
Relations Between Secrets:
Two Formal Analyses of the Yahalom Protocol

Lawrence C. Paulson
Computer Laboratory

University of Cambridge
Pembroke Street

Cambridge CB2 3QG
England

lcp@cl.cam.ac.uk

July 1997
Revised, June 1998 and November 1998

Minor revisions, January 2001

Abstract

The Yahalom protocol is one of those analyzed by Burrows et al. [5]. Based upon their
analysis, they have proposed modifications to make the protocol easier to understand
and to analyze. Both versions of Yahalom have now been analyzed using Isabelle/HOL.
Modified Yahalom satisfies strong security goals, and the original version is adequate.
The mathematical reasoning behind these machine proofs is presented informally. An
appendix gives extracts from a formal proof.

Yahalom presents special difficulties because the compromise of one session key
compromises other secrets. The proofs show that the resulting losses are limited. They
rely on a new proof technique, which involves reasoning about the relationship between
keys and the secrets encrypted by them. This technique is applicable to other difficult
protocols, such as Kerberos IV [2].

The new proofs do not rely on a belief logic. They use a fundamentally different
formal model: the inductive method. They confirm the BAN analysis and the advan-
tages of the proposed modifications. The new proof methods detect more flaws than
BAN and analyze protocols in finer detail, while remaining broadly consistent with the
BAN principles. In particular, the proofs confirm the explicitness principle of Abadi
and Needham [1]. The proofs also suggest that any realistic model of security must
admit that secrets can become compromised over time.

CONTENTS i

Contents

1 Introduction 1

2 Inductive Protocol Verification 2

3 The Yahalom Protocol 3

4 Formalization of the Protocol 4

5 Proving Basic Properties 4

6 Proving Guarantees forB 6

7 The Associations Between Keys and Nonces 8

8 Proving Secrecy ofNb 9

9 A Session Key Theorem forB 11

10 Analysis of Modified Yahalom 11

11 Proving Authentication 13

12 Conclusions 13

A Extracts from the Nb Secrecy Proof 14

ii CONTENTS

1

1 Introduction

Many methods have been developed for mechanically analyzing cryptographic proto-
cols. Some involve enumerating reachable states [7, 8], while others involve formal
proof using general-purpose logics and tools [3, 13]. Authentication logics, designed
specifically for security applications, have been popular. After the seminal BAN pa-
per [5], numerous variants and extensions were put forward, some reaching commer-
cial application [4]. But the BAN logic attracted criticism too—Mao and Boyd [10] is
one example—and now appears to be losing favour. Below, we shall examine the two
versions of the Yahalom protocol discussed in the original paper. Mechanized proofs
performed using my inductive method confirm the BAN analysis.

The present case study is intended to approach realistic complexity. Although the
Yahalom protocol has only four messages, it operates in an unusually subtle way.
Moreover, the formal model is of a severely compromised network. Like most such
models, it includes a spy who is in control of all communications. But it goes further:
this intruder has taken control of some agents and can occasionally get hold of session
keys. Even under these conditions, Yahalom provides adequate guarantees for the un-
compromised parts of the system. These claims have been verified using the interactive
theorem prover Isabelle [12].

What makes Yahalom subtle? Protocols such as Otway-Rees [11] distribute certifi-
cates, signed by a trusted authority, to their principals. Each principal typically receives
a session key packaged with a nonce to ensure freshness. But in Yahalom, principalB
receives two certificates. One contains a key but no evidence of freshness, while the
other is signed using the same doubtful key. To accept the latter certificate as evidence
of freshness for the key requires a convoluted argument. It relies on the secrecy of
the nonceNb, which is encrypted using the very key in question; that it still works is
surprising.

The Yahalom protocol is largely of academic interest, but equally awkward proto-
cols have been deployed. Kerberos version IV [2] uses session keys to encrypt other
session keys. If one session key is compromised, many others could be lost. Despite
this vulnerability, the protocol can be analyzed using essentially the same technique
that proves the secrecy ofNb in Yahalom.

Burrows et al. [5] pointed out these features of Yahalom. They suggested that the
protocol could be improved by includingB’s nonce in the first certificate. The protocol
becomes stronger, easier to analyze, and even more efficient, for some encryption can
be removed.

The paper reviews the inductive approach (§2) and the Yahalom protocol (§3). It
formalizes the protocol and discusses proofs of its basic properties (§§4–5). Estab-
lishing B’s guarantee requires several stages of reasoning (§§6–9). For the modified
protocol, this guarantee is trivial is prove (§10). The paper examines authentication
properties (§11) and concludes (§12). An appendix presents extracts from an Isabelle
proof session.

2 2 INDUCTIVE PROTOCOL VERIFICATION

2 Inductive Protocol Verification

Induction is the natural way to reason about security protocols. Such protocols work by
preserving certain secrets and using them to establish new secrets. Expressed formally,
reasoning of this sort is induction. Inductive definitions can be regarded as an abstract
programming language that can easily express the actions of agents, whether honest or
not.

The inductive approach models a protocol as the set of traces that could arise over
time. Agents drawn from an infinite population may engage, playing various roles, in
any number of possibly interleaved protocol runs. The formal definition resembles in-
formal protocol notation, but contains additional rules to allow the empty trace, enemy
action and accidental security breaches. Properties are proved by induction over this
definition. If the inductive argument appears not to hold, one can easily identify the
offending rule and the circumstances under which the desired property fails. Then one
must generalize the induction formula, prove further lemmas to bridge the gap in the
reasoning, or look for a weakness in the protocol.

The method benefits from mechanical support. Large expressions can arise in the
course of a proof. However, the mechanical proofs are ideally suited to the tools in Isa-
belle. Protocols previously analyzed include versions of Bull’s recursive authentication
protocol [13], Kerberos [2] and the Internet protocol TLS [14].

Messages may contain agent names, nonces and keys. They may be built up using
concatenation and encryption.

• Agent A, Agent B, . . .

• Nonce Na, Nonce Nb, . . .

• Key Ka, Key Kb, Key Kab . . .

• {|X, X′|} (concatenation)

• Crypt K X

Ordinary braces are reserved for set notation, so fat braces indicate nesting structure in
messages. In informal descriptions, I often omit the tagsAgent, Nonce andKey and
write encryption as{|X|}K . In the model, encrypted messages cannot be read without
using the corresponding key. Encryption includes enough redundancy to ensure that
{|X|}K = {|X′|}K ′ implies X = X′ andK = K ′, even if the plaintexts are just nonces;
with modern cryptosystems, this can be done without compromising secrecy.

Assertions often concern setsG, H , . . . of messages, typically histories of past
traffic. Operators over sets of message include

• parts H , the components of messages inH that could be obtained by breaking
every encryption

• analz H , the components of messages inH that could be decrypted using only
keys that can (recursively) be extracted fromH

• synth H , the set of all messages that could be built up using messages inH as
components

3

The Yahalom protocol uses symmetric-key encryption and a trusted server,S. Each
agentA shares a long-term key with the server, writtenKa or (more formally)shrK A.
Assertions typically involve the constantbad, denoting the set of agents who are con-
trolled by the spy. Few guarantees can be expected of protocol runs with compromised
agents: the spy can both read their traffic and sign messages in their name.

An eventhas the formSays A B X and represents an attempt byA to sendB the
messageX. But B is not guaranteed to receive it and cannot know who sent it. Ifevs
is a list of events then the set of message bodies seen by the spy is writtenspies evs.
This set includes the long-term keys of the agents inbad. The set of messages that the
spy could invent, having monitored the traffic inevs, is

synth(analz(spies evs)).

Confidentiality of the key or nonceM from the spy is stated as

M 6∈ analz(spies evs).

The impossibility ofM ’s appearing in traffic at all, even encrypted, is stated as

M 6∈ parts(spies evs).

More details of the inductive approach to protocol analysis are available elsewhere [13].

3 The Yahalom Protocol

This protocol, described by Burrows et al. [5, page 257], distributes a session keyKab
to partiesA andB with the help of a trusted authentication server. At the end of a run,
each party can be sure that the other was recently present.

1. A→ B : A,Na

2. B→ S : B, {|A,Na,Nb|}Kb

3. S→ A : {|B,Kab,Na,Nb|}Ka, {|A,Kab|}Kb

4. A→ B : {|A,Kab|}Kb, {|Nb|}Kab

Now we can see in detail why Yahalom is problematical. WhenB receives the fourth
message, he obtains a session key from the certificate{|A,Kab|}Kb, but it does not men-
tion Nb and could therefore be a replay of an old message. Freshness evidence comes
from {|Nb|}Kab, but why shouldB trust a certificate that is signed with an old, possibly
compromised key?

The protocol is correct becauseNb is kept secret. OnlyA could have formed
{|Nb|}Kab. So A associatesKab with the fresh nonce. Moreover,B learns thatA has
been active recently, a stronger outcome than with Otway-Rees.

Proving thatNb remains secret is harder than it looks. In an ideal model, one could
prove thatKabalways remains secret, and the secrecy ofNbwould follow immediately
for all runs between uncompromised agents. Such reasoning is faulty. It could ‘verify’
a version of Yahalom that sentNb in clear in message 2:

2. B→ S : B,Nb, {|A,Na|}Kb

4 5 PROVING BASIC PROPERTIES

But this version can be attacked. Suppose an intruderI has managed to crack one of
B’s old certificates{|A, K |}Kb, extracting the session keyK . He can then masquerade
asA, usingNb to forge message 4:

1. I A→ B : A,Nc

2. B→ IS : B,Nb, {|A,Nc|}Kb

4. I A→ B : {|A, K |}Kb, {|Nb|}K
We must be realistic. Old session keys or nonces do sometimes leak out. The inductive
model admits such accidents through the Oops rule (see below). In order to analyze
the protocol, we must then examine the associations between session keys and nonces
in the runs of a Yahalom trace. If a particular keyKab is secret thenNb is secret too,
even if other keys or nonces are compromised. The proof is long and detailed—as it
must be in a non-trivial model.

4 Formalization of the Protocol

Figure1 displays the protocol definition in Isabelle syntax. The formalization follows
the usual conventions of the inductive method. Traces are built in reverse order, and
is the list constructor. For example,Says Sp y B X # evs is the trace whose
last event is the spy’s sending messageX to B. The functionused returns the set of
all items present in a trace, soN 6∈ used evs asserts thatN is fresh in the traceevs.
The functionset converts a list to the set of its elements, soev ∈ set evs means that
eventev has occurred at some point in traceevs.

The Fake rule is standard to all protocol descriptions. The spy may send any mes-
sage he can generate to anybody. Such forged messages could ultimately cause security
breaches.

The Oops rule hands the triple{|Na,Nb,Kab|} to the spy. The precondition of this
rule is that the server has actually used these nonces and key together in a run. The
conclusion uses an event of the formNotes Spy X, which makesX accessible to the
spy. Oops is intended to model compromise of the session key by any means, from
brute-force cracking to burglary. Including the nonces in the message identifies the run
associated with the key. With Yahalom, however, the loss ofNb is itself a breach of
security. Our guarantee toB will say that—provided the run involvingNbhas not been
compromised in this way—the session key is both fresh and secure.

The other rules concern messages 1 to 4. Calling the current traceevs i in the rule
for messagei identifies the subgoals in inductive proofs. As some disappear and others
split into subcases, it is convenient to know which protocol rule relates to any subgoal.

5 Proving Basic Properties

Many of the protocol’s properties are expressed and proved almost exactly like the
analogous properties of Otway-Rees [13]. In particular, we must prove thesession key
compromise theorem. This conditional equation serves as a rewrite rule; it extracts

5

empty trace
[] ∈ yahalom

Fake
[| evs ∈ yahalom; B 6= Spy;

X ∈ synth (analz (spies evs)) |]
H⇒ Says Spy B X # evs ∈ yahalom

Message 1
[| evs1 ∈ yahalom; A 6= B; Nonce NA 6∈ used evs1 |]
H⇒ Says A B {|Agent A, Nonce NA|} # evs1 ∈ yahalom

Message 2
[| evs2 ∈ yahalom; B 6= Server; Nonce NB 6∈ used evs2;

Says A’ B {|Agent A, Nonce NA|} ∈ set evs2 |]
H⇒ Says B Server

{|Agent B, Crypt (shrK B) {|Agent A, Nonce NA, Nonce NB|}|}
evs2 ∈ yahalom

Message 3
[| evs3 ∈ yahalom; A 6= Server; Key KAB 6∈ used evs3;

Says B’ Server
{|Agent B, Crypt (shrK B) {|Agent A, Nonce NA, Nonce NB|}|}

∈ set evs3 |]
H⇒ Says Server A

{|Crypt (shrK A) {|Agent B, Key KAB, Nonce NA, Nonce NB|},
Crypt (shrK B) {|Agent A, Key KAB|}|}

evs3 ∈ yahalom

Message 4
[| evs4 ∈ yahalom; A 6= Server;

Says S A {|Crypt (shrK A) {|Agent B, Key K, Nonce NA, Nonce NB|},
X|} ∈ set evs4;

Says A B {|Agent A, Nonce NA|} ∈ set evs4 |]
H⇒ Says A B {|X, Crypt K (Nonce NB)|} # evs4 ∈ yahalom

Oops
[| evso ∈ yahalom; A 6= Spy;

Says Server A {|Crypt (shrK A) {|Agent B, Key K, Nonce NA, Nonce NB|},
X|} ∈ set evso |]

H⇒ Notes Spy {|Nonce NA, Nonce NB, Key K|} # evso ∈ yahalom

Figure 1: Specifying the Yahalom Protocol

6 6 PROVING GUARANTEES FORB

session keys from the scope of theanalz operator. Ifevs is a trace andKab is a session
key1 then

K ∈ analz({Kab} ∪ spies evs) ⇐⇒ K = Kab ∨ K ∈ analz(spies evs). (1)

The loss of one session key does not compromise other keys. This theorem is clearly
of the greatest importance.

Proving it by induction requires first generalizing it from a single session key to an
arbitrary set of them. IfK is a set of session keys then

K ∈ analz(K ∪ spies evs) ⇐⇒ K ∈ K ∨ K ∈ analz(spies evs). (2)

Some cases of the induction introduce new keys, soK cannot be kept constant during
the proof.

Later we shall consider the security ofNb, where it appears necessary to prove an
analogous but more complicated theorem about nonces. A similar theorem is needed
to analyze Kerberos IV, and its corollaries include three special cases of the session key
compromise theorem. Since Kerberos encrypts session keys using other session keys,
the key compromise theorem does not hold in general [2].

Thesession key secrecy theoremstates that the protocol is correct from the server’s
point of view. The session key given out in step 3 reaches only the agents named in
that message. The theorem is proved in the usual way. Subgoals arising from induction
are simplified with the help of theorem (1). Remaining subgoals are proved by routine
reasoning about freshness, etc.

But this guarantee is not enough forA andB. In order to take advantage of it, they
require assurance that the certificates they receive originated in a recent and correct
server message. Only then can they trust the session key, for otherwise there could be
attacks involving reuse of certificates [13].

The relevant guarantee forA states that ifA is uncompromised and{|B,Kab,Na,
Nb|}Ka occurs in a trace then that certificate originated with the server. The proof is a
trivial induction. The argument is that only the server could have issued the certificate
(by inspection of the protocol, if you like). The certificate contains all the information
A needs: it confirms the name of the other party in the run, namelyB, and the presence
of nonceNa assures freshness. SoA can trust the session key to be fresh and shared
only with B.

6 Proving Guarantees forB

Half of B’s guarantee resemblesA’s and is nearly as easy to prove. It states that ifB
is uncompromised and{|A,Kab|}Kb appears in a trace then the certificate originated in
a server message of the form

{|B,Kab,Na′,Nb′|}Ka, {|A,Kab|}Kb

1In the model, this merely means thatKab is not anybody’s long-term shared key. No type distinction is
made between long-term keys and session keys, even though the latter might be shorter in a real system.

7

for someNa′ andNb′. While A’s certificate mentions the nonces used by the server,
B’s certificate mentions no nonces and conveys no information about how old it is.

Freshness guarantees can only come fromB’s other certificate. If{|Nb|}Kab appears
in a trace then the server said something of the form

{|B′,Kab,Na′,Nb|}Ka, {|A′,Kab|}Kb

for someA′, B′ andNa′—providedthatNb is secure from the spy. Thanks to its strong
assumption aboutNb, the guarantee is not hard to prove. Most of the cases of the
induction are trivial. The spy cannot create{|Nb|}Kab because he does not knowNb, and
honest agents do not try to. But this reasoning does not cover the message 4 case.

In this case, the most recent event—extending a traceevs—is an instance of mes-
sage 4. Some agentA′ sends a message containing{|Nb′|}Kab′ as a component. By
assumption, the critical message (namely{|Nb|}Kab) is present in the extended trace. It
may have been present in the original traceevs, in which case the induction hypoth-
esis applies. Or, it may be the new element in the trace; we then haveNb′ = Nb and
Kab′ = Kab. Message 4 is only sent in response to a message containing what appears
to be a valid certificate from the server. Since the certificate mentionsNb, and this
nonce is secret from the spy,A′ is uncompromised (otherwise the spy would be able to
read the certificate). Therefore, the guarantee forA′ holds, assuring that the certificate
originated with the server.

The argument above is typical of proofs in the inductive method. The induction
formula concerns one or two messages of certain forms. Call these thecritical mes-
sages. Applying induction splits the formula into cases, one for the empty trace and
others in which a traceevs is extended. The new event is an instance of a protocol
message or Fake or Oops, and the induction hypothesis states that the formula holds
for the original traceevs. If the latest event does not involve a critical message, then
simplification can prove that case automatically. The Fake case is often trivial too, pro-
vided the induction formula contains enough assumptions to prevent the spy’s forging
the critical messages.

If a protocol step creates one of the critical messages, then explicit reasoning may
be called for. Simplification sometimes reduces this case to the subcase where the crit-
ical message occurs in the latest event. Then we can use other facts to show that the
desired property is preserved. Nonces and session keys play a major role in the rea-
soning. If a nonce has been assumed to be fresh then it must differ from the nonces
present in old messages. Nonces created by honest agents identify message compo-
nents uniquely. Such arguments become more complicated when the property refers to
several critical messages. The Oops case can be the hardest of all; the loss of secrets
particularly complicates proofs of confidentiality.

Now let us return to the Yahalom proof. Combining the guarantees for the two cer-
tificates meetsB’s requirements. The server never issues the same session key twice, so
the two server messages involvingKabare identical, fixing the values ofA, B andNb.
The nonceNa remains unconstrained, but that does not matter toB.

Figure2 states the two main theorems of this section in Isabelle syntax, making the
assumptions explicit and giving an impression of the formalism. Isabelle displays for-
mulas using mathematical symbols similar to those shown, although ASCII equivalents

8 7 THE ASSOCIATIONS BETWEEN KEYS AND NONCES

[| Crypt (shrK B) {|Agent A, Key K|} ∈ parts (spies evs);
B 6∈ bad; evs ∈ yahalom |]

H⇒ ∃NA NB. Says Server A
{|Crypt (shrK A) {|Agent B, Key K,

Nonce NA, Nonce NB|},
Crypt (shrK B) {|Agent A, Key K|}|}

∈ set evs

[| Crypt K (Nonce NB) ∈ parts (spies evs);
evs ∈ yahalom;
Nonce NB 6∈ analz (spies evs) |]

H⇒ ∃A B NA. Says Server A
{|Crypt (shrK A) {|Agent B, Key K,

Nonce NA, Nonce NB|},
Crypt (shrK B) {|Agent A, Key K|}|}

∈ set evs

Figure 2:B’s Guarantees in Isabelle Syntax

appear in the proof scripts.2 Both theorems are intended to be assurances forB. The
first one refers to the first part of message 4, asserting that that the server distributed
the key forA andB, but with unknown nonces. The second theorem uses the second
part of A’s message to conclude that the server distributed the key quoting nonceNb,
assuming thatNb is secret from the spy. Satisfying this assumption turns out to be a
major task.

7 The Associations Between Keys and Nonces

Proving thatNb remains secret may seem little different from proving thatKab remains
secret—and that would be hard enough—but one detail makes it much harder. The
direct analogues of laws (1) and (2) do not hold. Those laws essentially say that session
keys are not normally used to encrypt other session keys. One might hope to prove that
session keys are not normally used to encrypt nonces, but Yahalom’s fourth message
does precisely that.

A qualified form of (1) does hold. If the server has sent the message{|B,Kab,Na,
Nb′|}Ka (thereby associatingNb′ with Kab) andNb 6= Nb′ then

Nb∈ analz({Kab} ∪ spies evs) ⇐⇒ Nb∈ analz(spies evs).

The loss ofKabcompromises at most one nonce, namelyNb′.
As before, proving this theorem by induction requires first generalizing it to an

arbitrary setK of session keys. Its premise takes on a negative form. If the server says
nomessage of the form{|B, K ,Na,Nb|}Ka for K ∈ K and anyA, B andNa, then

Nb∈ analz(K ∪ spies evs) ⇐⇒ Nb∈ analz(spies evs).

2Proof scripts for many protocols are distributed with Isabelle, which can be obtained from URLhttp:
//www.cl.cam.ac.uk/Research/HVG/Isabelle/dist/ . See subdirectorysrc/HOL/Auth .

http://www.cl.cam.ac.uk/Research/HVG/Isabelle/dist/

9

The right-to-left direction of the equivalence is trivial becauseanalz is monotonic, so
only the left-to-right direction is of any interest. But expressing the law as an equiva-
lence (rather than as an implication) makes it available as a rewrite rule, which increases
the degree of automation in the proof. Its script is still nine steps long. Message 4,
which encrypts nonces, requires some attention; the guarantee forA is used to show
that the server associatedKab with Nb. The Oops case involves similar reasoning, but
matters can be arranged such that simplification proves it automatically.

In order to abbreviate some of the assertions, I have introduced a relation symbol
for the association ofK with Nbby some event in traceevs.

KeyWithNonce K Nb evs≡ ∃A BNaX. Says S A {|{|B, K ,Na,Nb|}Ka, X|} ∈ set evs

We typically must show that¬KeyWithNonce K Nb evs holds. It suffices either that
the key is fresh or that the server has already associated the key with some other nonce.
These two lemmas (shown in Isabelle syntax) can each be proved with a single com-
mand.

Key K 6∈ used evs H⇒ ¬KeyWithNonce K NB evs

[| Says Server A
{|Crypt (shrK A) {|Agent B, Key K, na, Nonce NB’|}, X|}

∈ set evs;
NB 6= NB’; evs ∈ yahalom |]

H⇒ ¬KeyWithNonce K NB evs

Here are the Isabelle forms of this section’s main theorems. The variableKK was
written asK above. The premiseKK ⊆ -(range shrK) expresses thatKK is a set
of session keys: it contains no long-term keys. Also,insert x A denotes{x} ∪ A.

[| evs ∈ yahalom;
KK ⊆ -(range shrK);
∀K∈ KK. ¬KeyWithNonce K NB evs |]

H⇒ (Nonce NB ∈ analz (Key‘‘KK ∪ (spies evs))) =
(Nonce NB ∈ analz (spies evs)))

[| Says Server A
{|Crypt (shrK A) {|Agent B, Key KAB, na, Nonce NB’|}, X|}

∈ set evs;
NB 6= NB’; KAB 6∈ range shrK; evs ∈ yahalom |]

H⇒ (Nonce NB ∈ analz (insert (Key KAB) (spies evs))) =
(Nonce NB ∈ analz (spies evs))

8 Proving Secrecy ofNb

We are finally in a position to tackle the secrecy theorem forNb. Suppose a trace
contains an instance of message 2:

2. B→ S : B, {|A,Na,Nb|}Kb

If A and B are uncompromised thenNb is secure from the spy—providedno Oops
event involvingNa andNb occurs in the trace. We must exclude Oops events for all

10 8 PROVING SECRECY OFNB

possible keys becauseB does not know which session key will be generated.B’s final
guarantee also requires this strong assumption.

The proof script is long by Isabelle standards (19 commands). Some cases of the
induction are straightforward. The Fake case is trivial: if the spy does not haveNb
already, nothing he says can get it immediately. The message 1 case is also easy: the
only nonce in it is fresh, and cannot therefore be the nonce we are concerned about. The
message 2 case splits into three subcases: either the nonce is fresh, or it is an instance
of Na (which the spy would have seen already), or the message does not mention
our Nb. The message 3 case concerns a new server message containing noncesNa′
andNb′, and we must deal with the possibilitiesNb= Na′ andNb= Nb′.

• Nb = Na′ is impossible because honest agents choose fresh nonces. SinceNa′
was chosen in an instance of message 1, andNb was chosen in an instance of
message 2, they were chosen at different times. If these nonces are equal then
freshness has not been observed.

• Nb= Nb′ implies (becauseB never reuses nonces), that the server message arose
from the very instance of message 2 mentioned in the theorem statement. This
coincidence allows an appeal to the induction hypothesis.

The message 4 case is more difficult. Here, a message of the form{|Nb′|}K is sent
by some agent,A′. We must contend with the possibility thatNb = Nb′. A long
chain of reasoning ensues. SinceNb′ has been kept secure up to now, agentA′ must be
honest. The initiator’s guarantee tells us that the server must have issuedNa, NbandK
together. (Again, part of the reasoning is that an honest agent uses a nonce at most
once.) By the assumption that no Oops events have occurred involvingNa andNb, we
may appeal to the secrecy theorem for session keys: the key is secure and so the new
message{|Nb|}K does not betrayNb.

The Oops case involves more intricate reasoning of this sort. A session key and its
associated nonces are lost. There are two cases. If the Oops event betrays the particular
Nb in question, then it must involve the particularNa also, but the theorem statement
assumes such events not to occur. If it betrays a different value ofNb, then the loss of
the session key is irrelevant. Oops is the only case to require the theorem about nonces
elaborately proved in §7; we again see that Oops is essential to a realistic treatment of
Yahalom.

Reverting to Isabelle notation, here are the two ‘unicity lemmas’ used in the proof
above. The nonceNb uniquely identifies the ciphertext in which it appears, provided
the encrypting agent is honest. A nonce value is never used both asNa and asNb,
provided it is unknown to the spy.

[| Crypt (shrK B) {|Agent A, Nonce NA, nb|} ∈ parts(spies evs);
Crypt (shrK B’) {|Agent A’, Nonce NA’, nb|} ∈ parts(spies evs);
evs ∈ yahalom; B 6∈ bad; B’ 6∈ bad |]

H⇒ NA = NA’ & A = A’ & B = B’

[| Crypt (shrK B’) {|Agent A’, Nonce NB, nb’|} ∈ parts(spies evs);
evs ∈ yahalom; Nonce NB 6∈ analz(spies evs) |]

H⇒ Crypt (shrK B) {|Agent A, na, Nonce NB|} 6∈ parts(spies evs);

And here is the main theorem of this section, that nonceNBremains safe from the spy.

11

[| (∀k. Notes Spy {|Nonce NA, Nonce NB, k|} 6∈ set evs);
Says B Server

{|Agent B, Crypt (shrK B) {|Agent A, Nonce NA, Nonce NB|}|}
∈ set evs;
A 6∈ bad; B 6∈ bad; evs ∈ yahalom |]

H⇒ Nonce NB 6∈ analz (spies evs)

9 A Session Key Theorem forB

Now, all the pieces fit together. Recall the three lemmas proved forB:

• The session key found in the first certificate originated with the server. (But how
long ago?)

• ProvidedNb has been kept secret from the spy, the session key is recent: the
server bound it together withNb.

• Under certain conditions, nonceNb indeed remains secret.

Combining these results yieldsB’s overall guarantee for the session key. IfB has
issued message 2 mentioningA, Na andNb, and receives{|A, K |}Kb and{|Nb|}K at the
end of a run, andA and B are uncompromised, and no Oops event involvingNa and
Nb has occurred, then the server has issued a valid instance of message 3 involving
the particularA, B, Na, Nb andK . Giving this conclusion to the session key secrecy
theorem tells us thatK is known only toA andB.

Here is the full statement of the theorem, using Isabelle’s syntax.

[| Says B Server
{|Agent B, Crypt (shrK B) {|Agent A, Nonce NA, Nonce NB|}|}
∈ set evs;

Says A’ B {|Crypt (shrK B) {|Agent A, Key K|},
Crypt K (Nonce NB)|} ∈ set evs;

∀k. Notes Spy {|Nonce NA, Nonce NB, k|} 6∈ set evs;
A 6∈ bad; B 6∈ bad; evs ∈ yahalom |]

H⇒ Says Server A
{|Crypt (shrK A) {|Agent B, Key K,

Nonce NA, Nonce NB|},
Crypt (shrK B) {|Agent A, Key K|}|} ∈ set evs

Guarantees for other protocols typically have a weaker Oops assumption, ruling out
the single Oops event{|Na,Nb, K |}. But the guarantee above cannot be so strengthened.
Suppose the Oops event did occur for{|Na,Nb,Kab|}, whereKab was the true session
key issued by the server. Then the spy, if he possessed an old keyK and an old cer-
tificate{|A, K |}Kb for it, could form{|Nb|}K and foolB into acceptingK instead ofKab.
The protocol is thus slightly weaker than one might hope.

10 Analysis of Modified Yahalom

My modification of Yahalom incorporates some suggestions from the BAN paper [5,
page 259]. The new protocol is stronger and much easier to reason about. The server

12 10 ANALYSIS OF MODIFIED YAHALOM

includesNb in the first certificate. The nonce is no longer kept secret.

1. A→ B : A,Na

2. B→ S : B,Nb, {|A,Na|}Kb

3. S→ A : Nb, {|B,Kab,Na|}Ka, {|A, B,Kab,Nb|}Kb

4. A→ B : {|A, B,Kab,Nb|}Kb, {|Nb|}Kab

An elementary induction now suffices to prove thatB may trustKab. If B is uncom-
promised and{|A, B,Kab,Nb|}Kb appears in a trace, then that certificate originated with
the server. After verifying his nonce (Nb), B may safely conclude thatKab is fresh. It
is also secret, subject to the conditions of the session key secrecy theorem, namely that
A is uncompromised and the Oops event{|Na,Nb,Kab|} has not occurred. Note that the
Oops assumption has been relaxed to refer to one specific session key.

Here isB’s guarantee in Isabelle notation. It is almost identical to the first theo-
rem presented in §6 except thatB’s nonce (NB) now occurs in the assumptions and
conclusion.

[| Crypt (shrK B) {|Agent A, Agent B, Key K, Nonce NB|}
∈ parts (spies evs);

B 6∈ bad; evs ∈ yahalom |]
H⇒ ∃NA. Says Server A

{|Nonce NB,
Crypt (shrK A) {|Agent B, Key K, Nonce NA|},
Crypt (shrK B) {|Agent A, Agent B, Key K, Nonce NB|}|}

∈ set evs

The BAN suggestions shorten the proofs by almost half, eliminating the lengthy
reasoning aboutNb.3 I kept no records of the human effort required, but original Ya-
halom required much more work than the modified version.

The inductive method and the BAN logic work in fundamentally different ways.
The former models traces using standard predicate logic and set theory; it requires
long, detailed proofs. The latter is a specialized logic of belief; it works at a high level
of abstraction. For the two methods to agree on the defects of the original Yahalom
protocol and the virtues of the modified version suggests that the BAN analysis is
broadly correct. There is similar agreement with Abadi and Needham [1] concerning
the Otway-Rees protocol: applying their suggestions reduces the Isabelle proof script
by 40% [13]. Such findings add support to their explicitness principle.

Shorter proofs are advantageous provided they come from a better design, rather
than from an unrealistic formalism. Ease of analysis is obviously important in any
technology, and especially in those concerning safety or security. Extra complexity
could hide a flaw. With the recursive authentication protocol, replacing encryption
by hashing introduced several vulnerabilities [15]. In the case of Yahalom, the same
complexity appears in the BAN analysis, the inductive analysis, and at the informal
level. We must conclude that this complexity is not an artifact of the analysis method,
but is intrinsic to the protocol design.

3The full proof script for original Yahalom has 132 commands and runs in 87 seconds on a 300Mhz
Pentium Pro. That for modified Yahalom has 68 commands and runs in 53 seconds.

13

Of course, the BAN logic is not always right. The original paper’s advice on Otway-
Rees admitted catastrophic breaches of security [10, 13]; an intruder could masquerade
as other users at will. The BAN version of Yahalom has a minor security flaw. Its two
certificates have identical formats:

{|B,Kab,Na|}Ka {|A,Kab,Nb|}Kb

A weak middleperson attack, in which the spy passes off one certificate as the other
one, lets the spy masquerade as another agent. He does not get hold of the session key
but still violates one of the protocol’s objectives: to assure each party of the other’s
presence.4 Moreover, the possibility of exchanging the certificates seriously compli-
cates the reasoning. To eliminate this danger, I have applied the explicitness principle:
my version of the protocol includesB’s name in the second certificate.

11 Proving Authentication

Related protocols such as Needham-Schroeder (shared key version) and Otway-Rees
merely distribute session keys. Yahalom, however, confirms to each party that the other
was present recently. This information is of limited value—a principal can, after all,
fail at any time—but it may have specialized uses.

Proving authentication ofB to A is easy. IfB is uncompromised, then onlyB can
perform the encryption used in message 2. IfA receives the certificate{|B,Kab,Na|}Ka
then B has created the message{|A,Na|}Kb and thus has been active sinceNa was in-
vented. This guarantee is expressed in terms of the messages of modified Yahalom, but
similar theorems can be proved for the original protocol using similar proof scripts.

The authentication ofA to B makes use ofA’s final message,{|Nb|}Kab. Intuitively,
B reasons that onlyA could knowKab and perform this encryption. The inductive
proof is not difficult. In the message 3 case, whereB’s certificate is first created,
we note that{|Nb|}Kab could not yet exist:Kab is too fresh. In the message 4 case,
where something of the form{|Nb′|}Kab′ is created, we can by the induction hypothesis
assumeNb′ = NbandKab′ = Kab; applying the protocol’s guarantees for both parties
confirms the identities ofA andB.

This inductive argument assumes thatKab is secure from the spy. The resulting
lemma is then combined with the session key secrecy theorem to obtainB’s guarantee.

12 Conclusions

Yahalom is far from being the most complicated protocol to be analyzed formally. But
it shows surprising complexity, particularly when examined in a model that formalizes
the possibility of accidents. Using Isabelle/HOL, I have proved that the protocol sat-
isfies its main objectives. The machine proofs can be explained in terms of intuitive
arguments about the potential impact of sending a protocol message.

4Syverson [16] describes two attacks on BAN-Yahalom. Attack 2 is the one described above. Attack 1
involves passing off the concatenation of two nonces as a single nonce, which is impossible in my model
because of the length discrepancy. Unaware of Syverson’s paper, I rediscovered attack 2 while looking at
failing proofs.

14 A EXTRACTS FROM THEN B SECRECY PROOF

Simple modifications to the protocol eliminate the complexity and allow the proof
scripts to be greatly shortened. Advice derived from the BAN logic has thus been
confirmed experimentally using an intrinsically different formal method, the inductive
approach. The only flaw in the BAN analysis concerns the risk of exchanging the two
certificates.

The agreement between the two analyses suggests that the underlying concepts are
valid. In a frequently-cited paper, Abadi and Needham present principles for protocol
design, commenting ‘We arrived at our principles by noticing some common features
among protocols that are difficult to analyze’ [1, page 6]. As new analysis methods
supplant old ones, we have reason to expect that their principles will remain stable.

It is not clear whether some of the methods replacing authentication logics support
such a detailed analysis. Model-checking [9] is fully automatic, while my methods
require much effort. Model-checking is highly successful at finding attacks, and could
probably be applied to Yahalom. But the failure to find an attack does not explain why
the protocol works, which would be valuable feedback for designers.

Yahalom’s complexity comes from the relation between the two secrets,Kab and
Nb, which are distributed separately toB. The formal proofs for Yahalom demonstrate
how to analyze Kerberos [2] and presumably other protocols involving relationships
between secrets.

Acknowledgement Discussions with Martı́n Abadi and Roger Needham were help-
ful. Fabio Massacci commented extensively on a draft. The research was funded by
theEPSRC, grants GR/K77051 ‘Authentication Logics’ and GR/K57381 ‘Mechanizing
Temporal Reasoning.’

A Extracts from the Nb Secrecy Proof

To gain an impression of how protocols are proved by machine, let us look at part of the
proof thatNb remains secret. The full text of the session is much too large to include
in full, so we shall concentrate on the case where the most recent event is an instance
of message 4.

We start the proof by giving the goal to Isabelle. To allow the induction to go
through, it is expressed slightly differently from the form shown in §8 above.

[| A 6∈ bad; B 6∈ bad; evs ∈ yahalom |]
H⇒ Says B Server

{|Agent B, Crypt (shrK B) {|Agent A, Nonce NA, Nonce NB|}|}
∈ set evs →
(∀k. Notes Spy {|Nonce NA, Nonce NB, k|} 6∈ set evs) →
Nonce NB 6∈ analz (spies evs)

Next, we apply induction, yielding seven subgoals. Only the goal corresponding to
message 4 is shown. A message between some agentsAa andBa extends some existing
trace,evs4 .

15

[| A 6∈ bad; B 6∈ bad; evs4 ∈ yahalom;
Says B Server

{|Agent B, Crypt (shrK B) {|Agent A, Nonce NA, Nonce NB|}|}
∈ set evs4 →
(∀k. Notes Spy {|Nonce NA, Nonce NB, k|} 6∈ set evs4) →
Nonce NB 6∈ analz (spies evs4);
Aa 6= Server;
Says S Aa

{|Crypt (shrK Aa) {|Agent Ba, Key K, Nonce NAa, Nonce NBa|}, X|}
∈ set evs4;
Says Aa Ba {|Agent Aa, Nonce NAa|} ∈ set evs4 |]

H⇒ Says B Server
{|Agent B, Crypt (shrK B) {|Agent A, Nonce NA, Nonce NB|}|}
∈ set (Says Aa Ba {|X, Crypt K (Nonce NBa)|} # evs4) →
(∀k. Notes Spy {|Nonce NA, Nonce NB, k|}

6∈ set (Says Aa Ba {|X, Crypt K (Nonce NBa)|} # evs4)) →
Nonce NB
6∈ analz (spies (Says Aa Ba {|X, Crypt K (Nonce NBa)|} # evs4))

The next steps are the application of forwarding lemmas [13] and rewriting. Then
the classical reasoner (blast_tac) is invoked with suitable lemmas, automatically
proving the Fake case and the cases for messages 1–3. The only cases left are those for
Oops and message 4, which after further simplification is

[| A 6∈ bad; B 6∈ bad; evs4 ∈ yahalom; Aa 6= Server;
Says S Aa

{|Crypt (shrK Aa) {|Agent Ba, Key K, Nonce NAa, Nonce NB|}, X|}
∈ set evs4;
Says Aa Ba {|Agent Aa, Nonce NAa|} ∈ set evs4;
X ∈ analz (spies evs4);
Says B Server

{|Agent B, Crypt (shrK B) {|Agent A, Nonce NA, Nonce NB|}|}
∈ set evs4;
∀k. Notes Spy {|Nonce NA, Nonce NB, k|} 6∈ set evs4;
Key K ∈ analz (spies evs4); Nonce NB 6∈ analz (spies evs4) |]

H⇒ False

Let’s examine the assumptions at this point. AgentsA and B are uncompromised.
The agent,Aa, who is distinct from theServer , has received what appears to be a
certificate containing the session keyK. The last two assumptions state thatK is known
to the spy but thatNB is not. (Simplification has automatically dealt with the case
whereK is not known to the spy.)

Observe that agentAa must be uncompromised:NB is safe despite having ap-
peared in traffic encrypted byAa’s key. Calling the specialized tacticnot_bad_tac
performs this reasoning, adding a new assumption at the end.

[| A 6∈ bad; B 6∈ bad; evs4 ∈ yahalom; Aa 6= Server;
Says S Aa

{|Crypt (shrK Aa) {|Agent Ba, Key K, Nonce NAa, Nonce NB|}, X|}
∈ set evs4;
Says Aa Ba {|Agent Aa, Nonce NAa|} ∈ set evs4;
X ∈ analz (spies evs4);

16 A EXTRACTS FROM THEN B SECRECY PROOF

Says B Server
{|Agent B, Crypt (shrK B) {|Agent A, Nonce NA, Nonce NB|}|}
∈ set evs4;
∀k. Notes Spy {|Nonce NA, Nonce NB, k|} 6∈ set evs4;
Key K ∈ analz (spies evs4); Nonce NB 6∈ analz (spies evs4);
Aa 6∈ bad |]

H⇒ False

SinceAa is uncompromised, any certificate sealed withAa’s key is authentic. A lemma
(proved earlier by a trivial induction) tells us that the certificate originated with the
Server .

[| A 6∈ bad; B 6∈ bad; evs4 ∈ yahalom; Aa 6= Server;
Says Aa Ba {|Agent Aa, Nonce NAa|} ∈ set evs4;
X ∈ analz (spies evs4);
Says B Server

{|Agent B, Crypt (shrK B) {|Agent A, Nonce NA, Nonce NB|}|}
∈ set evs4;
∀k. Notes Spy {|Nonce NA, Nonce NB, k|} 6∈ set evs4;
Key K ∈ analz (spies evs4); Nonce NB 6∈ analz (spies evs4);
Aa 6∈ bad;
Says Server Aa

{|Crypt (shrK Aa) {|Agent Ba, Key K, Nonce NAa, Nonce NB|},
Crypt (shrK Ba) {|Agent Aa, Key K|}|}

∈ set evs4 |]
H⇒ False

Another lemma, also proved by a previous induction, tells us that theServer would
only have issued such a message in response to a valid instance of message 2.

[| A 6∈ bad; B 6∈ bad; evs4 ∈ yahalom; Aa 6= Server;
Says Aa Ba {|Agent Aa, Nonce NAa|} ∈ set evs4;
X ∈ analz (spies evs4);
Says B Server

{|Agent B, Crypt (shrK B) {|Agent A, Nonce NA, Nonce NB|}|}
∈ set evs4;
∀k. Notes Spy {|Nonce NA, Nonce NB, k|} 6∈ set evs4;
Key K ∈ analz (spies evs4); Nonce NB 6∈ analz (spies evs4);
Aa 6∈ bad;
Says Server Aa

{|Crypt (shrK Aa) {|Agent Ba, Key K, Nonce NAa, Nonce NB|},
Crypt (shrK Ba) {|Agent Aa, Key K|}|}

∈ set evs4;
∃B’. Says B’ Server

{|Agent Ba,
Crypt (shrK Ba) {|Agent Aa, Nonce NAa, Nonce NB|}|}

∈ set evs4 |]
H⇒ False

We now see thatNB appears in two instances of message 2. Since it is unknown to
the spy, it must have been created by an honest agent, who would use nonces uniquely.
This identifies the message components: agentsAa andAare the same, as areBa andB.
So the message from theServer is to two honest agents. By the session key secrecy
theorem, the key it holds is safe from the spy, contradicting the assumptionKey K ∈
analz (spies evs4) . A call to blast_tac finds this argument, proving the
message 4 case.

REFERENCES 17

A further six commands are needed to prove the Oops case. Space limitations
prevent our discussing the proof in detail, but a peek at the simplified subgoal is in-
structive:

[| A 6∈ bad; B 6∈ bad; evso ∈ yahalom;
Says Server Aa

{|Crypt (shrK Aa) {|Agent Ba, Key K, Nonce NAa, Nonce NBa|}, X|}
∈ set evso;
Says B Server

{|Agent B, Crypt (shrK B) {|Agent A, Nonce NA, Nonce NB|}|}
∈ set evso;
NB = NBa→ NA 6= NAa;
(∀k. Notes Spy {|Nonce NA, Nonce NB, k|} 6∈ set evso);
Nonce NB 6∈ analz (spies evso) |]

H⇒ NB 6= NAa &
NB 6= NBa & Nonce NB 6∈ analz (insert (Key K) (spies evso))

To show thatNB remains secure, we must show that it differs from the two nonces
mentioned in the Oops event, namelyNAa andNBa. Finally, we must show thatNB
is not compromised by the loss of the session keyK. The proof requires the theorem
proved in §7.

References

[1] Mart́ın Abadi and Roger Needham. Prudent engineering practice for
cryptographic protocols.IEEE Transactions on Software Engineering,
22(1):6–15, January 1996.

[2] Giampaolo Bella and Lawrence C. Paulson. Kerberos version IV: Inductive
analysis of the secrecy goals. In J.-J. Quisquater, Y. Deswarte, C. Meadows, and
D. Gollmann, editors,Computer Security — ESORICS 98, LNCS 1485, pages
361–375. Springer, 1998.

[3] Dominique Bolignano. Towards the formal verification of electronic commerce
protocols. In Computer Security Foundations Workshop [6], pages 113–147.

[4] Stephen H. Brackin. A HOL extension of GNY for automatically analyzing
cryptographic protocols. In9th Computer Security Foundations Workshop,
pages 62–75. IEEE Computer Society Press, 1996.

[5] M. Burrows, M. Abadi, and R. M. Needham. A logic of authentication.
Proceedings of the Royal Society of London, 426:233–271, 1989.

[6] 10th Computer Security Foundations Workshop. IEEE Computer Society Press,
1997.

[7] Richard Kemmerer, Catherine Meadows, and Jonathan Millen. Three systems
for cryptographic protocol analysis.Journal of Cryptology, 7(2):79–130, 1994.

[8] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using CSP and FDR. In T. Margaria and B. Steffen, editors,Tools and

18 REFERENCES

Algorithms for the Construction and Analysis of Systems: second international
workshop, TACAS ’96, LNCS 1055, pages 147–166. Springer, 1996.

[9] Gavin Lowe. Casper: A compiler for the analysis of security protocols.Journal
of Computer Security, 6:53–84, 1998.

[10] Wenbo Mao and Colin Boyd. Towards formal analysis of security protocols. In
Computer Security Foundations Workshop VI, pages 147–158. IEEE Computer
Society Press, 1993.

[11] Dave Otway and Owen Rees. Efficient and timely mutual authentication.
Operating Systems Review, 21(1):8–10, January 1987.

[12] Lawrence C. Paulson.Isabelle: A Generic Theorem Prover. Springer, 1994.
LNCS 828.

[13] Lawrence C. Paulson. The inductive approach to verifying cryptographic
protocols.Journal of Computer Security, 6:85–128, 1998.

[14] Lawrence C. Paulson. Inductive analysis of the Internet protocol TLS.ACM
Transactions on Information and System Security, in press.

[15] Peter Y. A. Ryan and Steve A. Schneider. An attack on a recursive authentication
protocol: A cautionary tale.Information Processing Letters, 65(1):7–10, January
1998.

[16] Paul Syverson. A taxonomy of replay attacks. In7th Computer Security
Foundations Workshop, pages 187–191. IEEE Computer Society Press, 1994.

	Introduction
	Inductive Protocol Verification
	The Yahalom Protocol
	Formalization of the Protocol
	Proving Basic Properties
	Proving Guarantees for B
	The Associations Between Keys and Nonces
	Proving Secrecy of Nb
	A Session Key Theorem for B
	Analysis of Modified Yahalom
	Proving Authentication
	Conclusions
	Extracts from the Nb Secrecy Proof

