Lecture Outline

- The informal problem
- Inductive definitions
- The Isabelle/HOL specification
- Proof overview
The Mutilated Chess Board

After cutting off the corners, can the board be tiled with dominoes?

The point: find a suitably abstract model.
General Tiling Problems

A tile is a set of points (such as squares). Given a set of tiles (such as dominoes):

- The empty set can be tiled.
- If \(t \) can be tiled, and \(a \) is a tile disjoint from \(t \), then the set \(a \cup t \) can be tiled.

For \(A \) a set of tiles, inductively define \(\text{tiling}(A) \):

```plaintext
consts    tiling :: "'a set set => 'a set set"
inductive "tiling A"
intrs
  empty    "{} : tiling A"
  Un       "[| a: A; t: tiling A; a <= -t |] 
             ==> a Un t : tiling A"
```
We get (proved from a fixedpoint construction)

- rules `tiling.empty` and `tiling.Un` for making tilings

- rule `tiling.induct` to do induction on tilings:

```plaintext
[| xa : tiling A;
   P {};
   !!a t. [| a : A; t : tiling A; P t; a <=- t |]
    ==> P (a Un t) |]
==> P xa
```

If property P holds for $\{\}$ and if P is closed under adding a tile, then P holds for all tilings.
Example: The Union of Disjoint Tilings

If $t, u \in \text{tiling}(A)$ and $t \subseteq \overline{u}$ then $t \cup u \in \text{tiling}(A)$.

base case Here $t = \emptyset$, so $t \cup u = u \in \text{tiling}(A)$ by assumption.

induction step Here $t = a \cup t'$, with a disjoint from t'. Assume that $a \cup t'$ is disjoint from u. By induction $t' \cup u$ is a tiling, since t' is disjoint from u. And $a \cup (t' \cup u)$ is a tiling, since a is disjoint from $t' \cup u$. So $t \cup u = a \cup t' \cup u \in \text{tiling}(A)$.
Goal "t: tiling A ==> \ \
 u: tiling A --> t <= -u --> t Un u : tiling A";

by (etac tiling.induct 1);
 perform induction over tiling(A)

by (simp_tac (simpset() addsimps [Un_assoc]) 2);
 change (a Un t) Un u to a Un (t Un u)

by Auto_tac;
 tidy up remaining subgoals

qed_spec_mp "tiling_UnI";
 store the theorem
The Isabelle Theory File

Mutil = Main +

consts tiling ...

consts domino :: "(nat*nat)set set"
inductive domino

intrs
 horiz "{(i, j), (i, Suc j)} : domino"
 vertl "{(i, j), (Suc i, j)} : domino"

constdefs
 below :: "nat => nat set"
 "below n == {i. i<n}"

 colored :: "nat => (nat*nat)set"
 "colored b == {(i,j). (i+j) mod 2 = b}"

end
Proof Outline

Two disjoint tilings form a tiling.

Simple facts about below: chess board geometry

Then some facts about tiling with dominoes:

Every row of length $2n$ can be tiled.

Every $m \times 2n$ board can be tiled.

Every tiling has as many black squares as white ones.

If t can be tiled, then the area obtained by removing two black squares cannot be tiled.

No $2m \times 2n$ mutilated chess board ($m, n > 0$) can be tiled.
The Cardinality Proof Script

Goal "t: tiling domino ==> \
\card(colored 0 \ Int t) = card(colored 1 \ Int t)";

by (etac tiling.induct 1);
perform induction over tiling(A)

by (dtac domino_singletons 2);
a domino has a white square & a black one

by Auto_tac;

by (subgoal_tac "\ALL p C. C \ Int a = p --> p ^: t" 1);
lemma about the domino a and tiling t

by (Asm_simp_tac 1);
by (blast_tac (claset() addEs [equalityE]) 1);
using, and proving, this lemma
Benefits of the Inductive Model

Follows the informal argument
Admits a general proof, not just the 8×8 case
Yields a short proof script:

- 15 theorems
- 2.4 tactic calls per theorem
- 4.5 seconds run time
Other Applications of Inductive Definitions

- Proof theory
- Operational semantics
- Security protocol verification
- Modelling the λ-calculus