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The Great Divide

✤ Automatic Theorem Provers

✤ Put in your conjecture 
and axioms

✤ Full automation!

✤ First-order logic (+T)

✤ Careful about correctness  

✤ Interactive Proof Assistants

✤ Create big specification 
hierarchies

✤ You do the hard work

✤ Nice rich logics

✤ Neurotic about correctness



But interactive proof is like building 
one of these…



So everybody wanted automation!

✤ LCF: conditional rewriting (as in Boyer/Moore, 1977!)

✤ PVS: various decision procedures, BDDs, etc (1995)

✤ HOL: decision procedures, resolution provers (1996–)

✤ Coq: decision procedures, reflection



Isabelle, in the beginning (1985)

Based on a higher-order logical framework, but with

✤ unification (even though it had to be higher-order)

✤ backtracking primitives via lazy lists

because I assumed these were  
necessary for automation

✤ so, something like a higher-order Prolog



Sequent calculi in Isabelle (1986)

✤ using associative unification (via a higher-order trick) to 
support sequent calculus rules directly

✤ some automation using backtracking

✤ the equivalent of old-style “semantic tableaux”



A sequent calculus for set theory

Theory, the indexed union operator of set theory, and so forth. Isabelle easily handles
induction rules and axiom schemes, like set theory’s Axiom of Separation.

Proof trees are derived rules, built by putting rules together. This gives forwards
and backwards proof at the same time. Backwards proof is matching a goal with the
conclusion of a rule; the premises become the subgoals. Forwards proof is matching
theorems to the premises of a rule, making a new theorem.

Isabelle uses unification when joining rules. Higher-order unification is solving
equations in the typed λ-calculus with respect to α, β, and η-conversion. Unifying
f(x) with the constant A gives the two unifiers {f = λy.A} and {f = λy.y, x = A}.
Multiple unifiers are a reflection of ambiguity: the four unifiers of f(0) with P (0, 0)
reflect the four different ways that P (0, 0) can be regarded as depending upon 0.
Isabelle uses Huet’s unification procedure.

Logics are proliferating at an alarming rate; there are seven theorem provers de-
scended from Edinburgh lcf. With Isabelle, you need only specify the logic’s syntax
and rules. To go beyond proof checking, you can implement search procedures using
built-in tools. Isabelle consists of 4000 lines of Standard ML. On this base stand
object-logics such as Martin-Löf’s Type Theory, intuitionistic first-order logic, and
classical logic together with Zermelo-Fraenkel set theory.

Constructive Type Theory examples include the derivation of a choice principle
and simple number theory: proofs of commutative, associative, and distributive laws
for the arithmetic operations, culminating with (m mod n) + (m/n) × n = m.

For first-order logic, an automatic procedure can prove many theorems involving
quantifiers. The set theory examples include properties of union, intersection, and
Cartesian products. One example is a proof that the standard definition of ordered
pairs works: define (a, b) ≡ {{a}, {a, b}}; if (a, b) = (c, d) then a = c and b = d. Two
interesting properties of indexed intersection include

A ̸= ∅ & B ̸= ∅ →
⋂

(A ∪ B) = (
⋂

A) ∩ (
⋂

B)

C ̸= ∅ →
⋂

x∈C

(A(x) ∩ B(x)) = (
⋂

x∈C

A(x)) ∩ (
⋂

x∈C

B(x))
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(From a system description published at CADE-9 in 1988)

It was easy to derive a proof calculus of high-level rules 
for set theory, and prove many facts automatically:



The push for more power

F. J. Pelletier, Seventy-five Problems for Testing 
Automatic Theorem Provers, JAR 2 (1986), 191–216

The discovery that this automation could 
make a difference in real proof developments

… and that it was far inferior to 
even quite basic automatic provers …

led to the perusal of this paper:



Pelletier’s problem #43

Trivial? Not using sequent methods…

requires a reasonably sophisticated 
treatment of quantifiers



Time to try a good proof strategy?

M.E. Stickel. A Prolog technology theorem prover: 
implementation by an extended Prolog compiler. JAR 4 
(1988), 353–380

D.A. Plaisted. A sequent-style model elimination strategy 
and a positive refinement. JAR 6 (1990), 389–402



meson: The world’s slowest model 
elimination theorem prover (1992)

✤ An obscure Isabelle tactic, inspired by Stickel’s PTTP

✤ Runs on Isabelle’s “Prolog” engine (so no trust issues)

✤ Far better than naive methods for first-order logic

But not generic — pure FOL only — so a dead end… ?



Spinoffs from Isabelle’s ME tactic 

meson	
(1992) J Harrison’s 

MESON_TAC for HOL 
Light (1996)

J Hurd’s Metis 
resolution prover 

and HOL interface
(2002)

sledgehammer
(2007)

MetiTarski
(2009)



Cryptographic protocol verification

✤ Based on operational semantics

✤ Inductive definitions and proofs in Isabelle

✤ Rewriting with respect to a formal theory of messages

✤ … followed by first-order reasoning (mainly forward and 
backward chaining)

Painful proofs  
despite partial automation



… versus Ernie Cohen’s TAPS

✤ Automatic, deductive verification of crypto protocols!

✤ Couldn’t figure out how it worked except 

✤ everything was translated to FOL

✤ … and proved using SPASS!

E. Cohen. TAPS: A first-order verifier for cryptographic 
protocols. IEEE Comp. Security Foundations Workshop (2000).



The key to better automation??

prove((A,B),UnExp,Lits,FreeV,VarLim)	:-	!,	
				prove(A,[B|UnExp],Lits,FreeV,VarLim).	
prove((A;B),UnExp,Lits,FreeV,VarLim)	:-	!,	
				prove(A,UnExp,Lits,FreeV,VarLim),	
				prove(B,UnExp,Lits,FreeV,VarLim).	
prove(all(X,Fml),UnExp,Lits,FreeV,VarLim)	:-	!,	
				\+	length(FreeV,VarLim),	
				copy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),	
				append(UnExp,[all(X,Fml)],UnExp1),	
				prove(Fml1,UnExp1,Lits,[X1|FreeV],VarLim).	
prove(Lit,_,[L|Lits],_,_)	:-	
				(Lit	=	-Neg;	-Lit	=	Neg)	->	
				(unify(Neg,L);	prove(Lit,[],Lits,_,_)).	
prove(Lit,[Next|UnExp],Lits,FreeV,VarLim)	:-	
				prove(Next,UnExp,[Lit|Lits],FreeV,VarLim).	



leanTAP: simple; surprisingly good

B. Beckert & J. Posegga. leanTAP: Lean, tableau-based 
deduction. JAR 15 (1995), 339–358

It could prove Problem 43!

Could it be the inspiration for a better prover

… that was still generic?



The “blast” proof method (1998)

✤ Like leanTAP, but 1300 lines instead of 15

✤ Generic: forward and backward chaining without 
explicit quantifiers

✤ Runs in Standard ML; afterwards, successful proofs 
given to Isabelle’s “Prolog” engine

✤ Now central to Isabelle’s automation



But what about using real ATP 
in an interactive prover?

✤ Had been attempted many times (e.g. Ωmega, KIV)

✤ J Hurd: Integrating Gandalf and HOL (1999);  
Metis prover for the ordered paramodulation calculus

Joe Hurd. An LCF-style interface between HOL and first-
order logic. In A. Voronkov, editor, CADE-18 (2002), 134–138. 



Automation for interactive proof

Key technical problems

✤ usability for both 
novices and pros 

✤ not burying the ATPs

✤ higher-order & types

✤ trust issues 

Solutions

✓ 1-click invocation using 
all known facts

✓ relevance filtering

✓ a range of translations

✓ proof reconstruction



Sledgehammer: key points

completely recoded at Munich 
by Blanchette et al

now the main source of 
resolution problems

that old “meson” method is 
still used for reconstruction

Proofs are thrown away! 
(ATPs used as relevance filters)



One more thing…



Gödel’s incompleteness theorems

1. Every reasonable* formal calculus is incomplete: at least one 
formula can neither be proved nor disproved.

2. No reasonable formal system proves its own consistency.

*reasonable = consistent and capable of expressing a 
certain amount of elementary arithmetic



Stages of the proofs

✤ The syntax of a first-order 
theory is formalised: terms, 
formulas, substitution...

✤ A deductive calculus for sequents 
of the form Γ ⊦ α (typically for 
Peano arithmetic)

✤ Meta-theory to relate truth and 
provability. E.g. “all true Σ 
formulas are theorems”.   
(The set of Σ formulas is built 
using ∨ ∧ ∃ and bounded ∀.)

✤ A system of coding to formalise 
the calculus within itself. The 
code of α is a term, written ⌜α⌝.  

✤ Syntactic predicates to recognise 
codes of terms, substitution, 
axioms, etc.

✤ (and correctness proofs for them)

✤ Finally the provability predicate 
Pf, such that ⊦ α ⟺ ⊦ Pf ⌜α⌝.



First incompleteness theorem

✤ Construct δ to express “δ is not provable” (¬Pf ⌜ δ ⌝).

✤ It follows (provided the calculus is consistent) that neither δ nor its 
negation can be proved, and that δ is true.

✤ Need to show that substitution behaves like a function. 

✤ Requires a lengthy, low-level proof in the calculus 

✤ [… or other intricate calculations, to do with bounded quantifiers]



Second incompleteness theorem

✤ A crucial lemma! Proved by induction over the construction of α as a 
Σ formula.

✤ It requires generalising the statement above to allow the formula α to 
contain free variables.

✤ complex technicalities

✤ lengthy deductions in the formal calculus



Defining the deductive calculus

For substitution within a formula, we normally expect issues concerning
the capture of a bound variable. Note that the result of substituting the
term x for the variable i in the formula A is written A(i::=x).

nominal primrec subst fm :: "fm ) name ) tm ) fm"

where
Mem: "(Mem t u)(i::=x) = Mem (subst i x t) (subst i x u)"

| Eq: "(Eq t u)(i::=x) = Eq (subst i x t) (subst i x u)"

| Disj: "(Disj A B)(i::=x) = Disj (A(i::=x)) (B(i::=x))"

| Neg: "(Neg A)(i::=x) = Neg (A(i::=x))"

| Ex: "atom j ] (i, x) =) (Ex j A)(i::=x) = Ex j (A(i::=x))"

Substitution is again straightforward in the first four cases (membership,
equality, disjunction, negation). In the existential case, the precondition
atom j ] (i, x) (pronounced “j is fresh for i and x”) essentially says that
i and j must be di↵erent names with j not free in x. We do not need to
supply a mechanism for renaming the bound variable, as that is part of the
nominal framework, which in most cases will choose a su�ciently fresh bound
variable at the outset. The usual properties of substitution (commutativity,
for example) have simple proofs by induction on formulas. In contrast, ?)
needed to combine three substitution lemmas in a simultaneous proof by
induction, a delicate argument involving 1900 lines of Coq.

The HF proof system is an inductively defined predicate, where H ` A

means that the formula A is provable from the set of formulas H .

inductive hfthm :: "fm set ) fm ) bool" ( infixl "`" 55)

where
Hyp: "A 2 H =) H ` A"

| Extra: "H ` extra axiom"

| Bool: "A 2 boolean axioms =) H ` A"

| Eq: "A 2 equality axioms =) H ` A"

| Spec: "A 2 special axioms =) H ` A"

| HF: "A 2 HF axioms =) H ` A"

| Ind: "A 2 induction axioms =) H ` A"

| MP: "H ` A IMP B =) H’ ` A =) H [ H’ ` B"

| Exists: "H ` A IMP B =)
atom i ] B =) 8 C2H. atom i ] C =) H ` (Ex i A) IMP B"

Note that the existential rule is subject to the condition that the bound
variable, i, is fresh with respect to B and the formulas in H . The definitions
of boolean axioms, etc., are taken from ?). He formalised a simpler inference
system, with theorems of the form ` A, but introducing H allows a proof of
the deduction theorem and the derivation of a sort of sequent calculus. This
is essential if we are to conduct proofs in this formal calculus.
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Two dozen predicates formalising 
logical syntax

"Sigma fm A  ! (9 B. ss fm B & supp B ✓ supp A & {} ` A IFF B)"

The condition supp B ✓ supp A essentially means that every variable free in B

must also be free in A . After a certain amount of e↵ort, it is possible to derive
the expected properties of ⌃ formulas and ultimately to reach a key result based
on this concept:

theorem " [[Sigma fm A; ground fm A; eval fm e0 A ]] =) {} ` A"

If A is a true ⌃ sentence, then `A. This result reduces the task of proving
` A in the formal calculus to proving that A holds (written eval fm e0 A) in
Isabelle/HOL’s native higher-order logic.

2 The Isabelle/HOL proof development: The
coding of syntax.

The coding of terms, formulas, substitution, the HF axioms and ultimately the
provability predicate is straightforward to formalise. ?) and ?) present full
details. Many other authors prefer to simplify matters via repeated appeals
to Church’s thesis. Even the detailed presentations mentioned above omit any
demonstration that the definitions are correct. The proof formalisation condi-
tion for the provability predicate (written PfP below) is typically stated with a
minimum of justification:

theorem proved iff proved Pf: "{} ` ↵  ! {} ` PfP p↵q"

The interplay of these various points can be seen below:

definition MakeForm :: "hf ) hf ) hf ) bool"
where "MakeForm y u w ⌘

y = q Disj u w _ y = q Neg u _
(9 v u’. AbstForm v 0 u u’ ^ y = q Ex u’)"

Thus y is the code of a formula constructed from existing formulas u and v

provided y codes the disjunction u_v, the negation ¬u or the existential formula
9(u’), where u’ has been obtained by abstracting u over some variable, v. The
predicate AbstForm performs de Bruijn abstraction over a formula; its definition
is complicated, and omitted here. Note that the codes of quantified formulas do
not mention the names of bound variables.

This predicate is given by a higher-order logic formula, and therefore at the
level of the meta-theory. Working at this level eliminates the need to construct
HF proofs, and most of the correctness properties we need can be proved in
this manner. However, in order to perform the diagonalisation argument and
exhibit the undecidable formula, we need a version of every coding predicate as
an HF formula. Therefore, each predicate must be defined on both levels:

nominal primrec MakeFormP :: "tm ) tm ) tm ) fm"
where " [[atom v ] (y,u,w,au); atom au ] (y,u,w) ]] =)

MakeFormP y u w =
y EQ Q Disj u w OR y EQ Q Neg u OR
Ex v (Ex au (AbstFormP (Var v) Zero u (Var au) AND y EQ Q Ex (Var au)))"
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The “official” version as a formula, not a boolean



✤ We need a function K such that

✤ … but we have no function symbols. Instead, define a relation, KRP:

✤ Proving that it behaves like a function takes 600 formal proof steps.

✤ Finally, the diagonal lemma:

Steps to the first theorem

As we saw above in the definition of Subset, constraints are required on all
quantified variables. Here there are only two, but to define AbstForm requires
12 bound variables. The necessary declarations are lengthy and messy, and
put a heavy burden on the nominal package (proofs run very slowly), but the
alternative of having to rename explicit bound variables is also unattractive.

3 The Isabelle/HOL proof development: first
incompleteness theorem.

` K(p�q) = p�(p�q)q

lemma prove KRP: "{} ` KRP pVar iq pAq pA(i::=pAq)q"

The property of being single-valued is easily stated, but it is neither a sen-
tence nor a ⌃ formula. Proving this result requires about 600 lines of explicit
reasoning steps in the HF calculus, verifying that substitution over terms or
formulas yields a unique result.

lemma KRP unique: "{KRP v x y, KRP v x y’} ` y’ EQ y"

The diagonal lemma is now reached by the standard argument. The obtains
syntax represents a form of existential quantification, and is equivalent to 9 �....

lemma diagonal:
obtains � where "{} ` � IFF ↵(i::=p�q)" "supp � = supp ↵ - {atom i}"

The second part of the conclusion, namely supp � = supp ↵ - {atom i}, states
that the free variables of the formula � are those of ↵ with the exception of i ; it
is necessary in order to show that the undecidable formula is actually a sentence.

4 Issues involving the second incompleteness the-
orem.

My object in writing this paper is not to discuss the formalisation in general,
but to examine the specific consequences of basing the development on HF set
theory rather than Peano arithmetic. A further aim is to look at a crucial
step in the proof of the second incompleteness theorem that has been described
misleadingly, and arguably incorrectly, in other presentations.

It is well-known that the theorem follows easily from the Hilbert-Bernays
derivability conditions (?, p. 15), one of which is ` Pf (p�q) ! Pf (pPf (p�q)q).
This result is a consequence of the theorem

if ↵ is a ⌃ sentence, then ` ↵! Pf (p↵q), (3)

which can be proved by a tricky induction on the construction of ↵ as a strict
⌃ formula.

For this proof, the system of coding is extended to allow variables in codes.
If we regard variables as indexed by positive integers, then the variable xi is
normally coded by the term SUCCi(0), where SUCC(x) = x C x is the usual
successor function. Similarly, the formula x1 = x2 is normally coded by the
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theorem Goedel I:
assumes Con: "¬ {} ` Fls"
obtains � where "{} ` � IFF Neg (PfP p�q)"

"¬ {} ` �" "¬ {} ` Neg �"
"eval fm e �" "ground fm �"

proof -
obtain � where "{} ` � IFF Neg ((PfP (Var i))(i::=p�q))"

and [simp]: "supp � = supp (Neg (PfP (Var i))) - {atom i}"
by (metis SyntaxN.Neg diagonal)

hence diag: "{} ` � IFF Neg (PfP p�q)"
by simp

hence np: "¬ {} ` �"
by (metis Con Iff MP same Neg D proved iff proved Pf)

hence npn: "¬ {} ` Neg �" using diag
by (metis Iff MP same NegNeg D Neg cong proved iff proved Pf)

moreover have "eval fm e �" using hfthm sound [where e=e, OF diag]
by simp (metis Pf quot imp is proved np)

moreover have "ground fm �"
by (auto simp: ground fm aux def)

ultimately show ?thesis
by (metis diag np npn that)

qed

Figure 1: Proof of the first incompleteness theorem

term hp=q, px1q, px2qi. If variables are preserved rather than coded, we instead
get the term hp=q, x1, x2i. In general, b↵cV designates the coding of ↵ where
all variables from the set V are preserved as variables in the result, while all
other variables are coded by constant terms. ?) calls this pseudo-coding.

Suppose that we can define in HF a function Q such that

Q(0) = p0q = 0 (4)
Q(x C y) = hpCq, Q(x), Q(y)i (5)

Therefore, Q(x) = ptq, where t is some canonical term denoting the set x.1
Suppose that ↵ is a formula whose set of free variables is V = {x1, . . . , xn}.
Given the theorem ` ↵, obtain ` Pf (p↵q) by the proof formalisation condition,
then successively replace xi by Q(xi), for i = 1, . . . , n. The replacements are
possible because the HF calculus includes a rule to substitute a term t for a
variable x in the formula �:

H ` �

H ` �(x/t)

Performing the replacements requires the analogue of this substitution rule as
encoded in the provability predicate, Pf . For example, we can obtain the fol-

1?) introduces a total ordering on HF to make this possible, as discussed below.

5
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Steps to the Second Theorem

✤ Coding must be generalised to allow variables in codes.

✤ ⌜x ◁ y⌝ =  〈⌜◁⌝, ⌜x⌝, ⌜y⌝〉 

✤ ⎣x ◁ y⎦V = 〈⌜◁⌝, x, y〉 

✤ Variable renaming is needed, with the aim of creating “pseudo-
terms” like 〈⌜◁⌝, Q x, Q y〉.

✤ Q is a magic “name of” function: Q x = ⌜t⌝ where t is some canonical 
term denoting the set x.

codes of variables 
are integers



One of the Final Lemmas

assumption QR(x, x
0)) it can be shown to contain no variables. This reasoning

is straightforward enough to conduct formally in the HF calculus.
This may seem to be a small detail, but as can be seen, it is not di�cult to

explain correctly. One could argue that the correct version is actually simpler
to explain than the traditional version involving the pseudo-function Q: the
notation b↵cV (Q) is no longer necessary. Eliminating the pseudo-functions
from the presentation actually simplifies it.

This is not the place to describe in detail how the proofs outlined above
were mechanised using Isabelle/HOL. Briefly, the nominal package was used to
manage the task of generating new variable names, but the details were very
intricate.

5 Issues connected with the use of HF sets.

The motivation for using hereditarily finite sets rather than Peano arithmetic
is that it allows more natural and simpler proofs. But it appears to complicate
the definition of the function Q(x) mentioned above, which is needed to prove
both incompleteness theorems. In PA, the analogous function is trivial to define:
there is only one way to write a natural number in the form SUCCi(0).

?) eliminates the ambiguity implicit in (5) above by appealing to a total
ordering, <, on the HF universe. The di�culty is how to define this ordering
within the HF calculus. Świerczkowski develops the theory, including a defini-
tion by recursion on the rank of a set, but it does not look easy to formalise
in HF. Another approach is to define the function f : HA ! N such that
f(x) =

P
{2f(y) | y 2 x}. Then we can define x < y () f(x) < f(y). Again,

the e↵ort to formalise this theory in HF may be simpler than that needed to
formalise the Chinese remainder theorem, but it is still considerable.

QR(x, x
0),QR(y, y

0) ` x 2 y ! Pf bx0 2 y
0c{x0,y0}

QR(x, x
0),QR(y, y

0) ` x ✓ y ! Pf bx0 ✓ y
0c{x0,y0}

QR(x, x
0),QR(y, y

0) ` x = y ! Pf bx0 = y
0c{x0,y0}

z 2 ; () ?
z 2 x C y () z 2 x _ z = y

; ✓ z () >
x C y ✓ z () x ✓ z ^ y 2 z

x = y () x ✓ y ^ y ✓ x

The point of all this is that (??) and (??) can be proved by a simultaneous
induction:

QR(x, x
0),QR(y, y

0) ` (x 2 y ! Pf bx0 2 y
0c{x0,y0}) ^ (x ✓ y ! Pf bx0 ✓ y

0c{x0,y0})

The induction is on the sum of the lengths of the derivations of QR(x, x
0) and

QR(y, y
0). Like most of the syntactic predicates used in the incompleteness

theorems, QR(x, x
0) is defined to hold provided there exist k and s such that s

7

✤ The first two require simultaneous induction, yielding the third.

✤ Similar proofs for the symbols ∨ ∧ ∃ and bounded ∀.

✤ The proof in the formal predicate calculus needs under 450 lines.



is a k-element sequence representing the conditions (4) and (5). Induction on
the sum of the lengths allows us to prove

x 2 y ! Pf bx0 2 y
0c{x0,y0}

by case analysis on the form of y, while proving

x ✓ y ! Pf bx0 ✓ y
0c{x0,y0}

by case analysis on the form of x. One case of the reasoning is as follows:

x1 C x2 ✓ y () x1 ✓ y ^ x2 2 y

=) Pf bx0
1 ✓ y

0c{x0
1,y0} ^ Pf bx0

2 2 y
0c{x0

2,y0}

() Pf bx0
1 C x

0
2 ✓ y

0c{x0
1,x0

2,y0}

theorem Goedel II:
assumes Con: "¬ {} ` Fls"

shows "¬ {} ` Neg (PfP pFlsq)"
proof -

from Con Goedel I obtain �
where diag: "{} ` � IFF Neg (PfP p�q)" "¬ {} ` �"

and gnd: "ground fm �"
by metis

have "{PfP p�q} ` PfP pPfP p�qq"
by (auto simp: Provability ground fm aux def supp conv fresh)

moreover have "{PfP p�q} ` PfP pNeg (PfP p�q)q"
apply (rule MonPon PfP implies PfP [OF gnd])
apply (auto simp: ground fm aux def supp conv fresh) using diag
by (metis Assume ContraProve Iff MP left Iff MP left’ Neg Neg iff)

moreover have "ground fm (PfP p�q)"
by (auto simp: ground fm aux def supp conv fresh)

ultimately have "{PfP p�q} ` PfP pFlsq" using PfP quot contra
by (metis (no types) anti deduction cut2)

thus "¬ {} ` Neg (PfP pFlsq)"
by (metis Iff MP2 same Neg mono cut1 diag)

qed
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come from sledgehammer!



Where are we now?

we can use automation from 
the world’s best ATPs

it’s frequently successful, 
returning surprising proofs

Jordan curve theorem, 
Cauchy’s integral formula

no longer need to understand the material,  
e.g. while porting 50,000 lines of HOL Light 



What’s still needed?

✤ combined first-order logic + arithmetic reasoning

✤ automatic suggestions for parts of proofs 

✤ higher-order reasoning



From this… 



… to this!



Essential contributors

Tobias Nipkow

Strategic direction
✤ type system
✤ simplifier
✤ countless projects

Makarius Wenzel

✤ type classes
✤ structured proofs
✤ user interfaces
✤ multicore tech

Financial support from the UK’s EPSRC



Thank You!


