
Accountability Protocols: Formalized and Verified

Giampaolo Bella, Università di Catania

Lawrence C. Paulson, University of Cambridge

Classical security protocols aim to achieve authentication and confidentiality under the assumption
that the peers behave honestly. Some recent protocols are required to achieve their goals even if
the peer misbehaves. Accountability is a protocol design strategy that may help. It delivers to
the peers sufficient evidence of each other’s participation in the protocol. Accountability underlies
the non-repudiation protocol of Zhou and Gollmann and the certified e-mail protocol of Abadi
et al. This paper provides a comparative, formal analysis of the two protocols, and confirms
that they reach their goals under realistic conditions. The treatment, which is conducted with
mechanized support from the proof assistant Isabelle, requires various extensions to the existing
analysis method. A byproduct is an account of the concept of higher-level protocol.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specify-
ing and Verifying and Reasoning about Programs—Mechanical Verification; C.2.2 [Computer-
Communication Networks]: Network Protocols—Protocol Verification

General Terms: Security, Protocol, Verification

Additional Key Words and Phrases: Non-repudiation, Certified e-email, Proof tools, Inductive
method, Isabelle

1. INTRODUCTION

Classical security protocols establish secure communications over insecure networks.
Typically they ensure that no attacker can obtain sensitive information or imper-
sonate another person. The protocol protects Alice and Bob, who trust one another,
from hostile parties. This scenario is inappropriate when Alice does not even know
Bob, let alone trust him. Purchasing goods over the Internet requires trusting the
merchant with your credit card details, even if a protocol such as SSL protects
against outsiders.

Preliminary registration is an attempt to strengthen trust. People who wish to
participate must first enrol with an authority. Protocols that employ registration
include SET [Mastercard & VISA 1997] and Visa 3-D Secure [VISA 2002]. Registra-
tion gives Alice some confidence in Bob—since he can present signed credentials—
but it does not change the security framework. Alice still must trust Bob.

This work was funded by the epsrc grant GR/R01156/R01 Verifying Electronic Commerce Proto-
cols. Authors’ addresses: Giampaolo Bella, Dipartimento di Matematica e Informatica, Università
di Catania, Viale A. Doria 6, I-95125 Catania (ITALY), e-mail: giamp@dmi.unict.it; Lawrence
C Paulson, Computer Laboratory, University of Cambridge, 15 JJ Thomson Avenue, Cambridge
CB3 0FD (UK), e-mail: lcp@cl.cam.ac.uk

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2006 ACM 0000-0000/2006/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, January 2006, Pages 1–0??.

2 · G. Bella and L. C. Paulson

Accountability reduces the need for trust. The non-repudiation protocol of Zhou
and Gollmann [Zhou and Gollmann 1996] sends a message while ensuring that
neither the sender nor the receiver can deny taking part. Each of them receives
sufficient evidence to prove the other’s participation. The certified e-mail protocol
by Abadi et al. [Abadi et al. 2002] similarly ensures that an e-mail is delivered if
and only if its sender gets the return receipt. Both protocols are intended to achieve
their goals even if the other party misbehaves: Alice need not trust Bob, and vice
versa.

Our contribution is at least twofold. We describe general techniques for mod-
elling and verifying accountability protocols inductively. We present a comparative
treatment of the non-repudiation protocol [Zhou and Gollmann 1996] with the cer-
tified e-mail protocol [Abadi et al. 2002]. These results combine and supersede
our previous works [Bella and Paulson 2001; Bella et al. 2003] as follows. Both
non-repudiation and certified e-mail are recognised as forms of accountability, and
the techniques for modelling and verifying them are unified and generalised ac-
cordingly. The realistic threat model where agents do not trust each other, which
we developed to analyse the certified e-email protocol, is adopted to re-examine
the non-repudiation protocol from scratch. In consequence, the formal guarantees
about the latter now withstand peer agents who can send fake messages: an agent
who obeys the protocol is protected from a possibly cheating peer.

We use our Inductive Method [Bella 2000; Paulson 1998] for protocol verification.
Because the formalization is based on a general-purpose theorem prover [Nipkow
et al. 2002], it is easily adapted to new security environments. Correctness of
accountability protocols involves two concepts.

—Validity of evidence: an agent is given evidence sufficient to convince a third
party of his peer’s participation in the protocol.

—Fairness: both agents obtain the promised items, or neither do [Asokan et al.
1998a].

Proving the new properties required the development of novel strategies for proof
and especially for specification. Allowing the peer to be the adversary could make
proofs excessively complicated. To keep proofs simple, we must express the guaran-
tees with care. We must also formalize various forms of secure channels: channels
that satisfy properties such as authentication, confidentiality or guaranteed de-
livery. Many accountability protocols rely upon secure channels, which might be
implemented by running another security protocol: we thus arrive at the concept
of higher-level protocols. Accountability is often described in terms of evidence that
can be presented to a judge. We model the evidence only, not the judge. Judges
are human beings, and the assessment of a body of evidence requires reason and
experience.

We have found both protocols to be correct: they are fair and they deliver valid
evidence. More precisely, the non-repudiation protocol is fair in the sense that
the initiator gets non-repudiation of receipt if and only if the responder gets non-
repudiation of origin. Both pieces of evidence are proved valid. Along with his
evidence, the responder also gets the message that the initiator intended to send
him. The certified e-mail protocol achieves slightly weaker goals. It is fair in the
sense that the initiator gets non-repudiation of receipt (a “return receipt”) if and
ACM Journal Name, Vol. V, No. N, January 2006.

Accountability Protocols: Formalized and Verified · 3

only if the responder gets the e-mail. That receipt is proved valid. However, the
responder gets no evidence for non-repudiation of origin. The e-mail itself does not
suffice for this purpose.

This paper continues by presenting accountability protocols (§2) and how our
method of analysis faced their challenges (§3). Then, the paper describes the in-
ductive models (§4) and the formal guarantees (§5) for the new protocols. Finally,
it concludes (§6).

2. ACCOUNTABILITY PROTOCOLS

An accountability protocol gives agents lasting evidence, typically digitally signed,
about actions performed by his peer. Many authentication mechanisms fail to
meet this requirement: the reply to an encrypted nonce challenge proves an agent’s
presence to the recipient but to nobody else. The protocol should meet its objectives
to an honest agent even if the peer misbehaves.

This section presents the non-repudiation protocol [Zhou and Gollmann 1996]
and the certified e-mail protocol [Abadi et al. 2002]. Both protocols have two peers
and a trusted third party (TTP). The typical setting sees the sender’s intention to
transmit a message m to B. She encrypts it using a symmetric key k; the ciphertext
c = mk is her commitment to the session with the receiver.

The private signature key of an agent X is indicated as sK−
X , while the signature

of a message y by key sK−
X is {|y|}sK−X . The public encryption key of an agent X

is indicated as eKX , while the encryption of a message y by key eKX is {|y|}eKX
.

Our BAN-like notation [Burrows et al. 1989] makes no distinction between the
operations of symmetric encryption, asymmetric encryption and signature, because
the type of key suffices to disambiguate.

2.1 The non-repudiation protocol

The non-repudiation protocol (Fig. 1) uses a lightweight TTP whose effort is inde-
pendent of the size of the transmitted message. A unique label, L, identifies the
session between A and B. It concerns two types of evidence. Non-repudiation of
origin (NRO) proves the participation of A, while non-repudiation of receipt (NRR)
proves the participation of B. Flags such as fnro express the non-repudiation mean-
ing of a certificate.

In step 1, A picks a symmetric key k and a label L, and encrypts m with k to
form c. Then, A signs fnro, B, L, c to yield NRO, which she sends to B. In response
(step 2), B verifies A’s signature, signs fnrr, A, L, c and sends the resulting NRR to
A. Then (step 3), A lodges k with the TTP by sending sub k, which is fsub, B, L, k
signed with her private signature key.

If the TTP can verify A’s signature, it signs fcon, A, B,L, k producing con k,
which it makes available in its public directory. This step binds the key k to the
session between A and B labelled L. Finally (steps 4 and 5), A and B down-
load con k from the TTP using the File Transfer Protocol (FTP); the protocol
assumes this download will eventually succeed.

The protocol aims at providing both parties with evidence to prove the other’s
participation. The evidence for A consists of NRR and con k, while that for B
consists of NRO and con k. Making con k part of the evidence ensures fairness,

ACM Journal Name, Vol. V, No. N, January 2006.

4 · G. Bella and L. C. Paulson

Abbreviations

c = mk

NRO = {|fnro, B, L, c|}
sK−A

NRR = {|fnrr, A, L, c|}
sK−B

sub k = {|fsub, B, L, k|}
sK−A

con k = {|fcon, A, B, L, k|}
sK−TTP

Steps

1. A −→ B : fnro, B, L, c,NRO
2. B −→ A : fnrr, A, L,NRR
3. A −→ TTP : fsub, B, L, k, sub k

4. B
FTP←− TTP : fcon, A, B, L, k, con k

5. A
FTP←− TTP : fcon, A, B, L, k, con k

Fig. 1. The non-repudiation protocol

since TTP releases this item to both parties simultaneously.
Let us informally analyse how to resolve disputes. If A holds con k and NRR,

then she has completed a run with B, who has accepted the commitment c and
should be able to download the decryption key from the TTP. Similarly, if B holds
con k and NRO, then A cannot deny having sent c as a commitment bound to
label L. Of course, such arguments are unconvincing: we need formal verification.

2.2 The certified e-mail protocol

Abadi et al. [Abadi et al. 2002] have designed a realistic protocol for certified e-
mail delivery. No public-key infrastructure is necessary: the TTP has signature
and encryption keys, but other agents merely share a password with the TTP.
Agent R’s password is indicated pwdR. In common with the previous protocol, the
TTP is lightweight and its effort is independent of the e-mail size; moreover, this
TTP is stateless. A challenge-response mechanism authenticates the receiver to the
sender, who must agree beforehand on some acknowledgement function linking a
challenge q to its response r.

As in the non-repudiation protocol, the sender forms a commitment by encrypting
his e-mail with a symmetric key, k. He attaches k, encrypted with the TTP’s public
encryption key. The recipient forwards the message to the TTP in order to obtain k.
(In the non-repudiation protocol, the sender lodges the key directly with the TTP.)
The TTP releases the key and simultaneously releases a certificate documenting the
transaction to the sender.

We present the full version of the protocol (Fig. 2), where the receiver authenti-
cates to both the sender and the TTP. In step 1, the sender S sends the receiver R
the encrypted e-mail c, a challenge q, and a certificate for the TTP, called S2TTP .
The certificate is encrypted under the TTP’s public encryption key and contains the
symmetric key k that protects c along with a hash linking c to the required response,
r. Recall that R and S must have already agreed a query-response mechanism.

In step 2, R computes the response r to the query q and includes the received
ciphertext c to build the hash hR, which he sends along with the received certificate
ACM Journal Name, Vol. V, No. N, January 2006.

Accountability Protocols: Formalized and Verified · 5

Abbreviations

c = mk

hS = hash(q, r, c)

hR = hash(q, r, c)

S2TTP = {|S, k, R, hS |}eKTTP

RR = S2TTP
sK−TTP

Steps

1. S −→ R : TTP, c, q, S2TTP

2. R
SSL−→ TTP : S2TTP, pwdR, hR

3. TTP
SSL−→ R : k, hR

4. TTP −→ S : RR

Fig. 2. The certified e-mail protocol

and his password (pwdR) to the TTP on a secure channel. The authors state that
security here means confidentiality and authentication, and that “in practice, such
a channel might be an SSL connection” [Abadi et al. 2002]. They also require
guaranteed delivery, which can be implemented by sending a message repeatedly
until it is acknowledged [Deng et al. 1996].

In step 3, the TTP decrypts and verifies the received certificate. Then, the
TTP authenticates R by the password and—to check that S and R agree on the
authentication mechanism—verifies that hS found inside the ticket matches hR. If
satisfied, the TTP replies to R, delivering the key found inside the ticket. This
reply goes along the secure channel created in step 2.

In step 4, the TTP sends a signed return receipt RR to S. Note that RR is
essentially non-repudiation of receipt (NRR). The TTP must take this step jointly
with the previous one, so as to be fair to both sender and receiver. If the certificate
received inside the return receipt matches S’s stored certificate, then S authenti-
cates R.

In both protocols, the TTP sees the symmetric key k, but not the plaintext
message m. This reduces the trust in the TTP, which cannot disclose the e-mails
even if compromised. However, a misbehaving TTP could eavesdrop on the initial
message from S to R, taking the ciphertext {|m|}k, which he could decrypt once he
knows k.

The protocol’s use of encryption should prevent spies from learning m. Most
importantly, the protocol “should allow a sender, S, to send an e-mail message to a
receiver, R, so that R reads the message if and only if S receives the corresponding
return receipt” [Abadi et al. 2002, §2]. This objective is similar to that of Zhou
and Gollmann, but weaker. The responder does not receive non-repudiation of
origin (NRO), namely evidence that the initiator intended to send him the message.
Nenadic̀ et al. [Nenadic et al. 2004] have recently published an e-mail protocol that
provides non-repudiation of both origin and receipt.

3. ANALYSING ACCOUNTABILITY PROTOCOLS

The verification of security protocols is well understood. Many techniques ex-
ist [Blanchet 1998; Cohen 2000; Fábrega et al. 1998; Paulson 1998; Ryan and

ACM Journal Name, Vol. V, No. N, January 2006.

6 · G. Bella and L. C. Paulson

Schneider 2000] to verify a wide variety of protocols, often automatically. However,
accountability protocols raise new challenges. We build upon our existing work on
analysing security protocols using the Inductive Method [Bella 2003; Paulson 1998]
and the proof assistant Isabelle/HOL.

3.1 Isabelle

Isabelle is a general-purpose interactive theorem prover. It is generic, which means
that it can reason in a variety of formal systems. The best-developed and most
popular version is Isabelle/HOL [Nipkow et al. 2002]; it supports higher-order logic,
a typed formalism that allows quantification over functions, predicates and sets.
Hardware and software systems can readily be modelled in higher-order logic, and
correctness properties expressed.

Isabelle provides much automation. Its simplifier (simp) combines rewriting with
arithmetic decision procedures, and it also has automatic provers (auto, blast,
force, etc.). However, most proofs are done interactively. In a typical proof, the
user directs Isabelle to perform a certain induction and then to simplify the resulting
subgoals. Any surviving subgoals might be given to an automatic prover or reduced
to other subgoals by the use of some lemma. Failure to find a proof may help in
locating a bug in the system being modelled, but it could simply mean that the
user is not skilled enough.

The series of commands used to prove a theorem can be seen as a proof sketch.
Confidence that the proof is sound comes from observing that line of reasoning
that we are forced to adopt, and the lemmas we are forced to prove. Interactive
theorem proving is difficult, and this very difficulty strengthens our confidence that
the resulting theorems are true. Conversely, a fully automatic proof may lead to
worries that the model of our system is too abstract. When a theorem has been
proved, Isabelle can deliver a formal proof object; as automation improves, people
will increasingly want to examine these proof objects (perhaps using an independent
tool) in order to assure themselves that the proof is valid.

Security protocols can be modelled using general-purpose tools such as Isabelle.
Once the models have been shown to be useful, researchers will naturally use them
as the basis for specialized protocol verification tools, which may achieve high per-
formance. Isabelle remains useful for modelling novel protocols that are not covered
by the specialized tools.

3.2 The Inductive Method

Our general approach is to formalise the system inductively. The resulting opera-
tional semantics has much in common with CSP formalisations [Ryan and Schnei-
der 2000], except that the models are infinite. The participants include the honest
ones, who execute the protocol faithfully; one of these is designated as a trusted
third party. There is a spy, who eavesdrops on network traffic and might send any
messages he is able to generate. We only verify safety properties: for example,
we cannot reason about denial of service. Proving a protocol guarantee involves
demonstrating that it holds in all execution traces. These are lists (built in reverse
order) containing three kinds of events.

—Says A B X means that A attempts to send message X to B .
ACM Journal Name, Vol. V, No. N, January 2006.

Accountability Protocols: Formalized and Verified · 7

—Gets B X means that B receives message X from the network.
—Notes A X means that A stores message X in its local state.

Messages are a recursive datatype msg that includes the following constructors:

—Agent A denotes the name of the agent A .
—Number N denotes a guessable number, where N is a non-negative integer, of type

nat.
—Nonce N denotes a non-guessable number, such as a random byte string, of type

nat.
—Key K denotes a key, which is regarded as non-guessable, of type key.
—Hash X denotes the cryptographic hash of the message X .
—Crypt K X denotes encryption of message X with key K .
—{|X1,..., Xn |} denotes the concatenation of the messages {|X1, ..., Xn |}.

Protocol definitions involve several additional functions.

—used evs denotes the set of all message components that appear in the trace evs,
so Nonce N /∈ used evs expresses that N is a fresh nonce.

—knows A evs denotes the set of messages that A sends or receives in the trace evs.
If A is the spy, then the set comprises all messages anyone sends or receives in
the trace.

—parts H denotes the set of all message components that appear in the set of
messages H, including the plaintexts of all encryptions.

—analz H is a subset of parts H, the components that are effectively derivable from
H using decryption by derivable keys.

—synth H denotes the set of messages that can be built up using elements of H
and guessable values.

—priEK A and priSK A denote the private keys (encryption and signature) of the
agent A .

—pubEK A and pubSK A denote the public keys (encryption and signature) of the
agent A .

—symKeys denotes the set of all symmetric keys; the complement of this set denotes
the asymmetric keys.

—bad denotes the set of compromised agents (see below).

In the following simple protocol, an initiator sends her identity and a fresh nonce
to a responder, who replies by signing the nonce.

1. A −→ B : A,Na
2. B −→ A : {|Na|}sK−B

Its inductive model (Fig. 3) consists of four introduction rules defining the constant
flp, the set of traces permissible with this protocol. Rule Nil admits the empty
trace. Rule Fake allows the spy to generate a message X using material gleaned
from past traffic and send it to anyone. Rule flp1 represents the first protocol
step: A chooses a fresh nonce and sends it to B . Rule flp2 represents the second
protocol step: if B receives a suitable message, he signs the nonce and sends it to

ACM Journal Name, Vol. V, No. N, January 2006.

8 · G. Bella and L. C. Paulson

the agent named in the first component of the message he received. Rule Recp says
that if a message is sent, it might be received.

Nil: "[] ∈ flp"

Fake: " [[evsf ∈ flp; X ∈ synth(analz(knows Spy evsf))]]
=⇒ Says Spy B X # evsf ∈ flp"

FLP1: " [[evs1 ∈ flp; Nonce Na /∈ used evs1]]
=⇒ Says A B {|Agent A, Nonce Na |} # evs1 ∈ flp"

FLP2: " [[evs2 ∈ flp; Gets B {|Agent A, Nonce Na |} ∈ set evs2]]
=⇒ Says B A (Crypt (priSK B) (Nonce Na)) # evs2 ∈ flp"

Recp: " [[evsr ∈ flp; Says A B X ∈ set evsr]]
=⇒ Gets B X # evsr ∈ flp"

Fig. 3. The inductive model of a simple protocol

3.3 Formalizing and verifying the novel goals

Non-repudiation and certified e-mail delivery are similar forms of accountability,
and differ from more basic concepts such as confidentiality and authentication.
The crucial difference is that protocol goals are proved without trusting the peer
to be well-behaved.

There are two pen-and-paper analyses of Zhou and Gollman’s protocol. One, by
the authors themselves [Zhou and Gollmann 1998], uses the SVO authentication
logic to only reason about validity of evidence. The other, by Schneider [Schneider
1998], uses rank functions and CSP to reason both about validity of evidence and
about fairness. An automated analysis by Gürgens and Rudolph finds a replay
attack under the assumption that the TTP does not maintain an audit trail: the
initiator can re-use the supposedly unique session label, using evidence from a
past run to “prove” the responder’s participation in a recent session [Gürgens and
Rudolph 2002].

We find the Gürgens-Rudolph scenario unrealistic.1 An audit trail is fundamental
to security. The protocol authors require some state to be maintained:

We require the TTP to check that the keys provided to it do not over-
write existing entries in the public directory.” [Zhou and Gollmann 1996,
§5.2].

They also comment on the duration of record-keeping:

In practice, we will not want TTP to store message keys forever. We
could set a deadline T to limit the time con k and k can be accessed by
the public.” [Zhou and Gollmann 1996, §5.3].

1Gollman, in a private communication, has rejected it emphatically.

ACM Journal Name, Vol. V, No. N, January 2006.

Accountability Protocols: Formalized and Verified · 9

We would expect the TTP to keep an off-line log of its transactions for a much
longer period than T , so that disputes can be investigated.

The certified e-mail protocol is fairly recent, and we know of only one formal
analysis. Abadi and Blanchet [2003] have used the protocol verifier ProVerif and
conclude, as we do, that the protocol meets its goals.

However, none of the aforementioned analyses are directly useful to us, as the
technical problems are specific to the verification method. We have developed
simple formalizations of non-repudiation and certified e-mail delivery, along with
simple proof strategies relying on induction.

The goal of non-repudiation is that at the end of a protocol session the initiator
has NRR and the responder has NRO . Given a trace evs of the protocol model,
the goals can be expressed as NRR ∈ analz(knows A evs) and NRO ∈ analz(knows B

evs). (Recall that the analz operator extracts components from the given set of
messages by decomposing concatenated messages and decrypting ciphertexts using
available keys.) If the protocol also is fair, then either both goals or none of them are
achieved. The goal of a fair non-repudiation protocol can be expressed abstractly
using a logical equivalence:

NRO ∈ analz(knows B evs) ⇐⇒ NRR ∈ analz(knows A evs)

Here evs ranges over all protocol traces, and we do not assume the remote agent to
be honest. Certified e-mail delivery can be expressed similarly: if the receiver can
derive the e-mail from his view of the network traffic on evs, then the sender can
derive the corresponding return receipt from his view of the traffic, and vice versa.

Given a specific protocol, these logical equivalences must be refined. Their sym-
metry is misleading: it does not capture the protocol’s objectives. The operator
analz represents an unlimited amount of work, and is only appropriate when spec-
ifying a hostile party. The honest agent expects to be given the required items
directly. The two directions must be expressed as separate implications (here, for
certified e-mail):

—If the (untrusted) receiver can derive the e-mail (using analz), then the sender
has been given the return receipt.

—If the (untrusted) sender can derive the return receipt (using analz), then the
receiver has been given the e-mail.

The phrase “has been given” must be formalized by reference to the specific protocol
message that delivers the required item. Thus, we can only formalize correctness
with respect to a specific protocol.

An additional problem is that we currently lack techniques for reasoning about
the knowledge of agents other than the spy. Specifically, we do not know how
to prove any interesting consequences of the assumption X ∈ analz(knows A evs)

unless A is the spy. Sometimes, we can correct the situation by proving something
stronger that no longer involves analz. Here is an improved guarantee for the
recipient of a certified e-mail delivery:

If the return receipt has been created at all, then the receiver has been
given the e-mail.

ACM Journal Name, Vol. V, No. N, January 2006.

10 · G. Bella and L. C. Paulson

This guarantee is stronger than the original, while eliminating the need to reason
about the sender’s knowledge.

The same technique can be applied to the messages NRO and NRR used in non-
repudiation. Unfortunately, it cannot be used to express the sender’s guarantee
of certified e-mail: obviously the e-mail m will have been created. Instead, we can
divide that guarantee into two separate assertions. One assumes that the recipient
is the spy; it is proved by reasoning about analz(knows Spy evs), which we know
how to do. The other assumes that the recipient is honest, and states that if R is
given m then S is given the receipt.

Both of our protocols use a key to protect their transmitted message. Later, the
responder (receiver) is given this key, so that she can decrypt the message. By
referring to this key, we can further refine our guarantees. A statement such as
“R has the message” can be refined to “R has the key to the message.” We can
also formalise a further guarantee, namely that the key never reaches the spy. This
valuable secrecy guarantee is formalised and proved using standard methods.

3.4 Higher-level protocols

Classical security protocols rely on basic transport protocols to deliver crypto-
graphic messages. The non-repudiation protocol refers to a specific transport pro-
tocol, FTP. The certified e-mail protocol depends on a secure channel, which might
be established using SSL [Abadi et al. 2002]. A security protocol that relies on other
security protocols suggests the concept of higher-level security protocol. Other ex-
amples include the fair-exchange protocol by Asokan et al. [Asokan et al. 1998b],
which relies on an authentication protocol, and Visa 3-D Secure [VISA 2002], which
relies on SSL.

This concept is independent of accountability and deserves future investigation.
Here is a formal definition.

Definition 1 Higher-Level Protocols.

—A 0th-level protocol is a transport protocol.
—An ith-level protocol, i ≥ 1 is a protocol that uses cryptography and jth-level

protocols for 0 ≤ j < i.

An ith-level protocol, i ≥ 1, is a security protocol. Our certified e-mail protocol
is at level two; our non-repudiation protocol is at level one, since FTP is only a
transport protocol. A protocol’s level is a property of its design and not of its
capabilities: any security protocol can be reduced to level one by expanding the
definitions of the protocols it uses. This obviously happens when the protocol is
implemented, when security analysts must look out for unexpected interactions
among the various protocols.

3.5 Formalizing the underlying protocols

Formalizing a second-level protocol requires a formalization of the underlying first-
level protocols as black boxes. Expanding their definitions is impractical, and for
the certified e-mail protocol, the use of SSL is merely a suggestion. The main
properties required of the first-level protocol are authentication and confidentiality,
and sometimes guaranteed delivery. Below we describe how to model these proper-
ACM Journal Name, Vol. V, No. N, January 2006.

Accountability Protocols: Formalized and Verified · 11

ties abstractly in our inductive framework: in other words, how to model channels
secured by first-level protocols.

3.5.1 Authentication. The sender identity A of a Says A B X event designates
the true sender of the message. We normally do not allow the recipient to inspect
the sender identity, formalizing message reception using the Gets event. In earlier
work [Paulson 1998], we formalized message reception using the event Says A’ B X,
taking care to ensure that the value of A’ (the true sender) was never used.

If B can authenticate the sender, then we can simply relax these restrictions in the
corresponding part of the inductive definition. For example, Says A B X signifies
that B can authenticate X as coming from A . This is the right way to model an
authenticated channel that does not offer confidentiality, because the spy can read
X from the event Says A B X .

3.5.2 Confidentiality. What if the channel must be confidential? We could ex-
tend our definitional framework with an event ConfSays A B X for sending a message
confidentially. This change would require modifications throughout our modelling
framework, and it is unnecessary: the framework is already expressive enough to
model secure channels.

The Notes event formalises an agent’s changing his internal state. It has the form
Notes A X, where X is a message (perhaps the result of a computation) being stored
for future reference. We can formalise a confidential transmission of a message X

from A to B by the specific event

Notes A {|A,B,X |}. (1)

Notice that the identities of the peers are stored with the actual message by con-
vention. Let us consider a simple second-level protocol that modifies our first-level
protocol (§3.2) to send its first message using SSL, which we model as a confidential
and authenticated channel:

1. A
SSL−→ B : A,Na

2. B −→ A : {|Na|}sK−B
The first message is formalized by rule SLP1 (Fig. 4). A new rule, Recp1st, formalizes
the reception of the confidential message: reception is not guaranteed even on a
confidential channel. This new rule takes event 1 as a precondition and introduces
the event

Notes B {|A,B,X |} (2)

signifying that B receives X confidentially. The rule SLP2, which formalizes B ’s
actions upon reception of X, takes event 2 as a precondition. Here A denotes the true
sender of the message, which B knows thanks to the secure channel. Rule Fake1st

is motivated later (§3.6). It is like the usual Fake rule except that it introduces
the event Notes B {|Spy,B,X |}, formalizing B ’s reception of the fake message X on
an authenticated channel. In other words, as Fake models the spy’s ability to send
fake messages over transport protocols, Fake1st models the same over first-level
protocols.

3.5.3 Guaranteed Delivery. Other goals of first-level protocols can be formal-
ized similarly. Guaranteed delivery can be formalized by introducing the event

ACM Journal Name, Vol. V, No. N, January 2006.

12 · G. Bella and L. C. Paulson

Nil: "[] ∈ slp"

Fake: " [[evsf ∈ slp; X ∈ synth(analz(knows Spy evsf))]]
=⇒ Says Spy B X # evsf ∈ slp"

Fake1st: " [[evsf1 ∈ slp; X ∈ synth(analz(knows Spy evsf1))]]
=⇒ Notes B {|Agent Spy, Agent B, X |} # evsf1 ∈ slp

SLP1: " [[evs1 ∈ slp; Nonce Na /∈ used evs1]]
=⇒ Notes A {|Agent A, Agent B, Nonce Na |} # evs1 ∈ slp"

SLP2: " [[evs2 ∈ slp;

Notes B {|Agent A, Agent B, Nonce Na |} ∈ set evs2]]
=⇒ Says B A (Crypt (priSK B) (Nonce Na)) # evs2 ∈ slp"

Recp: " [[evsr ∈ slp; Says A B X ∈ set evsr]]
=⇒ Gets B X # evsr ∈ slp"

Recp1st: " [[evsr1 ∈ slp; Notes A {|Agent A, Agent B, X |} ∈ set evsr1]]
=⇒ Notes B {|Agent A, Agent B, X |} # evsr1 ∈ slp" "

Fig. 4. The inductive model of a second-level protocol

for receiving a message at the same time as (or instead of) the event for sending
it. To combine this goal with confidentiality, as it would be needed for example
to confidentially distribute a session key, we can use an inductive rule that gives
both recipients Notes that have the form seen above and contain that key. Clearly,
the formalization of guaranteed delivery never uses reception rules such as Recp or
Recp1st (Fig. 4).

Notes events are affected by a detail of our model, the set bad of compromised
agents. The spy knows their private keys and can read their Notes. This detail is
consistent with our use of Notes above, since we can expect the spy to grab anything
that a compromised agent receives, even via a secure channel. The model does not
constrain bad other than to assert that the spy is a member and the TTP is not.

We have presented simple methods of formalizing secure channels abstractly—
that is, we do not assume a specific underlying protocol such as SSL or Kerberos.
To avoid conflicts with this use of Notes, other Notes messages should not begin
with two agent names.

3.6 Defining and formalizing a threat model

The usual threat model formalised in the Inductive Method is a Dolev-Yao spy. He
monitors the network traffic by means of function Knows, can analyse that traffic
by means of function analz, and can synthesise new messages from the analysed
components by means of function synth. The spy can send such messages to anyone,
as formalised by rule Fake (Fig. 4). Our present work requires extensions to this
threat model:

(1) Guarantees must not assume the peer to be honest. This is the main difference
between accountability protocols and traditional ones. This principle affects

ACM Journal Name, Vol. V, No. N, January 2006.

Accountability Protocols: Formalized and Verified · 13

the formalization of guarantees but not the formalization of the protocol.
(2) The spy can use channels created by first-level protocols, for example, SSL chan-

nels. This principle requires the additional rule Fake1st in the protocol defini-
tion, as discussed above.

(3) The spy cannot break the first-level protocols. This principle has guided our
design of the techniques for modelling secure channels. We assume that a
secure channel is always secure.

4. FORMALIZING THE PROTOCOLS

The techniques developed above allow us to inductively define the non-repudiation
protocol (§4.1) and the certified e-mail protocol (§4.2) .

We build on the Isabelle theory Public2 for cryptographic protocols based on
asymmetric encryption. It provides separate key pairs for encryption and signa-
ture. Each agent also has a long-term symmetric key, which we use to model the
passwords of the e-mail protocol. The encryption primitive, Crypt, expresses sym-
metric and asymmetric encryption and also digital signature.

4.1 Formalizing the non-repudiation protocol

The protocol model is the set of traces zg, whose inductive definition is in Fig. 5.
It is built according to the template given above in Fig. 3. Rules Nil, Fake and
Reception are standard. Rules ZG1, ZG2, ZG3 and ZG4 respectively model the legiti-
mate protocol steps. In particular, to initiate the protocol with B, agent A chooses
a fresh label in rule ZG1. ”Labels have to be unique to create the link between com-
mitment and key.” [Zhou and Gollmann 1996, §5.2], so we decide to model them
as random numbers, namely as nonces. Therefore, our labels are independent of
the messages—we do not study more detailed computations of labels. Because A

sends the message m in an encrypted form, she must choose a cryptographic key.
Rule ZG1 leaves her free to choose any key, even an old one; we merely assume that
she cannot pick asymmetric keys. Rule ZG4 gives con K to the spy: since the TTP
places this value on an FTP site, we model the possibility of the spy’s downloading
it.

We highlight the important certificates by defining them in the premises, using
equations; we use the names so defined in the conclusions. When a certificate is
defined in the premises of a rule, then the rule only applies for a certificate of the
specified form: informally, the agent verifies it. For example, B must check that NRO
in rule ZG2 is signed by A in order to confirm that she is the sender of the message
just received. Likewise, A must check that NRR in rule ZG3 is signed by B .

Rule ZG4 models TTP ’s preparation of the key confirmation con k. The TTP ver-
ifies the signature on sub k to confirm the identities of the other agents. All the
components needed to verify that signature are available. We decide to model the
installation of con k in TTP ’s public directory by a Notes event. This step terminates
the protocol with the availability of con k from TTP : we do not need to model the
peers’ retrieval of con k via FTP-get. However, because the spy only knows com-
promised agents’ notes and TTP is not compromised (§3.5.3), the spy is formally

2Found in src/HOL/Auth of the Isabelle distribution

ACM Journal Name, Vol. V, No. N, January 2006.

14 · G. Bella and L. C. Paulson

Nil: "[] ∈ zg"

Fake: " [[evsf ∈ zg; X ∈ synth (analz (knows Spy evsf))]]
=⇒ Says Spy B X # evsf ∈ zg"

Reception: " [[evsr∈ zg; Says A B X ∈ set evsr]] =⇒ Gets B X # evsr ∈ zg"

ZG1: " [[evs1 ∈ zg; Nonce L /∈ used evs1; C = Crypt K (Number m);

K ∈ symKeys;

NRO = Crypt (priK A) {|Number f nro, Agent B, Nonce L, C |}]]
=⇒ Says A B {|Number f nro, Agent B, Nonce L, C, NRO |} # evs1 ∈ zg"

ZG2: " [[evs2 ∈ zg;

Gets B {|Number f nro, Agent B, Nonce L, C, NRO |} ∈ set evs2;

NRO = Crypt (priK A) {|Number f nro, Agent B, Nonce L, C |};
NRR = Crypt (priK B) {|Number f nrr, Agent A, Nonce L, C |}]]

=⇒ Says B A {|Number f nrr, Agent A, Nonce L, NRR |} # evs2 ∈ zg"

ZG3: " [[evs3 ∈ zg; C = Crypt K M; K ∈ symKeys;

Says A B {|Number f nro, Agent B, Nonce L, C, NRO |} ∈ set evs3;

Gets A {|Number f nrr, Agent A, Nonce L, NRR |} ∈ set evs3;

NRR = Crypt (priK B) {|Number f nrr, Agent A, Nonce L, C |};
sub K = Crypt (priK A) {|Number f sub, Agent B, Nonce L, Key K |}]]

=⇒ Says A TTP {|Number f sub, Agent B, Nonce L, Key K, sub K |}
evs3 ∈ zg"

ZG4: " [[evs4 ∈ zg; K ∈ symKeys;

Gets TTP {|Number f sub, Agent B, Nonce L, Key K, sub K |}
∈ set evs4;

sub K = Crypt (priK A) {|Number f sub, Agent B, Nonce L, Key K |};
con K = Crypt (priK TTP) {|Number f con, Agent A, Agent B,

Nonce L, Key K |}]]
=⇒ Says TTP Spy con K

Notes TTP

{|Number f con, Agent A, Agent B, Nonce L, Key K, con K |}
evs4 ∈ zg"

Fig. 5. Formalizing the non-repudiation protocol

not allowed to download con K . To circumvent this limitation, rule ZG4 introduces
a Says event whereby that message is explicitly revealed to the spy.

4.2 Formalizing the certified e-mail protocol

The protocol model is the set of traces certified mail, part of whose inductive
definition appears in Fig. 6. (We omit rules Nil, Fake and Reception.) It is built
according to the template given above in Fig. 4. For authentication, R must be
able to respond to a query q from S . The two agents should have agreed off-line
on a series of challenge-response pairs. We choose the following implementation
of responses, which allows the spy to generate the response if R is compromised—
ACM Journal Name, Vol. V, No. N, January 2006.

Accountability Protocols: Formalized and Verified · 15

though not if S is compromised.

"response" :: "agent => agent => nat => msg"

"response S R q == Hash {|Agent S, Key (shrK R), Nonce q |}"

According to the general treatment given above (§3.5), message transmission over
a secure channel, which is authenticated, confidential and delivery guaranteed, is
formalized by a Notes event of the form (2). Rule Fake1st lets the spy open a
secure channel to the TTP and send a fake message. Rule CM1 represents the first
protocol message; cleartext stands for the part of the message that is given to R

immediately. In rule CM2, a Notes event represents R ’s message to the TTP; here
Key (RPwd R) is R ’s password. Because messages 2 and 3 travel over guaranteed-
delivery channels, the protocol model does not require a rule of the form of Recp1st
(§3.5.3). Hence, the subjects of the Notes events in rules CM2 and CM3 respectively
are the intended recipients of the messages (TTP and R respectively).

Steps 3 and 4 must take place at the same time, so they are formalized by
the single rule CM3. The TTP checks R ’s password to authenticate the sender of
message 2, but regardless he must reply along the same secure channel. The replies
to both S and R are delivery guaranteed, so the rule introduces an appropriate Notes

event for the receiver, and a double Says -Gets event for the TTP’s transmission to
the sender. The Says event may seem unnecessary, but it preserves a feature of our
model: every Gets event has a matching Says event.

5. VERIFYING THE PROTOCOLS

In previous work, we have described how to prove authentication and secrecy prop-
erties for a variety of protocols [Bella 2000; 2003; Paulson 1998]. Here we focus on
novel techniques, primarily on how to specify and verify guarantees where the peer
may be the spy. We list all the important guarantees, but only outline the proofs
of the novel ones. To convey an impression of the verification process, we briefly
discuss the machine proofs.

5.1 Verifying the non-repudiation protocol

For verifying this protocol, we require an additional definition: the set of broken
agents. It is necessary because if an agent’s signing key has been compromised,
signatures made using that key are worthless. The set broken therefore includes all
compromised agents other than the spy.

broken == bad - {Spy}

If an agent is broken, then the spy has his keys and can impersonate him freely, so
many protocol guarantees assume the peer to be unbroken. This assumption still
allows the peer to be the spy himself, and therefore to misbehave.

All of the guarantees are regularity properties, which concern all well-formed
protocol runs. We do not have to prove difficult properties involving secrecy. In
message 3, agent A actually broadcasts the key K .

5.1.1 Proving validity of evidence. A lemma states that if con K exists at all (as
formalized by the function used), then TTP has stored it on the FTP site, where it is
available to A and B . (Our model does not include the actual FTP-get operations.)

ACM Journal Name, Vol. V, No. N, January 2006.

16 · G. Bella and L. C. Paulson

Fake1st: " [[evsfssl ∈ certified mail; X ∈ synth(analz(knows Spy evsfssl))]]
=⇒ Notes TTP {|Agent Spy, Agent TTP, X |} # evsfssl

∈ certified mail"

CM1: " [[evs1 ∈ certified mail;

Key K /∈ used evs1; K ∈ symKeys; Nonce q /∈ used evs1;

hs = Hash{|Number cleartext, Nonce q, response S R q,

Crypt K (Number m) |};
S2TTP = Crypt(pubEK TTP)

{|Agent S, Number BothAuth, Key K, Agent R, hs |}]]
=⇒ Says S R {|Agent S, Agent TTP, Crypt K (Number m), Number BothAuth,

Number cleartext, Nonce q, S2TTP |} # evs1

∈ certified mail"

CM2: " [[evs2 ∈ certified mail;

Gets R {|Agent S, Agent TTP, em, Number BothAuth, Number cleartext,

Nonce q, S2TTP |} ∈ set evs2;

TTP 6= R;

hr = Hash {|Number cleartext, Nonce q, response S R q, em |}]]
=⇒ Notes TTP {|Agent R, Agent TTP, S2TTP, Key(RPwd R), hr |} # evs2

∈ certified mail"

CM3: " [[evs3 ∈ certified mail;

Notes TTP {|Agent R, Agent TTP, S2TTP, Key(RPwd R), hr |} ∈ set evs3;

S2TTP = Crypt (pubEK TTP)

{|Agent S, Number BothAuth, Key k, Agent R, hs |};
TTP 6= R; hs = hr; k ∈ symKeys]]

=⇒ Notes R {|Agent TTP, Agent R, Key k, hr |} #

Gets S (Crypt (priSK TTP) S2TTP) #

Says TTP S (Crypt (priSK TTP) S2TTP) # evs3 ∈ certified mail"

Fig. 6. Formalizing the certified e-mail protocol

Either agent, possessing con K, can use this guarantee to show that the peer has
access to con K, and therefore to the key K . Since con K is equally available to both
parties, this lemma also expresses an aspect of fairness.

lemma con K validity:

" [[con K ∈ used evs;

con K = Crypt (priK TTP)

{|Number f con, Agent A, Agent B, Nonce L, Key K |};
evs ∈ zg]]

=⇒ Notes TTP {|Number f con, Agent A, Agent B, Nonce L, Key K, con K |}
∈ set evs"

The proof is a simple induction: since con K is signed by TTP, who is uncompromised,
rule ZG4 must have been executed.

The Isabelle proof script is six lines long. The first three lines, which are routine,
set up the induction.

apply clarify

ACM Journal Name, Vol. V, No. N, January 2006.

Accountability Protocols: Formalized and Verified · 17

apply (erule rev mp)

apply (erule zg.induct)

The fourth line is also routine. It applies ZG2 msg in parts spies, a typical forward-
ing lemma [Paulson 1998, §4.2], and then it simplifies all subgoals arising from the
induction. In this case, the forwarding lemma causes Isabelle to note that message
component C, which gets incorporated into NRR, has been transmitted in clear and
is therefore already known to the spy.

apply (frule tac [5] ZG2 msg in parts spies, simp all)

Only two subgoals survive the simplification. The first, which arises from the Fake

rule, is proved by blast with the help of a lemma that concerns the relationship
between faked messages and the parts primitive. The remaining case concerns rule
ZG2 ; it is also proved by blast with a different lemma concerning parts.

apply (blast dest!: Fake parts sing imp Un)

apply (blast dest: parts cut)

Finding such proofs requires ingenuity, but often one proof script can serve as the
starting point for the next one.

Our first proper theorem states that if con K exists, then A has sent a well-formed
instance of message 3. Its conclusion holds even if A is the spy, which is allowed by
A /∈ broken.

theorem B sub K validity:

" [[con K ∈ used evs;

con K = Crypt (priK TTP) {|Number f con, Agent A, Agent B,

Nonce L, Key K |};
sub K = Crypt (priK A) {|Number f sub, Agent B, Nonce L, Key K |};
A /∈ broken; evs ∈ zg]]

=⇒ Says A TTP {|Number f sub, Agent B, Nonce L, Key K, sub K |} ∈ set evs"

The proof script consists of a single line.

by (blast dest: con K validity Notes TTP imp Says A)

Here Notes TTP imp Says A is a lemma, proved by induction, stating that if con K is
on the FTP site then A has sent message 3.

We have also proved that NRO is valid. This proof requires some lemmas to be
proved beforehand; let us examine the development in detail. First, we prove that
if NRO appears to come from A, then it really comes from A . The easy case is when
A is uncompromised (A /∈ bad): the spy could not have made the digital signature,
so it arose from a legitimate protocol step.

lemma NRO validity good:

" [[NRO = Crypt (priK A) {|Number f nro, Agent B, Nonce L, C |};
NRO ∈ parts (knows Spy evs);

A /∈ bad; evs ∈ zg]]
=⇒ Says A B {|Number f nro, Agent B, Nonce L, C, NRO |} ∈ set evs"

The Isabelle proof script is simple—as we expect for such an elementary claim—and
consists of a standard induction setup followed by auto.

ACM Journal Name, Vol. V, No. N, January 2006.

18 · G. Bella and L. C. Paulson

apply clarify

apply (erule rev mp)

apply (erule zg.induct)

apply (frule tac [5] ZG2 msg in parts spies, auto)

The following lemma states that if anybody has sent any messge resembling NRO

and involving A ’s signature, then the sender was either A or the spy. The proof is
another easy induction, since only the spy would use another agent’s key.

lemma NRO sender:

" [[Says A’ B {|n, b, l, C, Crypt (priK A) X |} ∈ set evs; evs ∈ zg]]
=⇒ A’ ∈ {A,Spy}"

Thus, we arrive at our second theorem: if A’ has sent an instance of NRO signed
by A, then A has also sent the message. If A’ 6= A then (by the previous lemma) A’

= Spy, hence A 6= Spy. The result follows by NRO validity good.

theorem NRO validity:

" [[Gets B {|Number f nro, Agent B, Nonce L, C, NRO |} ∈ set evs;

NRO = Crypt (priK A) {|Number f nro, Agent B, Nonce L, C |};
A /∈ broken; evs ∈ zg]]

=⇒ Says A B {|Number f nro, Agent B, Nonce L, C, NRO |} ∈ set evs"

The two theorems presented so far, namely B sub K validity and NRO validity,
confirm the protocol goals for B . If he exhibits con K, then by theorem sub K validity

he can assert that A submitted the key K bound to the label L . If he exhibits NRO,
then by theorem NRO validity he can assert that A submitted the commitment C

bound to the label L . The label binds the commitment to the key, hence the theo-
rems together confirm A ’s intention to send the plaintext message contained in C .

An analogous theorem, with a similar proof, guarantees that NRR is valid. Any
instance of NRR that appears to come from B actually did. As usual, the assumption
B /∈ broken allows B to be the spy.

theorem NRR validity:

" [[Gets A {|Number f nrr, Agent A, Nonce L, NRR |} ∈ set evs;

NRR = Crypt (priK B) {|Number f nrr, Agent A, Nonce L, C |};
B /∈ broken; evs ∈ zg]]

=⇒ Says B A {|Number f nrr, Agent A, Nonce L, NRR |} ∈ set evs"

This theorem, together with sub K validity, confirms the protocol goals for A . If A
exhibits NRR and con K, then she can assert that B holds C and K, and therefore has
access to m.

5.1.2 Proving fairness. The fairness guarantees protect an agent who follows
the protocol from one who does not. The person receiving the guarantee must be
uncompromised, but no assumption is made about the peer. Since con k validity

already states that con K is equally available to both parties, we only have to prove
fairness for NRO and NRR .

This theorem expresses fairness for B : if NRR exists at all, then B (who must be
uncompromised) holds NRO . The proof is yet another straightforward induction.

theorem B fairness NRR:

" [[NRR ∈ used evs;

ACM Journal Name, Vol. V, No. N, January 2006.

Accountability Protocols: Formalized and Verified · 19

NRR = Crypt (priK B) {|Number f nrr, Agent A, Nonce L, c |};
NRO = Crypt (priK A) {|Number f nro, Agent B, Nonce L, c |};
B /∈ bad; evs ∈ zg]]

=⇒ Gets B {|Number f nro, Agent B, Nonce L, c, NRO |} ∈ set evs"

Fairness for A has a slightly different form: if con K and NRO exist, then A

holds NRR . We see how con K gives fairness to A, who otherwise would be at a
disadvantage because the first message gives evidence to B .

theorem A fairness NRO:

" [[con k ∈ used evs;

NRO ∈ parts (knows Spy evs);

con k = Crypt (priK TTP)

{|Number f con, Agent A, Agent B, Nonce L, Key k |};
NRO = Crypt (priK A) {|Number f nro, Agent B, Nonce L, Crypt k m |};
NRR = Crypt (priK B) {|Number f nrr, Agent A, Nonce L, Crypt k m |};
A /∈ bad; evs ∈ zg]]

=⇒ Gets A {|Number f nrr, Agent A, Nonce L, NRR |} ∈ set evs"

The Isabelle proof is much more complicated than that of the corresponding prop-
erty for B . Four cases (Fake, ZG1, ZG2 and ZG4) require separate attention. We
need a lemma that A only sends message 3 after she has received NRR . She recog-
nizes the correct NRR by the label L, which she is required to choose uniquely to
identify the transaction. This uniqueness is used in the proof of fairness for A . If
A attempts to cheat by re-using transaction identifiers, as suggested by Gürgens
and Rudolph [Gürgens and Rudolph 2002], then she runs the risk of accepting the
wrong transaction.

5.2 Verifying the certified e-mail protocol

The novel features of this protocol required low-level modifications to the verifica-
tion techniques, but little that was fundamentally new. We focus on the final results
on certified e-mail delivery, omitting proofs of the classical properties of confiden-
tiality and authentication. We present three theorems, which together confirm the
main goal of the protocol, that the sender S gets the return receipt if and only if the
receiver R gets the e-mail. As before, we include some crucial lemmas and details
about the proof scripts.

5.2.1 Proving validity of evidence. This protocol offers no protection against
non-repudiation of origin, so there is no evidence given to the receiver. The main
theorem confirming the validity of evidence says that if the return receipt exists,
then R has obtained the cryptographic key necessary to retrieve the e-mail.

theorem RR validity:

" [[Crypt (priSK TTP) S2TTP ∈ used evs;

S2TTP = Crypt (pubEK TTP)

{|Agent S, Number AO, Key K, Agent R,

Hash {|Number cleartext, Nonce q, r, em |}|};
hr = Hash {|Number cleartext, Nonce q, r, em |};
R 6=Spy; evs ∈ certified mail]]

=⇒ Notes R {|Agent TTP, Agent R, Key K, hr |} ∈ set evs"

ACM Journal Name, Vol. V, No. N, January 2006.

20 · G. Bella and L. C. Paulson

The cryptogram mentioned in the first line is the return receipt. The inductive
proof is lengthy (eleven commands), with separate consideration of four cases of
the induction. Nothing inherently difficult is involved; the complicated form of the
assertion causes Isabelle’s automatic provers to require more guidance than usual.
In the terminology of the Inductive Method, this proof relies on forwarding and
regularity lemmas [Paulson 1998], which are elementary facts about the message
structure.

Before proceeding to the fairness guarantees, we need to introduce a lemma. It
concerns S2TTP, the certificate sent by S to TTP in the first protocol message. The
lemma says that anything matching the form of S2TTP can only arise from a valid
instance of the first protocol message, provided the spy does not know the key K

within it.

lemma S2TTP sender:

" [[Crypt (pubEK TTP) {|Agent S, Number AO, Key K, Agent R, hs |} ∈ used evs;

Key K /∈ analz (knows Spy evs);

evs ∈ certified mail]]
=⇒ ∃ m ctxt q.

hs = Hash{|Number ctxt, Nonce q, response S R q, Crypt K (Number m) |} &

Says S R

{|Agent S, Agent TTP, Crypt K (Number m), Number AO,

Number ctxt, Nonce q,

Crypt (pubEK TTP)

{|Agent S, Number AO, Key K, Agent R, hs |}|} ∈ set evs"

The proof is straightforward—the spy needs to know K before he can use it to make
a fake version of S2TTP—but once again the proof script includes quite a bit of
guidance for Isabelle’s provers.

Using this lemma requires satisfying the premise Key K /∈ analz (knows Spy evs).
That can be done in several ways. We could use a separate proof that K is confi-
dential, or perform a case analysis on whether K is confidential or not. Finally, we
could leave the confidentiality as an outstanding assumption, to be proved later.

The lemma Key unique, not shown, is related to S2TTP sender. It again assumes
that the spy does not know K ; it concludes that if two instances of the first protocol
message agree in component K, then they agree in all components. It is a typical
unicity theorem [Paulson 1998, §4.5], with a straightforward proof. It holds because
honest senders do not reuse keys.

5.2.2 Proving fairness. The theorem RR validity above expresses fairness for
R : he will get the required key if S gets the return receipt. The fairness guarantee
for S is expressed as two theorems: one for the case when the receiver is the spy and
one for an honest receiver. The sender does not need to know which case applies.

The “bad” theorem’s premises are that the sender has issued message 1 (with
the given value of S2TTP) and that the session key K is available to the spy. The
conclusion is that the receiver is compromised, but even in this case, the sender
gets the return receipt.

theorem S fairness bad R:

" [[Says S R {|Agent S, Agent TTP, Crypt K (Number m), Number AO,

Number cleartext, Nonce q, S2TTP |} ∈ set evs;

ACM Journal Name, Vol. V, No. N, January 2006.

Accountability Protocols: Formalized and Verified · 21

S2TTP = Crypt (pubEK TTP) {|Agent S, Number AO, Key K, Agent R, hs |};
Key K ∈ analz (knows Spy evs);

S 6= Spy; evs ∈ certified mail]]
=⇒ R ∈ bad & Gets S RR ∈ set evs"

The proof script is a simple induction except for the treatment of the third protocol
message, when TTP replies to S and R . Here, the reasoning is rather subtle. Any
assertion of the form “if the spy knows K then . . . ” is a confidentiality property.
(In particular, if . . . is simply False then it is equivalent to saying that the spy
does not know K .) Therefore, the proof requires the sort of reasoning needed to
prove confidentiality [Paulson 1998, §4.5]. We get a case analysis on whether the
spy knows the key or not, and in the latter case we appeal to lemmas S2TTP sender

and Key unique. Even with this complicated argument, Isabelle’s provers do much
of the work, and the treatment of the third message consists of only five commands.

In the “good” theorem, the sender has issued message 1 and the receiver has
legitimately received the session key. The conclusion is that the sender gets the
return receipt.

theorem S guarantee:

" [[Says S R {|Agent S, Agent TTP, Crypt K (Number m), Number AO,

Number cleartext, Nonce q, S2TTP |} ∈ set evs;

S2TTP = Crypt (pubEK TTP) {|Agent S, Number AO, Key K, Agent R, hs |};
Notes R {|Agent TTP, Agent R, Key K, hs |} ∈ set evs;

S 6=Spy; evs ∈ certified mail]]
=⇒ Gets S (Crypt (priSK TTP) S2TTP) ∈ set evs"

Here, the Isabelle proof script is surprisingly short. The argument for the crucial
third message consists of a single prover call:

apply(blast dest: Notes SSL imp used S2TTP sender Key unique S fairness bad R)

However, this generates a rather intricate proof involving the lemmas discussed
above.

The development of our proofs has highlighted that an anomalous execution of
the protocol is possible. The receiver can initiate a session from step 2 by quoting an
arbitrary sender, and by building two identical hashes. The session will terminate
successfully and the sender will get evidence that an e-mail he has never sent has
been delivered. This is because the protocol does not authenticate the sender to TTP .
The anomaly can be solved by inserting the sender’s password into the certificate
S2TTP created at step 1, so that the receiver cannot forge it.

Another flaw is that S has no defence against R ’s claim that the message was
sent years ago and is no longer relevant, which would devalue the return receipt.
This attack works in both directions: R ’s claim might be truthful and not believed.
Even if S includes a date in the message, he cannot prove that the date is accurate.
The obvious solution is for TTP to include a timestamp in the return receipt.

The formalization of a distrusted peer differs from the previous protocol, where
we had to assume A /∈ broken rather than just A 6= Spy. The non-repudiation
protocol requires the stronger assumption because it is based on digital signatures,
which are worthless if the peer’s private keys have been disclosed. The certified e-
mail protocol is based upon weaker mechanisms: passwords and previously-agreed

ACM Journal Name, Vol. V, No. N, January 2006.

22 · G. Bella and L. C. Paulson

responses. We must bear that in mind when interpreting the theorems proved in
our model. Guarantees based on strong cryptography are firmer than those based
on weak passwords.

It can be interesting to see what happens if the protocol is deliberately weakened.
For example, suppose that the receiver of the certified e-mail protocol forgets to
send message 2 over the SSL protocol and sends it over a conventional transport
protocol. Modelling this variant is straightforward: replace the event

Notes TTP {|Agent R, Agent TTP, S2TTP, Key(RPwd R), hr |}

in rule CM2 by the event

Says R TTP {|S2TTP, Key(RPwd R), hr |}

and fix the corresponding premise in rule CM3 accordingly. An attempt to re-execute
our proof script soon reveals that the receiver is sending his secret password in clear
and disclosing it to the spy. Specifically, the regularity lemma stating that the spy
only knows the passwords of compromised agents fails in the new model.

This kind of experiment is interesting, but unnecessary. The Inductive Method
works by establishing facts through formal proof. The chain of reasoning is open
to inspection. This is fundamentally different from model checkers and other au-
tomatic analysis tools. Bug-finding tools often use unrealistic finite models and
they yield no justification of their result if they fail to find a bug. Hence comes the
impulse to inject bugs, or to strengthen the protocol specification, so that the tool
can report something. Some of these findings are even published as if they were
realistic attacks.

6. CONCLUSIONS

Our findings confirm that both the non-repudiation protocol and the certified e-
mail protocol broadly achieve their goals. The non-repudiation protocol delivers
evidence to its participants, binding each other’s participation. It is fair: each party
receives evidence if and only if the other party does. The certified e-mail protocol
is fair in the sense that the initiator gets non-repudiation evidence—the return
receipt—if and only if the responder gets the e-mail. All evidence in both protocols
appears to be valid: sufficient to hold an agent accountable for participation.

Comparing the two protocols, the e-mail one demands less of the trusted third
party and it uses much weaker cryptographic mechanisms, with no public-key in-
frastructure. It offers correspondingly weaker guarantees: the responder gets no
non-repudiation evidence, and even the theorems we can prove must be interpreted
with an awareness of the weak cryptography.

Our methods scale up to analysing accountability protocols. We have examined
two protocols that have similar goals but operate in very different security environ-
ments. Numerous, though straightforward, changes were necessary to model the
novel architectures.

REFERENCES

Abadi, M. and Blanchet, B. 2003. Computer-assisted verification of a protocol for certified
email. In Static Analysis, 10th International Symposium (SAS’03), R. Cousot, Ed. Lecture
Notes in Comp. Sci., vol. 2694. Springer Verlag, 316–335.

ACM Journal Name, Vol. V, No. N, January 2006.

Accountability Protocols: Formalized and Verified · 23

Abadi, M., Glew, N., Horne, B., and Pinkas, B. 2002. Certified email with a light on-line
trusted third party: Design and implementation. In Proceedings of the 11th International
Conference on Wold Wide Web (WWW-02). ACM Press and Addison Wesley.

Asokan, N., Shoup, V., and Waidner, M. 1998a. Asynchronous protocols for optimistic fair
exchange. In Proc. of the 17th IEEE Sym. on Sec. and Privacy. IEEE Comp. Society Press,
86–99.

Asokan, N., Shoup, V., and Waidner, M. 1998b. Asynchronous protocols for optimistic fair
exchange. In Proc. of the 17th IEEE Sym. on Sec. and Privacy. IEEE Comp. Society Press.

Bella, G. 2000. Inductive Verification of Cryptographic Protocols. Ph.D. thesis, Research Re-
port 493, Computer Laboratory, University of Cambridge. Accepted for publication as LNCS
Monograph by Springer.

Bella, G. 2003. Inductive verification of smart card protocols. J. of Comp. Sec. 11, 1, 87–132.

Bella, G., Longo, C., and Paulson, L. C. 2003. Verifying second-level security protocols. In
Theorem Proving in Higher Order Logics: TPHOLs 2003, D. Basin and B. Wolff, Eds. LNCS
2758. Springer, 352–366.

Bella, G. and Paulson, L. C. 2001. Mechanical proofs about a non-repudiation protocol. In
Theorem Proving in Higher Order Logics: TPHOLs 2001, R. J. Boulton and P. B. Jackson,
Eds. Lecture Notes in Comp. Sci., vol. 2152. Springer, 91–104.

Blanchet, B. 1998. An efficient cryptographic protocol verifier based on Prolog rules. In Proc.
of the 14th IEEE Comp. Sec. Found. Workshop. IEEE Comp. Society Press.

Burrows, M., Abadi, M., and Needham, R. M. 1989. A logic of authentication. Proceedings of
the Royal Society of London 426, 233–271.

Cohen, E. 2000. TAPS: A first-order verifier for cryptographic protocols. In Proc. of the 13th
IEEE Comp. Sec. Found. Workshop. IEEE Comp. Society Press, 144–158.

Deng, R. H., Gong, L., Lazar, A. A., and Wang, W. 1996. Practical protocols for certified
electronic mail. Journal of Network and System Management 4, 3, 279–297.

Fábrega, F. J. T., Herzog, J. C., and Guttman, J. D. 1998. Strand Spaces: Why is a Security
Protocol Correct? In Proc. of the 17th IEEE Sym. on Sec. and Privacy. IEEE Comp. Society
Press.

Gürgens, S. and Rudolph, C. 2002. Security analysis of (un-) fair non-repudiation protocols.
In Formal Aspects of Security, A. Abdallah, P. Ryan, and S. Schneider, Eds. Technical Report
CSD-TR-02-13.

Mastercard & VISA 1997. SET Secure Electronic Transaction Specification: Business Descrip-
tion. Mastercard & VISA. On the Internet at http://www.setco.org/set specifications.

html.

Nenadic, A., Zhang, N., and Barton, S. 2004. Fair certified e-mail delivery. In Proc. of
the 18th ACM Symposium on Applied Computing (ACM SAC’04). ACM Press and Addison
Wesley, 391–396.

Nipkow, T., Paulson, L. C., and Wenzel, M. 2002. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer. LNCS Tutorial 2283.

Paulson, L. C. 1998. The inductive approach to verifying cryptographic protocols. J. of Comp.
Sec. 6, 85–128.

Ryan, P. Y. A. and Schneider, S. A. 2000. The Modelling and Analysis of Security Protocols:
the CSP Approach. Addison Wesley Publ. Co., Reading, Massachussetts.

Schneider, S. 1998. Formal analysis of a non-repudiation protocol. In 11th Computer Security
Foundations Workshop. IEEE Computer Society Press, 54–65.

VISA 2002. 3-D Secure Introduction. VISA. On the Internet at http://international.visa.

com/fb/paytech/secure/pdfs/3DS 70001-01 Introduction v1.0.2.pdf.

Zhou, G. and Gollmann, D. 1998. Towards verification of non-repudiation protocols. In In-
ternational Refinement Workshop and Formal Methods Pacific, J. Grundy, M. Schwenke, and
T. Vickers, Eds. Springer-Verlag, 370–380.

Zhou, J. and Gollmann, D. 1996. A fair non-repudiation protocol. In Symposium on Security
and Privacy. IEEE Computer Society.

ACM Journal Name, Vol. V, No. N, January 2006.

