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I. Formalised Mathematics



Computers and mathematical proof

✤ Appel and Haken’s 1976 proof of the Four Colour 
Theorem: a computer checked nearly 2000 cases

✤ Hales's 1998 proof of the Kepler Conjecture, on the 
optimal packing of spheres: also a huge case analysis

✤ McCune’s 1996 proof of the Robbins Conjecture using 
special software

Mathematicians hate such proofs!



Proof assistants in mathematics

✤ The Four Colour Theorem checked in Coq

✤ The Kepler Proof checked using HOL Light and Isabelle

Case analysis still required, but runs in a verified environment.
The mathematical reasoning also formally verified.

But are proof assistants ready for mathematical research? 
What are they really?



Early proof assistants

Boyer/Moore (1971): 
functional programs 
with lists and natural 

numbersLCF (1978): functional 
programs in domain 

theory

AUTOMATH (1968): 
mathematics in type 

theory, using 
“propositions as types”

Mizar (1973): 
mathematics in classical 

set theory

Most intended for verification, 
not mathematics. And using 

weird formalisms!

LCF_LSM (1983): 
hardware verification 
in CCS-like notationHOL (1988): functions 

and hardware in 
higher-order logicLEGO (1991): calculus 
of constructions and 
other type theories



From verification to mathematics

✤ John Harrison (2000): formalised real analysis to verify 
floating point algorithms for sqrt, ln, exp [in HOL]

✤ Joe Hurd (2003): formalised measure and probability 
to verify probabilistic algorithms [in HOL]

✤ Sylvie Boldo (2013): verified a numerical analysis 
program for solving a wave equation, “covering all 
aspects from partial differential equations to actual 
numerical results” [in Coq]



Verifying maths for its own sake

✤ A formalisation of geometry and nonstandard analysis to 
check infinitesimal proofs in Newton’s Principia (Fleuriot,
1998) [in Isabelle]

✤ Prime number theorem (Avigad; Harrison) [separate proofs 
in Isabelle and HOL Light]

✤ Odd order theorem (Gonthier et al.) [in Coq]

✤ Gödel’s constructible universe and (both) incompleteness 
theorems [in Isabelle]



But why do maths by machine?

To reveal hidden assumptions

To codify mathematical 
knowledge

To validate questionable proofs

But the main reason is…



Mathematicians are fallible

Look at the footnotes on a single page 
(118) of Jech's The Axiom of Choice



Mathematicians are fallible, II

“When the Germans were planning to publish Hilbert's collected 
papers …, they realized that they could not publish the papers in 
their original versions because they were full of errors, some of them 
quite serious. Thereupon they hired a young unemployed 
mathematician, Olga Taussky-Todd, to go over Hilbert's papers and 
correct all mistakes.”

[Gian-Carlo Rota, Indiscrete Thoughts, p. 201]

“Olga laboured for three years.''



2. Formalised Mathematics:  
Our Choices



The dimensions of formalised 
mathematics

Types? — and what 
sort of types?

What is 1/0?

Notation for terms 
and proofs

Search and 
automation



Type theory or set theory?

Classical sets
Isabelle/ZFMizar

Simple types
polymorphism

predicate subtypes

type classes
Isabelle/HOLHOL

PVS

Dependent types

AUTOMATH
Coq
Agda



Type class polymorphism!

axiomatically define groups, 
rings, topological spaces, metric 

spaces and other type classes

prove that a type is in some 
class, inheriting its properties

… supporting uniform 
mathematical notation 

But less flexible than 
dependent types — or 

classical sets!

 …exchanging some 
flexibility for clarity



Definedness, or what is 1/0?

✤ Don’t care: all terms denote something, and 1/0 = 1/0. 
[HOL, Isabelle]

✤ Dependent types: to use x/y, must prove y ≠ 0 (but does 
the value of x/y depend on this proof?) [Coq, PVS]  

✤ Free logic: a formalism where defined[x/y] can be 
expressed. So x/0 = x/0 is false. But is x/0 ≠ x/0 true? 
[IMPS]



Search and automation

decision procedures:
linear arithmetic,

elementary set theory,
Gröbner basis methods

heuristic methods: obvious 
rewriting and chaining steps, 

e.g.   x+0 = x

fast, predictable, powerful, 
but of limited scope

natural, flexible but ad-hoc; 
changes can break proofs



Syntax, or the legibility problem

Mathematical notation is elegant but ambiguous!

f(x) f(X) f

�1[X]

x

�1
y f

�1(x) sin�1(x) sin2(x)

xy x · y

d

2
f

dx

Machine notations are merely hideous 



Example: a HOL Light lemma

let	SIMPLE_PATH_SHIFTPATH	=	prove	
	(`!g	a.	simple_path	g	/\	pathfinish	g	=	pathstart	g	/\	
									a	IN	interval[vec	0,vec	1]	
									==>	simple_path(shiftpath	a	g)`,	
		REPEAT	GEN_TAC	THEN	REWRITE_TAC[simple_path]	THEN	
		MATCH_MP_TAC(TAUT	
			`(a	/\	c	/\	d	==>	e)	/\	(b	/\	c	/\	d	==>	f)	
				==>		(a	/\	b)	/\	c	/\	d	==>	e	/\	f`)	THEN	
		CONJ_TAC	THENL	[MESON_TAC[PATH_SHIFTPATH];	ALL_TAC]	THEN	
		REWRITE_TAC[simple_path;	shiftpath;	IN_INTERVAL_1;	DROP_VEC;	
														DROP_ADD;	DROP_SUB]	THEN	
		REPEAT	GEN_TAC	THEN	DISCH_THEN(CONJUNCTS_THEN2	MP_TAC	ASSUME_TAC)	THEN	
		ONCE_REWRITE_TAC[TAUT	`a	/\	b	/\	c	==>	d	<=>	c	==>	a	/\	b	==>	d`]	THEN	
		STRIP_TAC	THEN	REPEAT	GEN_TAC	THEN	
		REPEAT(COND_CASES_TAC	THEN	ASM_REWRITE_TAC[])	THEN	
		DISCH_THEN(fun	th	->	FIRST_X_ASSUM(MP_TAC	o	C	MATCH_MP	th))	THEN	
		REPEAT(POP_ASSUM	MP_TAC)	THEN	
		REWRITE_TAC[DROP_ADD;	DROP_SUB;	DROP_VEC;	GSYM	DROP_EQ]	THEN	
		REAL_ARITH_TAC);;	

Some proofs are 50× longer than this one!



The same, as a structured proof



Structured proofs are necessary!

✤ For maintenance (fixing proofs when they break)

✤ For reuse and (one day) translation to other systems

✤ Legibility builds confidence in our verification tools, 
especially for sceptical mathematicians.





3. Are Proof Assistants Ready for 
Mathematics?



Robust and mature architectures

✤ soundness: all proof steps checked by a small kernel 
(the “LCF approach”)

✤ automation: rewriting, logical reasoning, computer 
algebra techniques, decision procedures

✤ scalability: large specification hierarchies handled

✤ expressive formalisms covering at least applied maths



Comprehensive libraries

Mathematical Components (Coq): 
everything from lists to advanced algebra 

Coquelicot: real analysis including limits, 
derivatives, integrals, power series

Multivariate Analysis (HOL Light): 300K lines on 
homotopic paths, complex analysis, polytopes

Archive of Formal Proofs (Isabelle): 1.6M lines on 
numerous topics, not only mathematics

But …



Is formalised maths even possible?

Whitehead and Russell needed 
362 pages to prove 1+1=2!

We have better formal 
systems than theirs.

Gödel proved that all reasonable 
formal systems must be incomplete!

We don’t need a universal 
formal system.

Church proved that first-order 
logic is undecidable!

We use automation 
to assist people, not 

to replace them.



The real problem areas

✤ No library covers undergraduate mathematics.

✤ Formal proofs are unreadable and don’t link to any 
real mathematical text.

✤ Libraries are difficult to search, especially for concepts.

✤ Automation falls far short of mathematical intuition.



What could we aim for?

Natural language 
search

Similarity-based search 
(proof idioms)

Codified 
textbooks

Verified computer 
algebra tools



Mine libraries for re-use

Grow our libraries

Work with mathematicians!

Keep building tools

Where do we go now?


