety-critical systems to avoid compiler errors. It is now
recognised that the risk of programmer error is greater.

III Software Engineering 27

Slide 308

Verification and Validation

� Verification: are we building the product right?

� Validation: are we building the right product?

� top-down v bottom-up testing

� black-box v white-box testing

� impossibility of exhaustive testing

Verificationchecks the product against its specification. It could in principle be done by static
analysis, formal proof, etc., without ever running the product.Validationchecks that the product
meets the users’ real needs, which may differ from the specification. This can only be done by
testing.

Sommerville [25] lists several levels of testing, including unit, module, sub-system and system
testing. Programmers may test their own code. An independent team tests larger components.
Finally, acceptance testinginvolves the customer, who formally approves (or rejects!) the product.

Testing should proceed concurrently with implementation so that errors are found as quickly as
possible.Top-downtesting involves building top-level components first and writing trivial ‘stubs’
for the lower-level functions. Brooks [5] advocates this because you always have a working system.
Bottom-uptesting involves building the lower-level components first (as advocated by Knuth) and
testing them using a ‘test harness.’ Both methods require writing artificial code to simulate the
unfinished parts of the system.

Black boxtesting checks a component against its specification, exercising all external functions.
White-boxtesting examines the component’s internal structure, exercising every line of code and
every decision point. It is good for testing the treatment of unusual cases. Boundary conditions are
a common source of errors.

Beta-testinginvolves giving out copies of an uncertified product to people willing to report
errors. This clearly is not possible for critical software.

Testing is expensive, consuming up to 50% of development costs. It can locate defects but never
demonstrate correctness. Because digital behaviour is discrete, we cannot interpolate between a few
observations. Exhaustive testing is impossible: the number of cases is astronomical.

IV Software Engineering 28

Slide 401

What are Formal Methods?

� not ‘structured methods’

� Formal specification

� Refinement to code

� Formal correctness proofs

� Rigorous code analysis

� Tool support

Formal methods are grounded in mathematics. A formal specification eliminates ambiguity,
giving a precise notion of correctness. Hinchey and Bowen [16] have compiled a survey of recent
applications.

Formal methods are sometimes taken to include graphical methods such as dataflow analysis.
But unless they are fully precise, they cannot be regarded as formal. Most CASE tools support
graphical methods. Formal methods also benefit from tools: to help users write syntactically correct
specifications, to run simple semantic checks on them, and to help in the refinement of specifications
into code.

Formally correct code can be produced in two ways.Program derivationor synthesisinvolves
transforming a specification into code by steps guaranteed to preserve correctness. The programmer
supplies the transformations (we do not know how to automate this!); at every stage, the machine
checks that the code is compatible with the specification.

Alternatively, the programmer could write the entire code and submit it for proof as a separate
step. This is often calledprogram verification, but note thatverificationis also used in the context
of testing. Proving correctness requires a lot of time and skill; for most projects, it is too expensive.
Unless the program was coded with verification in mind — avoiding low-level tricks — it may be
practically impossible to prove correct.

Code can be analysed systematically without constructing a completely formal proof. This was
used to certify nuclear reactor shutdown software; see below. Real software projects seldom involve
formal proofs. The main use of formal methods is in writing formal specifications.

Testing also requires correctness to be defined precisely. But testing encompasses other things,
such as customer satisfaction, that lie outside the scope of formal methods.

IV Software Engineering 29

Slide 402

What are Specifications For?

� deeper analysis of requirements

� detecting inconsistencies

� specify what not how

� communication with implementors

� communication with testing team

A formal specification is essential if you are going to prove correctness, or to support transfor-
mation into correct code. Less ambitiously, formal proof can be used to derive properties from a
specification; this could reveal inconsistencies early. The specification is also useful in itself. Stud-
ies have shown that attempting to write a formal specification stimulates deeper thinking about the
requirements, showing up ambiguities hidden in English.

The ConForm Project [10] is investigating the costs and benefits of using formal methods in
building a small security-critical system. Two teams are independently developing a so-called
trusted gateway. One team is using fairly conventional structured methods; the other augments
these methods by writing a formal specification (in VDM). The project is monitoring the develop-
ment process, comparing the effort required to complete each phase, the quality of the documents
produced, etc.

Early in the project they noticed the team using formal methods asked many more questions
concerned with clarifying the requirements. The job of the trusted gateway is to take a stream of
messages and forward each message either to a ‘secret’ or ‘non-secret’ output port; the decision is
based upon certain keywords that may appear in messages.

Messages are limited to 10K. The formal methods team asked whether this limit included the
message delimiters (it did). If a message contains both ‘secret’ and ‘non-secret’ keywords then it
is regarded as secret. However, the formal methods team noticed the possibility that a ‘non-secret’
keyword could contain a ‘secret’ keyword as a substring. The developers had to go back to the
customers to find out that such occurrences of ‘secret’ keywords should be ignored.

These are perfect examples of ambiguities that lurk in English descriptions, and that could lead
to obscure errors. How many messages will be under 10K if delimiters are ignored, and over 10K
if they are counted? The precision of a formal specification will help the implementors build a
correct system, particularly if they have tool support. And the specification will help the testing
team identify awkward cases to cover in test data.

It’s not a bug, it’s a feature!— formal specifications can help put an end to this (though it is
partly a problem of requirements).

IV Software Engineering 30

Slide 403

What is a Specification Language?

� precisely defined syntax and semantics (meaning)

� executable specifications: functional or logic program, : : :

– rapid prototype
– implementation bias

� specification languages for sequential programs:
– Z, VDM, Larch, : : :

� specification languages for concurrent systems:
– LOTOS, Unity, CRL, TLA, : : :

There are many specification languages, with different purposes. All have a precise definitions
of their syntax and semantics. A given piece of text is either legal or not; if legal, it has a precise
meaning. However, the meaning doesnot determine the implementation uniquely; rather it defines
precise grounds for judging whether an implementation is correct.

A program counts as a specification. Programming languages are precisely defined (or should
be), both their syntax and semantics.Executablespecifications consist of programs written in very
high-level languages paying no attention to efficiency [28]. They are precise, and (compared with
a real implementation) they are easy to write, read and reason about. They also yield an executable
prototype. They have many drawbacks, though. They may be too inefficient to serve even as proto-
types. Making them executable will introduce implementation bias; they will not be abstract enough.
They will map every input to a unique output, when normally for each input there is a set of legal
outputs.

Consider a sorting program: its output should be an ordered permutation of its input. It is easier
to say that than to write even a highly inefficient functional sorting program. Consider a compiler:
its output is a string of machine instructions. If we specify the output uniquely, we shall not be
allowed to include optimisations.

The meaning of a specification is defined in terms of mathematical abstractions. Early work
concentrated on specifying data types, such as lists, stacks, queues and symbol tables; such work
(e.g. Larch) was based on the theory of algebras.

Most modern specification languages treat computation as a whole, though still abstractly. A
sequentialprogram can be regarded as a function from inputs to outputs, or more generally as a
relation between inputs and acceptable outputs. Z and VDM specify programs by modeling their
data structures using elementary set theory.

A concurrentprogram is normally viewed as a system of communicating agents. This requires
an abstract notion of agent behaviour, based upon something like a process algebra. Temporal
logic is usually involved, for making statements about time dependencies:A andB cannot happen
simultaneously; ifA happens thenB must happen eventually, etc.

IV Software Engineering 31

Slide 404

Seven Myths of Formal Methods

1. Formal methods guarantee perfection.

2. They work by proving correctness.

3. They are only good for critical systems.

4. They involve complex mathematics.

5. They increase costs.

6. They are incomprehensible to clients.

7. Nobody uses them for real projects.

This landmark paper [15] by Anthony Hall of Praxis Systems is based upon industrial usage of
formal methods. Here is a summary of how he refutes each myth.

1. All human methods are fallible. In particular, the specification could be an inadequate model
of the real world. Errors can also occur in machine-checked proofs. The proving program could
itself be faulty. Using it to prove itself (‘verifying the verifier’) does not solve the problem; as an
extreme case, suppose it regarded all programs as correct?

But formal specifications do help find errors, because they eliminate arguments about what the
specification actually says.

2. This myth reflects the US emphasis. European work is more oriented towards specification.
3. Praxis uses formal methods merely to help ensure high quality, even for non-critical software.
4. Formal methods are in fact based on (the easier parts of) discrete mathematics: set theory and

logic. Staff training only takes about three weeks. Compare with the complexity of programming
languages and client applications! But correctness proofs require more complex mathematics.

5. Development may becheaperwith formal methods. However, the requirements phase may
take longer and cost more. It takes time to write any specification at all. The initial specification
can usually be simplified as the problem is better understood. Time spent here is repaid during the
implementation and maintenance phases.

6. You can paraphrase the specification in natural language and use it to derive consequences of
the requirements.

7. Hall describes applications by IBM, Tektronix, Rolls-Royce as well as his own firm. Since
his article was published, many other industrial uses have been reported — see below.

IV Software Engineering 32

Slide 405

Experience with Formal Methods

� SSADM tool set , by Praxis Systems. 37,000 lines of code

� CICS transaction system , by IBM Hursley. 50,000 lines

� Oscilloscope software , by Tektronix.

� Cobol/SF by IBM Federal Systems. 800,000 lines

� Air Traffic Collision-Avoidance System , by FAA.

� Multinet Gateway , by Ford Aerospace. 6,000 lines

A major study by Susan Gerhart and others [13] investigated 12 cases involving the use of for-
mal methods. These included five commercial projects, three exploratory uses and four projects
involving critical software. In those last four, government agencies required the use of formal meth-
ods. Two of them (the Darlington nuclear power plant and the Paris Metro signalling system) are
discussed in separate slides below.

The SSADM design tool built by Praxis inspired Hall’s paper [15]. It involved 450 staff-weeks
of effort, two devoted to writing the Z specification.

IBM’s Customer Information Control system is large, 800,000 lines of code. IBM is now us-
ing the Z specification language to re-engineer this system; the 50,000 lines quoted above were
developed in this way.

Tektronix used the Z specification language to help design the software in oscilloscopes.
Cobol/SF is a tool for tidying up old Cobol programs while preserving their meaning. IBM built

it using the Cleanroom methodology, which is based upon (informal) proof.
The US Federal Aviation Authority (FAA) hired Nancy Leveson to apply formal methods to

subsystems of TCAS (Traffic Alert and Collision Avoidance System) because they were worried
about the ‘loss of intellectual control over the specification.’ She applied a graphical formal method
(a variant of Statecharts).

The Multinet Gateway delivers messages to Internet hosts, while protecting confidential infor-
mation. It was developed using the Gypsy Verification Environment.

Some of the projects reported by Gerhart started in the early 1980s, using methods now obsolete.
Some used archaic tools or no tools at all. A tiny but growing number of software development
projects use formal methods.

IV Software Engineering 33

Slide 406

Darlington Nuclear Power Station

� two independent shutdown systems

� 26,000 lines of code (including assembler!)

� formal methods used to certify existing code
– formalise requirements as specification tables
– analyse code as program-function tables
– compare the tables

� No tool support

� cost $2-4 million Canadian

This nuclear power station is roughly 40 miles from Toronto, Canada. Lauren Wiener’s account
of the project [29] is quite different in tone from Craigen et al.’s [7].

Emergency shutdown systems are normally controlled using ‘switches and relays and analogue
meters’ [29] . The Darlington nuclear power station, unusually, built its emergency shutdown sys-
tems in software. There were 6,000 lines of assembly, 7,000 lines of Fortran and 13,000 lines of
Pascal among the two systems. The Canadian authorities refused to licence the plant after problems
were found in the software.

A formal code inspection was organised by David Parnas using the SCR method (Software
Cost Reduction). Each process was analysed by three independent teams. One used the informal
requirements document to generate a specification table. The second examined the existing code
and generated program-function tables. The third examined the two sets of tables and reported
discrepancies. The work was tedious and labour-intensive. They effected a hundred or so minor
changes to the system, but found no serious errors.

A remarkable feature of this work was that it dealt with existing code, including assembly lan-
guage. It involved rigorous analysis but not formal proof.

Wiener [29] claims that certifying the software delayed the plant’s opening by six months, at a
cost of $20 million per month in lost production (Canadian dollars). The software verification cost
$2-4 million. A hardware shutdown system costing $1 million would therefore have been much
cheaper. That is an argument against using software in nuclear power stations. It is no argument
against formal methods, without which the software might not have been approved at all. One has
to ask what safety criteria are used to certify traditional control systems?

IV Software Engineering 34

Slide 407

Paris Metro Signalling

� reduce train separation from 2:30 to 2 minutes

� by GEC Alsthom. 9,000 lines of verified code

� 4-stage validation process
– requirements validation
– testing
– safety/hazard studies
– certification

� Hoare logic, for proving correctness

� B method, for refinement

The Paris Metro’s new signalling system allows trains to run two minutes apart, a savings of 30
seconds. The increased capacity has eliminated the need for another railway line. The project was
funded in 1982, a prototype was finished in 1985 and the system was deployed in 1989. Initially
the developers used Hoare logic for correctness proofs, as the best available technique in 1982.
Hoare logics are the basis for most approaches to proving correctness of software, but they can be
complicated to use. The developers were unsure how to apply them on such a large scale. Jean-
Raymond Abrial (one of the developers of Z) helped them to re-specify and re-verify the software.

Validation was divided into four stages:validation of requirements, verification and testing,
operations and maintenance, andcertification. They used other tools such as SADT (Structured
Analysis and Design Technique) and performed hazard studies using fault-tree analysis. They used
extensive testing, finding many problems with the specification. Testing is the only way to find
out whether a program meets its real-world requirements; a correctness proof can only show that a
program meets its specification.

Hoare logic [17] concerns statements of the formfPgSfQg, meaning ‘ifP holds beforehand,
and if execution ofS terminates, thenQ will hold afterwards.’ In its pure form it says nothing at all
if S fails to terminate, but it can be augmented to prove termination as well. It is not a specification
language but a method for proving properties of code.

The B method models a process as an abstract machine. One abstract machine can be imple-
mented by means of another. This accounts for the different levels of abstraction found in computer
systems (machine language, operating systems functions, library functions, modules, subsystems,
etc.). It supports development by top-down refinement, where an abstract machine is implemented
in terms of increasingly lower-level machines.

Hoare logic dates from 1969, while the B method is still under development.
GEC Alsthom, the developer, is now using the approach for other railway products. One is a

safety system covering all electrified lines in the French railways.

IV Software Engineering 35

Slide 408

Research into Formal Correctness

� protocol verification

� hardware verification

� model checking

� system verification

� program design calculi

Protocolsare used in consumer electronics (e.g. remote controls) and telecommunications. They
are a common source of errors, since they are usually designed to work in the presence of unreliable
media. Verifying a protocol is easier than verifying the software itself. Proofs depend on a model of
unreliability; we assume, for example, that a network may re-order or lose messages, but not corrupt
them.

Cryptographicprotocols are used in security-critical systems, for example to deliver encryption
keys. The so-called BAN-logic [6] is a formal method of proving that a protocol contains sufficient
information for the agents to know they have received a fresh key.

Hardwareverification is well advanced. The most successful method, based on higher-order
logic, is to M. J. C. Gordon here at Cambridge. Correctness properties have been proved for many
real chips.

Model checkingis complementary to formal proof; it works for finite-state systems. It simply
consists of enumerating all possible states and checking the desired property. The latest technique,
symbolicmodel checking, is claimed to handle109 states or more. Current research is investigating
ways to prove properties of infinite-state systems by viewing them as finite-state systems.

System verificationinvolves proving the correctness of subsystems, and of their integration, so
that the whole system is proved correct. Bevier et at. [1] describe the proof of a ‘stack’ of compo-
nents ranging from a simple high-level language to a microprocessor design. The aim is to have a
computer system that is entirely free of logical errors, and that can only fail due to environmental
conditions. (Note that for real-world applications, environmental conditions will remain a significant
cause of failures.)

Program design calculiprovide a precise way of constructing code to meet a formal specifica-
tion. Many calculi are under investigation. Some use functional programming languages, which are
particularly easy to reason about. Other methods apply to the usual (imperative) sort of language,
although real languages like C are difficult to handle. A popular line of research involves deriving
programs from suitably constructive proofs.

V Software Engineering 36

Slide 501

The Z Specification Language

Schemas used to define

� the legal state space

� operations that change the state

� operations that inspect the state

� special cases of an operation

Incremental development of a specification

Data described using set theory

This lecture is based on Spivey [27]. It presents his trivial example, theBirthday Book, a system
that can record people’s birthdays and issue a reminder for them.

Schemasare peculiar to Z. They are a bit like record operations: they describe a collection of
named fields, specifying relations that hold among them and actions involving them. You can define
a schema for each operation. But an operation can, in fact, be defined in terms of several schemas:
one schema for the normal case, and other schemas for various exceptional cases. Schemas can be
introduced one at a time.

Another popular specification language is VDM (the Vienna Development Method). VDM is
unusual for its use of a three-valued logic, as a way of reasoning about definedness (particularly,
termination). VDM includes methods to help refine the specification into code.

Z was developed at Oxford University by Jean-Raymond Abrial, Bernard Sufrin, Carroll Morgan
and others. VDM was developed at the IBM Laboratory in Vienna by Cliff Jones, Dines Bjørner,
Peter Lucas and others. The two languages look quite different, but in most essential respects they
are the same.

One key difference is the treatment of an operation’sprecondition: a property that must hold
before the operation may be invoked. In VDM, you specify the precondition directly. In Z, if an
operation is built out of several schemas, the precondition is specified in bits and pieces.

Both languages use basic concepts from set theory to describe data and operations. This is called
themodel-orientedapproach; such a specification is a bit like an implementation in set theory (so,
of course, it is not executable). So-calledproperty-orientedspecification languages involve stating
the desired properties of a module without exhibiting a mathematical model for it.

V Software Engineering 37

Slide 502

Some Z Notation

PX is the set of subsets of X

x 2 A means x is an element of A (and x 62 A is its negation)

A� B means A is a subset of B

A[B is the union of A and B

f : A 7! B means f is a partial function from A to B

domf is the domain of f

f [fx 7! yg extends f to map x to y

f : A! B meansf is atotal function fromA to B: it mapsall elements ofA to elements ofB. It
is not used below, but is the natural way of specifying arithmetic operations, for instance.

f : A 7! B is used below to represent a table. We specify apartial function as we do not expect
a table to contain an output for every conceivable input.

domf is not interesting for total functions; iff : A ! B then domf = A. But if f is a partial
function, thenx 2 domf if and only if f (x) is defined.

f [fx 7! yg is the function that agrees withf except that its domain is enlarged to mapx to y.
Herefx 7! yg is a trivial function whose domain isfxg. Since a function is a set of pairs,fx 7! yg
is simply a nicer syntax for the ordered pair ofx andy. Also f [g combines the functionsf andg,
but the result will not be a function unlessf andg agree where their domains intersect.

More generally,f � g combinesf andg, with g overridingf where their domains intersect. So
f � g will always be a function providedf andg are. The functionf � fx 7! yg is a version off
modifiedto mapx to y. It can be used to modify any function (partial or total), or to extend a partial
function’s domain.

This sort of abstract notation allows us to express data without concern for the implementation.
A partial function could be implemented as an array, a list, a tree, a B-tree on disc, etc.; such
decisions are taken later in the design stage.

Z includes many more symbols: for sequences, Cartesian products, tuples, etc. In addition, there
are all the logical symbols: and, or, not, implies, etc. Unfortunately, VDM frequently uses different
symbols for the same concepts. Both languages often differ from standard mathematical usage.

V Software Engineering 38

Slide 503

Defining the State Space

BirthdayBook
known: PNAME
birthday : NAME 7! DATE

known= dombirthday

State variables

� known: a set of NAMEs

� birthday: a partial map from NAMEs to DATEs

Invariant : known= dombirthday

Our description is very abstract. We have not specified anything about the structure of aNAME
or DATE. We have placed no limit on the number of names stored. Such points can be specified
later. But sincebirthday is a function, we have specified that a name can be assigned at most one
birthday.

A state space has two key features. Thestate variablesare the components that make up the
state. Theinvariant is the relation that must hold of the components. For the birthday book, the state
has two components,knownandbirthday, whereknownis entirely determined bybirthday.

A more realistic system would have a more complicated relationship among its components. We
could add a new component, mapping names to addresses say, with the restriction that you can only
record an address if you also record the same person’s birthday.

BirthdayAndAddressBook
known: PNAME
birthday : NAME 7! DATE
address: NAME 7! ADDRESS

known= dombirthday^ domaddress� known

We could have expressed this schema by combiningBirthdayBookwith a small schema speci-
fying address. It is hardly worth the trouble here, but for larger specifications the ability to combine
schemas is invaluable.

Every operation on the state mustpreserve the invariant: it may assume that the invariant holds
at the start, and must ensure that it holds at the finish. The concept of invariant is not specific to
Z, but is fundamental to Computer Science. The ConForm Project [10] found that specifying the
invariant helped the designers identify pathological cases.

V Software Engineering 39

Slide 504

A State-Changing Operation

AddBirthday
�BirthdayBook
name? : NAME
date? : DATE

name? 62 known

birthday0 = birthday[fname? 7! date?g

Precondition : name? 62 known

Operation : birthday0 = birthday[fname? 7! date?g

Invariant : implicitly present

AddBirthdayaddsname? to the state, assigning to it the birthdaydate?. Since this operation
changes the state, we specify it using a� schema that includesBirthdayBook. The schema contains
two copies ofBirthdayBook’s state. The variablesknownandbirthday represent the initial values,
while the primed variablesknown0 andbirthday0 represent the final values.

Variables ending with a question mark, such asname? anddate?, represent the operation’s in-
puts. Output variables end with an exclamation mark; this schema has none, but see below. An
equation such as

birthday0 = birthday[fname? 7! date?g;

looks like an assignment statement, but actually itdefinesa final value in terms of initial values and
inputs. The equation specifies that thebirthday function will be extended to mapname? to date?.
The relation between initial and final states does not have to be given by equations, especially if the
input state does not constrain the final state uniquely.

The schemaAddBirthdayis subject to the preconditionname? 62 known: the name must not al-
ready have a birthday assigned. Otherwisebirthday0 might assign two different birthdays toname?;
it would no longer be a function! A schema specifies an operationprovidedthe precondition holds.

The invariants are added implicitly:known= dombirthday is part of the precondition, while
known0 = dombirthday0 is part of the effect. The latter equation allows us to derive an explicit value
for known0:

known0 = dom(birthday[fname? 7! date?g)

= dombirthday[domfname? 7! date?g

= dombirthday[fname?g

Using the invariants, we obtainknown0 = known[fname?g. We have also used basic properties of
domains, dom(f [g) = domf [domg and domfx 7! yg = fxg.

V Software Engineering 40

Slide 505

A State-Inspecting Operation

FindBirthday
�BirthdayBook
name? : NAME
date! : DATE

name? 2 known

date! = birthday(name?)

Precondition : name? 2 known

Operation : date! = birthday(name?)

No effect on state — instead, yields an output

FindBirthday looks upname? in the state, returning the associated birthday asdate!. Since
this operation never changes the state, we specify it using a� schema that includesBirthdayBook.
Strangely enough, this schema also contains two copies ofBirthdayBook’s state, just as a� schema
would. But it also contains implicit constraints that the state cannot change:known0 = knownand
birthday0 = birthday. This means that� and� schemas have the same internal structure, allowing
them to be combined easily.

The equation
date! = birthday(name?)

defines the output variabledate! in terms of the input variablename? and the state variablebirthday.
The schemaFindBirthdayis subject to the preconditionname? 2 known: the name must have

a birthday assigned. If it does not,birthday(name?) is undefined. Several schemas for one opera-
tion, specifying different preconditions, can be combined to yield a more general operation; we can
specify error situations separately.

V Software Engineering 41

Slide 506

Two More Schemas

Remind
�BirthdayBook
today? : DATE
cards! : PNAME

cards! = f n : knownj birthday(n) = today? g

InitBirthdayBook
BirthdayBook

known= ?

Remindis a sort of inverse toFindBirthday: it looks up the datetoday? in the state, returning
the associated names as the setcards!. This set is specified to consist of all names inknownwhose
birthday equalstoday?. We are not constrained to find the set of names by searching, as the formula
may suggest; any implementation technique, such as hashing, is acceptable. (The variable is called
cards! because it will hold the names of people you must send cards to.)

InitBirthdayBookis a schema to specify the initial state forBirthdayBook. This is an example of
extending an existing schema with additional constraints, hereknown= ?. Writing it in this way is
more concise than writing out theBirthdayBookschema and including the additional equation.

The invariant,known = dombirthday, is still present. SinceInitBirthdayBookspecifies
known= ? we obtain dombirthday = ?. Thereforebirthday = ?; initially, no birthdays are
recorded. (The empty set,?, is also the empty function.)

V Software Engineering 42

Slide 507

Specifying Exceptional Cases

Success
result! : REPORT

result! = ok

AlreadyKnown
�BirthdayBook
name? : NAME
result! : REPORT

name? 2 known

result! = already known

We shall deal with exceptional situations by augmenting each operation to return a status report.
The report can beok or an error value such asalready known.

The trivial schemaSuccesssimply returns a report indicating success. It is useless by itself.
But we can express a schema that combinesAddBirthdaywith a success report by the conjunction
AddBirthdaŷ Success. This denotes the schema whose state variables are those of the two schemas
combined, and whose logical specifications are joined using^. The new schema does everything
thatAddBirthdaydoes, and also reportsresult! = ok.

The schemaAlreadyKnownhandles the case of attempting to add a birthday for a name already
present. Its precondition,name? 2 known, is the negation ofAddBirthday’s. We use a� schema
to specify that the state does not change; instead, the output variableresult! receives the value
already known. We may interpret this as an error condition; Z (unlike VDM) has no built-in notion
of exception.

A robustoperation to add birthdays, which handles the error condition, can be defined to be a
combination of the schemas presented above:

RobustAddBirthdayb= (AddBirthdaŷ Success) _ AlreadyKnown

If name? 2 known then the specified effect isresult! = already known; otherwise it adds the
birthday and yieldsresult! = ok. Specifying an operation in pieces, as here, has many advantages
over writing one huge specification that covers all error conditions. It is easier to read, easier to
write, easier to extend and modify.

Spivey [27] goes on to defineRobustFindBirthdayin precisely the same manner. Finally he
definesRobustRemindb= Remind̂ Success; sinceRemindhas no precondition, all we must do is
make it report success.

One problem with Z is understanding what a schema really means. At first, schemas were
regarded as shorthand for long formulæ. Later it was decided that schemas required some kind of
a formal semantics, and this has taken many years to get right. Intuitively, a schema abbreviates a
formula of the formpreconditionimplieseffects, whereeffectscontains all specified constraints on
the final state and output variables.

V Software Engineering 43

Slide 508

More on Z

� Other schema operations
– Schema1 o

9 Schema2

� Refining the design

� Tool support

� Related methods
– object Z
– the B method

Z contains many other means of building new schemas. For example,Schema1 o

9 Schema2 is
intended to specify the effect of applyingSchema1 followed bySchema2. It expands to a schema
that equatesSchema1’s final state variables withSchema2’s initial state variables, without specifying
their actual values. (It does this using existential quantifiers.) Both schemas’ input and output
variables are gathered together to form the inputs and outputs ofSchema1 o

9 Schema2. From the
schemaAddBirthdayo9 FindBirthDayone can derivedate! = date?. This illustrates Z’s power and
complexity — as with a programming language, one must use this power with care.

Refinement.Z does not supply a method of refining the specification into a design, but it can be
used for this purpose. Spivey [27] describes how to write more concrete Z schemas for the birthday
book that use arrays to implement thebirthday function, and to show that a concrete type (here
arrays) faithfully implements the abstract type (functions).

Tool support.Part of the effort of writing a Z specification is neat presentation. These lecture
notes were produced with the help ofoz.sty , a LATEX style file. More elaborate tools perform type
checking and other simple consistency checks. Z is not directly concerned with theorem proving,
but there has been some research into support for Z using theorem provers such as HOL and Isabelle.
Commercial tools (suitably priced!) are available too.

Z has been under development for a long time, and the Z Standard is nearing maturity. But
research is continuing; methods under development include Object Z and B.

Object Z [9] extends Z with object-oriented features. ‘The main reason for this extension is
to improve the clarity of large specifications through enhanced structuring.’ Object-Z introduces a
class structure with a private state schema, packaged together with the operations that may affect
that state. This attacks the problem, also found in programming, that a global state can be modified
by any operation anywhere.

The B method, developed by J.-R. Abrial, has been described in a previous lecture. Sophisticated
tools have been developed to support it.

VI Software Engineering 44

Slide 601

Large Software Systems: A Study

17 large, demanding systems (many real-time)

97 interviews: system engineers, designers, managers, : : :

role of team and organizational factors

problems identified:

� thin spread of application domain knowledge

� fluctuating and conflicting requirements

� communication and coordination breakdowns

This is a classic study [8] by three researchers at MCC (Microelectronics and Computer Tech-
nology Corporation), Austin. They employed field research methods and investigated the effect of
human factors. This was in response to findings that new methods and tools for software engineering
did not yield the expected benefits.

They employed a layered behavioural model because software is a human artifact and is subject
to psychological, social and organisational processes. The layers considered were individual, team,
project, company and business milieu. When they identified a problem they examined its effect at
each of those layers.

Projects ranged in size from 24,000 to a million lines of code, nearly all over 100,000 lines
of code. Typical applications were defence, communications and system software. Large projects
deserve study because, when they go wrong, the result is disaster. Large projects are not just scaled-
up small projects, but exhibit different phenomena.

VI Software Engineering 45

Slide 602

Application Domain Knowledge

� avionics? telephony? transaction processing?

� few people with global knowledge of application
– Understanding one component is not good enough!
– results in specification mistakes

� exceptional designers: ‘intellectual core of project’
– extremely familiar with domain
– interdisciplinary: integrated several domains
– could see constraints & exceptions

Many of the projects involved extremely demanding applications with no connection with Com-
puter Science. The only way staff could obtain knowledge of such applications was by additional
training or experience with previous projects. Such people were few; those who did have the knowl-
edge (‘exceptional designers’ or ‘project gurus’) often took over the project. They were often said
to have ‘saved’ the project.

‘They usually possessedexceptional communication skillsand often spent much of their time
educating others about the application domain: : : ’ (italics mine). They tended to take over project
meetings because of their superior knowledge.

Exceptional designers undergo exceptional stress, with attendant health risks. They become
essential to the project and to their company.

The authors found that building a failed system at least spread application knowledge through
the team. They were then able to try again and succeed. This sort of prototype yields more insight
than would a ‘rapid prototype’ that does not explore the subtle problems. This echoes Fred Brooks’s
advice, ‘plan to throw one away.’

Companies had to spend large sums on training, which customers were unwilling to pay for.
Managers often could not assess their staff’s ability to cope with a demanding application. The
problem was exacerbated if the company undertook projects in too many different domains.

VI Software Engineering 46

Slide 603

Changing Requirements

Powerful forces to change requirements:

� external: technological change, competing products, new
standards

� internal: corporate politics, marketing plans, financial conditions

� new customers, or customers wanting more

� team understanding the requirements better

‘Requirements caused problems on every large project: : : ’
It is easy to say that the requirements should just be frozen. But what if technological change

threatens to make your product obsolete? What if a competitor comes out with something better
than your product? What if updated standards affect your product? These are some external factors.

The internal factors (politics, marketing,: : :) all boil down to demands from management. Even
if we pretend that corporate politics do not exist, we are left with marketing and financial consider-
ations, which could be impossible to resist.

Customers often request frequent changes — for many reasons. One of the more interesting is
that they learn as their software develops, and see that it might do more. But sometimes a project
is undertaken for one customer and then generalized as a second customer comes along. And then
comes a third customer: : : .

Change requests from customers can be forbidden or discouraged by penalties. An extreme case
is the Docklands Light Railway, which stopped at a station that had never been built [29, page 100].
The software had already been tested, and the developers refused to change it after the station was
cancelled. Luckily the doors did not open!

Finally, requirements may appear to change if team lacks domain knowledge. This happens if
coding starts before the problem has been digested fully. Another cause is hasty formulation of
requirements due to the pressures of competitive tendering.

VI Software Engineering 47

Slide 604

Requirements: Ultimate Constraints

� the capacity of the hardware

� tight timing & storage constraints

� delivery date

� market conditions

� regulation & legislation

There are grim tales of projects that staggered on when everybody knew the existing hardware
could never do the job. Hoare [18] describes building software for the Elliot 503 computer; the
software was simply too big for the computer’s store, and the whole project had to be abandoned.
This was a small-scale flop compared with modern disasters. Sometimes the developer insists on
using its own hardware when only a competitor’s hardware is up to the job.

There are innumerable cases of ‘creeping featurism’ causing products to become more and more
elaborate, until they exceed the capacity of the hardware. Owners of personal computers often
discover this (to their cost) when they upgrade their software. Some programmers find it hard to
resist the urge to add features beyond the requirements.

‘Some of the toughest decisions involved tradeoffs between system features and the current
market trends.’ Features might be omitted in order to meet the delivery date. They might be added
to beat a competitor or keep up with technological advances.

Government action can have a dramatic effect. The 1991 Budget simultaneously increased VAT
by 2.5% and decreased everyone’s Poll Tax by £200. Both changes required urgent responses by
programmers. Changing the rate of VAT sounds trivial, but utility companies had to work out a
fair way of charging for the increase without reading all meters on the changeover date. The Poll
Tax subsidy was complicated by changes to transitional relief. To compound the problems, the
Chancellor (Norman Lamont) postponed the announcement until the Budget Speech, after millions
of Poll Tax bills had already been sent out.

VI Software Engineering 48

Slide 605

Communication Breakdowns

� colleagues, other teams, project management

� other projects, marketing, senior management

� prime contractor, subcontractors, Government departments

Who is the real customer?

Scaling up communication strategies?

Design to avoid communication?

People communicate to understand the problem, to work out requirements conflicts, to resolve
technical issues, to diagnose faults, to monitor progress, etc. The authors list dozens of different
points of communication, at different levels from team to business milieu. A few are shown above.

Noneof the projects had a unique customer representative. Different senior members of the
purchasing organisation would regard themselves asthe customer, though they wanted different
things. Military projects appeared to be the worst: officials, commanders, and related agencies all
meddled in the requirements specification. If the software developer is only a subcontractor, they
still have to deal with these people and with the prime contractor as well.

Secrecy hindered communication in military projects. Information needed to understand the
problem thoroughly was classified. Security needs, and also political rivalry, hindered communi-
cation even between departments of a single company. ‘: : : many projects spent tremendous time
rediscovering information that, in many cases, had already been generated by customers, but not
transmitted to developers.’ ‘Even the product description: : : is a secret document: : : ’

The authors note that ‘good practice’ communication strategies did not scale up to large projects,
especially under time pressure. Sometimes this influenced the system design: ‘: : : it was more
important to minimize the interfaces between system engineers than it was to make the system
logical from the viewpoint of the user.’

VI Software Engineering 49

Slide 606

Face-To-Face: the Only Way

� distortion/filtering over long distances

� misunderstandings due to different contexts

� inadequacies of documentation

� role of boundary spanners

� talk 10 hours per day, work for 5?

Communication over long chains of command is difficult. Messages can be suppressed or al-
tered. This ‘massaging’ takes time; senior management get their distorted messages very late.

Lauren Wiener [29, page 80] reports a case where September’s progress report had to be written
in August in order to get through six layers of management by mid-October. The CONFIRM project
continued much longer than it deserved because management refused to believe bad news [24].

Messages are also misunderstood because the recipient’s assumptions and background knowl-
edge differ from the senders. For instance, senior management may be unable to understand the
seriousness of a technical problem. Programmers may not understand the user’s working environ-
ment.

People obviously find talking more efficient than writing and reading documentation. Docu-
mentation therefore suffers, particularly because of the usual time pressure. If the original staff then
leave (some firms have a high turn-over rate) then future staff will be in difficulties.

The authors give ‘boundary spanners’ credit for avoiding some communication breakdowns.
They have good communication skills: they can translate information from one group to another,
expressing it in a form that can be understood. They are willing to talk all day. They are good
negotiators and carry messages for others.

One systems engineer said he spent a third of his time talking. Another said the only way was
10 hours of meetings per day and 5 hours work. More talking than work? And what about the
engineer’s health?

VI Software Engineering 50

Slide 607

Implications for Methods and Tools

� sharing/integration of knowledge across staff

� change management and propagation

� coordination

Use tools where relevant

No methods or tools can make much of a difference in large projects unless they address the key
limitations identified above. Indeed, the project was undertaken in order to understand why such
methods had failed.

Computer-Assisted Software Engineering (CASE) tools typically let you draw data and control
flow diagrams, etc., and assist their refinement into code. Such tools can do nothing about lack of
domain knowledge and nothing about pressures to change requirements. By improving the quality
of documentation, they may do something about communication.

But tools can actually impede communication. If information from outside has to be entered
manually, then either the information will be lost or the tools will not be used. Tools must be well
designed to fit into the work environment.

Formal methods suffer similar limitations. They can make the requirements and documentation
precise, but their intended readers may be unable to understand them!

Methods and tools aimed at individuals cannot do much in large projects where training and
communication costs predominate. But they are not useless either. For example, in a large safety-
critical system, often only a small part has a true safety function; other parts may be mainly for
convenience. We can use formal methods just in the safety-critical components.

Tools will never replace face-to-face discussions. Some disasters might be averted if senior
management would visit development staff in person.

VI Software Engineering 51

Slide 608

Implications for Management

� limitations of ‘waterfall’ model
– include learning, communication and negotiation
– requirements: always an issue
– Boehm’s spiral model

� importance of a track record?

� importance of good people

The three problems — knowledge, requirements, communication — are interrelated. Lack of
domain knowledge leads to inaccurate requirements, which hinder communication, etc. The ‘natural
tension between getting requirements right and getting them stable’ could be eased if the procurer
would appoint asingleperson as its representative. Requirements issues occur throughout a devel-
opment, not just at the official requirements phase.

The basic waterfall model does not account for these problems, which are characteristically
human. It does not take account of the role of learning and negotiation. Boehm’s spiral model is
more elaborate and calls for risk analysis at each iteration, when key decisions are made.

What does a good track record signify? If the software developer has already built a similar
system, then it ought to have some means of tackling these problems. In particular, it must already
possess the necessary domain knowledge. Yet the CONFIRM disaster involved the developer of one
of the world’s most successful reservation systems.

The role of key people is stressed time and time again, by Brooks [5] as well as in this study.
Good people are not just those who can code quickly or solve hard Computer Science problems.
They must be willing to learn a lot about the application domain, which may have nothing to do
with Computer Science. Above all they must be good at negotiating with customers, management
and rival groups.

Recruiting good people is important, but it is also necessary to ‘grow’ good people and teams
in-house through training.

VI Software Engineering 52

Acknowledgements. Michael Hinchey provided considerable literature and advice, as did Ross
Anderson and Michael Gordon. Ajay Chander supplied numerous corrections.

References

[1] William R. Bevier, Warren A. Hunt, Jr., J Strother Moore, and William D. Young. An
approach to systems verification.Journal of Automated Reasoning, 5(4):411–428, 1989.

[2] Alan Borning. Computer system reliability and nuclear war.Communications of the ACM,
30(2):112–131, 1987.

[3] Jonathan Bowen and Victoria Stavridou. Safety-critical systems, formal methods and
standards.Software Engineering Journal, 8(4):189–209, July 1993.

[4] Frederick P. Brooks.The Mythical Man-Month. Reading, 1975.

[5] Frederick P. Brooks. No silver bullet: Essence and accidents of software engineering.
Computer, pages 10–19, April 1987.

[6] M. Burrows, M. Abadi, and R. M. Needham. A logic of authentication.Proceedings of the
Royal Society of London, 426:233–271, 1989.

[7] Dan Craigen, Susan Gerhart, and Ted Ralston. Case study: Darlington nuclear generating
station.IEEE Software, pages 30–32, January 1994.

[8] Bill Curtis, Herb Krasner, and Neil Iscoe. A field study of the software design process for
large systems.Communications of the ACM, 31(11):1268–1287, November 1988.

[9] R. Duke, P. King, G. A. Rose, and G. Smith. The Object-Z specification language: Version 1.
Technical Report 91-1, Department of Computer Science, University of Queensland, St. Lucia
4072, Australia, April 1991.

[10] J. S. Fitzgerald, P. G. Larsen, T. M. Brookes, and M. A. Green. Developing a security-critical
system using formal and conventional methods. In Hinchey and Bowen [16], pages 333–356.

[11] Steve Flowers. One huge crash.Guardian, page 21, 1994. 28 April.

[12] John Gall.Systemantics: How Systems Work and Especially How They Fail. Fontana, 1979.

[13] Susan Gerhart, Dan Craigen, and Ted Ralston. Experience with formal methods in critical
systems.IEEE Software, pages 21–28, January 1994.

[14] W. Wayt Gibbs. Software’s chronic crisis.Scientific American, pages 72–81, September 1994.

[15] Anthony Hall. Seven myths of formal methods.IEEE Software, pages 11–19, September
1990.

[16] Michael Hinchey and Jonathan P. Bowen, editors.Applications of Formal Methods.
Prentice-Hall, 1995.

[17] C. A. R. Hoare. An axiomatic basis for computer programming. In Hoare and Jones [19],
pages 45–58. Originally published in 1969.

[18] C. A. R. Hoare. The emperor’s old clothes. In Hoare and Jones [19], pages 1–18. Turing
Award Lecture delivered in 1980.

[19] C. A. R. Hoare and C. B. Jones, editors.Essays in Computing Science. Prentice-Hall, 1989.

[20] Nancy Leveson.Safeware: System Safety and Computers. Addison-Wesley, 1995.

[21] Bev Littlewood and Lorenzo Strigini. Validation of ultrahigh dependability for
software-based systems.Communications of the ACM, 36(11):69–80, 1993.

VI Software Engineering 53

[22] Motor Industry Software Reliability Association.Development Guidelines For Vehicle Based
Software. Motor Industry Research Association, 1994.

[23] Peter G. Neumann.Computer-Related Risks. ACM Press, 1994.

[24] Effy Oz. When professional standards are lax: The CONFIRM failure and its lessons.
Communications of the ACM, 37(10):29–36, October 1994.

[25] Ian Sommerville.Software Engineering. Addison-Wesley, 4th edition, 1992.

[26] South West Thames Regional Health Authority. Report of the inquiry into the london
ambulance service. 40 Eastbourne Terrace, London W2 3QR, February 1993.

[27] J. M. Spivey. An introduction to Z and formal specifications.Software Engineering Journal,
4(1):40–50, January 1989.

[28] D. A. Turner. Functional programs as executable specifications. In C. A. R. Hoare and J. C.
Shepherdson, editors,Mathematical Logic and Programming Languages, pages 29–54.
Prentice-Hall, 1985.

[29] Lauren Ruth Wiener.Digital Woes: Why We Should Not Depend on Software.
Addison-Wesley, 1993.

