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A special final coalgebra theorem, in the style of Aczel (1988), is proved within standard
Zermelo-Fraenkel set theory. Aczel’s Anti-Foundation Axiom is replaced by a variant definition of
function that admits non-well-founded constructions. Variant ordered pairs and tuples, of possibly
infinite length, are special cases of variant functions. Analogues of Aczel’s solution and substitution
lemmas are proved in the style of Rutten and Turi (1993). The approach is less general than Aczel’s,
but the treatment of non-well-founded objects is simple and concrete. The final coalgebra of a
functor is its greatest fixedpoint.
Compared with previous work (Paulson, 1995a), iterated substitutions and solutions are considered,
as well as final coalgebras defined with respect to parameters. The disjoint sum construction is
replaced by a smoother treatment of urelements that simplifies many of the derivations.
The theory facilitates machine implementation of recursive definitions by letting both inductive and
coinductive definitions be represented as fixedpoints. It has already been applied to the theorem
prover Isabelle (Paulson, 1994).
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1. Introduction

A recurring issue in theoretical computer science is the treatment of infinite computations. One
important approach is based upon the final coalgebra. This category-theoretic notion relates to the
methods of bisimulation and coinduction, which are heavily used in concurrency theory (Milner,
1989), functional programming (Abramsky, 1990) and operational semantics (Milner and Tofte,
1991).

Aczel and Mendler (1989) and also Barr (1993) have proved that final coalgebras exist in
set theory for large classes of naturally occurring functors. This might be supposed to satisfy
most people’s requirements. But Aczel (1988) has argued the case for a non-standard set the-
ory in which infinite computations, and other non-well-founded phenomena, can be modelled
directly. He proposes to replace set theory’s Foundation Axiom (FA) by an Anti-Foundation
Axiom (AFA) that guarantees the existence of solutions tox = {x} and more generally of all
systems of equations of the formxi = {xi , xj , . . . }. His general final coalgebra theorem serves
as a model construction to justify AFA.

Under AFA, a suitable functorF does not merely have a final coalgebra. That final coalgebra
equalsF ’s greatest fixedpoint. This is the natural dual of the theorem that a functor’s initial
algebra is its least fixedpoint. These fixedpoints are exact, not up to isomorphism.

The elements of the final coalgebra are easily visualized. For instance, the functorA × −
(the functorF such thatF(Z) = A× Z on objects) yields the set of streams overA. The final
coalgebra is also the greatest solution ofS= A× S. If s ∈ S then

s= 〈a1, s1〉, s1 = 〈a2, s2〉, s2 = 〈a3, s3〉, . . . ;

thuss is the infinite stream〈a1, 〈a2, 〈a3, . . . 〉〉〉.
In standard set theory, FA outlaws infinite descents under the membership relation. Under the

standard definition of ordered pair, we haveb ∈ {a,b} ∈ 〈a,b〉. Infinitely nested pairs such
ass above would create infinite∈-descents, and therefore do not exist: the greatest fixedpoint of
A×− is the empty set. This is not the final coalgebra (which does exist).

The approach proposed in this paper is not to change the axiom system but to adopt new
definitions of ordered pairs, functions, and derived concepts such as Cartesian products. Under
the new definitions, the stream functor’s final coalgebra is indeed its (exact) greatest fixedpoint
and each stream is an infinite nest of pairs. Recursion equations are solved up to equality.

The approach handles non-well-founded tuples, and more generally ordered structures. But it
does not model true non-well-founded sets, such as solutions ofx = {x}. It does not work for the
powerset functor, even with cardinality restrictions. Ironically, the approach requires FA.

Outline. The strategy is to construct a final coalgebraU , which plays the same role as the uni-
verse (V) under AFA. Then we can re-play the categorical proofs of Rutten and Turi (1993),
generalizing them along the way. Section 2 presents basic motivation—Quine’s ordered pairs
and their generalization to functions—and proves some lemmas about the cumulative hierarchy,
Vα. Section 3 defines the functorQ and its greatest fixedpointU and proves thatU is a final
Q-coalgebra. Section 4 proves the solution and substitution lemmas for set equations and the
special final coalgebra theorem. Section 5 discusses functors that are (or are not!) uniform on
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maps. Section 6 considers final coalgebra definitions that take parameters. Section 7 discusses
applications of the theory to machine proof. Section 8 presents conclusions.

2. An Alternative Definition of Pairs and Functions

Let us begin with informal motivation based on the work of Quine. The following section will
make formal definitions.

2.1. Quine’s Ordered Pairs

In ZF set theory, the ordered pair〈a,b〉 is usually defined to be{{a}, {a,b}}. The rank of〈a,b〉 is
therefore two levels above those ofa andb; there are no solutions tob = 〈a,b〉. Quine (1966) has
proposed a definition of ordered pair that need not entail an increase of rank. Quine’s definition
is complicated because (amongst other things) it avoids using standard ordered pairs. Retaining
standard pairs lets us define Quine-like ordered pairs easily.

Let 〈a,b〉 denote the standard ordered pair ofa and b. Let tuples of any length consist of
ordered pairs nested to the right; thus〈a1, . . . ,an〉 abbreviates〈a1, . . . , 〈an−1,an〉〉 for n > 2.
Let A× B denote the standard Cartesian product{〈a,b〉 | a ∈ A∧ b ∈ B}.

Define the variant ordered pair,〈a;b〉 by

〈a;b〉 ≡ ({0} × a) ∪ ({1} × b).

Note that〈a;b〉 is justa+ b, the disjoint sum ofa andb (in set theory, everything is a set). The
new pairing operator is obviously injective, which is a key requirement. Also, it admits non-well-
founded constructions: we have〈0;0〉 = 0 for a start. (As usual in set theory, the number zero is
the empty set.)

The set equation〈A; z〉 = z has a unique solutionz, consisting of every (standard!) tuple of
the form〈1, . . . ,1,0, x〉 for x ∈ A. The infinite stream

〈A0; A1; . . . ; An; . . . 〉
is the set of all standard tuples of the form

〈1, . . . ,1︸ ︷︷ ︸
n

,0, x〉

for n < ω andx ∈ An. Now 〈a;b〉 is continuous ina andb, in the sense that it preserves arbitrary
unions; thus fixedpoint methods can solve recursion equations involving variant tupling.

Variant pairs can be generalized to a variant notion of function:

λ̃x∈Abx ≡
⋃
x∈A

{x} × bx

Note thatλ̃x∈Abx is just6x∈Abx, the disjoint sum of a family of sets. Also note that〈b0;b1〉 is
the special casẽλi∈2bi , since 2= {0,1}. Replacing 2 by larger ordinals such asω gives us a
means of representing infinite sequences. More generally, non-standard functions can represent
infinite collections that have non-well-founded elements.

Variant functions are not graphs. Merely replacing〈x,bx〉 by 〈x;bx〉 in the usual definition
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of function, obtaining{〈x;bx〉 | x ∈ A}, would not suffice. It still yields only well-founded
constructions because the rank of such a set exceeds the rank of everybx. For example, ifb =
{〈0;b〉} then{1} × b ∈ b, violating FA; thusb = {〈0;b〉} has no solution.

Application of variant functions is expressed using the image operator “. It is easy to check
that(λ̃x∈Abx) “ {a} = ba if a ∈ A. Also if R is a relation with domainA, thenR= λ̃x∈A R“ {x}.
Every standard relation is a variant function, and vice versa. The set

{ f ⊆ A×
⋃

B | ∀x∈A f “ {x} ∈ B}
consists of all variant functions fromA to B and will serve as our definition of variant function
space,A →̃ B.

Sinceλ̃x∈Abx is not the function’s graph, it does not determine the function’s domain. For
instance,̃λx∈A0 = A× 0 = 0. Clearlyλ̃x∈A0 = λ̃x∈B0 for all A andB. If 0 ∈ B then A →̃ B
will contain both total and partial functions: applying a variant function to an argument outside
its domain yields 0.

2.2. Basic Definitions

Once we have defined the variant pairs and functions, we can substitute them in the standard
definitions of Cartesian product, disjoint sum and function space. The resulting variant operators
are decorated by a tilde:̃×, +̃, →̃, etc. Having both standard and variant operators is the simplest
way of developing the theory. The standard operators relate the new concepts to standard set
theory and they remain useful for defining well-founded constructions. But the duplication of
operators may seem inelegant, and it introduces the risk of using the wrong one.

Definition 2.1.Thevariant ordered pair〈a;b〉 is defined by

〈a;b〉 ≡ ({0} × a) ∪ ({1} × b).

If {bx}x∈A is anA-indexed family of sets then thevariant functionλ̃x∈Abx is defined by

λ̃x∈Abx ≡
⋃
x∈A

{x} × bx

Thevariant Cartesian product, disjoint sumandpartial function spacebetween two setsA andB
are defined by

A ×̃ B ≡ {〈x; y〉 | x ∈ A∧ y ∈ B}
A +̃ B ≡ ({1} ×̃ A) ∪ ({〈1;1〉} ×̃ B)

A →̃ B ≡ { f ⊆ A×
⋃

B | ∀x∈A f “ {x} ∈ B}
The operators̃× and→̃ can be generalized to a family of sets as usual.

Definition 2.2. If {Bx}x∈A is anA-indexed family of sets then theirvariant sumandproductare
defined by ∑̃

x∈A

Bx ≡ {〈x; y〉 | x ∈ A∧ y ∈ Bx}∏̃
x∈A

Bx ≡ { f ⊆ A× (
⋃
x∈A

⋃
Bx) | ∀x∈A f “ {x} ∈ Bx}
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2.3. The Role of Atoms

A first attempt at exploiting these definitions is to fix an index setI and solve the equation
U = I →̃ U . There is at least one solution, namelyU = {0}, sinceλ̃i∈I 0 = 0. But we cannot
build up variant tuples starting from 0 as we can construct the distinct sets{0}, {0, {0}}, . . . . A
variant tuple whose components are all the empty set is itself the empty set.

SinceI →̃0= 0 if I 6= 0, one possible solution toU = I →̃U is U = 0. Also I →̃{0} = {0}.
As it happens,U = {0} is the greatest solution.

Proposition 2.3.If U = I →̃U thenU = 0 orU = {0}.
Proof. Suppose not, for contradiction. ThenU contains a non-empty element; there existy0

andx0 with y0 ∈ x0 ∈ U . By the definition of→̃ it follows that y0 = 〈i, y1〉 wherei ∈ I and
y1 ∈ x1 ∈ U for somex1. Repeating this argument yields the infinite∈-descenty0 = 〈i, y1〉,
y1 = 〈i, y2〉, y2 = 〈i, y3〉, . . . , contradicting FA. ut

If tuples are to get built up, we must start with some atoms. To keep the atoms distinct from
the variant tuples, each atom should contain some element that is not a (standard) pair. My
earlier work (Paulson, 1995a) regarded one atom as sufficient, choosing 1 since 1= {0} and the
empty set is not a pair. It presented a final coalgebra theorem based upon the greatest solution of
U = {1} ∪ (I →̃U ). The subsequent development closely followed Rutten and Turi (1993).

Aczel relies on urelements, as do other researchers (Moss and Danner, 1997), to formulate
key results such as the solution lemma. He justifies this ‘expanded universe’ by a disjoint sum
construction (Aczel, 1988, page 16), which Rutten and Turi (1993) neatly express as the great-
est solution ofVX = P(X + VX). However, they take this as the definition ofVX , replacing
the expanded universe by its disjoint sum model. Abandoning urelements has many drawbacks.
Desirable properties such asV ⊆ VX andVX × VX ⊆ VX fail, requiring the frequent use of
embeddings.

A more streamlined approach is to incorporate an arbitrary setX of atoms into the construc-
tion. The final coalgebraUX is the greatest solution ofUX = Atoms(X) ∪ {1} ∪ (I →̃ UX),
where Atoms(X) is a suitable injection. These atoms are analogous to urelements, just asUX is
analogous toVX , but we always work in standard ZF. The solution and substitution lemmas can
be generalized to allow more than one set of indeterminates: we often work withUX andUY,
where possiblyY = 0, and writeU0 asU .

2.4. Basic Properties of the Cumulative Hierarchy

The following results are needed to prove closure and uniqueness properties in Sect. 3. Letα, β
range over ordinals andλ, µ over limit ordinals. Thecumulative hierarchyof sets is traditionally
defined by cases:V0 = 0, Vα+1 = P(Vα), and ifµ is a limit ordinal,Vµ =

⋃
α<µ Vα. More

convenient is the equivalent definition

Vα ≡
⋃
β<α

P(Vβ).

Kunen (1980), Chapter III, is useful background reading; he writesR(α) for Vα. Here are some
well-known facts.
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Lemma 2.4.If α is an ordinal andµ is a limit ordinal then

α ⊆ Vα

Vα × Vα ⊆ Vα+2

Vµ × Vµ ⊆ Vµ

Vµ + Vµ ⊆ Vµ

The setVµ is closed under the formation of variant tuples and functions.

Lemma 2.5.If A ⊆ Vµ andbx ⊆ Vµ for all x ∈ A thenλ̃x∈Abx ⊆ Vµ.

Proof.This follows by the definition of̃λ, monotonicity and the facts noted above:

λ̃x∈Abx =
⋃
x∈A

{x} × bx ⊆
⋃

x∈Vµ

{x} × Vµ ⊆ Vµ × Vµ ⊆ Vµ

ut
ThusVµ+1 has closure properties for variant products and sums analogous to those ofVµ for

standard products and sums. It is even closed under variant function space.

Lemma 2.6.Letµ be a limit ordinal.

(a) If A ⊆ Vµ thenA →̃ Vµ+1 ⊆ Vµ+1.
(b) Vµ+1 ×̃ Vµ+1 ⊆ Vµ+1.
(c) Vµ+1 +̃ Vµ+1 ⊆ Vµ+1.

Proof.Obvious by the definitions and the previous lemma. ut
These results will allow application of the Knaster-Tarski fixedpoint theorem to construct a

final coalgebra. The next group of results will be used in the uniqueness proof.

Lemma 2.7.If A∩ Vα ⊆ B for every ordinalα thenA ⊆ B.

Proof.By the Foundation Axiom,V =⋃α Vα, whereV is the universal class. ThusA =⋃α(A∩
Vα). If A∩ Vα ⊆ B for all α then

⋃
α(A∩ Vα) ⊆ B and the result follows. ut

Using this lemma requires some facts about intersection withVα.

Definition 2.8.A set A is transitiveif A ⊆ P(A).
Lemma 2.9.Vα is transitive for every ordinalα.

Proof.See Kunen (1980), page 95. ut
Now we can go down the cumulative hierarchy as well as up.

Lemma 2.10.If 〈a,b〉 ∈ Vα+1 thena ∈ Vα andb ∈ Vα.

Proof.Suppose〈a,b〉 ∈ Vα+1; this is equivalent to{{a}, {a,b}} ∈ P(Vα). Thus{a,b} ∈ Vα and
sinceVα is transitive{a,b} ⊆ Vα. ut
Lemma 2.11.If {bx}x∈A is anA-indexed family of sets then

(a) (λ̃x∈Abx) ∩ Vα+1 ⊆ λ̃x∈A(bx ∩ Vα)
(b) (λ̃x∈Abx) ∩ Vα ⊆

⋃
β<α λ̃x∈A(bx ∩ Vβ)
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Proof.For (a) we have, by the previous lemma,

(λ̃x∈Abx) ∩ Vα+1 = {〈x, y〉 | x ∈ A∧ y ∈ bx} ∩ Vα+1

⊆ {〈x, y〉 | x ∈ A∧ y ∈ bx ∧ y ∈ Vα}
= λ̃x∈A(bx ∩ Vα).

For (b) we have, by the definition ofVα and properties of unions,

(λ̃x∈Abx) ∩ Vα = (λ̃x∈Abx) ∩
⋃
β<α

P(Vβ)

=
⋃
β<α

(λ̃x∈Abx) ∩ Vβ+1

⊆
⋃
β<α

λ̃x∈A(bx ∩ Vβ).

The last step is by (a) above. ut

3. A Final Coalgebra

Rutten and Turi (1993), an excellent survey of final semantics, includes a categorical presentation
of Aczel’s main results. Working in the superlarge category of classes and maps between classes,
they note that FA is equivalent to ‘V is an initialP-algebra’ while AFA is equivalent to ‘V is
a finalP-coalgebra.’ Put in this way, AFA certainly looks more attractive than the other anti-
foundation axioms.

The present treatment of final semantics takes theirs as a starting point. Instead of assuming
that V is a finalP-coalgebra, we can define a functorQI , where I is an arbitrary index set,
and construct a finalQI -coalgebra, calledU I , and obtain generalized forms of the solution and
substitution lemmas. We finally arrive at the special final coalgebra theorem.

We shall work not in the category of classes but in the usual categorySetof sets, which has
standard functions as maps. While the former category allows certain statements to be expressed
succinctly, it also requires numerous technical lemmas concerning set-based maps, etc. From the
standpoint of mechanized proof, one must also bear in mind that classes have no formal existence
under the ZF axioms, and class maps are two removes from existence.

3.1. The BifunctorQ and the SetUX

Let I be an index set, which will remain fixed throughout the paper. A typical choice forI would
be some limit ordinal such asω. Note thatω →̃ A contains allω-sequences overA; we shall find
thatUω contains allω-sequences over itself. Moreover, finite sequences can be represented by
ω-sequences containing infinitely many 0s, because 0∈ U I (see remark 3.7 below).

Incorporating atoms (urelements) requires an injection whose range is disjoint from allI -
sequences. It suffices to include an element that is not a (standard) pair in its result, since every
variant function is a standard relation.
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Definition 3.1.The operators atm and Atoms are given by

atm(x) ≡ {2} ∪ ({0} × x)

Atoms(X) ≡ {atm(x) | x ∈ X}.
Much is arbitrary in the definition of atm, but it is clearly injective, and atm(x) is never a

standard relation. Moreover, atm(x) 6= 1. The next step is to define the bifunctorQI
X(Y), where

I is fixed andX andY are sets. The intuition is thatQI
X(Y) includes a copy ofX (the atoms)

and also includesI -sequences overY. It also includes the element 1 to start things off, in case
X = 0 (recall prop. 2.3). Its effect on a pair of maps is to apply one to the atoms and the other to
the sequence elements.

Definition 3.2.The bifunctorQI
X : Set× Set→ Set is defined on objects by

QI
X(Y) ≡ Atoms(X) ∪ {1} ∪ (I →̃ Y)

and on maps as follows. Iff : X → X′ andg : Y → Y′ thenQI
f (g) : QI

X(Y) → QI
X′(Y

′)
satisfies

QI
f (g)(atm(x)) ≡ atm( f (x)) for x ∈ X

QI
f (g)(1) ≡ 1

QI
f (g)(λ̃i∈I yi ) ≡ λ̃i∈I g(yi ).

Also,QX(g) abbreviatesQidX (g).

It is easy to check that the functor preserves the identity map and composition. The next step
is to define a setU I

X to be the greatest solution ofU I
X = QI

X(U
I
X) and prove thatU I

X is a final
QI

X-coalgebra. SinceU I
X = Atoms(X) ∪ {1} ∪ (I →̃U I

X) we may regard the elements ofU I
X as

nestedI -indexed tuples built up from 1, with further atoms fromX.
To solveU I

X = QI
X(U

I
X) we may apply the Knaster-Tarski fixedpoint theorem. This gives an

explicit definition.

Definition 3.3.Letµ be a limit ordinal such thatI ⊆ Vµ andX ⊆ Vµ+1. Then

U I
X ≡

⋃
{Z | Z ⊆ QI

X(Z) ∧ Z ⊆ Vµ+1}.
Henceforth let us regardI as fixed and drop the superscripts. The next two results indicate that
UX really is a fixedpoint ofQX , in fact the greatest post-fixedpoint. This justifies proof by co-
induction onUX . The second result also confirms that the choice of the ordinalµ does not matter,
provided it is at least the minimum specified.

For the remainder of this section, assumeX ⊆ Vµ+1.

Lemma 3.4.Atoms(X) ⊆ Vµ+1.

Proof. If x ∈ X thenx ⊆ Vµ, and{2} ∪ ({0} × x) ⊆ Vµ by lemma 2.4. So atm(x) ∈ Vµ+1. ut
Proposition 3.5.UX = QX(UX).

Proof.Lemmas 2.6 and 3.4 imply thatQX(Vµ+1) ⊆ Vµ+1. SoQX is an operator over the pow-
erset ofVµ, and it is clearly monotone. The result follows by the Knaster-Tarski theorem.ut
Proposition 3.6.If Z ⊆ QX(Z) thenZ ⊆ UX .
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Proof.The result follows by the definition ofUX if we can establishZ ⊆ Vµ+1. By lemma 2.7 it
suffices to prove∀z∈Z z∩ Vα ⊆ Vµ for all α. Proceed by transfinite induction on the ordinalα.

Let z ∈ Z. Thenz ∈ QX(Z) = Atoms(X) ∪ {1} ∪ (I →̃ Z). The casez = 1 is trivial, and if
z ∈ Atoms(X) thenz ⊆ Vµ by lemma 3.4. So we may assumez = λ̃i∈I zi , with zi ∈ Z for all
i ∈ I . In this case we have

(λ̃i∈I zi ) ∩ Vα ⊆
⋃
β<α

λ̃i∈I (zi ∩ Vβ)

⊆
⋃
β<α

λ̃i∈I Vµ

⊆ Vµ

by lemma 2.11, the induction hypothesis forzi and lemma 2.5. Sincez∩ Vα ⊆ Vµ for all α we
havez⊆ Vµ for all z ∈ Z. This establishesZ ⊆ Vµ+1. ut
Remark 3.7. Using this result, we can check thatUX is nontrivial. Clearly 0∈ UX because
{0} = I →̃ {0} ⊆ QX({0}). We also have inclusions such as{0,1} ∪ (I →̃ {0,1}) ⊆ UX .

3.2. UX is a FinalQX-Coalgebra

Proving thatUX is a finalQX-coalgebra requires showing that for every mapf : A→ QX(A)
there is a unique mapπ : A→ UX such thatπ = QX(π) ◦ f :

A
π - UX

QX(A)

f

?

QX(π)

- QX(UX)

wwwwwwwwww
For the remainder of this section, let the setA and the mapf : A→ QX(A) be fixed.

Lemma 3.8.There existsπ : A→ UX such thatπ(a) = QX(π)( f (a)) for all a ∈ A.

Proof. The functionπ is defined byπ(a) ≡ ⋃
n<ω πn(a), where{πn}n<ω is a monotonically

increasing series of functions:

π0(a) ≡ 0

πn+1(a) ≡ QX(πn)( f (a))

Supposea ∈ A, and considerπ(a) = QX(π)( f (a)) by cases. If f (a) = 1 or f (a) ∈
Atoms(X) then the equation reduces tof (a) = f (a). If f (a) = λ̃i∈I ai then simple continuity
reasoning establishes the equation:

π(a) =
⋃
n<ω

πn(a) =
⋃
n<ω

πn+1(a)

=
⋃
n<ω

QX(πn)( f (a)) =
⋃
n<ω

λ̃i∈I πn(ai ) = λ̃i∈I

⋃
n<ω

πn(ai )

= λ̃i∈I π(ai ) = QX(π)(λ̃i∈I ai ) = QX(π)( f (a))

8



To showπ : A → UX , use coinduction (prop. 3.6). LetZ = {π(a) | a ∈ A} and prove
Z ⊆ QX(Z). If z ∈ Z thenz = π(a) = QX(π)( f (a)) for somea ∈ A. If f (a) = 1 or f (a) ∈
Atoms(X) then f (a) ∈ QX(Z) andz= f (a). If f (a) = λ̃i∈I ai thenz= λ̃i∈I π(ai ) ∈ QX(Z).

SinceUX is the greatest post-fixedpoint ofQX , this establishesZ ⊆ UX . And sinceZ is the
range ofπ , this establishesπ : A→ UX . ut
Lemma 3.9.If π = QX(π) ◦ f andπ ′ = QX(π

′) ◦ f thenπ = π ′.
Proof.Again using lemma 2.7, apply transfinite induction on the ordinalξ to prove∀a∈A π(a) ∩
Vξ ⊆ π ′(a).

Let a ∈ A. If f (a) = 1 or f (a) ∈ Atoms(X) thenπ(a) = π ′(a) = f (a). If f (a) = λ̃i∈I ai

then

π(a) ∩ Vξ = (λ̃i∈I π(ai )) ∩ Vξ ⊆
⋃
η<ξ

λ̃i∈I (π(ai ) ∩ Vη) ⊆
⋃
η<ξ

λ̃i∈I π
′(ai ) = π ′(a)

using the hypothesis, lemma 2.11, the induction hypothesis forη < ξ and monotonicity of̃λ.
Sinceπ(a) ∩ Vξ ⊆ π ′(a) for every ordinalξ , we haveπ(a) ⊆ π ′(a). By symmetry we have

π ′(a) ⊆ π(a) and thereforeπ(a) = π ′(a) for all a ∈ A. ut
Theorem 1.UX is a finalQX-coalgebra.

Proof. Immediate by the previous two lemmas. ut
Proposition 3.10.If f : X→ Y then there is a unique maph : UX → UY such thath = Q f (h).
Calling this mapU f makes the operationU− a functor.

Proof.The map exists by the universal property ofUY. Routine calculations show that it preserves
identities and composition. ut

When X = 0 we may omit the subscript, writingU = Q(U ) instead ofU0 = Q0(U0). It is
easy to see thatU− is monotone, and in particular thatU ⊆ UX .

Lemma 3.11.Let 0[X] be the unique map from the empty set intoX. ThenU0[X] : U → UX

equals the inclusion mapιU,UX .

Proof. AbbreviateιU,UX as ι. We find thatι(v) = Q0[X](ι)(v) for v ∈ U , for if v = 1 then
ι(1) = 1= Q0[X](ι)(1), and ifv = λ̃i∈I vi then

ι(λ̃i∈I vi ) = λ̃i∈I vi = λ̃i∈I ι(vi ) = Q0[X](ι)(λ̃i∈I vi ).

The result follows by the uniqueness part of prop. 3.10. ut

4. Solutions of Equations

In his development of set theory with AFA, Aczel (1988) defines systems of set-equations and
proves thesolution lemma: each system has a unique solution. Aczel introduces a classX of
variables and a classVX of sets built up from variables (but not themselves variables). Hissub-
stitution lemmasays that any assignmentf : X → V of sets to variables can be extended to a
substitution functionf̂ : Vx → V . Aczel uses these lemmas to exhibit a unique morphism for
his special final coalgebra theorem.

Aczel proves the solution and substitution lemmas using concrete set theory, but in Rutten and
Turi’s categorical presentation the proofs are much shorter. A key fact in their development is
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thatV is (assuming AFA) a finalP-coalgebra. My presentation is similar, replacingV by U , VX

by UX , P byQ and AFA by theorem 1. One improvement over Rutten and Turi (1993) is thatU
is simplyU0 rather than a separate construction. (Sect. 2.3 discusses the advantages at length.) In
this setup, the solution and substitution lemmas nicely generalize to relate two sets of variables.
Equations inX andY can be solved with respect toX, and substitutions can be iterated. Also—a
matter of taste—I replace the category of classes by the category of sets.

Note thatVX does not include atoms amongst its elements—they are only allowed in sets—
while UX includes Atoms(X). This deviation from Aczel will affect many definitions below. The
setQ(UX) makes a better analogy withVX : it does not include a copy of the atoms.

4.1. Expressing Maps onQX(Y)

SinceQX(Y) = Atoms(X)∪{1}∪(I →̃Y) andQ abbreviatesQ0, we can write the setQX(Y) as
the union of the disjoint sets Atoms(X) andQ(Y). Some notation will simplify later calculations.

Definition 4.1. If A andB are sets withB disjoint from Atoms(A), then

A] B ≡ Atoms(A) ∪ B.

If moreover f : A→ C andg : B→ C are functions, then [[f, g]] : A] B→ C is the unique
function such that

[[ f, g]](atmx) = f (x) (x ∈ A)

[[ f, g]](y) = g(y) (y ∈ B)

Typically f : X → UY andg : Q(UX) → Q(UY). Strictly speaking, the two maps should
have the same codomain. Abusing the notation, we can omit the inclusion mapι : Q(UY)→ UY,
abbreviating [[f, ι ◦ g]] as [[ f, g]]. Note that [[f, g]] : UX → UY becauseX ] Q(UX) = UX .
Making ι explicit, a typical calculation is

[[ j, k]] ◦ [[atm, ι ◦ g]] = [[[[ j, k]] ◦ atm, [[ j, k]] ◦ ι ◦ g]] = [[ j, k ◦ g]] .

The mapQ f (g) can be written as [[atm◦ f,Qg]], which is sometimes clearer.

4.2. Solution and Substitution Lemmas

Let f : X → UY be a function. Then the substitution function̂f : UX → UY recursively
traverses its argument. Given an element ofX ] UX , it applies f or f̂ as appropriate, replacing
everything of the form atm(x) by f (x). We have the case analysis

f̂ (atm(x)) = f (x)

f̂ (1) = 1

f̂ (λ̃i∈I zi ) = λ̃i∈I f̂ (zi ),

which may be put more succinctly aŝf = [[ f,Q f̂ ]].

Remark 4.2. In situations where the hat is too short, such aŝf ◦ g, the notationf ◦ g may be
used instead.
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If X is a set of variables, then a functionν : X→ UY ]Q(UX) defines a system of equations
of the formx = ν(x) for x ∈ X. Each left-hand side is a variable drawn fromX. Each right-
hand side is either an expression involving variables fromY or aguardedexpression involving
variables fromX. By guarded I mean that the expression must consist of more than just a variable;
this restriction excludes degenerate systems of equations such as{x = x}x∈X , whose solutions
are not unique.

A system of equations has a unique solutionf : X → UY that preserves the right-hand sides
involving Y while solving for the variables inX. In other words, we requiref (x) = ν(x) if
ν(x) ∈ Atoms(UY) and f (x) = Q( f̂ )(ν(x)) otherwise. More concisely, a solution satisfies
f = [[idUY ,Q f̂ ]] ◦ ν.

Lemma 4.3. (Solution)Let ν : X → UY ]Q(UX) be a function. There exist unique functions
f : X→ UY and f̂ : UX → UY such thatf = [[idUY ,Q f̂ ]] ◦ ν and f̂ = [[ f,Q f̂ ]].

Proof.Let ι : Q(UX)→ UY ]Q(UX) be an inclusion and letm be the map

UY ]Q(UX) == QY(UY) ]Q(X ]Q(UX))

QY(UY ]Q(UX))

[[QY(atm), Q([[ν, ι]])]]

?

Now consider the diagram

X
ν - UY ]Q(UX)

π - UY

QY(UY ]Q(UX))

m

?

QY(π)

- QY(UY)

wwwwwwwwww
Since(UY ]Q(UX), m) is aQY-coalgebra, finality yields a unique coalgebra morphismπ into
UY. The diagram commutes, and we calculate

π = QY(π) ◦m= [[QY(π) ◦QY(atm), QY(π) ◦Q([[ν, π ◦ ι]])]]
= [[QY(π ◦ atm), Q([[π ◦ ν, π ◦ ι]])]] .

Soπ ◦ atm= QY(π ◦ atm) : UY → UY, and the uniqueness part of prop. 3.10 yieldsπ ◦ atm=
UidY = idUY . Furthermore,π ◦ ι = Q([[π ◦ ν, π ◦ ι]]).

Now put f̂ = [[π ◦ ν, π ◦ ι]] and f = π ◦ ν. Then f and f̂ satisfy the claimed properties
becauseπ = [[idUY ,Q f̂ ]]. In particular,

f̂ = [[ f, [[idUY ,Q f̂ ]] ◦ ι]] = [[ f, Q f̂ ]] .

As for uniqueness, suppose there are functionsg : X → UY and ĝ : UX → UY such that
g = [[idUY ,Qĝ]] ◦ ν and ĝ = [[g,Qĝ]]. Let π ′ = [[idUY ,Qĝ]]. Then g = π ′ ◦ ν, andπ ′ also

11



makes the diagram commute:

QY(π
′) ◦m= [[QY(π

′ ◦ atm), Q([[π ′ ◦ ν, π ′ ◦ ι]])]]
= [[QY(idUY ), Q([[g,Qĝ]])]]

= [[idUY , Qĝ]]

= π ′

Uniqueness of the final map yieldsπ ′ = π and thereforeg = f andĝ = f̂ . ut
The following lemma justifies thef̂ notation for substitution byf . The idea is to convert

f : X→ UY into a trivial system of equations and then to solve them.

Lemma 4.4. (Substitution)Let f : X → UY be a function. There exists a unique functionf̂ :
UX → UY such thatf̂ = [[ f,Q f̂ ]].

Proof. Let ν : X → UY ] Q(UX) be the map atm◦ f . The solution lemma yields unique maps
g : X→ UY andĝ : UX → UY such thatg = [[idUY ,Qĝ]] ◦ ν andĝ = [[g,Qĝ]]. Putting f̂ = ĝ
gives f̂ = [[ f,Q f̂ ]] because

g = [[idUY ,Qĝ]] ◦ atm◦ f = idUY ◦ f = f.

As for uniqueness, if̂h = [[ f,Qĥ]] then ĥ = [[g,Qĥ]] and soĥ = ĝ = f̂ by the uniqueness of
solutions. ut
Lemma 4.5. (Commutativity) If f : X→ UY andg : Y→ UZ , then ˆ̂g ◦ f = ĝ ◦ f̂ .

Proof. By uniqueness of substitution, ifh = [[ ĝ ◦ f,Qh]] then h = ˆ̂g ◦ f . The result follows
because

ĝ ◦ f̂ = ĝ ◦ [[ f,Q f̂ ]] = [[ ĝ ◦ f, [[g,Qĝ]] ◦Q f̂ ]] = [[ ĝ ◦ f, Q(ĝ ◦ f̂ )]] .

ut
Lemma 4.6.If f : X→ Y andg : Y→ UZ , thenĝ ◦ f = ĝ ◦U f .

Proof. By uniqueness of substitution, ifh = [[g ◦ f,Qh]] then h = ĝ ◦ f . The result follows
because

ĝ ◦U f = ĝ ◦Q f (U f ) = ĝ ◦ [[atm◦ f,Q(U f )]]

= [[ ĝ ◦ atm◦ f, [[g,Qĝ]] ◦Q(U f )]] = [[g ◦ f, Q(ĝ ◦U f )]] .

ut
In earlier work (Paulson, 1995a), following previous authors, I defined substitution for a map

f : X → U , with no indeterminates in the codomain. The ability to deal with different sets of
variables turns out to be useful. We can recover the original solution and substitution lemmas by
applying them withY = 0. The embeddingσX : U → UX becomes the inclusionU0[X] in the
present framework.

Lemma 4.7.0[UX ] = U0[X] .

Proof.The result follows by the uniqueness aspect of prop. 3.10, since

0[UX ] = [[0[UX ], Q(0[UX ])]] = Q0[UX ](0[UX ]).

ut
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Lemma 4.8. (Inclusion)If f : X→ UY then f̂ ◦U0[X] = U0[Y] , and thusf̂ (v) = v for v ∈ U .

Proof. By the previous lemmas,̂f ◦ U0[X] = f ◦ 0[X] = 0[UY] = U0[Y] . If v ∈ U then
f̂ (v) = f̂ (U0[X](v)) = U0[Y](v) = v by lemma 3.11. ut

4.3. Special Final Coalgebra Theorem

We shall no longer work in the categorySetof sets but rather in the full subcategorySetU whose
objects are the subsets ofU . Recall thatU , in turn, depends upon the choice of index setI ; we
can makeU as large as necessary.

For a suitable functor, our goal is to show that its final coalgebra coincides with its greatest
fixed point. Let us only consider functors that preserve inclusion maps. This is a natural re-
striction since all functors preserve identity maps, and inclusion maps are identity maps when
regarded as sets. All such functors have a greatest fixedpoint.

Lemma 4.9. If the functor F : SetU → SetU preserves inclusions then there exists an ob-
ject J[F ] : SetU such thatJ[F ] is the greatest fixedpoint and greatest post-fixedpoint ofF .

Proof.Apply the Knaster-Tarski fixedpoint theorem to the lattice of subsets ofU . The functorF
is necessarily monotone because it preserves inclusions: ifA ⊆ B then F(ιA,B) = ιF A,FB,
giving F A ⊆ FB. ut
Definition 4.10.A functor F : SetU → SetU is uniform on mapsif it preserves inclusions and
for all A such thatA ⊆ U there exists a mappingφA : F A → Q(UA) satisfyingFh(w) =
(Qĥ ◦ φA)(w) for all h : A→ U andw ∈ F A. The mappingφA is called theUA translation.

Remark 4.11.The condition above can be abbreviated asιF(U ),U ◦Fh = Qĥ◦φA, whereιF(U ),U
is the inclusion map fromF(U ) into U . And since the domain of̂h includes that ofQĥ, we have

ĥ(φA(w)) = [[h,Qĥ]](φA(w)) = Qĥ(φA(w)) = Fh(w).

The main theorem applies to functors that are uniform on maps. This notion is due to Aczel
(1988), but the presentation owes much to Rutten and Turi (1993).

Theorem 2. (Special Final Coalgebra)If the functor F : SetU → SetU is uniform on maps,
thenJ[F ] is a final F-coalgebra.

Proof. Let (A, f ) be anF-coalgebra. We must exhibit a unique maph : A → J[F ] such that
h = Fh ◦ f :

A
h- J[F ]

F A

f

?

Fh
- F(J[F ])

wwwwwwwwww
SinceF is uniform on maps, there is aUA-translationφA : F A → Q(UA). Let ι : Q(UA) →
U ] Q(UA) be an embedding and apply the solution lemma withν = ι ◦ φA ◦ f . We obtain a
unique maph : A → U such thath = [[idU , Qĥ]] ◦ ι ◦ φA ◦ f = Qĥ ◦ φA ◦ f . Soh(a) =
(Qĥ ◦ φA)( f (a)) = Fh( f (a)) for a ∈ A.
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Regarding the maps as set-theoretic functions, a standard coinduction argument provesh ∈
A→ J[F ]. Writing h “ A for the image ofA underh, we have

h “ A = (Fh ◦ f ) “ A = Fh “ ( f “ A) ⊆ Fh “ F A ⊆ F(h “ A)

sinceh ∈ A→ h “ A andFh ∈ F A→ F(h “ A).
The range ofh is thus a post-fixedpoint ofF and is included in the greatest post-fixedpoint,

namelyJ[F ]. ut

5. Existence of Functors Uniform on Maps

If F is uniform on maps then, in essence, its effect upon a maph : A → U can be expressed
as the substitution ofh over a pattern derived from the argument; ifw ∈ F A then Fh(w) =
Qĥ(φA(w)). Most natural functors are uniform on maps, but there is one glaring exception. Let
us examine some typical cases, starting with a trivial one.

This section illustrates the advantages of constructingUX to include atoms, or (assuming AFA)
having urelements. If instead we usedVX = P(X+ VX), then the failure ofVX × VX ⊆ VX and
VX + VX ⊆ VX would complicate the translations and the proofs.

5.1. The Constant Functor

If C ⊆ U then let KC be the constant functor such that KC(A) = C for all A : SetU and such
that KC( f ) = idC for all maps f : A→ A′.

Proposition 5.1.If C : SetU then the constant functor KC : SetU → SetU is uniform on maps.

Proof. Let A ⊆ U . Now C ⊆ U = QU ⊆ Q(UA), so we can defineφA : C → Q(UA) by
φA(c) = c for c ∈ C. Now (Qĥ ◦ φA)(c) = Qĥ(c) = c = KC(h)(c) for all c ∈ C by lemma 4.8.

ut

5.2. Binary Product

The setU satisfies the inclusionU ×̃U ⊆ U . So it is easy to see that×̃ : SetU × SetU → SetU
is a functor when extended to maps in the standard way. Iff : A → A′ andg : B → B′ are
maps thenf ×̃ g : A ×̃ B→ A′ ×̃ B′ is the map that takes〈a;b〉 to 〈 f (a); g(b)〉.
Proposition 5.2.If F , G : SetU → SetU are uniform on maps, then the functorF(−) ×̃G(−) :
SetU → SetU is uniform on maps.

Proof. Let A be a set such thatA : SetU , or equivalentlyA ⊆ U . Clearly we haveF A ×̃ G A :
SetU . SinceF andG are uniform on maps there existUA translations

φA : F A→ Q(UA) such thatFh(u) = (Qĥ ◦ φA)(u) and

ψA : G A→ Q(UA) such thatGh(v) = (Qĥ ◦ ψA)(v)

for all u ∈ F A, v ∈ G A andh : A→ U .
To define theUA translation forF(−) ×̃ G(−), put θA = φA ×̃ ψA. Thus θA(〈b; c〉) =
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〈φA(b);ψA(b)〉 for all b ∈ F A andc ∈ G A. Now for 〈u; v〉 ∈ F A ×̃ FB,

(F(−) ×̃ G(−))(h)(〈u; v〉) = 〈Fh(u);Gh(v)〉
= 〈ĥ(φA(u)); ĥ(ψA(v))〉
= Qĥ(〈φA(u);ψA(v)〉)
= Qĥ(θA(〈u; v〉))

by remark 4.11. SoθA is the desiredUA translation. ut

5.3. Binary Sum

Recall that+̃ is the variant form of disjoint sum, defined byA+̃ B ≡ ({1} ×̃ A)∪ ({〈1;1〉} ×̃ B).
We haveU +̃U ⊆ U becauseU is closed under̃× and contains 1 and〈1;1〉 as elements.

Variant sum is a coproduct in bothSet and SetU . The injections ˜Inl : A → A +̃ B and
˜Inr : B → A +̃ B are defined in the obvious way. For every pair of mapsf : A → C and

g : B → C, there exists a unique map [f, g] : A +̃ B → C such that [f, g] ◦ ˜Inl = f and
[ f, g] ◦ ˜Inr = g. Another useful law ish ◦ [ f, g] = [h ◦ f, h ◦ g].

To make+̃ into a functor, we must define its action on maps. Ifj : A→ A′ andk : B→ B′

then j +̃ k : A +̃ A′ → B +̃ B′ is defined (as usual) byj +̃ k ≡ [ ˜Inl ◦ j, ˜Inr ◦ k].

Lemma 5.3. If f : A → U and z ∈ UA thenQĥ( ˜Inl(z)) = ˜Inl(ĥ(z)) andQĥ( ˜Inr(z)) =
˜Inr(ĥ(z)).

Proof.Calculate

Qĥ( ˜Inl(z)) = Qĥ(〈1; z〉) = 〈ĥ1; ĥ(z)〉) = 〈1; ĥ(z)〉) = ˜Inl(ĥ(z)).

The treatment of˜Inr(z) is similar, sinceĥ(〈1;1〉) = Qĥ(〈1;1〉) = 〈ĥ1; ĥ1〉 = 〈1;1〉. ut
The tags of the disjoint sum are arbitrary distinct sets, usually 0 and 1. However, 0 has compli-

cated properties in our framework because 0= λ̃i∈I 0. Using〈1;1〉 simplifies the proof above.
In fact, 0 would work too. From̂h(0) = Qĥ(0) = λ̃i∈I ĥ(0) we getĥ(0) = 0, but making this
argument rigorous requires establishing a coinduction principle for equations. That would be a
distraction.

Proposition 5.4.If F , G : SetU → SetU are uniform on maps, then the functorF(−) +̃G(−) :
SetU → SetU is uniform on maps.

Proof.Let A ⊆ U . ThenF A +̃G A : SetU and for allh : A→ U there existUA translationsφA

andψA as in the proof of prop. 5.2. LetθA = φA +̃ ψA andw ∈ F A +̃ G A. If w = ˜Inl(u) for
u ∈ F A, then

(F(−) +̃ G(−))(h)( ˜Inl(u)) = ˜Inl(Fh(u))

= ˜Inl(ĥ(φA(u)))

= Qĥ( ˜Inl(φA(u)))

= Qĥ(θA( ˜Inl(u)))

by lemma 5.3 and remark 4.11. SoθA is the desired translation. The casew = ˜Inr(v) follows by
symmetry. ut
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5.4. Sum of a Family of Sets

Let {Bx}x∈C be aC-indexed family of sets. IfC ⊆ U and Bx ⊆ U for all x ∈ C then we
have

∑̃
x∈C Bx ⊆ U . Note that

∑̃
x∈C Bx is the usual generalization ofC ×̃ B to allow B to

depend uponx ∈ C; the two functors have a similar effect upon maps. But
∑̃

is less general
than×̃ in one key respect: the index set is not given by a functor but is constant. Neither

∑̃
nor

×̃ supersedes the other.

Proposition 5.5.If C : SetU and if {Fx : SetU → SetU }x∈C is aC-indexed family of functors
that are uniform on maps, then the functor∑̃

x∈C

Fx(−) : SetU → SetU

is uniform on maps.

Proof. Let A ⊆ U . For eachx ∈ C there exists aUA translationφx,A : Fx(A) → UA such
that Fx(h)(y) = (ĥ ◦ φx,A)(y) for all h : A → U and y ∈ Fx(A). The UA translation for∑̃

x∈C Fx(−), calledθA, is defined by

θA(〈x; y〉) = 〈x;φx,A(y)〉
for all x ∈ C andy ∈ Fx(A). Now, we have

(
∑̃
x∈C

Fx(−))(h)(〈x; y〉) = 〈x; Fx(h)(y)〉

= 〈ĥ(x); ĥ(φx,A(y))〉 = Qĥ(θA(〈x; y〉))
by lemma 4.8. ut

5.5. Product of a Family of Sets

Again let{Bx}x∈C be aC-indexed family of sets. IfC ⊆ I (not C ⊆ U as above) andBx ⊆ U
for all x ∈ C then

∏̃
x∈C Bx ⊆ I →̃U ⊆ U .

Thus
∏̃

: SetIU → SetU is a functor whose effect on maps is as follows. If{ fx : Bx → B′x}x∈C

is aC-indexed family of maps then∏̃
x∈C

fx :
∏̃
x∈C

Bx →
∏̃
x∈C

B′x

is the usual pointwise map that takesλ̃x∈C bx to λ̃x∈C fx(bx).

Proposition 5.6.If C ⊆ I and{Fx : SetU → SetU }x∈C is aC-indexed family of functors that
are uniform on maps, then the functor∏̃

x∈C

Fx(−) : SetU → SetU

is uniform on maps.

Proof.Let A ⊆ U . For eachx ∈ C there exists aUA translationφx,A as in the proof of prop. 5.5.
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Let θA =
∏̃

x∈C φx,A. If w ∈ (∏̃x∈C Fx(−))(A) thenw = λ̃x∈C wx, and

(
∏̃
x∈C

Fx(−))(h)(λ̃x∈Cwx) = λ̃x∈C Fx(h)(wx)

= λ̃x∈C (ĥ ◦ φx,A)(wx)

= Qĥ(λ̃x∈Cφx,A(wx))

= (Qĥ ◦ θA)(λ̃x∈Cwx)

andθA is the desiredUA translation. ut

5.6. Composition of Functors

That the compositionF ◦ G should preserve uniformity on maps seems obvious, but the proof
requires the notion of iterated substitution of lemma 4.4.

Proposition 5.7.If F , G : SetU → SetU are uniform on maps, then so is the functorF ◦ G :
SetU → SetU .

Proof.Let A ⊆ U . SinceF andG are uniform on maps, there existUA andUG A translations

ψA : G A→ Q(UA) such thatιGU,U ◦ Gh= Qĥ ◦ ψA and

φG A : FG A→ Q(UG A) such thatιFU,U ◦ F j = Q ĵ ◦ φG A

for h : A→ U and j : G A→ U .
Let ι : Q(UA)→ UA be an inclusion map and putθA = Q(ι ◦ ψA) ◦ φG A. If h : A→ U and

u ∈ FG A then

F(Gh)(u) = F(Qĥ ◦ ψA)(u)

= F(ĥ ◦ ι ◦ ψA)(u)

= (Q(ĥ ◦ ι ◦ ψA) ◦ φG A)(u)

= (Q(ĥ ◦ ι ◦ ψA) ◦ φG A)(u)

= (Qĥ ◦Q(ι ◦ ψA) ◦ φG A)(u)

= (Qĥ ◦ θA)(u)

by commutativity of substitution (lemma 4.5). The first equality, in whichGh is replaced by
Qĥ ◦ ψA, holds becauseF preserves inclusions. ut

5.7. The Identity Functor

These results suggest that any functor that operates on constructions in a pointwise fashion is
uniform on maps. But there is one glaring exception.

Proposition 5.8.The identity functor Id :SetU → SetU is not uniform on maps.

Proof.Suppose Id :SetU → SetU is uniform on maps. Then ifA ⊆ U then there is a mapping
φA : A→ Q(UA) such thath(w) = Qĥ(φA(w)) for all h : A→ U andw ∈ A.

Let A = {1} and defineh1, h2 : {1} → U by h1(1) = 1 andh2(1) = 〈1;1〉. Then 1=
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Q(ĥ1)(φA(1)), soφA(1) = 1 by the definition ofQ. Also 〈1;1〉 = Q(ĥ2)(φA(1)), which implies
φA(1) = 〈a;b〉 for somea, b ∈ UA. But then 1= 〈a;b〉, which is absurd. ut

An alternative proof uses the special final coalgebra theorem. If Id is uniform on maps then
J[Id] is a final Id-coalgebra. But a final Id-coalgebra must be a singleton set, whileJ[Id] = U
andU contains 1 and〈1;1〉 as elements.

This circumstance is awkward. The natural way of constructing suitable functors is to combine
constant and identity functors by products, sums, etc. Since the identity functor is not uniform
on maps, this approach fails. Various similar functors are uniform on maps, such as−×̃K{0} and
− ×̃ −; both have the singleton set{0} as their greatest fixedpoint. One can prove variants of the
lemmas above, for example that ifF is uniform on maps then so isF(−) ×̃ −. Assuming AFA
does not help; the identity functor is not uniform on maps in Aczel’s system either.

6. Final Coalgebras with Parameters

Section 1 discussed the setS of streams overA, which satisfiesS= A× S. But ‘streams over
A’ should be a construction takingA as a parameter. Can we define it as a functor that can itself
be used in further constructions?

SupposeF is a bifunctor. If A is an object thenF(−, A) is a functor, which we abbreviate
to FA. If FA has a final coalgebraJ[FA] for every A, then the mapA 7→ J[FA] determines a
functor. The idea is to show that this functor is uniform on maps and to express other functors
in terms of it. For example, the functor of streams overA, stream(A), is uniform on maps. It
can express the functor ofω-branching trees as the final coalgebra of the bifunctorF(A′, A) =
A× stream(A′), etc.

Our existing machinery already suffices to handle mutually recursive coinductive definitions,
finding greatest fixedpoints in the product categorySetU × SetU . The idea is to generalize the
special final coalgebra theorem, applying the solution lemma to a set of indeterminates of the
form A1 +̃ A2. But it is more general to handle definitions that have parameters. This topic
appears to be little discussed in the final coalgebra literature, but see Hensel and Jacobs (1997),
who work in total categories of fibrations. The approach outlined below is simple and applies
(making the obvious changes) to approaches based on AFA.

Definition 6.1.A bifunctor F : SetU×SetU → SetU isuniform on mapsif it preserves inclusions
and for all subsetsA, B of U there exists a mappingφA,B : F(A, B) → UA+̃B such that
F( f, g)(w) = ([ f, g] ◦ φA+̃B)(w) for all f : A→ U , g : B→ U andw ∈ F(A, B).

In this section,A andB range over subsets ofU . If the bifunctorF is uniform on maps then so
are the functorsF(−, B) andF(A,−) for objectsA andB. To prove this, we need a few more
results.

Lemma 6.2.For every mapφ : B → Q(UA+̃B) there exists a unique map Outl[φ] : UA+̃B →
UA such that

Outl[φ] = [atm,Q(Outl[φ]) ◦ φ].
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Proof.Let m be the map

UA+̃B ===== (A +̃ B) ]Q(UA+̃B)

A]Q(UA+̃B)

[[[atm, φ], Q(idUA+̃B
)]]

?

Now consider the diagram

UA+̃B
π - UA

QA(UA+̃B)

m

?

QA(π)

- QA(UA)

wwwwwwwwww
Since(UA+̃B,m) is aQA-coalgebra, there is a unique mapπ into the final coalgebraUA making
the diagram commute. Now

π = QA(π) ◦m

= [[QA(π) ◦ [atm, φ], QA(π) ◦Q(idUA+̃B
)]]

= [[[atm,Qπ ◦ φ], Qπ ]] .

By the substitution lemma (4.4), the desired map Outl[φ] is π . (Note:QA(π) becomesQπ after
composition with the implicit inclusion map forQ(UA+̃B) ⊆ A]Q(UA+̃B) = QA(UA+̃B).) ut
Lemma 6.3.For every mapφ : A→ Q(UA+̃B) there exists a unique map Outr[φ] : UA+̃B →
UB such that

Outr[φ] = [Q(Outr[φ]) ◦ φ, atm].

Proof.As above, by symmetry. ut
Lemma 6.4.If f : A→ U then f̂ ◦Outl[ιB,Q(UA+̃B)

] = [ f, ιB,U ].

Proof.AbbreviateιB,Q(UA+̃B)
asι. SinceB ⊆ U = QU ⊆ Q(UA+̃B), we haveι = Q(U0[A+̃B])◦

ιB,U . Lemmas 6.2 and 4.8 give

Outl[ι] ◦U0[A+̃B] = [atm,Q(Outl[ι]) ◦ ι] ◦U0[A+̃B] = U0[A] . (1)

Apply (1) and lemma 4.8 in a preliminary derivation:

f̂ ◦ [atm,Q(Outl[ι]) ◦ ι] = [ f̂ ◦ atm, f̂ ◦Q(Outl[ι]) ◦Q(U0[A+̃B]) ◦ ιB,U ]

= [ f, [[ f,Q f̂ ]] ◦Q(Outl[ι] ◦U0[A+̃B]) ◦ ιB,U ]

= [ f, Q( f̂ ◦U0[A]) ◦ ιB,U ]

= [ f, Q(idU ) ◦ ιB,U ]

= [ f, ιB,U ]
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And so, applying lemmas 4.4 and 4.5, we obtain

f̂ ◦Outl[ι] = f̂ ◦ [atm,Q(Outl[ι]) ◦ ι]
= f̂ ◦ [atm,Q(Outl[ι]) ◦ ι]
= [ f, ιB,U ].

ut
Lemma 6.5.If g : B→ U thenĝ ◦Outr[ιA,Q(UA+̃B)

] = [ιA,U , g].

Proof.By symmetry in the previous proof. ut
Proposition 6.6.If the bifunctorF : SetU × SetU → SetU is uniform on maps, then so are the
functorsF(−, B) andF(A,−) for A, B : SetU .

Proof.SinceF is uniform on maps, it has aUA+̃B translationφA,B : F(A, B)→ Q(UA+̃B).
Let B ⊆ U be fixed and consider the functorF(−, B). Then, forA ⊆ U , we shall see that the

UA translation forF(−, B) isQ(Outl[ιB,Q(UA+̃B)
]) ◦ φA,B. For h : A→ U andw ∈ F(A, B),

we have by lemma 6.4

(Qĥ ◦Q(Outl[ιB,Q(UA+̃B)
]) ◦ φA,B)(w)

= (Q(ĥ ◦Outl[ιB,Q(UA+̃B)
]) ◦ φA,B)(w)

= (Q([h, ιB,U ]) ◦ φA,B)(w)

= F(h, ιB,U )(w)

= (F(idU , ιB,U ) ◦ F(h, idB))(w)

= F(h, idB)(w),

sinceF preserves inclusions.
If A ⊆ U is fixed, theUA translation forF(A,−) isQ(Outr[ιA,Q(UA+̃B)

])◦φA,B, by symmetry.
ut

I do not know whether the converse of this proposition holds. This question might be consid-
ered in future research.

Theorem 3.Let F : SetU ×SetU → SetU be a bifunctor that is uniform on maps. ForA : SetU ,
let FA abbreviate the functorF(−, A). ThenJ[FA] is a final FA-coalgebra, and the mapA 7→
J[FA] determines a functor that is uniform on maps.

Proof. If A ⊆ U then the functorFA is uniform on maps by prop. 6.6. By the special final
coalgebra theorem,J[FA] is a final FA-coalgebra. The fixedpoint property yieldsJ[FA] =
F(J[FA], A).

As is well known, the mapA 7→ J[FA] determines a functor. Givenh : A→ B, finality of
J[FB] yields a unique mapJ[Fh] such thatJ[Fh] = F(J[Fh], h). By uniqueness, it is easy to
check thatJ[id A] = idJ[FA] andJ[ f ◦ g] = J[ f ] ◦ J[g].

The functor also preserves inclusions. IfA ⊆ B thenJ[FA] ⊆ J[FB] by monotonicity of the
greatest fixedpoint operator. SinceF preserves inclusions,F(ιJ[FA],J[FB], ιA,B) = ιJ[FA],J[FB] .
By uniqueness,J[FιA,B ] = ιJ[FA],J[FB] .

Let A ⊆ U be given. To show that the functorJ[F−] is uniform on maps, it remains to exhibit
a UA translationθA such thatQĥ ◦ θA = ιFU ,U ◦ Fh for h : A → U . AbbreviateJ[FA] as J.
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Let φJ+̃A : F(J, A)→ Q(UJ+̃A) be the translation for the bifunctorF ; sinceJ = F(J, A), we
haveφJ+̃A : J → Q(UJ+̃A).

The required translation isθA = Q(Outr[φJ+̃A]) ◦ φJ+̃A. If h : A→ U then by lemmas 6.3
and 4.5,

Qĥ ◦ θA = Q(ĥ ◦Outr[φJ+̃A]) ◦ φJ+̃A

= Q(ĥ ◦ [Q(Outr[φJ+̃A]) ◦ φJ+̃A, atm]) ◦ φJ+̃A

= Q(ĥ ◦ [Q(Outr[φJ+̃A]) ◦ φJ+̃A, atm]) ◦ φJ+̃A

= Q([Q(ĥ ◦Outr[φJ+̃A]) ◦ φJ+̃A, h]) ◦ φJ+̃A

= ιF(U,U ),U ◦ F(Q(ĥ ◦Outr[φJ+̃A]) ◦ φJ+̃A, h)

= ιF(U,U ),U ◦ F(Qĥ ◦ θA, h)

becauseF is uniform on maps.
It remains to eliminate the inclusion map. ConsideringQĥ ◦ θA as a set theoretic function, its

rangeR satisfiesR= F(R,U ), but the greatest solution to that equation isJ[FU ]. SoQĥ◦θA =
ιJ[FU ],U ◦ j for some j : J → J[FU ]. SinceF preserves inclusions, we find

ιJ[FU ],U ◦ j = Qĥ ◦ θA = ιF(U,U ),U ◦ F(ιJ[FU ],U ◦ j, h) = ιJ[FU ],U ◦ F( j, h)

and soj = F( j, h). By uniqueness,j = J[Fh]. Summarizing, we have

Qĥ ◦ θA = Qĥ ◦ θA = ιJ[FU ],U ◦ J[Fh],

andθA is the requiredUA translation. ut
How do we create bifunctors that are uniform on maps? It would not do to rehearse the proofs

of Sect. 5, but they clearly apply with obvious changes, replacingh : A→ U by [ f, g] : A+̃B→
U . Ordinary functors give us material to start with.

Proposition 6.7.If G : SetU → SetU is uniform on maps, then so are the degenerate bifunctors
F andF ′ defined byF(A, B) = G A andF ′(B, A) = G A.

Proof.Let A andB be objects ofSetU , and letφA : G A→ UA be theUA translation forG. We
shall see that theUA+̃B translation forF isQ(U ˜Inl) ◦ φA.

Supposeh : A→ U , j : B→ U andw ∈ F(A, B). Of coursew ∈ G A and, by lemma 4.6,

(Q([h, j ]) ◦Q(U ˜Inl) ◦ φA)(w) = (Q([h, j ] ◦U ˜Inl) ◦ φA)(w)

= (Q([h, j ] ◦ ˜Inl) ◦ φA)(w) = (Qĥ ◦ φA)(w) = Gh(w) = F(h, j )(w).

The translation forF ′ isQ(U ˜Inr) ◦ φA, and the proof follows by symmetry. ut
If another example is needed, the bifunctor×̃ is uniform on maps with translationφ : A×̃B→
Q(UA+̃B) defined by

φ(〈x; y〉) = 〈atm( ˜Inl(x)); atm( ˜Inr(y))〉.
It seems clear that uniformity on maps could be defined for functors inSetnU → SetU , general-
izing the proofs of Sect. 5 to an arbitrary positive integern.
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7. Applications to Machine Proof

The context for this work is my mechanization of ZF set theory, using the theorem prover Isa-
belle (Paulson, 1993). Proof tools should allow users to define sets inductively. Adding induction
principles to the formalism is popular (Paulin-Mohring, 1993), but is not suitable for ZF set the-
ory, where strong induction principles can be derived from the axioms. I have put much effort
into supporting inductive definitions in Isabelle/ZF, basing the representation on least fixedpoints
(Paulson, 1995b).

Coinductive definitions should also be supported. The simplest approach is to base the rep-
resentation on greatest fixedpoints. If the bulk of the implementation works for any fixedpoint,
admitting coinductive definitions will cost almost nothing.

AFA could be the basis for a greatest fixedpoint approach in Isabelle/ZF. It would be straight-
forward to separate FA from the other ZF axioms and to move most of the formalization into
the resulting theory of ZF−. Isabelle can support parallel developments in ZF and ZF− + AFA.
However, implementation of AFA would require much further work. The axiom and its con-
sequences, such as the solution lemma, would have to be mechanized in a form suitable for
constructing particular coalgebras (as opposed to developing metatheory).

My approach to final coalgebras is easy to mechanize. Most of the facts required of greatest
fixed points are obtained by dualizing facts already proved about least fixed points. The defini-
tions of variant pairs, products, sums, etc., are elementary. Their properties are easily established;
many proofs can be adapted from those for the standard operators. A set (analogous toU ) closed
under the most important constructors can be defined in terms ofVω, whose theory is already
needed for the inductive case.

This fixedpoint approach has been implemented as an Isabelle package (Paulson, 1994). In
order to admit both inductive and coinductive definitions, the package takes the relevant notions
of products, sums, etc., as parameters. The package does not prove that particular coinductively
defined sets are final coalgebras, but the script needed to generate such a proof is fairly short. It
was by developing this script that I obtained the ideas underlying lemma 3.9.

Frost (1995) has used the package to mechanize a substantial example taken from a tutorial
on coinduction (Milner and Tofte, 1991). The semantics of a simple functional programming
language is defined an unusual way: recursive functions are modelled as non-well-founded ex-
pressions. The theorem relates the dynamic and static semantics—values and types—via a cor-
respondence relation that is defined coinductively. The chief difficulty in the mechanization is to
justify the basic definitions, which involve mutual recursion and variant functions; fortunately,
the package does most of the work. The proofs themselves are routine. The full development
takes just over a minute to run.

Recall that the identity functor is not uniform on maps. The corresponding declaration in
Isabelle/ZF turns out to have the wrong properties: the greatest fixedpoint isU when it should be
a singleton.

8. Conclusions

Researchers in semantics seldom worry about how an object is constructed, provided it has the
right abstract properties. From this point of view, the general theorems of Aczel and Mendler
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(1989) and Barr (1993) yield final coalgebras for a great many functors, using techniques such
as inverse limits and quotienting.

But there is an undoubted interest in the special final coalgebra theorem of Aczel (1988),
proved using AFA. This theorem is weaker but concrete. The set of streams overA is simply the
greatest fixedpoint of the functorA×−, which is also that functor’s final coalgebra. Its elements
are easily visualized objects of the form〈a0,a1,a2, . . . 〉.

The original motivation for my work was to treat streams and other infinite data structures. I
wished to use the standard ZF axiom system as it was automated using Isabelle. Thomas Forster
suggested that Quine’s treatment of ordered pairs might help. Generalizing this treatment led
to the new definition of functions (and thus infinite streams), in order to compare the approach
with AFA. This part of the work closely follows Aczel (1988) and Rutten and Turi (1993), from
the substitution lemma onwards. As Aczel has pointed out to me, this reuse of the development
suggests general conditions under which a category possessing final coalgebras analogous toU
andUX satisfies a special final coalgebra theorem.

Compared with my early paper (Paulson, 1995a), the present development is more streamlined
and goes further. Its treatment of urelements eliminates most embeddings, simplifying the deriva-
tions. New laws govern iterated substitution and maps of the formU f . Final coalgebras may be
defined with respect to parameters. Much of the new material is relevant to systems based upon
AFA.

My version of the theorem is less general than the version using AFA, especially for modelling
concurrency. Here is a typical example. LetP f be the finite powerset operator, which returns the
set of all finite subsets of its argument. LetA be a set of actions, and consider the setP of
processes defined as the final coalgebra ofP f (A × −). With AFA the final coalgebra is the
greatest solution ofP = P f (A× P), and if p ∈ P then

p = {〈a1, p1〉, . . . , 〈an, pn〉}
with n < ω, a1, . . . , an ∈ A and p1, . . . , pn ∈ P. Herep represents a process that can execute
actionai and become processpi , with no restriction thata1, . . . , an are distinct. In this way,
Aczel (1988) modelled the transition systems of SCCS, and other process algebras require at
least as much generality.

My approach does not handle general set constructions, only variant tuples and functions; I
do not know how to modelP f respecting set equalities such as{x, y} = {y, x} = {x, y, x}.
However, it is not entirely useless for modelling concurrency. In the UNITY formalism Chandy
and Misra (1988), nondeterminism lies only in the choice of action, the actions themselves being
deterministic. We could model UNITY by the set of the non-well-foundedA-branching trees,
but not by the greatest solution ofP = A →̃ P, which is trivial (prop. 2.3). Instead we should
use the greatest solution ofP = {1} ∪ (A →̃ P), which is of courseU A, taking A as the index
set.

The approach works best in its original application, infinite data structures. We can model the
main constructions inUω. SinceUω ⊆ Vω+1, each infinite data structure is a subset ofVω and
thus is a set of hereditarily finite sets.∗ Section 2.1 discussed infinite streams. The setSof streams

∗ An hereditarily finite setis one built in finitely many stages from the empty set. There are countably many of them.
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over A is the greatest solution ofS = A ×̃ S, and is the final coalgebra of the functorA ×̃ −.
The construction is parametric inA, yielding the functor stream(A) that can be used in further
definitions. Another possible application is the modelling of object-oriented languages (Hensel
et al., 1998).

Thus we have an account of non-well-founded phenomena that is concrete enough to be under-
stood directly, and simple enough to use in machine proof. One can argue about the constructive
validity of the cumulative hierarchy, butVω is uncontroversial even from an intuitionistic view-
point. An infinite data structure is represented by a countable set of elementary objects.

Aczel has shown that by adopting AFA we can obtain final coalgebras as greatest fixedpoints,
dualizing a standard result about initial algebras. My approach is another way of doing the same
thing, though for fewer functors. Whether or not one choose to adopt AFA hinges on a number of
issues: philosophical, theoretical, practical. Variant tuples and functions are a simple alternative.
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