The Reflection Theorem Formalizing Meta-Theoretic Reasoning

> Lawrence C. Paulson Computer Laboratory

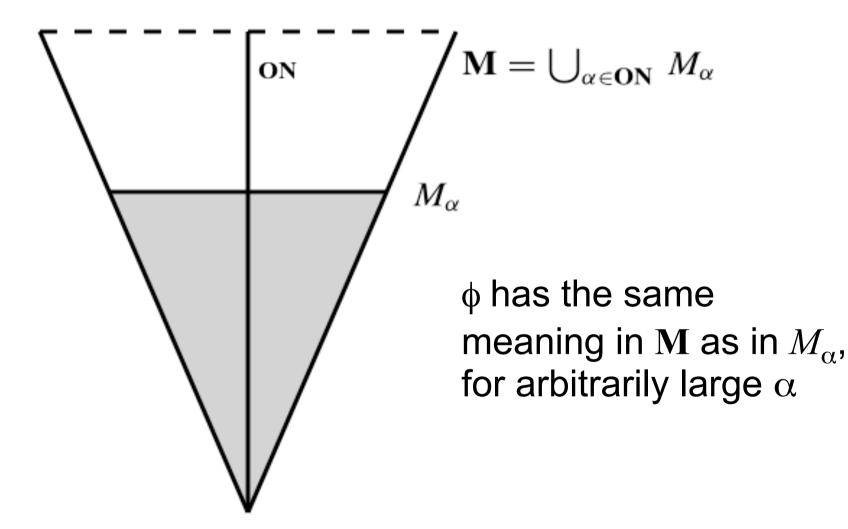
Lecture Overview

- Motivation for the Reflection Theorem
- Proving the Theorem in Isabelle
- Applying the Reflection Theorem

Why Do Proofs By Machine?

- *Claim*: too many been done already!
 - Gödel's incompleteness theorem (Shankar)
 - thousands of Mizar proofs
- *Reply*: many types of reasoning are hard to formalize.
 - Algebraic structures (e.g. group theory)
 - Meta-level reasoning (e.g. about own proof)

Idea of the Reflection Theorem



The Reflection Theorem

Define the class $\mathbf{M} = \bigcup_{\alpha \in \mathbf{ON}} M_{\alpha}$

where $\{M_{\alpha}\}$ is a monotonic and continuous family of sets.

For each formula $\phi(x_1, \ldots, x_n)$ there are arbitrarily large ordinals α such that ϕ holds in **M** iff ϕ holds in M_{α}

Why is it Hard to Formalize?

- " ϕ holds in **M**" is not definable in ZF!
 - Because \mathbf{M} is a proper class
 - Tarski: the nondefinability of truth
- ϕ could take any number of arguments
- There is a different proof for each ϕ
 - Reflection is a meta-theorem
 - … and not a theorem scheme

Must Define Truth Syntactically

$$(x = y)^{\mathbf{M}} \mapsto x = y$$

$$(x \in y)^{\mathbf{M}} \mapsto x \in y$$

$$(\phi \land \psi)^{\mathbf{M}} \mapsto \phi^{\mathbf{M}} \land \psi^{\mathbf{M}}$$

$$(\neg \phi)^{\mathbf{M}} \mapsto \neg (\phi^{\mathbf{M}})$$

$$(\exists x \phi)^{\mathbf{M}} \mapsto \exists x (x \in \mathbf{M} \land \phi^{\mathbf{M}})$$

The *relativization* of ϕ to **M**

Lecture Overview

- Motivation for the Reflection Theorem
- Proving the Theorem in Isabelle
- Applying the Reflection Theorem

Isabelle/ZF

- Same code base as Isabelle/HOL
- Higher-order metalogic, ideal for
 - Theorem schemes
 - Classes
 - Class functions

• Develops set theory from the Zermelo-Fraenkel axioms to transfinite cardinals

Proving the Reflection Theorem in Isabelle/ZF

- Use a clean proof from Mostowski, 1969
 - closed unbounded classes of ordinals
 - normal functions (continuous, increasing)
- One lemma for each logical connective
- Isabelle automatically uses the lemmas to prove *instances* of the theorem

Closed/Unbounded Classes

- Closed means closed under unions (limits) of ordinals
- If M, N are C.U. then so is $M \cap N$
- The fixedpoints of a continuous, increasing function form a C.U. class
- E.g. the many solutions of $\aleph_{\alpha} = \alpha$

Essence of Proof

- "Skolemize" each ∃ quantifier, obtaining a normal function, F
 - The fixedpoints of *F* give the desired class of ordinals
- For $\phi \land \psi$ simply intersect the classes
- Negation and atomic cases are trivial

Lecture Overview

- Motivation for the Reflection Theorem
- Proving the Theorem in Isabelle
- Applying the Reflection Theorem

The Axiom of Choice and the Generalized Continuum Hypothesis

- Gödel (1940) proved them consistent with set theory
 - A deep and important theorem
 - Addressed Hilbert's First Problem
- Modern treatments (in ZF) require the Reflection theorem

Sketch of Gödel's Proof

- Define the constructible universe, L
 - $-L_{\alpha+1}$ adds subsets that can be defined from existing elements (in L_{α}) by a formula
 - -L contains only sets that must exist
- Show that ${\bf L}$ satisfies the ZF axioms
 - Comprehension uses Reflection Theorem: ϕ holds in L iff ϕ holds in some L_{α}
- Show that ${\bf L}$ satisfies AC and GCH

Showing That L "Thinks" All Sets are Constructible

- Amounts to showing that the construction of L is idempotent
- Relies on the concept of *absoluteness*:
 - φ is absolute if it's preserved in all models
 - Not absolute: powersets, function spaces, transfinite cardinals
- Requires analysing L's definition down to the last detail

Applying Reflection to ${\bf L}$

- Define a ZF datatype of FOL formulas
- Define a vocabulary for Reflection
 - No function symbols; purely relational!
 - All concepts from the empty set to "constructible"
 - Repeat for the formula datatype
- For each instance of Comprehension, prove an instance of Reflection (automatically)
- Giant terms describe the classes of ordinals

Finish the Consistency Proof?

- Gödel, 1940: *if a contradiction from AC and GCH could be derived, it could be transformed into a contradiction from the axioms of set theory alone.*
- Theorem statement lies outside the language of set theory!
- It is an even better example of metatheoretic reasoning.