
Inria Sophia-Antipolis, 18/5/2017

Proof Assistants: From Symbolic
Logic To Real Mathematics?
Lawrence C Paulson FRS

I. Formalised Mathematics

Computers and mathematical proof

✤ Appel and Haken’s 1976 proof of the Four Colour
Theorem: a computer checked nearly 2000 cases

✤ Hales's 1998 proof of the Kepler Conjecture, on the
optimal packing of spheres: also a huge case analysis

✤ McCune’s 1996 proof of the Robbins Conjecture using
special software

Mathematicians hate such proofs!

Proof assistants in mathematics

✤ The Four Colour Theorem checked in Coq

✤ The Kepler Proof checked using HOL Light and Isabelle

Case analysis still required, but runs in a verified environment.
The mathematical reasoning also formally verified.

But are proof assistants ready for mathematical research?
What are they really?

Early proof assistants

Boyer/Moore (1971):
functional programs
with lists and natural

numbersLCF (1978): functional
programs in domain

theory

AUTOMATH (1968):
mathematics in type

theory, using
“propositions as types”

Mizar (1973):
mathematics in classical

set theory

Most intended for verification,
not mathematics. And using

weird formalisms!

LCF_LSM (1983):
hardware verification
in CCS-like notationHOL (1988): functions

and hardware in
higher-order logicLEGO (1991): calculus
of constructions and
other type theories

From verification to mathematics

✤ John Harrison (2000): formalised real analysis to verify
floating point algorithms for sqrt, ln, exp [in HOL]

✤ Joe Hurd (2003): formalised measure and probability
to verify probabilistic algorithms [in HOL]

✤ Sylvie Boldo (2013): verified a numerical analysis
program for solving a wave equation, “covering all
aspects from partial differential equations to actual
numerical results” [in Coq]

Verifying maths for its own sake

✤ A formalisation of geometry and nonstandard analysis to
check infinitesimal proofs in Newton’s Principia (Fleuriot,
1998) [in Isabelle]

✤ Prime number theorem (Avigad; Harrison) [separate proofs
in Isabelle and HOL Light]

✤ Odd order theorem (Gonthier et al.) [in Coq]

✤ Gödel’s constructible universe and (both) incompleteness
theorems [in Isabelle]

But why do maths by machine?

To reveal hidden assumptions

To codify mathematical
knowledge

To validate questionable proofs

But the main reason is…

Mathematicians are fallible

Look at the footnotes on a single page
(118) of Jech's The Axiom of Choice

Mathematicians are fallible, II

“When the Germans were planning to publish Hilbert's collected
papers …, they realized that they could not publish the papers in
their original versions because they were full of errors, some of them
quite serious. Thereupon they hired a young unemployed
mathematician, Olga Taussky-Todd, to go over Hilbert's papers and
correct all mistakes.”

[Gian-Carlo Rota, Indiscrete Thoughts, p. 201]

“Olga laboured for three years.''

2. Formalised Mathematics:
Our Choices

The dimensions of formalised
mathematics

Types? — and what
sort of types?

What is 1/0?

Notation for terms
and proofs

Search and
automation

Type theory or set theory?

Classical sets
Isabelle/ZFMizar

Simple types
polymorphism

predicate subtypes

type classes
Isabelle/HOLHOL

PVS

Dependent types

AUTOMATH
Coq
Agda

Type class polymorphism!

axiomatically define groups,
rings, topological spaces, metric

spaces and other type classes

prove that a type is in some
class, inheriting its properties

… supporting uniform
mathematical notation

But less flexible than
dependent types — or

classical sets!

 …exchanging some
flexibility for clarity

Definedness, or what is 1/0?

✤ Don’t care: all terms denote something, and 1/0 = 1/0.
[HOL, Isabelle]

✤ Dependent types: to use x/y, must prove y ≠ 0 (but does
the value of x/y depend on this proof?) [Coq, PVS]  

✤ Free logic: a formalism where defined[x/y] can be
expressed. So x/0 = x/0 is false. But is x/0 ≠ x/0 true?
[IMPS]

Search and automation

decision procedures:
linear arithmetic,

elementary set theory,
Gröbner basis methods

heuristic methods: obvious
rewriting and chaining steps,

e.g. x+0 = x

fast, predictable, powerful,
but of limited scope

natural, flexible but ad-hoc;
changes can break proofs

Syntax, or the legibility problem

Mathematical notation is elegant but ambiguous!

f(x) f(X) f

�1[X]

x

�1
y f

�1(x) sin�1(x) sin2(x)

xy x · y

d

2
f

dx

Machine notations are merely hideous

Example: a HOL Light lemma

let	SIMPLE_PATH_SHIFTPATH	=	prove	
	(`!g	a.	simple_path	g	/\	pathfinish	g	=	pathstart	g	/\	
									a	IN	interval[vec	0,vec	1]	
									==>	simple_path(shiftpath	a	g)`,	
		REPEAT	GEN_TAC	THEN	REWRITE_TAC[simple_path]	THEN	
		MATCH_MP_TAC(TAUT	
			`(a	/\	c	/\	d	==>	e)	/\	(b	/\	c	/\	d	==>	f)	
				==>		(a	/\	b)	/\	c	/\	d	==>	e	/\	f`)	THEN	
		CONJ_TAC	THENL	[MESON_TAC[PATH_SHIFTPATH];	ALL_TAC]	THEN	
		REWRITE_TAC[simple_path;	shiftpath;	IN_INTERVAL_1;	DROP_VEC;	
														DROP_ADD;	DROP_SUB]	THEN	
		REPEAT	GEN_TAC	THEN	DISCH_THEN(CONJUNCTS_THEN2	MP_TAC	ASSUME_TAC)	THEN	
		ONCE_REWRITE_TAC[TAUT	`a	/\	b	/\	c	==>	d	<=>	c	==>	a	/\	b	==>	d`]	THEN	
		STRIP_TAC	THEN	REPEAT	GEN_TAC	THEN	
		REPEAT(COND_CASES_TAC	THEN	ASM_REWRITE_TAC[])	THEN	
		DISCH_THEN(fun	th	->	FIRST_X_ASSUM(MP_TAC	o	C	MATCH_MP	th))	THEN	
		REPEAT(POP_ASSUM	MP_TAC)	THEN	
		REWRITE_TAC[DROP_ADD;	DROP_SUB;	DROP_VEC;	GSYM	DROP_EQ]	THEN	
		REAL_ARITH_TAC);;	

Some proofs are 50× longer than this one!

The same, as a structured proof

Structured proofs are necessary!

✤ For maintenance (fixing proofs when they break)

✤ For reuse and (one day) translation to other systems

✤ Legibility builds confidence in our verification tools,
especially for sceptical mathematicians.

3. Are Proof Assistants Ready for
Mathematics?

Robust and mature architectures

✤ soundness: all proof steps checked by a small kernel
(the “LCF approach”)

✤ automation: rewriting, logical reasoning, computer
algebra techniques, decision procedures

✤ scalability: large specification hierarchies handled

✤ expressive formalisms covering at least applied maths

Comprehensive libraries

Mathematical Components (Coq):
everything from lists to advanced algebra

Coquelicot: real analysis including limits,
derivatives, integrals, power series

Multivariate Analysis (HOL Light): 300K lines on
homotopic paths, complex analysis, polytopes

Archive of Formal Proofs (Isabelle): 1.6M lines on
numerous topics, not only mathematics

But …

Is formalised maths even possible?

Whitehead and Russell needed
362 pages to prove 1+1=2!

We have better formal
systems than theirs.

Gödel proved that all reasonable
formal systems must be incomplete!

We don’t need a universal
formal system.

Church proved that first-order
logic is undecidable!

We use automation
to assist people, not

to replace them.

The real problem areas

✤ No library covers undergraduate mathematics.

✤ Formal proofs are unreadable and don’t link to any
real mathematical text.

✤ Libraries are difficult to search, especially for concepts.

✤ Automation falls far short of mathematical intuition.

What could we aim for?

Natural language
search

Similarity-based search
(proof idioms)

Codified
textbooks

Verified computer
algebra tools

Mine libraries for re-use

Grow our libraries

Work with mathematicians!

Keep building tools

Where do we go now?

