Automatic Theorem Proving: Impressions from the Interactive World

Lawrence C Paulson / Computer Laboratory / University of Cambridge

The Great Divide

* Automatic Theorem Provers
* Put in your conjecture and axioms
\% Full automation!
* First-order logic (+T)
\% Careful about correctness
* Interactive Proof Assistants
* Create big specification hierarchies
\therefore You do the hard work
\because Nice rich logics
* Neurotic about correctness

But interactive proof is like building one of these...

So everybody wanted automation!
\% LCF: conditional rewriting (as in Boyer/Moore, 1977!)

* PVS: various decision procedures, BDDs, etc (1995)
\% HOL: decision procedures, resolution provers (1996-)
* Coq: decision procedures, reflection

Isabelle, in the beginning (1985)

Based on a higher-order logical framework, but with
$\%$ unification (even though it had to be higher-order)
\% backtracking primitives via lazy lists necessary for automation
\because so, something like a higher-order Prolog

Sequent calculi in Isabelle (1986)

$$
\frac{\Gamma_{1}, A[t / x], \Gamma_{2} \Rightarrow \Delta}{\Gamma_{1}, \forall x A, \Gamma_{2} \Rightarrow \Delta}
$$

* using associative unification (via a higher-order trick) to support sequent calculus rules directly
\% some automation using backtracking
\because the equivalent of old-style "semantic tableaux"

A sequent calculus for set theory

It was easy to derive a proof calculus of high-level rules for set theory, and prove many facts automatically:

$$
A \neq \emptyset \& B \neq \emptyset \quad \rightarrow \quad \bigcap(A \cup B)=(\bigcap A) \cap(\bigcap B)
$$

$C \neq \emptyset \quad \rightarrow \quad \bigcap_{x \in C}(A(x) \cap B(x))=\left(\bigcap_{x \in C} A(x)\right) \cap\left(\bigcap_{x \in C} B(x)\right)$
(From a system description published at CADE-9 in 1988)

The push for more power

The discovery that this automation could make a difference in real proof developments
... and that it was far inferior to even quite basic automatic provers ...
led to the perusal of this paper:
F. J. Pelletier, Seventy-five Problems for Testing Automatic Theorem Provers, JAR 2 (1986), 191-216

Pelletier's problem \#43

$$
\begin{aligned}
& \forall x y(\psi(x, y) \leftrightarrow \forall z(\phi(z, x) \leftrightarrow \phi(z, y))) \\
& \rightarrow \forall x y(\psi(x, y) \leftrightarrow \psi(y, x))
\end{aligned}
$$

requires a reasonably sophisticated treatment of quantifiers

Trivial? Not using sequent methods...

Time to try a good proof strategy?

M.E. Stickel. A Prolog technology theorem prover: implementation by an extended Prolog compiler. JAR 4 (1988), 353-380
D.A. Plaisted. A sequent-style model elimination strategy and a positive refinement. JAR 6 (1990), 389-402

meson: The world's slowest model elimination theorem prover (1992)

\therefore An obscure Isabelle tactic, inspired by Stickel's PTTP
*Runs on Isabelle's "Prolog" engine (so no trust issues)
\because Far better than naive methods for first-order logic
But not generic - pure FOL only - so a dead end...?

Spinoffs from Isabelle's ME tactic

Cryptographic protocol verification
\% Based on operational semantics
\% Inductive definitions and proofs in Isabelle
*Rewriting with respect to a formal theory of messages
\% ... followed by first-order reasoning (mainly forward and backward chaining)

... versus Ernie Cohen's TAPS

E. Cohen. TAPS: A first-order verifier for cryptographic protocols. IEEE Comp. Security Foundations Workshop (2000).

* Automatic, deductive verification of crypto protocols!
: Couldn't figure out how it worked except
\because everything was translated to FOL
$\% \ldots$ and proved using SPASS!

The key to better automation??

prove((A, B), UnExp, Lits, FreeV, VarLim) :- !,
prove(A, [B|UnExp],Lits, FreeV, VarLim).
prove((A;B),UnExp,Lits,FreeV,VarLim) :- !,
prove(A,UnExp,Lits,FreeV, VarLim),
prove(B,UnExp,Lits, FreeV, VarLim).
prove(all(X,Fml),UnExp,Lits,FreeV,VarLim) :- !,
\+ length(FreeV,VarLim),
copy_term((X, Fml, FreeV), (X1, Fml1, FreeV)), append(UnExp, [all(X, Fml)],UnExp1), prove(Fml1,UnExp1,Lits,[X1|FreeV],VarLim). prove(Lit,_,[L|Lits],_,_) :-
(Lit = -Neg; -Lit = Neg) ->
(unify(Neg,L); prove(Lit,[],Lits,_,_)).
prove(Lit, [Next|UnExp],Lits,FreeV,VarLim) :prove(Next, UnExp, [Lit|Lits], FreeV, VarLim).

leanT ${ }^{A} P$: simple; surprisingly good

B. Beckert \& J. Posegga. leanT ${ }^{\text {AP: Lean, tableau-based }}$ deduction. JAR 15 (1995), 339-358

It could prove Problem 43!

Could it be the inspiration for a better prover
... that was still generic?

The "blast" proof method (1998)

\because Like leanT ${ }^{\text {A }}$ P, but 1300 lines instead of 15
\% Generic: forward and backward chaining without explicit quantifiers

* Runs in Standard ML; afterwards, successful proofs given to Isabelle's "Prolog" engine
\% Now central to Isabelle's automation

But what about using real ATP in an interactive prover?

\because Had been attempted many times (e.g. $\Omega m e g a$, KIV)

* J Hurd: Integrating Gandalf and HOL (1999); Metis prover for the ordered paramodulation calculus

Joe Hurd. An LCF-style interface between HOL and firstorder logic. In A. Voronkov, editor, CADE-18 (2002), 134-138.

Automation for interactive proof

Key technical problems
\% usability for both novices and pros
\% not burying the ATPs
\% higher-order \& types
\% trust issues

Solutions

\checkmark 1-click invocation using all known facts
\checkmark relevance filtering
\checkmark a range of translations
\checkmark proof reconstruction

Sledgehammer: key points

Proofs are thrown away!
(ATPs used as relevance filters)

completely recoded at Munich by Blanchette et al

now the main source of resolution problems

that old "meson" method is still used for reconstruction

One more thing...

Gödel's incompleteness theorems

1. Every reasonable* formal calculus is incomplete: at least one formula can neither be proved nor disproved.
2. No reasonable formal system proves its own consistency.
*reasonable $=$ consistent and capable of expressing a certain amount of elementary arithmetic

Stages of the proofs

* The syntax of a first-order theory is formalised: terms, formulas, substitution...
* A deductive calculus for sequents of the form $\Gamma+\alpha$ (typically for Peano arithmetic)
- Meta-theory to relate truth and provability. E.g. "all true Σ formulas are theorems".
(The set of Σ formulas is built using $\vee \wedge \exists$ and bounded \forall.)
* A system of coding to formalise the calculus within itself. The code of α is a term, written $\ulcorner\alpha\urcorner$.
- Syntactic predicates to recognise codes of terms, substitution, axioms, etc.
* (and correctness proofs for them)
* Finally the provability predicate

First incompleteness theorem

* Construct δ to express " δ is not provable" ($\neg \operatorname{Pf}\ulcorner\delta \neg)$.
* It follows (provided the calculus is consistent) that neither δ nor its negation can be proved, and that δ is true.
* Need to show that substitution behaves like a function.
* Requires a lengthy, low-level proof in the calculus
* [... or other intricate calculations, to do with bounded quantifiers]

Second incompleteness theorem

If α is a Σ sentence, then $\vdash \alpha \rightarrow \operatorname{Pf}\ulcorner\alpha\urcorner$.

* A crucial lemma! Proved by induction over the construction of α as a Σ formula.
* It requires generalising the statement above to allow the formula α to contain free variables.
* complex technicalities
* lengthy deductions in the formal calculus

Defining the deductive calculus

```
inductive hfthm :: "fm set => fm = bool" (infixl "\vdash" 55)
    where
    Hyp: "A \inH\LongrightarrowH\vdashA"
    | Extra: "H }\vdash\mathrm{ extra_axiom"
    | Bool: "A \in boolean_axioms \LongrightarrowH\vdash A"
    | Eq: "A G equality_axioms \LongrightarrowH\vdash A"
    | Spec: "A \in special_axioms \LongrightarrowH\vdashA"
    | HF: "A \in HF_axioms \LongrightarrowH\vdashA"
    | Ind: "A \in induction_axioms \LongrightarrowH\vdashA"
    | MP: "H \vdashA IMP B\LongrightarrowH'\vdashA CHUH'\vdash B"
    | Exists: "H }\vdash\textrm{A IMP B \Longrightarrow
        atom i }#B\Longrightarrow\forallC\inH\mathrm{ . atom i }\forallC\LongrightarrowH\vdash(Ex i A) IMP B"
```


Two dozen predicates formalising logical syntax

$$
\begin{aligned}
& \text { definition MakeForm }:: ~ " h f \Rightarrow h f \Rightarrow h f \Rightarrow \text { bool" } \\
& \text { where "MakeForm y } u \mathrm{w} \equiv \\
& y=\text { q-Disj } u \mathrm{w} \vee \mathrm{y}=\text { q-Neg } u \vee \\
& \left(\exists \mathrm{v} \mathrm{u}^{\prime} . \text { AbstForm } \mathrm{v} 0 \mathrm{u}{ }^{\prime} \wedge \mathrm{y}=\text { q-Ex } u^{\prime}\right) \text { " } \\
& y=u \vee w \text {, or } y=\neg u \text {, or } y=(\exists v) u \\
& \text { with an explicit abstraction step on } u
\end{aligned}
$$

```
nominal_primrec MakeFormP :: "tm }=>tm=>tm=> fm"
where "\llbracketatom v # (y,u,w,au); atom au \sharp (y,u,w)\rrbracket\Longrightarrow
    MakeFormP y u w =
        y EQ Q_Disj u w OR y EQ Q_Neg u OR
    Ex v (Ex au (AbstFormP (Var v) Zero u (Var au) AND y EQ Q_Ex (Var au)))"
```

The "official" version as a formula, not a boolean

Steps to the first theorem

* We need a function K such that $\vdash K(\ulcorner\phi\urcorner)=\ulcorner\phi(\ulcorner\phi\urcorner)\urcorner$
* ... but we have no function symbols. Instead, define a relation, KRP: lemma prove_KRP: "\{\} $卜 \mathrm{KRP}\ulcorner\mathrm{Var} i\urcorner\ulcorner\mathrm{A}\urcorner\ulcorner A(i::=\ulcorner\mathrm{A}\urcorner)\urcorner "$
* Proving that it behaves like a function takes 600 formal proof steps. lemma KRP_unique: "\{KRP vxy, KRP vay'\} $\vdash y^{\prime} E Q y^{\prime \prime}$
* Finally, the diagonal lemma:
lemma diagonal:

```
    obtains \delta where "{} \vdash \delta IFF \alpha(i::=\ulcorner\delta\urcorner)" "supp \delta = supp \alpha - {atom i}"
```

theorem Goedel_I:
assumes Con: " $\neg\} \vdash$ Fls"
obtains δ where "\{\} $\vdash \delta$ IFF Neg (PfP $\ulcorner\delta\urcorner)$ " $" \neg\} \vdash \delta " \quad " \neg\} \vdash \operatorname{Neg} \delta "$ "eval_fm e δ " "ground_fm δ "
proof -
obtain δ where \quad "\{\} $\vdash \delta \operatorname{IFF} \operatorname{Neg}((\operatorname{PfP}(\operatorname{Var} i))(i::=\ulcorner\delta\urcorner)) "$ and [simp]: "supp $\delta=\operatorname{supp}(\operatorname{Neg}(\operatorname{PfP}(\operatorname{Var} i)))$ - \{atom i\}"
by (metis SyntaxN.Neg diagonal)
hence diag: " $\} \vdash \delta$ IFF Neg (PfP $\ulcorner\delta\urcorner$)"
by simp
hence $n p: " \neg\{ \} \vdash \delta$ "
by (metis Con Iff_MP_same Neg_D proved iff_proved_Pf)
hence npn: " $\neg\left\} \vdash N e g \delta^{\prime}\right.$ using diag
by (metis Iff_MP_same NegNeg_D Neg_cong prpved_iff_proved_Pf)
moreover have "eval_fm e δ " using hfthnksound [where e=e, OF diag]
by simp (metis Pf_quot_imp_is_proved np)
moreover have "ground_fm δ "
by (auto simp: ground_fm_aux_def)
sledgehammer
ultimately show ?thesis
by (metis diag $n p n p n$ that)
qed

Steps to the Second Theorem

: Coding must be generalised to allow variables in codes.

$$
\begin{aligned}
& *\ulcorner x \triangleleft y\urcorner=\langle\ulcorner\triangleleft \neg,\ulcorner x \neg,\ulcorner y\urcorner\rangle \\
& *\lfloor x \triangleleft y\rfloor_{V}=\langle\ulcorner\triangleleft\urcorner, x, y\rangle
\end{aligned}
$$

codes of variables are integers

*Variable renaming is needed, with the aim of creating "pseudoterms" like $\left\langle\left\ulcorner\triangleleft_{\urcorner}, \mathrm{Q} x, \mathrm{Q} y\right\rangle\right.$.

* Q is a magic "name of" function: $\mathrm{Q} x=r t\urcorner$ where t is some canonical term denoting the set x.

One of the Final Lemmas

$$
\begin{aligned}
& \operatorname{QR}\left(x, x^{\prime}\right), \operatorname{QR}\left(y, y^{\prime}\right) \vdash x \in y \rightarrow \operatorname{Pf}\left\lfloor x^{\prime} \in y^{\prime}\right\rfloor_{\left\{x^{\prime}, y^{\prime}\right\}} \\
& \operatorname{QR}\left(x, x^{\prime}\right), \operatorname{QR}\left(y, y^{\prime}\right) \vdash x \subseteq y \rightarrow \operatorname{Pf}\left\lfloor x^{\prime} \subseteq y^{\prime}\right\rfloor_{\left\{x^{\prime}, y^{\prime}\right\}} \\
& \operatorname{QR}\left(x, x^{\prime}\right), \operatorname{QR}\left(y, y^{\prime}\right) \vdash x=y \rightarrow \operatorname{Pf}\left\lfloor x^{\prime}=y^{\prime}\right\rfloor_{\left\{x^{\prime}, y^{\prime}\right\}}
\end{aligned}
$$

* The first two require simultaneous induction, yielding the third.
* Similar proofs for the symbols $\vee \wedge \exists$ and bounded \forall.
* The proof in the formal predicate calculus needs under 450 lines.
theorem Goedel_II:
assumes Con: " $\neg\} \vdash$ Fls"
shows $\quad " \neg\} \vdash \operatorname{Neg}(P f P\ulcorner F l s\urcorner) "$
proof -
from Con Goedel_I obtain δ
where diag: "\{\} $\vdash \delta$ IFF Neg $(P f P\ulcorner\delta\urcorner) " \quad " \neg\} \vdash \delta "$
and gnd: "ground_fm δ "
by metis
have "\{PfP $\upharpoonright \delta\} \vdash P f P\ulcorner P f P\ulcorner\delta\urcorner\urcorner "$
by (auto simp: Rrovability ground_fm_aux_def supp_conv_fresh)
moreover have "\{PfP $\ulcorner\delta\urcorner\} \vdash P f P\ulcorner N e g(P f P\ulcorner\delta\urcorner)\urcorner "$
apply (rule MonPon_PfP_implies_PfP [OF _ gnd])
apply (auto simp: ground_lm_aux_def supp_conv_fresh) using diag by (metis Assume ContraProve Iff_MP_left Iff_MP_left' Neg_Neg_iff) moreover have "ground_fm (PfP ${ }^{k} \oint \lambda$ "
by (auto simp: ground_fm_aux_def Suph conv_fresh)
ultimately have "\{PfP $\ulcorner\delta\urcorner\} \vdash P f P\ulcorner F l S\urcorner$ "using PfP_quot_contra
by (metis (no_types) anti_deduction cut2人
thus " $\neg\} \vdash \operatorname{Neg}(\operatorname{PfP}\ulcorner F 1 s\urcorner)$ "
by (metis Iff_MP2_same Neg_mono cut1 diag)
qed
Nearly 25% of the proof lines in the Gödel proof

Where are we now?

we can use automation from the world's best ATPs

> it's frequently successful, returning surprising proofs
no longer need to understand the material, e.g. while porting 50,000 lines of HOL Light

Jordan curve theorem,
Cauchy's integral formula

What's still needed?

combined first-order logic + arithmetic reasoning
automatic suggestions for parts of proofs
\% higher-order reasoning

From this...

... to this!

Essential contributors

Tobias Nipkow Makarius Wenzel

Strategic direction
\% type system
\% simplifier
\% countless projects

* type classes
* structured proofs
\% user interfaces
\% multicore tech

Financial support from the UK's EPSRC

Thank You!

