
Lightweight Relevance Filtering for

Machine-Generated Resolution Problems

Jia Meng

National ICT, Australia

Lawrence C. Paulson

Computer Laboratory, University of Cambridge, U.K.

Abstract

Irrelevant clauses in resolution problems increase the search space, making proofs
hard to find in a reasonable amount of processor time. Simple relevance filtering
methods, based on counting symbols in clauses, improve the success rate for a
variety of automatic theorem provers and with various initial settings. We have de-
signed these techniques as part of a project to link automatic theorem provers to
the interactive theorem prover Isabelle. We have tested them for problems involving
thousands of clauses, which yield poor results without filtering. Our methods should
be applicable to other tasks where the resolution problems are produced mechani-
cally and where completeness is less important than achieving a high success rate
with limited processor time.

1 Introduction

We have been working for three years on a project to link the interactive prover
Isabelle with resolution-based automatic theorem provers (ATPs) [10]. Ease of
invocation is our primary aim: users should be able to generate self-contained
resolution problems with a single mouse click. Each problem should include
a substantial library of previously-proved theorems. This spares users the te-
dium of listing which routine facts to include with their problem, but it can
overload the ATPs with hundreds or thousands of irrelevant facts. Our initial
results, for all of the leading ATPs, were poor. This paper describes how we

Email addresses: Jia.Meng@nicta.com.au (Jia Meng), LP15@cam.ac.uk
(Lawrence C. Paulson).

Preprint submitted to Elsevier 24 April 2007

managed to improve the success rate significantly, while increasing the “sub-
stantial library” to include all known theorems. We describe simple, efficient
algorithms for removing irrelevant clauses from huge resolution problems. We
also describe related experiments and techniques, many of them speculative.
Our experiences may be valuable to other users of resolution provers.

The relevance problem dates back to the earliest days of resolution. As first
defined by Robinson [19], a literal is pure if it is not unifiable with a comple-
mentary literal in any other clause. Deleting clauses that contain pure literals
preserves the satisfiability or unsatisfiability of the remaining clauses. This
process is a form of relevance test. It can be effective, but it is not a full
solution. In general, demonstrating that a fact is irrelevant seems to require
finding a proof without using it. Syntactic criteria for irrelevance may be help-
ful, especially if we can accept a few false positives. We are happy to sacrifice
solutions to some problems in return for a high overall success rate.

If a resolution theorem prover is invoked by another reasoning tool, then the
problems it receives will have been produced mechanically. Machine-generated
problems may contain thousands of clauses, each containing large terms. Many
ATPs are not designed to cope with such problems. Traditionally, the ATP
user prepares a mathematical problem with the greatest of care, and is willing
to spend weeks running proof attempts, adjusting weights and refining settings
until the problem is solved. Machine-generated problems are not merely huge
but may be presented to the automatic prover by the dozen, with its heuristics
set to their defaults and with a small time limit.

At the start of our investigations, our Isabelle-ATP linkup offered the option
of generating small or large problems. All problems included a selection of
previously-proved theorems, some chosen by the user, translated into clause
form. A small problem, which typically comprised over 1300 axiom clauses,
included the theorems that were provided by default to Isabelle’s classical
reasoner [11,13]. A large problem, which typically comprised 2500 clauses,
also included the theorems that were provided by default to Isabelle’s rewriter.
Even our small problems looked rather large to a resolution prover. We ran
extensive tests with a set of 285 such problems (153 small, 132 large). We
were initially disappointed by the success rates, which seldom exceeded 60
percent for runtimes of 50 seconds. 1 The large numbers of clauses in our
problems made it clear that we should investigate relevance filtering. Given
our resource constraints, any filter would have to be fast.

The filter we eventually developed is successful enough to cope with the full set
theorems known to Isabelle, reducing problems from several thousand clauses
to a few hundred clauses. Users no longer have to choose which theorems are

1 All timings we report refer to a processor speed of approximately 2.4GHz.

2

included with their problems. This push-button activation greatly improves
the interface’s usability.

In the course of our investigations, we found that many obvious ideas were
incorrect. For example, we thought that since ATPs generate hundreds of
thousands of clauses during their operation, an extra fifty clauses at the start
should not do any harm; however, they do.

Paper outline. We begin with background material on Isabelle, ATPs, and
our linkup between the two, mentioning related work on other such linkups
(Sect. 2). We describe our initial attempts to improve the success rate of our
linkup (Sect. 3). Next, we describe the evolution of our relevance filter (Sect. 4)
and the further refinements needed to handle huge problems (Sect. 5). Both of
these sections present empirical results as series of graphs. Finally, we present
brief conclusions (Sect. 6).

2 Background

Resolution theorem provers work by deriving a contradiction from a supplied
set of clauses [3]. Each clause is a disjunction of literals (atomic formulae
and their negations) and the set of clauses is interpreted as a conjunction.
Clause form can be difficult to read, and the proofs that are found tend to
be unintuitive, but there is no denying that these provers are powerful. In the
sequel we refer to them as automatic theorem provers or ATPs. (This term
includes clausal tableau provers, but not SAT solvers, decision procedures etc.)
Our experiments mainly use E [20], SPASS [25] and Vampire [17].

Interactive theorem provers allow proofs to be constructed by natural chains
of reasoning, generally in a rich formalism such as higher-order logic, but
their automation tends to be limited to rewriting and arithmetic. Quantifier
reasoning tends to be weak: many interactive systems cannot even prove a
simple theorem like ∃x ∀y P (x, y) → ∀y ∃x P (x, y) automatically. Developers
of interactive tools would naturally like to give their users access to the power
of ATPs without requiring them to become experts on ATPs.

We have implemented a linkup between ATPs and the interactive prover Is-
abelle. Of the many differences between our project and other work [5,21], a
crucial one is that Isabelle already provides excellent automation. By typing
auto, the Isabelle user causes approximately 2000 previously-proved theorems
to be used as rewriting rules and for forward and backward chaining. A re-
lated tool, blast [13], performs deep searches in a fashion inspired by tableau
provers. Even ten years ago, using early predecessors of these tools, Isabelle

3

users could automatically prove theorems like this set equality [11]:

⋃
i∈I

(Ai ∪Bi) =
(⋃

i∈I

Ai

)
∪

(⋃
i∈I

Bi

)

Set theory problems, and the combinatory logic examples presented in that
paper, remain difficult for automatic theorem provers. When we first got our
linkup working, we were disappointed to find that ATPs were seldom better
than auto—not only for hard set theory problems, but for most problems,
even easy ones. We have devoted much effort to improving our success rate.
Bugs in our linkup were partly to blame for the poor results. Much of our
effort went to improving the problem presentation. We found a compact way
of representing the type of a polymorphic constant: rather than including
its full type as an additional argument, we include only the types needed to
form particular instances [9, §2.4]. For example, if the constant’s polymorphic
type is set(set(α)) → set(α), then we store only the type denoted by α. We
devoted some time to identifying prover settings to help ATPs cope with huge
problems. Above all, we have struggled to find ways to filter out irrelevant
axioms.

Sutcliffe and Dvorsky [22] propose a remarkably simple idea. Given a problem
involving n axiom clauses, their RedAx (“reduce axioms”) tool systematically
generates its 2n subsets. Heuristic criteria are used to remove “heavy” axioms
first, but all combinations are attempted until one succeeds. Redax gives each
problem variant to an ATP with a small time limit such as 60 seconds. The
approach makes sense because most ATPs quickly reach a point of diminishing
returns, proving few additional theorems as their time limit rises from say 60
to 6000 seconds, while the higher time limit allows proof attempts on 100
variants of the problem. A combination of RedAx and Vampire found the
first-ever automatic proofs of four theorems in the TPTP library [24]. We were
unaware of this work when undertaking ours, and could not have applied such
an approach to problems containing thousands of clauses. However, RedAx
demonstrates the power of simple means.

Of previous work, the most pertinent is the integration between the Karlsruhe
Interactive Verifier (KIV) and the tableau prover 3TAP, by Ahrendt and oth-
ers [1]. Reif and Schellhorn [16] present a component of that integration: an
algorithm for removing irrelevant axioms. It relies on analysing the structure
of the theory in which the conjecture is posed. Specifically, their method is
based on four criteria for reduction, which they call the minimality, structure,
specification and recursion criteria. This method is not suitable for Isabelle,
where users build on a theory that already holds approximately 7000 theo-
rems. Although in principle a user could base a project on lower levels of the
theory hierarchy, to do so would require knowledge of the implementation and
willingness to sacrifice functionality. Isabelle/HOL derives essential tools such

4

as recursive function and type definitions from basic constructions such as
well-founded relations and fixedpoint operators. Such tools only become avail-
able after their supporting theories have been loaded. Even the theory of lists
lies near the top of this hierarchy, since it involves a recursive type definition.
We decided to try other methods, which are described below.

The Isabelle-ATP linkup generates problems that contain conjecture clauses
along with previously-proved theorems in clause form. At the outset of our
project, giving all known theorems to the linkup was inconceivable. We ex-
pected users to select one or both of the following:

• classical clauses, which arise from the theorems Isabelle uses for forward
and backward chaining

• simplification clauses, which arise from equational theorems Isabelle uses as
rewrite rules, such as 0 + x = x.

In most cases, these would have to be augmented with known theorems specific
to the user’s problem. In addition, each problem contained arity and class
inclusion clauses, to express aspects of Isabelle’s type system: the type class
hierarchy.

Isabelle’s axiomatic type classes are sets of types that meet a given specifi-
cation. For instance, the type nat of natural numbers is a member of order,
the class of partial orderings; we express its membership as the unit clause
order(nat). An arity relates the type classes of the arguments and results of
type constructors. For example, an arity clause

∀ τ [type(τ) → order(list(τ))]

says if the argument of list is a member of class type, then the resulting
type of lists belong to class order. For more information, we refer readers to
our previous papers [8,10].

Although the arity and class inclusion clauses typically number over one thou-
sand, they pose no difficulties for modern ATPs. They are Horn clauses that
contain only monadic (unary) predicates, which are not related by any equa-
tions. Most arity clauses have one literal, while class inclusion clauses consist
of two literals. Pure literal elimination suffices to remove redundant arity and
class inclusion clauses, so ATPs can delete most of them immediately.

Since running the experiments reported below, we have modified the linkup
to ensure that these clauses are only included if they refer to types and type
classes actually mentioned in the problem. While the average number of type-
related clauses has dropped from 1140 to 11.7 per problem, the impact on
prover performance is minimal. This confirms our view that this Horn theory
is trivial.

5

3 Initial Experiments

We have evaluated and improved the Isabelle-ATP linkup through exhaustive
tests on hundreds problems in clause form. We obtained these by modifying
our linkup to save the problems it was producing. Each represents a call to our
system at some point in an Isabelle proof. The original Isabelle proofs for some
of these problems require multiple steps, explicit quantifier instantiations, or
other detailed guidance. The set used for the experiments described in this
paper now numbers 285 problems; a second set of 151 problems is chiefly
intended for evaluating different ways of translating higher-order logic into
first-order logic [9], but we have also used this set to investigate relevance
filtering.

In choosing our problems, we were mainly interested in their difficulty as
indicated by the length of the existing manual proof. We aimed to have a
range of difficulties, from easy to impossible. The following table breaks down
the 285 problems according to their domain. The O-notation problems involve
arithmetic.

domain number
security protocols [12,14] 124
set theory and Zorn’s lemma 48
O-notation [2] 39
combinatory logic [11] 24
Tarski’s fixedpoint theorem 23
propositional logic 24
UNITY formalism 3

In this paper, the term “problem size” means “number of axiom clauses in
the problem.” We later refine this concept to exclude certain numerous but
harmless axioms generated by the translations we use. Many of our problems
have trivial proofs. For 52 of them, the refutation involves just two or three
clauses and the only difficulty lies in the problem size. Other problems take
minutes to prove, and a few have never been proved.

Our first task was to verify that the problems were solvable. If a problem could
not be proved by any ATP, we sometimes removed irrelevant clauses manually,
using our knowledge of the problem domain, in the hope of finding a proof.
We could thus identify and correct problems that were missing essential axiom
clauses. Bugs in our code also harmed the success rate. These ranged from the
trivial (failing to notice that the original problem already contained the empty
clause) to the subtle (Skolemization failing to take account of polymorphism).
Over time, with the help of the techniques described below, we were able to
obtain proofs for all but three of our problems.

6

We have partially automated the laborious process of reducing problem size.
A simple idea is to note which axioms take part in any successful proofs—call
them referenced axioms—and to remove all other axioms from the unsolved
problems. We have automated this idea for the provers Vampire and E. Both
clearly identify references to axiom clauses, which they designate by positive
integers. Simple Perl scripts read the entire clause set into an array; referenced
axioms are found by subscripting and written to a new file. We thus obtain
a reduced version of the problem, containing only the clauses actually used
in its proof. Repeating this process over a directory of problems yields a new
directory containing reduced versions of each solved problem. If both Vampire
and E prove a theorem, then the smaller file is chosen. We then concatenate
the solutions, removing conjecture clauses. The result is a file containing all
referenced axioms. Another Perl script intersects this file with each member of
the problem set, yielding a reduced problem set where each problem contains
only referenced axioms.

Auto-reduction by using only referenced axioms has an obvious drawback:
some unsolved problems are likely to need axioms that have not been ref-
erenced before. Even so, this idea improved our success rate from about 60
percent to 80 percent. It is not clear how to incorporate this idea into an
interactive prover, since then its success on certain problems would depend
upon the previous history of proof attempts, making the system’s behaviour
hard to predict. Auto-reduction’s immediate benefit is that it yields evidence
that the original problems have proofs: a reduced problem is a subset of the
original problem, and often it is easy to prove. Fewer suspect problems require
hand examination.

Using only referenced axioms does not guarantee that problems will be small.
As of this writing, there are 405 referenced clauses. Approximately 150 of
these correspond to theorems proved as part of the basic Isabelle/HOL de-
velopment, and are common to all problems. The remainder, the majority of
the referenced clauses, are specific to various problem domains. A proof about
security protocols could have another 90 clauses, for a total of about 240.
Still, the auto-reduced problems should be easier to solve than the original
problems:

(1) The reduced problems are much smaller than the raw ones, and
(2) referenced clauses may be somehow better than other clauses for finding

refutations.

This second point introduces an interesting side issue: if some clauses are better
than others, then is it useful to focus on the very worst clauses? Can there
exist pathological clauses, whose presence in a problem harms its success rate?
This question is difficult to test. There is no reason to believe that the same
clauses will turn out to be pathological for all ATPs. Identifying pathological

7

clauses seems to require much guessing and manual inspection. We assumed
that a pathological clause would contain highly general literals such as X = Y ,
X < Y , X ∈ Y , or their negations.

We investigated the question of pathological clauses by carefully examining
the standard Isabelle/HOL library, eventually blacklisting around 140 theo-
rems. A theorem could be blacklisted for various reasons, such as having too
big a clause form, being logically equivalent to other theorems, or dealing
with too obscure a property. This effort yielded only a small improvement to
the success rate, probably because Isabelle’s sets of classical and simplifica-
tion rules have been hand-selected, and exclude obviously prolific facts such
as transitivity. The main benefit of this exercise was our discovery that the
generated problems included large numbers of functional reflexivity axioms:
that is, axioms such as X = Y −→ f(X) = f(Y). They are redundant in the
presence of paramodulation; since we only use ATPs that use that inference
rule for equality reasoning, we now omit such clauses in order to save ATPs the
effort of discarding them. (This change did not improve the success rate, but
at least it made the problems smaller.) This aspect of our project was in part
a response to SPASS developer Thomas Hillenbrand’s insistence—in an e-mail
dated 23 July 2005—on “engineering your clause base once and forever”.

4 Developing Signature-Based Relevance Filters

Automatic relevance filtering is clearly more attractive than any method re-
quiring manual inspection of clauses. We decided to determine relevance with
respect to the provided conjecture clauses. The simplest way of doing this is
to enable the Set of Support option, if it is available. Wos’s SOS heuristic [26],
which dates from 1965, ensures that all inference rule applications involve at
least one clause derived from the negated conjecture. It prevents inferences
among the axioms and helps make the search goal-directed. It is incomplete
in the presence of the ordering heuristics used by modern ATPs, but SPASS
still offers SOS and it greatly improves the success rate, as the graphs pre-
sented below will demonstrate. Stephan Schulz kindly gave us two ways of
simulating SOS in the E prover, but neither of them yielded improvements for
our problems.

The techniques we describe below are the outcome of extensive tinkering with
obvious ideas, largely of our own invention. We already knew that simple
methods could be effective: in an early experiment (which we have never pub-
lished), we modified the linkup to block all axiom clauses except those from
a few key theories. That improved the success rate enough to yield proofs for
eight hitherto unsolved problems. Clearly if such a crude filter could be ben-
eficial, then something based on the conjecture clauses could be better still.

8

Having automatically-reduced versions of most of our problems allows us to
test the relevance filter without actually running proofs: yet more Perl scripts
compare the new problems with the reduced ones, reporting any missing ax-
ioms.

The abstraction-based relevancy testing approach of Fuchs and Fuchs [7] is
specifically designed for model elimination (or connection tableau) provers.
It is not clear how to modify this approach for use with saturation provers,
which are the type we use almost exclusively. Their approach has some curious
features. Though it is based upon very general notions, the specific abstrac-
tion they implement is a symbol abstraction, which involves “identifying some
predicate or function symbols” and forming equivalence classes of clauses. We
confess that we were not able to derive any ideas from this highly mathemat-
ical paper.

4.1 Plaisted and Yahya’s Strategy

Plaisted and Yahya’s relevance restriction strategy [15] introduces the concept
of relevance distance between two clauses, reflecting how closely two clauses
are related. Simply put, the idea is to start with the conjecture clauses and to
identify a set R1 of clauses that contain complementary literals to at least one
of the conjecture clauses. Each clause in R1 has distance 1 to the conjecture
clauses. The next round of iteration produces another set R2 of clauses, where
each of its clauses resolves with one or more clauses in R1; thus clauses in
R2 have distance 2 to the conjecture clauses. The iteration repeats until all
clauses that have distances less than or equal to some upper limit are included.
This is an all-or-nothing approach: a clause is either included if it can resolve
with some already-included clause, or, not included at all.

We found this method easy to implement, using Prolog, but unfortunately too
many clauses are included after two or three iterations. This method does not
take into account the ordering restrictions that ATPs would respect, including
clauses on the basis of literals that would not be selected for resolution. Also,
this strategy does not handle equality.

Plaisted and Yahya’s strategy suggests a simple approach based on signatures.
Starting with the conjecture clauses, repeatedly add all other clauses that
share any symbols with them. We use symbol to mean “constant, function
or predicate symbol.” Symbols correspond to Isabelle constants, which can
represent functions and predicates. This method handles equality, but it again
includes too many clauses. Therefore, we have refined Plaisted and Yahya’s
strategy and designed several new algorithms that work well (Sect. 4.6).

9

4.2 A Passmark-Based Algorithm

Our filtering strategies abandon the all-or-nothing approach. Instead, we use a
measure of relevance: a clause is added to the pool of relevant clauses provided
it is “sufficiently close” to an existing relevant clause. If a clause mentions n
symbols, of which m are relevant, then the clause receives a score (relevance
mark) of m/n. The clause is rejected unless its score exceeds a given pass
mark, a real number between 0 and 1. If a clause is accepted, all of its symbols
become relevant. This process is iterated until no new clauses are accepted. To
prevent too many clauses from being accepted, somehow the test must become
stricter with each iteration.

In the first filtering strategy, we attach to each clause a relevance mark that
may be increased during the filtering process. The pseudo-code for our algo-
rithm is shown in Figure 1. The pseudo-code is largely self-explanatory. We
only give a few more comments below.

• When the function relevant clauses is first called, the set W of working
relevant clauses contains the goal clauses, while T contains all the axiom
clauses.

• In function update clause mark, |R| is the number of elements in the set R.
• The multiplication by P M in function update clause mark makes the rel-

evance test increasingly strict as the distance from the conjecture clauses
increases, which keeps the process focussed on the conjecture and prevents
too many clauses from being taken as relevant.

Isabelle allows overloading of constants. For example, <= can denote the or-
dering ≤ on the integers as well as the subset relation. Therefore, the Isabelle
implementation of this algorithm regards two symbols as matching only if
their types match as well.

4.3 Using the Set of Relevant Symbols

We have refined the strategy above, removing the requirement that a clause
be close to one single relevant clause. It instead accumulates a pool of relevant
symbols, which is used when calculating scores. This strategy is slightly simpler
to implement, because scores no longer have to be stored, and it potentially
handles situations where a clause is related to another via multiple equalities.
To make the relevance test stricter on successive iterations, we increase the
pass mark after each successive iteration by the formula p′ = p + (1 − p)/c,
where c is an arbitrary convergence parameter. The point of this formula is to
make the pass mark converge to 1 geometrically. If c = 2, for example, then
each iteration halves the difference 1− p. The algorithm appears in Figure 2.

10

function relevant_clauses (W, T, P)

W: working relevant clauses set (each clause carries a relevance mark)
T: working irrelevant clauses set
P: pass mark

var A # accumulates relevant clauses
begin
U := {};

while W 6= {} do {

for each clause-mark pair (C,M) in T do
{ update_clause_mark (W, (C,M)) }

#partition (C,M) pairs in T into two sets
Rel := {(C,M) | P ≤ M};

Irrel := T - Rel;

A := W ∪ A;

W := Rel;

T := Irrel;

}

return A; #final set of relevant clauses
end

function update_clause_mark (W, (C,M))

W: relevant clauses set
(C,M): a clause-mark pair

effect: #updates the relevance mark of C

begin
for each clause-mark (C’,M’) in W do {

CS := symbols_of C;

R := CS ∩ symbols_of C’;

IR := CS − R;

M := max(M, M’ * |R| / (|R| + |IR|));

}

end

Fig. 1. A Passmark-Based Filtering Strategy

Since the value of c is used to modify that of p, the optimal values of these
parameters need to be found simultaneously. We ran extensive empirical tests.
It became clear that large values of c performed poorly, so we concentrated on
1.6, 2.4 and 3.2 with a range of pass marks. We obtained the best results with
p = 0.6 and c = 2.4. These values give a strict test that rapidly gets stricter,
indicating that our problems require a drastic reduction in size.

To illustrate these points, Figure 3 presents two graphs. They plot success rates
and problem sizes as the pass mark increases from 0.0 (all clauses accepted)
to 0.9 (few clauses accepted).

11

function relevant_clauses (RS, T, P)

RS: set of relevant symbols
T: working irrelevant clauses set
P: pass mark

var A # accumulates relevant clauses
begin
repeat {

for each clause Ci in T do
{ Mi := clause_mark (RS,Ci) }

Rel := set of all clauses Ci such that P ≤ Mi

T := T - Rel;

A := A ∪ Rel;

P := P + (1 - P) / c;

RS := (symbols_of Rel) ∪ RS;

} until Rel = {}

return A; #final set of relevant clauses
end

function clause_mark (RS, C)

RS: a set of relevant symbols
C: a clause

begin
CS := symbols_of C;

R := CS ∩ RS;

IR := CS − R;

return |R| / (|R| + |IR|); #the relevance mark of C

end

Fig. 2. An Improved Filtering Strategy Using a Set of Relevant Symbols

• Success rates are for Vampire in its default mode, allowing 40 seconds per
problem.

• Problem sizes refer to the average number of clauses per problem, ignoring
conjecture clauses and the clauses that formalize Isabelle’s type system.

• Like all the graphs in this paper, they concern the set of 285 problems
introduced in Sect. 4 above.

Vampire’s success rate peaks sharply at 0.6, by which time the average problem
size has decreased from 909 to 142 clauses. If the filter has removed an essential
axiom, then the problem cannot be proved, which is why the success rate
drops when p > 0.6. We repeat that these graphs are for illustration only; our
parameter settings are based on extensive testing involving several ATPs.

12

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
50%

60%

70%

80%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

200

400

600

800

1000

Fig. 3. Success Rates and Problem Sizes Against Pass Marks

4.4 Taking Rarity into Account

Another refinement takes into account the relative frequencies of the symbols
in the clause set. Some symbols are common while others are rare. An occur-
rence of a rare symbol would seem to be a strong indicator of relevance, while
its very rarity would ensure that not too many new clauses are included. In
the relevance quotient m/n, we boost m to take rarity into account, while
leaving n to denote the total number of symbols. Originally, we took rarity
into account for both m and n, but consistently got poor results. In particular,
clauses involving Skolem functions were being filtered out. A Skolem function
is typically very rare, occurring only a few times in the set of clauses. By
ignoring rarity in n, we ensure that an occurrence of a rare symbol in a clause
makes it easier, and never harder, for the clause to be accepted.

This strategy the same the one described in Sect. 4.3, except that it uses the
function clause mark shown in Figure 4. The relevance mark of a clause C

calculated by clause mark is not the percentage of relevant symbols in C any
more. Instead, we use the function func weight to compute the sum of the
relevant symbols’ marks weighted by their frequencies.

A suitable frequency function is needed to calculate a symbol’s weight from
its frequency. We use f(n) = 1+2/ log(n+1). Thus, if a symbol occurs n times
in the problem, then its contribution is 1+2/ log(n+1), rather than 1 as with
the previous algorithm. We tested many other functions, including 1/(n + 1),
1 + 1/

√
n + 1, 1 + 1/ log(n + 1) and 1 + 1.4/ log(log(n + 2)). Most performed

13

function clause_mark (RS, C, ftab)

RS: a set of relevant symbols
C: a clause
ftab: a table of the number of occurrences of each symbol
in the clause set

begin
CS := symbols_of C;

R := CS ∩ RS;

IR := CS − R; #remaining symbols of C
M := 0;

for each symbol F in R do { M := M + func_weight(ftab, F) }

return (M / (M + |IR|)); #the relevance mark of C

end

function func_weight (ftab, F)

ftab: a table of the number of occurrences of each symbol
F: a symbol

begin
freq := number_of_occurrences (ftab, F);

return (frequency_function(freq));

end

Fig. 4. A Filtering Strategy for Rarely-Occurring Symbols

worse than the constant function. Given that symbol frequencies can vary by
two orders of magnitude, it was obvious at the outset that the correct formula
would involve their logarithm. The log-log formula also performed well in our
tests.

4.5 Other Refinements

Hoping that unit clauses did not excessively increase resolution’s search space,
we experimented with adding all “sufficiently simple” unit clauses at the end
of the procedure. A unit clause was simple unless it was a non-trivial equation,
where an equation was trivial when its left- or right-hand side was variable-
free. We discovered that over 100 unit clauses were often being added, and
that they could indeed increase the search space. By improving the relevance
filter in other respects, we found that we could do without a special treatment
of unit clauses. A number of attempts to bias the relevance filter in favour of
shorter clauses failed to improve the success rate.

Definition expansion is another refinement. If a symbol f is relevant, and a
unit clause such as f(X) = t is available, then it can be regarded as relevant.
To avoid including “definitions” like 0 = N × 0, we check that the variables of

14

0 50 100 150 200 250 300
40

50

60

70

80

90 Filtered

Raw

Runtime per problem (seconds)

Pe
rc

en
t s

ol
ve

d

0 50 100 150 200 250 300
40

50

60

70

80

90 Filtered

Raw

Runtime per problem (seconds)

Pe
rc

en
t s

ol
ve

d

Fig. 5. E, Versions 0.9 and 0.91dev001

the right-hand side are a subset of those of the left-hand side. Isabelle iden-
tifies definitions by distinctive names (ending with _def), but we do not use
this fact. Note that Isabelle does not distinguish its internally-generated defi-
nitions, such as the fixedpoint construction of lists, from a user’s definitions.
Expanding the former will be harmful. Definition expansion can be beneficial
provided not too many definitions are supplied. We now prefer a mode of op-
eration in which all theorems are supplied to the filter, so we switch definition
expansion off.

As of this writing, our system still contains a manually produced blacklist
of 128 HOL theorems. We could probably shorten this blacklist, because a
prime criterion for being blacklisted is that a theorem concerns an obscure
primitive. However, some useless theorems easily survive relevance filtering.
We also have a whitelist of theorems whose inclusion is forced; it contains the
single theorem

[∀x (x ∈ A −→ x ∈ B)] −→ A ⊆ B,

which we found that the filter was frequently rejecting. We have decided to
allow Isabelle users to manage these lists by occasionally attaching hints like
“ATP exclude” or “ATP include” to the theorems they prove.

15

0 50 100 150 200 250 300
40

50

60

70

80

90 Filtered

Raw

Runtime per problem (seconds)

Pe
rc

en
t s

ol
ve

d

0 50 100 150 200 250 300
40

50

60

70

80

90 Filtered

Raw

Runtime per problem (seconds)

Pe
rc

en
t s

ol
ve

d

Fig. 6. SPASS 2.2, Default Settings and with SOS

0 50 100 150 200 250 300
40

50

60

70

80

90 Filtered

Raw

Runtime per problem (seconds)

Pe
rc

en
t s

ol
ve

d

0 50 100 150 200 250 300
40

50

60

70

80

90 Filtered

Raw

Runtime per problem (seconds)

Pe
rc

en
t s

ol
ve

d

Fig. 7. Vampire 8.0, Default Settings and in CASC Mode

16

4.6 Empirical Results

Extensive testing helped us determine which methods worked best and to
find the best settings of the various parameters. We tried many ATPs dur-
ing our investigations, obtaining the highest success rates with E, SPASS and
Vampire. We tested these three provers in their default mode and with al-
ternative settings. These include two different versions of E (Fig. 5): 0.9 and
0.91dev001. SPASS V2.2 performs better (Fig. 6) if SOS is enabled and split-
ting is disabled. 2 Vampire 8 does extremely well in its CASC mode (Fig. 7).
We downloaded Vampire from the CASC-20 website [23]; it calls itself version
7.45. We ran these tests on a bank of Dual AMD Opteron processors running
at 2.4GHz. The Condor system [6] managed our batch jobs.

This section presents graphs comparing the success rates of filtered problems
against raw ones. Success rates are plotted on a scale ranging from 40 to 90
percent, as the runtime per problem increases from 10 to 300 seconds. The
graphs offer compelling evidence that relevance filtering is beneficial in our
application. The success rate for the filtered problems exceeds that for the raw
ones in virtually every case. This improvement is particularly striking given
that relevance filtering can delete essential clauses. As mentioned in Sect. 4
above, we wrote Perl scripts to check problems for missing clauses, using our
set of automatically-reduced problems as a basis. (We realize of course that
a problem can have proofs using different subsets of the provided clauses.)
The script indicates that eight percent of the filtered problems are missing
essential clauses. Either gains are made elsewhere, or these eight percent are
too difficult to prove anyway.

Our filtering gave the least benefit with the specially-modified version of the
E prover (version 0.91dev001). Developer Stephan Schulz, in an e-mail dated
14 April 2006, had an explanation:

E has a number of goal-directed search heuristics. The new version always
selects a fairly extreme goal-directed one for your problems . . . [which] will
give a 10 times lower weight to symbols from a conjecture than to other
symbols (all else being equal). I suspect that this more or less simulates
your relevance filtering.

Schulz kindly produced this version after we reported that E version 0.91 did
less well than 0.90 on our problem set. Such a setting could probably be added
to other ATPs, and in a fashion that preserves completeness.

The success rate for raw problems should eventually exceed that of the filtered
ones, since filtering sacrifices completeness. We can actually see this taking

2 The precise option string is -Splits=0 -FullRed=0 -SOS=1.

17

place for E version 0.91dev001 and Vampire in CASC mode. The other four
graphs become nearly flat as processor time reaches 300 seconds. In some of
these graphs, the benefits of filtering appear to be small. The situation changes
as problems get bigger, as we shall see below.

5 A Refined Procedure for Filtering Huge Problems

This success of the relevance filter has allowed us to introduce an entirely new
interaction style. All theorems known to Isabelle, rather than just a selection,
can be given to the linkup. For users, this is an immense improvement: no
longer must they search for theorems to add to the defaults. Calling the system
involves no more thought than pushing a button.

Including all theorems makes our task fundamentally more difficult. Before,
though our problems were large, they consisted entirely of theorems that had
been hand-designated as suitable for automation: good for forward or back-
ward chaining or for rewriting. Now, we are including all theorems known to
the system, the vast majority of which are unlikely to be useful. Many the-
orems in a proof development are technical lemmas intended to be used just
once. In particular, the relevance filter’s “expand definitions” mode (Sect. 4.5)
performs badly if all theorems are included. This is not surprising. Before,
definitions were only present if they had been specifically added. Now, all
definitions in the system are included. They cause particular harm because
expanding the definition of a symbol prevents the use of theorems about that
symbol. Thus, we must switch this option off.

Increasing the size of the input by a factor of 20 naturally put our approach
under stress. We were forced to pay more attention to efficient data struc-
tures. The relevance filter required further refinements before it could deliver
acceptable results. In the end, however, the “all theorems” approach seems
to deliver nearly as good a success rate as the previous approach. Given its
greater convenience, this is the only approach we intend to support in the
future.

The two refinements we introduced for “all theorems” mode are a relevance
cap (to limit the number of clauses added per round) and dummy “theory
symbols” (to allow the theory structure to influence the relevance score).

18

0 50 100 150 200 250 300
60

70

80 unlimited

up to 100

up to 80

up to 60

up to 40

Runtime per problem (seconds)

Pe
rc

en
t s

ol
ve

d

Fig. 8. E 0.99 With Various Caps

0 50 100 150 200 250 300
60

70

80 unlimited

up to 100

up to 80

up to 60

up to 40

Runtime per problem (seconds)

Pe
rc

en
t s

ol
ve

d

Fig. 9. SPASS 2.2 With Various Caps

5.1 The Relevance Cap

Recall that the filter works iteratively. At each step, some clauses are marked
as relevant provided they contain enough relevant symbols. We observed that
in a few cases the resulting problems were still very large. The cause was clear:
some combinations of symbols cause a large number of clauses to be marked as
relevant, simply because the Isabelle library contains many theorems involving
those symbols. Therefore all the symbols in those clauses are considered rele-
vant, so in the next round even more clauses are marked as relevant, causing
an avalanche. This is a defect of the “pool of symbols approach”; we might
have chosen this time to revert to our previous relevance filter, where a clause
would be marked as relevant only if it was sufficiently close to one other rel-
evant clause. However, one can imagine an avalanche happening with this
approach too. Our solution was simply to impose a cap—an upper bound—on
the number of clauses that could be added at any iteration. Clauses in excess
of the cap could still be considered in the next iteration.

As always, we ran extensive empirical tests to tune the parameters to optimal
values. As another CASC had taken place, new versions of two of the provers
were available. The new version of E, 0.99 “Singtom”, gives almost identi-
cal results as its predecessor for our examples; we continue to use its mode
specifically designed for our problems. The new version of Vampire, 8.1, offers
CASC mode only. It improves slightly upon its predecessor; the improvement

19

0 50 100 150 200 250 300
70

80

90 unlimited

up to 100

up to 80

up to 60

up to 40

Runtime per problem (seconds)

Pe
rc

en
t s

ol
ve

d

Fig. 10. Vampire 8.1 With Various Caps

40 60 80 100 120
0

300

600

900

1200

1500
maximum

average

Relevance cap

C
la

us
es

 p
er

 p
ro

bl
em

Fig. 11. Problem Sizes Produced by Various Caps

is marked as the runtime drops below 60 seconds, where it avoids the steep
decline we see in Fig. 7.

The graphs show the effect of the upper bound on the success rate for each of
E (Fig. 8), SPASS (Fig. 9) and Vampire (Fig. 10). Note that the optimum caps
differ: 60 for Vampire, 100 for E and 40 for SPASS. The thick line represents
the previous default, where the number of clauses added is unlimited. With
E and Vampire, the improvement over the unlimited case is clear: the thick
line is near the bottom. The results for SPASS are strange: most of the caps
deliver worse results than the unlimited case, yet SPASS gives its best results
with the smallest cap!

With the cap in place, we were able to relax the other parameters somewhat:
the pass mark could decrease from 0.6 to 0.5, while the convergence could
increase to 3.2. Making relevance filtering less strict reduces the danger of in-
completeness, while our cap ensures that problems will be of a reasonable size.
Figure 11 shows that the average problem size increases slowly and linearly as
the cap increases, while the maximum problem size rises dramatically.

20

0 50 100 150 200 250 300
60

70

80

90 theory const

standard

Runtime per problem (seconds)

Pe
rc

en
t s

ol
ve

d

Fig. 12. E 0.99, Effect of the Theory Symbol

0 50 100 150 200 250 300
60

70

80

90 theory const

standard

Runtime per problem (seconds)

Pe
rc

en
t s

ol
ve

d

Fig. 13. SPASS 2.2, Effect of the Theory Symbol

0 50 100 150 200 250 300
60

70

80

90 theory const

standard

Runtime per problem (seconds)

Pe
rc

en
t s

ol
ve

d

Fig. 14. Vampire 8.1, Effect of the Theory Symbol

5.2 Theory Symbols: Recognizing Theory Structure

As mentioned earlier, we decided not to base our relevance filter on the struc-
ture of the theory hierarchy. Our theories are too large and their hierarchy
includes constructions of basic principles such as recursion. However, it seems
natural to assume that if one theorem is relevant to the problem, then other
theorems proved in the same theory may also be relevant. Recall that theo-
rems are chosen entirely on the basis of the symbols they contain. Adding a
theory name as a dummy symbol gives a slight preference to other theorems
that belong to the same theory as an already-relevant theorem. We call these
dummy symbols theory symbols.

21

Theory symbols represent a tiny modification of the existing relevance filter.
Their effect on the success rate is mixed. For SPASS, they show a clear benefit
(Fig. 13). For E and Vampire, they are harmful (Figs. 12 and 14). For some
other problems, not shown, they show a slight benefit for Vampire. These
results are difficult to interpret. The most we can state is that the advantages
of theory symbols are not proved. If two theory symbols are added to each
axiom, further strengthening the role of locality, then success rates fall sharply.

5.3 Empirical Results for Huge Problems

The results presented in Sect. 4.6 for Vampire in CASC mode and for the mod-
ified version of E may give the impression that ATPs can solve the relevance
problem for themselves. That impression is false. Figures 15 to 17 present
graphs to show that none of the ATPs under consideration can cope with our
huge problems. Despite its special modifications, E gets a great benefit from
our relevance filter. Even Vampire’s benefit at 300 seconds is a full nine per-
centage points. The filtered problems are based on the standard parameter
settings used for testing at the time of this writing. 3 The huge problems of
“all theorems” mode make relevance filtering a necessity.

6 Conclusions

We wish to refute large, machine-generated sets of clauses. Experiments with
the notion of “referenced axioms” demonstrate that reducing the problem
size greatly improves the success rate. However, this technique introduces a
dependence on past proof attempts, so we have sought methods of reducing
the problem size through a simple analysis of the problem alone.

We have presented simple ideas for relevance filtering along with empirical
evidence to demonstrate that they improve the success rate in a great variety
of situations. The simplicity of our methods is in stark contrast to the tremen-
dous sophistication of automated theorem provers. Although most ATPs have
settings that can be adjusted to cope with large problems, their use requires
expert knowledge, while our filter provides a uniform solution for all ATPs.
It is surprising that such simple methods can yield benefits. We believe that
the secret is our willingness to sacrifice completeness in order to improve the
overall success rate.

3 Theory symbols were disabled. The pass mark was 0.5, with a convergence factor
of 3.2 and a relevance cap of 60. Blacklisting was enabled even for the unfiltered
problems.

22

0 50 100 150 200 250 300
20

30

40

50

60

70

80

90 filtered

raw

Runtime per problem (seconds)

Pe
rc

en
t s

ol
ve

d

Fig. 15. E 0.99

0 50 100 150 200 250 300
20

30

40

50

60

70

80

90 filtered

raw

Runtime per problem (seconds)

Pe
rc

en
t s

ol
ve

d

Fig. 16. SPASS 2.2, SOS Enabled

0 50 100 150 200 250 300
20

30

40

50

60

70

80

90 filtered

raw

Runtime per problem (seconds)

Pe
rc

en
t s

ol
ve

d

Fig. 17. Vampire 8.1, CASC Mode

Our method may be useful in other applications where processor time is limited
and completeness is not essential. It is signature based, so it works for any
problem for which the conjecture clauses have been identified. Our version of
the filters operates on Isabelle theorems and assumes Isabelle’s type system,
but versions for standard first-order logic should be easy to devise. Users will
probably have to tune our parameters—the pass mark, the convergence factor,
the relevance cap—to their set of axioms.

Relevance filtering has allowed us to strengthen our approach to linking in-
teractive and automatic theorem provers. Hand-selection of suitable lemmas
is no longer necessary: we can provide a push-button interface, where all 7000

23

known theorems are candidates for inclusion in problems. With minor changes,
our relevance filter is able to cope with this huge increase in problem sizes, de-
livering success rates that are only slightly worse than the previous approach.
If filtering is switched off, success rates plummet (recall Figs. 15–17).

We do not feel that our methods can be significantly improved; their tech-
nological basis is too simple. More sophisticated techniques may yield more
effective relevance filtering. A machine learning approach may be able to de-
rive information from successful proofs, for example concerning which clauses
work well together.

As an offshoot of the work reported above, we have submitted 565 problems
to the TPTP library [24]. These are 285 raw problems plus 280 solutions:
versions that have been automatically reduced as described in Sect. 3 above. 4

Acknowledgements

The research was funded by the epsrc grant GR/S57198/01 Automation for
Interactive Proof and by the L4.verified project of National ICT Australia.
Stephan Schulz has been extremely helpful throughout our work; he even
provided a new version of the E prover, optimized for our problem set. Geoff
Sutcliffe referred us to related work and gave advice. The referees provided
detailed, valuable comments on both the workshop and journal versions of this
paper.

References

[1] Wolfgang Ahrendt, Bernhard Beckert, Reiner Hähnle, Wolfram Menzel,
Wolfgang Reif, Gerhard Schellhorn, and Peter H. Schmitt. Integrating
automated and interactive theorem proving. In Wolfgang Bibel and Peter H.
Schmitt, editors, Automated Deduction— A Basis for Applications, volume
II. Systems and Implementation Techniques, pages 97–116. Kluwer Academic
Publishers, 1998.

[2] Jeremy Avigad and Kevin Donnelly. Formalizing O notation in Isabelle/HOL.
In Basin and Rusinowitch [4], pages 357–371.

[3] Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In Robinson
and Voronkov [18], chapter 2, pages 19–99.

4 Executing the UNIX command grep -l ’Paulson (2006)’ -r Problems in the
TPTP directory generates the full list of problems.

24

[4] David Basin and Michaël Rusinowitch, editors. Automated Reasoning — Second
International Joint Conference, IJCAR 2004, LNAI 3097. Springer, 2004.

[5] Marc Bezem, Dimitri Hendriks, and Hans de Nivelle. Automatic proof
construction in type theory using resolution. Journal of Automated Reasoning,
29(3-4):253–275, 2002.

[6] Condor: High throughput computing. http://www.cs.wisc.edu/condor/.

[7] Marc Fuchs and Dirk Fuchs. Abstraction-based relevancy testing for model
elimination. In Harald Ganzinger, editor, Automated Deduction — CADE-16
International Conference, LNAI 1632, pages 344–358. Springer, 1999.

[8] Jia Meng and Lawrence C. Paulson. Experiments on supporting interactive
proof using resolution. In Basin and Rusinowitch [4], pages 372–384.

[9] Jia Meng and Lawrence C. Paulson. Translating higher-order problems to first-
order clauses. In Geoff Sutcliffe, Renate Schmidt, and Schulz Schulz, editors,
FLoC’06 Workshop on Empirically Successful Computerized Reasoning, volume
192 of CEUR Workshop Proceedings, pages 70–80, 2006.

[10] Jia Meng, Claire Quigley, and Lawrence C. Paulson. Automation for interactive
proof: First prototype. Information and Computation, 204(10):1575–1596, 2006.

[11] Lawrence C. Paulson. Generic automatic proof tools. In Robert Veroff, editor,
Automated Reasoning and its Applications: Essays in Honor of Larry Wos,
chapter 3. MIT Press, 1997.

[12] Lawrence C. Paulson. The inductive approach to verifying cryptographic
protocols. Journal of Computer Security, 6(1-2):85–128, 1998.

[13] Lawrence C. Paulson. A generic tableau prover and its integration with Isabelle.
Journal of Universal Computer Science, 5(3):73–87, 1999.

[14] Lawrence C. Paulson. Relations between secrets: Two formal analyses of the
Yahalom protocol. Journal of Computer Security, 9(3):197–216, 2001.

[15] David A. Plaisted and Adnan Yahya. A relevance restriction strategy for
automated deduction. Artificial Intelligence, 144(1-2):59–93, March 2003.

[16] Wolfgang Reif and Gerhard Schellhorn. Theorem proving in large theories. In
Wolfgang Bibel and Peter H. Schmitt, editors, Automated Deduction— A Basis
for Applications, volume III. Applications, pages 225–240. Kluwer Academic
Publishers, 1998.

[17] Alexandre Riazanov and Andrei Voronkov. The design and implementation of
VAMPIRE. AI Communications, 15(2):91–110, 2002.

[18] Alan Robinson and Andrei Voronkov, editors. Handbook of Automated
Reasoning. Elsevier Science, 2001.

[19] J. A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12:23–41, 1965.

25

[20] Stephan Schulz. System description: E 0.81. In Basin and Rusinowitch [4],
pages 223–228.

[21] Jörg Siekmann, Christoph Benzmüller, Armin Fiedler, Andreas Meier,
Immanuel Normann, and Martin Pollet. Proof development with Ωmega: The
irrationality of

√
2. In Fairouz Kamareddine, editor, Thirty Five Years of

Automating Mathematics, pages 271–314. Kluwer Academic Publishers, 2003.

[22] Geoff Sutcliffe and Alexander Dvorsky. Proving harder theorems by axiom
reduction. In Ingrid Russell and Susan Haller, editors, Proceedings of
the Sixteenth International Florida Artificial Intelligence Research Society
Conference, pages 108–113. AAAI Press, 2003.

[23] Geoff Sutcliffe and Christian Suttner. CASC-20: The CADE ATP system
competition. http://www.cs.miami.edu/∼tptp/CASC/20/.

[24] Geoff Sutcliffe and Christian Suttner. The TPTP problem library: CNF Release
v1.2.1. Journal of Automated Reasoning, 21(2):177–203, October 1998.

[25] Christoph Weidenbach. Combining superposition, sorts and splitting. In
Robinson and Voronkov [18], chapter 27, pages 1965–2013.

[26] Lawrence Wos, George A. Robinson, and Daniel F. Carson. Efficiency and
completeness of the set of support strategy in theorem proving. Journal of the
ACM, 12(4):536–541, 1965.

26

