Source-Level Proof Reconstruction for Interactive Proving

Lawrence C. Paulson and Kong Woei Susanto
Computer Laboratory, University of Cambridge
Motivation

- Interactive provers are good for specifying complex systems, but proving theorems requires too much work.

- Linking them to automatic provers can reduce the cost of using them.

- Trusting the output of a big system (including the linkup code) goes against the LCF tradition and is unsafe.

- Reconstruction lets us use techniques that are efficient but unsound.
Source-Level Proof Reconstruction

- The LCF architecture provides a kernel of inference rules, which is the basis of all proofs.

- Automatic tools may include a *proof reconstruction* phase, where they justify their reasoning to the proof kernel.

Why not instead deliver proofs in source form? Then users could *inspect* and *edit* them.
Isabelle Overview

- *Generic* proof assistant, supporting higher-order logic, ZF set theory, etc.

- *Axiomatic type classes* to express concepts such as *linear order* and *ring* through polymorphism.

- *Extensive lemma libraries*: real numbers (including non-standard analysis), number theory, hardware, ...

- *Automation*: decision procedures, simplifier and prover, automatically referring to 2000 lemmas.
Automatic Provers

- *Resolution* is a general, powerful technique with full support for quantifiers and equations.

- The provers we use are Vampire, E and SPASS.

- Arithmetic is not built-in; however, Isabelle already provides support for the main decidable theories.

- Decision procedures have too narrow a focus. We seek automation that can be tried on *any* problem.
Overview of the Linkup

When the user invokes the “sledgehammer” command...

- The problem is Skolemized and converted to clause form, with higher-order features removed (all by inference).
- A simple relevance filter chooses a few hundred lemmas to include with the problem.
- Further clauses convey limited information about types and type classes.
- A resolution prover starts up (in the background).
Obstacles to Reconstruction with Automatic Provers

- **Ambiguities**: their output typically omits crucial information, such as which term is affected by rewriting.

- **Lack of standards**: automatic provers generate different output formats and employ a variety of inference systems.

- **Complexity**: a single automatic prover may use numerous inference rules with complicated behaviours.

- **Problem transformations**: ATPs re-order literals and make other changes to the clauses they are given.
Joe Hurd’s Metis Prover

- Metis is a clean implementation of resolution, with an ML interface for LCF-style provers, originally HOL4.

- We provide `metis` as an Isabelle command, with internal proof reconstruction.

- We translate ATP output into a series of `metis` calls.

- Metis cannot replace leading provers such as Vampire, but it can usually re-run their proofs.
Porting Metis to Isabelle

- Conversion to clauses: use Isabelle’s existing code for this task.
- The 5 Metis inference rules: implement using Isabelle’s proof kernel.
- During type inference, recover type class information from the proof.
- Ignore clauses and literals that encode type classes.
Approaches to Proof Reconstruction via Metis

1. A single call to metis, with just the needed lemmas
 - The ATP merely serves as a relevance filter.
 - Parsing is trivial: we merely look for axiom numbers to see which lemmas were used.

2. A line-by-line reconstruction of the resolution proof
 - We translate the ATP proof into an ugly Isabelle proof.
Thousands of Solutions from Theorem Provers

A standard for returning outcomes of ATP calls

Proof lines have the form

\[\text{cnf}(<\text{name}>, <\text{formula_role}>, <\text{cnf_formula}><\text{annotations}>). \]

- axiom, conjecture, etc.
- referenced proof lines
A TSTP Axiom Line

- This line expresses the equation

\[X - X = 0 \]

cnf(216, axiom,
 (c_minus(X, X, X3)=c_HOL_Ozero(X3) | ~class_OrderedGroup_Oab__group__add(X3)),
 file('BigO__bigo_bounded2_1', cls_right__minus__eq_1)).
This line expresses type information about the given problem. (The type variable \(b \) is in class \texttt{ordered_idom}.)

Proof reconstruction must ignore it.

cnf(335,negated_conjecture, (class_Ring__and__Field__0ordered__idom(t_b)), file('BigO__bigo_bounded2_1', tfree_tcs)).
A TSTP Proof Step

- The E prover’s inferences look like this.

- It conveys more information about the type variable ‘b, so it too must be ignored.

```prolog
cnf(366,negated_conjecture,
   (class_OrderedGroup_Opordered__ab__group__add(t_b)),
   inference(spm,[status(thm)],
              [343,335,theory(equality)]))
```
What to Do with Various Proof Lines

- **Axiom reference**: delete, using instead the lemma name.
- **Type class inclusion**: delete entirely.
- **Conjecture clause**: copy it into the Isabelle proof, as an assumption.
- **Inference**: copy it into the Isabelle proof, justified by a call to `metis`.

Turning TSTP into Isabelle

- Parse TSTP format, recovering *proof structure*.
- Use type literals in clauses to recover *class constraints* on type variables.
- Use Isabelle’s type inference to recover *terms*.
- Use Isabelle’s pretty printer to generate *strings*.
- Combine strings to yield an *Isar structured proof*.
Collapsing of Proof Steps

We can shorten the proof by combining adjacent steps, giving *metis* more work to do!

- Some assertions aren’t expressible in Isabelle: quantifications over types, type class inclusions.
- Some inferences are trivial (instantiating variables in another line) or become trivial once type literals are ignored.
- Some proofs are just intolerably long (a hundred lines).
proof (neg_clausify)
fix x
assume 0: "∀y. lb y ≤ f y"
assume 1: "¬ (0::'b) ≤ f x + - 1b x"
have 2: "∀X3. (0::'b) + X3 = X3"
 by (metis diff_eq_eq right_minus_eq)
have 3: "¬ (0::'b) ≤ f x - 1b x"
 by (metis 1 compare_rls(1))
have 4: "¬ (0::'b) + 1b x ≤ f x"
 by (metis 3 le_diff_eq)
show "False"
 by (metis 4 2 0)
qed
Future Ideas and Conclusions

- ATPs can help generate their own proof scripts!
- Scripts may need type annotations, which at present are highly repetitions.
- Redundant material, such as proofs of known facts, could be deleted.
- Can we produce scripts that look natural?
Acknowledgements

- Postdocs: Claire Quigley
- PhD student: Jia Meng
- Funding: EPSRC project GR/S57198/01 *Automation for Interactive Proof*

EPSRC Engineering and Physical Sciences Research Council