Proof Assistants: From Symbolic
L.ogicTo Real Mathematics?

Lawrence C Paulson FRS

Inria Sophia-Antipolis, 18/5/2017

I. Formalhised Mathematics

Computers and mathematical proot

+ Appel and Haken’s 1976 proof of the Four Colour
Theorem: a computer checked nearly 2000 cases

+ Hales's 1998 proof of the Kepler Conjecture, on the
optimal packing of spheres: also a huge case analysis

+ McCune’s 1996 proof of the Robbins Conjecture using
special software

Mathematicians hate such proofs!

Proof assistants in mathematics

+ The Four Colour Theorem checked in Cog

+ The Kepler Proof checked using HOL Light and Isabelle

Case analysis still required, but runs in a verified environment.

The mathematical reasoning also formally verified.

But are proof assistants ready for mathematical research?
What are they really?

Farly proof assistants

AUTOMATH (1968):
mathematics in type

Boyer/Moore (1971):
functional programs

W theory, using

LCF (1978): functional

proorams in domain

“propositions as types”

Mizar (1973):

LCF LSM (1983):
mathematics in classical

hardware verification

I HOL (1988): functions

and hardware in

LEGO (1991): calculus
of constructions and
other type theories

set theory

Most intended for verification,
not mathematics. And using
weird formalisms!

From verification to mathematics

+ John Harrison (2000): formalised real analysis to verify
floating point algorithms for sqrt, In, exp [in HOL]

+ Joe Hurd (2003): formalised measure and probability
to verify probabilistic algorithms [in HOL]

+ Sylvie Boldo (2013): verified a numerical analysis
program tor solving a wave equation, “covering all
aspects from partial ditferential equations to actual
numerical results” [in Coq]

Veritying maths for its own sake

* A formalisation of geometry and nonstandard analysis to

check infinitesimal proofs in Newton’s Principia (Fleuriot,
1998) [in Isabelle]

+ Prime number theorem (Avigad; Harrison) [separate proofs
in Isabelle and HOL Light]

* Odd order theorem (Gonthier et al.) [in Coq]

+ GoOdel’s constructible universe and (both) incompleteness
theorems [in Isabelle]

But why do maths by machine?

To validate questionable proots
To reveal hidden assumptions

To codify mathematical
knowledge

But the main reason is...

Mathematicians are fallible

Look at the footnotes on a single page
(118) of Jech's The Axiom of Choice

1 The result of Problem 11 contradicts the results announced by Levy [1963b]. Un-
fortunately, the construction presented there cannot be completed.

2 The transfer to ZF was also claimed by Marek {1966] but the cutlined method appears
to be unsatisfactory and has not been published.

3 A contradicting result was announced and later withdrawn by Truss [1970].

4+ The example in Problem 22 is a counterexample to another condition of Mostowski,
who conjectured its sufficiency and singled out this example as a test case.

* The independence result contradicts the claim of Felgner [1969] that the Cofinality
Principle implies the Axiom of Choice. An error has been found by Morris (see Felgner’s
corrections to [1969]).

Mathematicians are tallible, 11

“When the Germans were planning to publish Hilbert's collected
papers ..., they realized that they could not publish the papers in
their original versions because they were full of errors, some of them
quite serious. Thereupon they hired a young unemployed
mathematician, Olga Taussky-Todd, to go over Hilbert's papers and

correct all mistakes.”
|Gian-Carlo Rota, Indiscrete Thoughts, p. 201]

“Olga laboured for three years."

2. Formalised Mathematics:

Our Choices

The dimensions of formalised
mathematics

Types? — and what Whatis 1/0?

sort of types?

Search and Notation for terms
automation and proofs

lype theory or set theory?

polymorphism type classes

Simple types HOL Isabelle/HOL

predicate subtypes
PVS

Dependent types coq Classical sets

AUTOMATH Agda Mizar Isabelle/ZF

lype class polymorphism!

axiomatically define groups,
rings, topological spaces, metric

spaces and other type classes But less flexible than

dependent types — or
classical sets!

prove that a type is in some
class, inheriting its properties

...exchanging some
flexibility for clarity

... supporting uniform
mathematical notation

Detinedness, or what 1s 1/0?

+ Don’t care: all terms denote something, and 1/0=1/0.
|[HOL, Isabelle]

+ Dependent types: to use x/y, must prove y = 0 (but does
the value of x/y depend on this proof?) [Coq, PVS]

+ Free logic: a formalism where defined[x/y] can be
expressed. So x/0 = x/0 is false. Butis x/0 = x/0 true?

[IMPS]

Search and automation

decision procedures:

. : : heuristic methods: obvious
linear arithmetic,

rewriting and chaining steps,
e.g. x+0=x

elementary set theory,
Grobner basis methods

fast, predictable, powerful, natural, flexible but ad-hoc;
but of limited scope changes can break proofs

Syntax, or the legibility problem

Mathematical notation is elegant but ambiguous!

Machine notations are merely hideous

Example: a HOL Light lemma

let SIMPLE PATH _SHIFTPATH = prove
("!g a. simple_path g /\ pathfinish g = pathstart g /\
a IN interval[vec 0,vec 1]
==> simple path(shiftpath a g) ,
REPEAT GEN_TAC THEN REWRITE_TAC[simple path] THEN
MATCH_MP_TAC(TAUT
AR ANTERV/A* da==> a i /AN bee/Sa GRe /NS el B ==Duih)
=R (e BN/ e A S = =SS e A S R T HEN
CONJ_TAC THENL [MESON_TAC[PATH_SHIFTPATH]; ALL_TAC] THEN
REWRITE _TAC[simple path; shiftpath; IN INTERVAL_1; DROP_VEC;
DROP_ADD; DROP_SUB] THEN
REPEAT GEN_TAC THEN DISCH THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
ONCE_REWRITE_TAC[TAUT “a /\ b /\ c ==>d <=> ¢ ==> a /\ b ==> d°] THEN
STRIP_TAC THEN REPEAT GEN_TAC THEN
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
DISCH_THEN(fun th -> FIRST_X_ASSUM(MP_TAC o C MATCH_MP th)) THEN
REPEAT(POP_ASSUM MP_TAC) THEN
REWRITE_TAC[DROP_ADD; DROP_SUB; DROP_VEC; GSYM DROP_EQ] THEN
REAL_ARITH_TAC);;

Some proofs are 50x longer than this one!

The same, as a structured proof

Lemma) simple_path_shiftpath:
assumes "simple path g" "pathfinish g = pathstart g" and a: "0 < a" "a < 1"
shows "simple path (shiftpath a g)"
unfolding simple path def
proof (intro conjI impI balll)
show "path (shiftpath a g)"
by (simp add: assms path shiftpath simple path imp path)
have *: "Ax y. [gx=9vy; x€ {0..1}; ye {6..1}] = x=yVvVvX=0Ay=1VvXx=1AYy=0"
using assms by (simp add: simple path def)
show "X =y Vv X=0AYyYy=1V X 1Ay =0"
if "x € {0..1}" "y € {0..1}" "shiftpath a g x = shiftpath a g y" for x vy
using that a unfolding shiftpath def
apply (simp add: split: if split asm)
apply (drule *; auto)+
done

qed|]

Structured proofs are necessary!

+ For maintenance (fixing proofs when they break)
+ For reuse and (one day) translation to other systems

+ Legibility builds confidence in our verification tools,
especially for sceptical mathematicians.

®eeCO ATAT 3G = 2:05 PM 85% M) ®eeCOATAT3G T 2:12 PM 85% .

{ Messages Sceptic Contact <€ Messages Sceptic Contact

Why should | trust your system? Why should | trust your system?

Because we have a small trusted No need to trust it. Here is that
kernel! theorem you wanted. Just read the
proof.

Why should | trust 1000 lines of

code? Why did you do it in baby steps?
OK, we verified the kernel using Because our system is not as
our own system. Take a look. clever as you.

That is no proof. It is just 10,000 Well okay. | see that the theorem

lines of code. is trivial.

3. Are Proof Assistants Ready for
Mathematics!

Robust and mature architectures

+ soundness: all proof steps checked by a
(the “LCF approach”)

+ automation: rewriting, logical reasoning, computer
algebra techniques, decision procedures

+ scalability: large specification hierarchies handled

+ expressive formalisms covering at least applied maths

Comprehensive libraries

Mathematical Components (Coq):
everything from lists to advanced algebra

Coquelicot: real analysis including limits,
derivatives, integrals, power series

Multivariate Analysis (HOL Light): 300K lines on
homotopic paths, complex analysis, polytopes

Archive of Formal Proofs (Isabelle): 1.6M lines on
numerous topics, not only mathematics

But ...

Is formalised maths even possible?

Whitehead and Russell needed We have better formal
362 pages to prove 1+1=2! systems than theirs.

Godel proved that all reasonable We don’t need a universal
formal systems must be incomplete! formal system.

We use automation

Church proved that first-order :
to assist people, not

to replace them.

logic is undecidable!

I'he real problem areas

+ No library covers undergraduate mathematics.

+ Formal proofs are unreadable and don’t link to any
real mathematical text.

+ Libraries are difficult to search, especially for concepts.

+ Automation falls far short of mathematical intuition.

W hat could we aim for?

Natural language
o h Codified

textbooks

Similarity-based search

(proof idioms) Verified computer

algebra tools

Where do we go now?

Grow our libraries
Mine libraries for re-use

Keep building tools

Work with mathematicians!

