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Abstract

Informal arguments that cryptographic protocols are secure can be made
rigorous using inductive definitions. The approach is based on ordinary
predicate calculus and copes with infinite-state systems. Proofs are gener-
ated using Isabelle/HOL. The human effort required to analyze a protocol
can be as little as a week or two, yielding a proof script that takes a few
minutes to run.

Protocols are inductively defined as sets of traces. A trace is a list of
communication events, perhaps comprising many interleaved protocol runs.
Protocol descriptions incorporate attacks and accidental losses. The model
spy knows some private keys and can forge messages using components de-
crypted from previous traffic. Three protocols are analyzed below: Otway-
Rees (which uses shared-key encryption), Needham-Schroeder (which uses
public-key encryption), and a recursive protocol [9] (which is of variable
length).

One can prove that event ev always precedes event ev′ or that prop-
erty P holds provided X remains secret. Properties can be proved from the
viewpoint of the various principals: say, if A receives a final message from B
then the session key it conveys is good.
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1 Introduction

Cryptographic protocols are intended to let agents communicate securely
over an insecure network. An obvious security goal is secrecy : a spy cannot
read the contents of messages intended for others. Also important is authen-
ticity : if a message appears to be from Alice, then Alice sent precisely that
message, and any nonces or timestamps within it give a correct indication
of its freshness. This paper will not discuss denial of service.

A typical protocol allows A to make contact with B, delivering a key
to both parties for their exclusive use. They may involve as few as two
messages, but are surprisingly hard to get right. One problem is the com-
binatorial complexity of the messages that an intruder could generate. A
quite different problem is to specify precisely what properties the protocol is
intended to achieve. Anderson and Needham’s excellent tutorial [3] presents
several examples and defines the terminology used below.

Formal methods can be used to analyze security protocols. Two popular
approaches are state exploration and belief logics.

• State exploration methods [39] model the protocol as a finite state
system. An exhaustive search checks that all reachable states are
safe. Lowe uses a general-purpose model-checker, FDR [23, 25]; the
Interrogator [21] is a specialized tool. Attacks are quickly found, but
keeping the state space small requires drastic simplifying assumptions.

• Belief logics formalize what an agent may infer from messages received.
The original BAN logic [10] allows short, abstract proofs. It has iden-
tified some protocol flaws but missed others. New belief logics [27]
address some weaknesses of BAN but sacrifice its simplicity.

We can fruitfully borrow from both approaches: from the first, a concrete
notion of events, such as A sending X to B; from the second, the idea of
deriving guarantees from each message. Protocols are formalized as the set
of all possible traces, which are lists of events such as ‘A sends X to B.’
An agent may extend a trace in any way permitted by the protocol, given
what he can see in the current trace. Agents do not know the true sender
of a message and may forward items that they cannot read. One agent is
an active attacker.

Properties are proved by induction on traces, using the theorem prover
Isabelle [32]. Analyzing a new protocol requires several days’ effort, while
exploring the effects of a change to an existing protocol often takes just a
few hours. Laws and proof techniques developed for one protocol are often
applicable generally.

The approach is oriented around proving guarantees, but their absence
can indicate possible attacks. In this way, I have discovered an attack on
the variant of the Otway-Rees protocol suggested by Burrows et al. [10, page
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247]. (At the time, I was unaware of Mao and Boyd’s earlier attack [27].)
Even if no attacks are found, the structure of the proof yields insights into
the protocol.

The paper goes on to describe the method, first in overview (§2) and then
in some detail (§3). Three protocols are then analyzed. Otway-Rees illus-
trates the shared-key model (§4); Needham-Schroeder illustrates the public-
key model (§5); the recursive authentication protocol [9] demonstrates how
to deal with n-way authentication (§6). Related work is discussed (§7) and
conclusions given (§8).

2 Overview of the Inductive Method

Informal arguments for a protocol’s correctness are conducted in terms of
what could or could not happen. Here is a hypothetical dialogue:

Salesman. At the end of a run, only Alice and Bob can possibly
know the session key Kab.

Customer. What about an eavesdropper?

Salesman. He can’t read the certificates without Alice or Bob’s
long-term keys, which he can’t get.

Customer. Could an attacker trick Bob into accepting a key
shared with himself?

Salesman. The use of identifying nonces prevents that.

The customer may find such arguments unconvincing, but they can be made
rigorous. The necessary formal tool is the inductive definition [2]. Each in-
ductive definition lists the possible actions that an agent or system can
perform. The corresponding induction rule lets us reason about the conse-
quences of an arbitrary finite sequence of such actions. Induction has long
been used to specify the semantics of programming languages [19]; it copes
well with nondeterminism. (Plotkin conceived this application of inductive
definitions, while Huet pioneered their use in proof tools.)

For security protocols, the model must specify the capabilities of an at-
tacker. Several inductively-defined operators are useful. One (parts) merely
returns all the components of a set of messages. Another (analz) models
the decryption of past traffic using available keys. Another (synth) models
the forging of messages. The attacker is specified—independently of the
protocol!—in terms of analz and synth. Algebraic laws governing parts, analz
and synth have been proved by induction and are invaluable for reasoning
about protocols.

The inductive protocol definition models the behaviour of honest agents
faithfully executing protocol steps in the presence of the attacker. It can
even model carelessness, such as agents accidentally revealing secrets. The
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inherent nondeterminism models the possibility of an agent’s being unavail-
able.

Belief logics allow short proofs; the main reason for mechanizing them [7]
is to eliminate human error. In contrast, inductive verification of protocols
involves long and detailed proofs. Each safety property is proved by induc-
tion over the protocol. Each case considers a state of the system that might
be reached by the corresponding protocol step. Simplifying the safety prop-
erty for that case may reveal a combination of circumstances leading to its
violation. Only if all cases are covered has the property been proved.

Customer. What’s to stop somebody’s tampering with the nonce
in step 2 and later sending Alice the wrong certificate?

Salesman. Is there somebody less experienced I could talk to?

2.1 Messages

Traditional protocol notation is not ideal for mechanization. Expressing
concatenation by a comma, as in A,B, can be ambiguous; enclosing it in
braces, as in {A,B}, invites confusion with a two-element set. The machine
syntax uses fat braces to express concatenation: {|A,B|}. Informal protocol
descriptions omit outer-level braces and indicate encryption by a notation
such as {|Na,Kab|}Ka .

Individual protocol descriptions rest on a common theory of message
analysis. Message items may include

• agent names A, B, . . . ;

• nonces Na, Nb, . . . ;

• keys Ka, Kb, Kab, . . . ;

• compound messages {|X,X ′|},

• hashed messages HashX,

• encrypted messages CryptKX.

With public-key encryption, K−1 is the inverse of key K. The equal-
ity K−1 = K expresses that K is a symmetric key. The theory assumes
(K−1)−1 = K for all K.

Nonces are of two kinds: those that are guessable and those that are
not. Sequence numbers and timestamps can be regarded as guessable, but
not 40-byte random strings.

An encrypted message can neither be altered nor read without the ap-
propriate key; different types of components cannot be confused. Including
redundancy in message bodies can satisfy these assumptions.
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Some published attacks involve accepting a nonce as a key [24] or regard-
ing one component as being two [11]. One could alter the model to admit
type confusion attacks, but a little explicitness in protocols [1] can cheaply
prevent them.

2.2 The Operators parts, analz and synth

Three operations are defined on possibly infinite sets of messages. Each is
defined inductively, as the least set closed under specified extensions. Each
extends a set of messages H with other items derivable from H. Typically,
H contains an agent’s initial knowledge and the history of all messages sent
in a trace.

The set partsH is obtained from H by repeatedly adding the components
of compound messages and the bodies of encrypted messages. (It does not
regard the key K as part of CryptKX unless K is part of X itself.) It
represents the set of all components of H that are potentially recoverable,
perhaps using additional keys. Proving X 6∈ partsH establishes that X does
not occur in H (except, possibly, in hashed form). Here are two facts proved
about parts:

CryptKX ∈ partsH =⇒ X ∈ partsH

partsG ∪ partsH = parts(G ∪H).

The set analzH is obtained from H by repeatedly adding the compo-
nents of compound messages and by decrypting messages whose keys are in
analzH. The set represents the most that could be gleaned from H without
breaking ciphers. If K 6∈ analzH, then nobody can learn K by listening
to H. Here are some facts proved about analz:

CryptKX ∈ analzH, K−1 ∈ analzH =⇒ X ∈ analzH

analzG ∪ analzH ⊆ analz(G ∪H)
analzH ⊆ partsH.

The set synthH models the messages a spy could build up from ele-
ments of H by repeatedly adding agent names, forming compound messages
and encrypting with keys contained in H. Agent names are added because
they are publicly known. Nonces and keys are not added because they are
unguessable; the spy can only use nonces and keys given in H. Here are two
facts proved about synth:

X ∈ synthH, K ∈ H =⇒ CryptKX ∈ synthH

K ∈ synthH =⇒ K ∈ H.
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2.3 The Attacker

The enemy observes all traffic in the network—the set H—and sends fraud-
ulent messages drawn from the set synth(analzH). Interception of messages
is modelled indirectly: any message can be ignored.

No protocol should demand perfect competence from all players. If the
spy should get hold of somebody’s key, communications between other agents
should not suffer. The model gives the spy control over an unspecified set of
compromised agents; he holds their private keys. Most protocol descriptions
include an Oops event to allow accidental loss of session keys.

Our spy is accepted by the others as an honest agent. He may send nor-
mal protocol messages using his own long-term secret key, as well as sending
fraudulent messages. This combination lets him participate in protocol runs
using intercepted keys, thereby impersonating other agents.

The spy is powerful, but he is the same in all protocols. A common body
of laws and tactics (mechanical proof procedures) is available. A tactic often
proves the spy’s case of the induction automatically.

2.4 Modelling a Protocol

Most events in a trace have the form SaysABX, which means ‘A sends mes-
sage X to B.’ Another possible event is NotesAX, which means ‘A stores
X internally.’ Other events could be envisaged, such as the replacement of
a long-term key. Each agent’s state is represented by its initial knowledge
(typically, its private key) and what it can scan from the list of events. Apart
from the spy, agents only read messages addressed to themselves. The event
NotesAX is visible to A and, if A is compromised, to the spy.

Consider a variant of the Otway-Rees protocol [10, page 247]:

1. A→ B : Na, A,B, {|Na, A,B|}Ka

2. B → S : Na, A,B, {|Na, A,B|}Ka ,Nb, {|Na, A,B|}Kb

3. S → B : Na, {|Na,Kab|}Ka , {|Nb,Kab|}Kb

4. B → A : Na, {|Na,Kab|}Ka

Informally, (1) A contacts B, generating Na to identify the run. Then
(2) B forwards A’s message to the authentication server, adding a nonce
of his own. Then (3) S generates a new session key Kab and packages it
separately for A and B. Finally, (4) B decrypts his part of message 3, checks
that the nonce is that sent previously, and forwards the rest to A, who will
similarly compare nonces before accepting Kab.

The protocol steps are modelled as possible extensions of a trace with
new events. The server is the constant S, while A and B are variables
ranging over all agents, including S and the spy. We transcribe each step in
turn:
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1. If evs is a trace, Na is a fresh nonce and B is an agent distinct from A
and S, then evs may be extended with the event

SaysAB {|Na, A,B, {|Na, A,B|}Ka |}.

2. If evs is a trace that has an event of the form

SaysA′B {|Na, A,B,X|},

and Nb is a fresh nonce and B 6= S, then evs may be extended with
the event

SaysB S {|Na, A,B,X,Nb, {|Na, A,B|}Kb |}.

The sender’s name is shown as A′ and is not used in the new event
because B cannot know who really sent the message. The component
intended to be encrypted with A’s key is shown as X, because B does
not attempt to read it.

3. If evs is a trace containing an event of the form

SaysB′ S {|Na, A,B,{|Na, A,B|}Ka ,Nb,
{|Na, A,B|}Kb |}

and Kab is a fresh key and B 6= S, then evs may be extended with the
event

Says SB {|Na, {|Na,Kab|}Ka , {|Nb,Kab|}Kb |}.

The server too does not know where the message originated, hence
the B′ above. If he can decrypt the components using the keys of the
named agents, revealing items of the right form, then he accepts the
message as valid and replies to B.

4. If evs is a trace containing the two events

SaysB S {|Na, A,B,X ′,Nb, {|Na, A,B|}Kb |}
SaysS′B {|Na, X, {|Nb,K|}Kb |}

and A 6= B, then evs may be extended with the event

SaysBA {|Na, X|}.

Agent B receives a message of the expected format, decrypts his por-
tion, checks that Nb agrees with the nonce he previously sent to the
server, and forwards component X to A. The sender of the first mes-
sage is shown as B because B knows if he has sent such a message.
The rule does not specify the message from S′ to be more recent than
that from B; this holds by the freshness of Nb.
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There is a fifth, implicit, step, in which A checks her nonce and confirms
the session. Implicit steps can be modelled, if necessary. For Otway-Rees,
it suffices to prove authenticity of the certificate that A receives in step 4.
For TLS [14, 35], the model includes a rule for session confirmation in order
to support the resumption of past sessions.

We cannot assume that a message sent in step i will be received. But
we can identify the sending of a message in step i+ 1 with the receipt of a
satisfactory message in step i. Because the model never forces agents to act,
there will be traces in which A sends X to B but B never responds. We may
interpret such traces as indicating that X was intercepted, B rejected X, or
B was down.

An agent may participate in several protocol runs concurrently; the trace
represents his state in all those runs. He may respond to past events, no
matter how old they are. He may respond any number of times, or never. If
the protocol is safe even under these liberal conditions, then it will remain
safe when time-outs and other checks are added. Letting agents respond
only to the most recent message would prevent modelling middle-person
attacks. Excluding some traces as ill-formed weakens theorems proved about
all traces.

2.5 Standard Rules

A protocol description usually requires three additional rules. One is obvi-
ous: the empty list, [], is a trace. Two other rules model fake messages and
accidents.

If evs is a trace, X ∈ synth(analzH) is a fraudulent message andB 6= Spy,
then evs may be extended with the event

Says SpyBX.

Here H contains all messages in the past trace. It includes the spy’s initial
state, which holds the long-term keys of an arbitrary set of ‘bad’ agents.
The spy may say anything he plausibly could say and can masquerade as
any of the bad agents.

The TLS protocol [14] arrives at session keys by exchanging nonces and
applying a pseudo-random-number function. I have modelled TLS [35] by
assuming this function to be an arbitrary injection. In the protocol specifi-
cation, agents apply the random-number function when necessary. The spy
has an additional rule that allows him to apply the function to any mes-
sage items at his disposal. Other protocols in which keys are computed will
require an analogous rule.

If evs is a trace and S distributed the session key K in a run involving
the nonces Na and Nb, then evs may be extended with the event

Notes Spy {|Na,Nb,K|}.
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This strange-looking rule, the Oops rule, models the loss (by any means) of
session keys. We need an assurance that lost keys cannot compromise future
runs. The Oops message includes nonces in order to identify the protocol
run, distinguishing between recent and past losses.

For some protocols, such as Yahalom, the Oops rule brings hidden prop-
erties to light [31]. For others, it is not clear whether Oops can be expressed
at all.

2.6 Induction

The specification defines the set of possible traces inductively: it is the least
set closed under the given rules. To appreciate what this means, it may be
helpful to recall that the set N of natural numbers is inductively defined by
the rules 0 ∈ N and n ∈ N =⇒ Sucn ∈ N.

For reasoning about an inductively defined set, we may use the corre-
sponding induction principle. For the set N, it is the usual mathematical
induction: to prove P (n) for each natural number n, prove P (0) and prove
P (x) =⇒ P (Sucx) for each x ∈ N. For the set of traces, the induction
principle says that P (evs) holds for each trace evs provided P is preserved
under all the rules for creating traces.

We must prove P [] to cover the empty trace. For each of the other rules,
we must prove an assertion of the form P (evs) =⇒ P (ev#evs), where event
ev contains the new message. (Here ev#evs is the trace that extends evs
with event ev: new events are added to the front of a trace.) The rule may
resemble list induction, but the latter considers all conceivable messages,
not just those allowed by the protocol.

A trivial example of induction is to prove that no agent sends a message
to himself: no trace contains an event of the form SaysAAX. This holds
vacuously for the empty trace, and the other rules specify conditions such
as B 6= S to prevent the creation of such events.

2.7 Regularity Lemmas

These lemmas concern occurrences of a particular item X as a possible
message component. Such theorems have the form X ∈ partsH −→ · · · ,
where H is the set of all messages available to the spy. These are strong
results: they hold in spite of anything that the spy might do.

For most protocols, it is easy to prove that the spy never gets hold of
any agent’s long-term key, excluding the bad agents. The inductive proof
amounts to examining the protocol rules and observing that none of them
involve sending long-term keys. The spy cannot send any either because,
by the induction hypothesis, he has none at his disposal except those of the
bad agents.
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Unicity results state that nonces or session keys identify certain messages.
Naturally we expect the server never to re-issue session keys, or agents their
nonces. If they choose these items to be fresh, then it is straightforward to
prove that the key (or nonce) part of a message determines the values of the
other parts.

2.8 Secrecy Theorems

Regularity lemmas are easy to prove because they are stated in terms of the
parts operator. Secrecy cannot be so expressed; if X is a secret then some
agents can see X and others cannot. Secrecy theorems are, instead, stated
in terms of analz. Their proofs can be long and difficult, typically splitting
into cases on whether or not certain keys are compromised.

A typical result involving analz states that if the spy holds some ses-
sion keys, he cannot use them to reveal others. It would suffice to prove
that nobody sends messages of the form Crypt Kab {|. . .Kcd . . .|}, but this
claim is false: the spy can send such messages and make other agents send
them. Fortunately, he does not thereby learn new session keys; to work such
mischief, he must already possess Kcd .

The discussion above suggests the precise form of the theorem. If K can
be obtained with the help of a session key K ′ and previous traffic, then either
K = K ′ or K can be obtained from the traffic alone. Because some protocol
steps introduce new keys, proof by induction seems to require strengthening
the formula, generalizing K ′ to a set of session keys. This is the session key
compromise theorem.

Proving a theorem of this form is often the hardest task in analyzing a
protocol. A huge case analysis often results. While it can be automated, the
processor time required seems to be exponential in the number of different
keys used for encryption in any single protocol message. A bit of creativity
here can yield substantial savings; see §6.4 below. For simple key-exchange
protocols, however, essentially the same six-command proof script always
seems to work.

The theorem makes explicit something we may have taken for granted:
that no agent should use session keys to encrypt other keys (see also Goll-
mann [16, §2.1]). A generalization of the theorem can be used to prove the
secrecy of B’s nonce in Yahalom [31].

The session key secrecy theorem states that if the server distributes a
session key Kab to A and B, then the spy never gets this key. Since the
spy is treated in every respect as an honest agent, we may conclude that no
other agent gets the key either, even by accident.

The theorem stipulates that A and B are uncompromised and that no
Oops message has given the session key to the spy. If we must forbid all
Oops messages for Kab, not just those involving the current nonces, then
we should consider whether the protocol is vulnerable to a replay attack.
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Secrecy properties can usually be proved using six or seven commands. A
constant problem in secrecy proofs is being presented with gigantic formulas.
We need to discard just the right amount of information and think carefully
about how induction formulas are expressed.

2.9 Finding Attacks

Secrecy is necessary but not sufficient for correctness. The server might be
distributing the key to the wrong pair of agents. When A receives message 4
of the Otway-Rees protocol, can she be sure it really came from B, who got
it from S? For the simplified version of the protocol outlined above (§2.4),
the answer is no.

The only secure part of message 4 is its encrypted part, {|Na,Kab|}Ka .
But it need not have originated as the first encrypted part of message 3. It
could as well have originated as the second part, if S received a fraudulent
message 2 in which a previous Na had been substituted for Nb.

The machine proof leads us to consider a scenario in which Na is used
in two roles. It is then easy to invent an attack. A spy, C, intercepts
A’s message 1 and records Na. He masquerades first as A (indicated as CA
below), causing the server to issue him a session key Kca and also to package
Na with this key. He then masquerades as B.

1. A→ CB : Na, A,B, {|Na, A,B|}Ka

1′. C → A : Nc, C,A, {|Nc, C,A|}Kc

2′. A→ CS : Nc, C,A, {|Nc, C,A|}Kc ,Na ′, {|Nc, C,A|}Ka

2′′. CA → S : Nc, C,A, {|Nc, C,A|}Kc ,Na, {|Nc, C,A|}Ka

3′. S → CA : Nc, {|Nc,Kca|}Kc , {|Na,Kca|}Ka

4. CB → A : Na, {|Na,Kca|}Ka

Replacing nonce Na ′ by Na in message 2′ eventually causes A to accept
key Kca as a key for talking with B, because Na is A’s original nonce. This
attack is more serious than that discovered by Mao and Boyd [27], where the
server could detect the repetition of a nonce. It cannot occur in the original
version of Otway-Rees, where Nb is encrypted in the second message.

Otway-Rees uses nonces not just to assure freshness, but for binding:
to identify the principals [1]. Verifying the binding complicates the for-
mal proofs. One can prove—for the corrected protocol—that Na and Nb
uniquely identify the messages they originate in and never coincide. Then
we can prove guarantees for both agents: if they receive the expected mes-
sages, and the nonces agree, then the server really did distribute the session
key to the intended parties.
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3 A Mechanized Theory of Messages

The approach has been mechanized using Isabelle/HOL, an instantiation of
the generic theorem prover Isabelle [32, 36] to higher-order logic. Isabelle
is appropriate because of its support for inductively defined sets and its
automatic tools. Some Isabelle syntax appears below in order to convey a
feel for how proofs are conducted.

The methodology is tailored to Isabelle and makes heavy use of its classi-
cal reasoner [34]. However, it can probably be modified to suit other higher-
order logic provers such as PVS [30] or HOL [17]. At a minimum, the prover
should provide a simplifier that takes conditional rewrite rules and that can
perform automatic case splits for if-then-else expressions. Unless some form
of set theory is available, the algebraic laws for parts, analz and synth will
be lost. HOL predicates make satisfactory sets, but finite lists do not.

Isabelle/HOL has a polymorphic type system resembling ML’s [33]. An
item of type agent can never appear where something of type msg is expected.
Type inference eliminates the need to specify types in expressions. Laws
about lists, sets, etc., are polymorphic; the rewriter uses the appropriate
types automatically.

3.1 Agents and Messages

There are three kinds of agents: the server S, the friendly agents, and the
spy. Friendly agents have the form Friend i, where i is a natural number.
The following declaration specifies type agent to Isabelle. (Note that S is
called Server and that nat is the type of natural numbers.)

datatype agent = Server | Friend nat | Spy

A datatype declaration creates a union type, with injections whose ranges
are disjoint. It follows that the various kinds of agent are distinct, with
S 6= Friend i, S 6= Spy, Spy 6= Friend i, and moreover Friend i = Friend j only
if i = j.

The various kinds of message items (discussed above, §2.1) are declared
essentially as shown below. Observe the use of type agent and the re-
cursive use of type msg. Not shown are further declarations that make
{|X1, . . . Xn−1, Xn|} abbreviate MPairX1 . . . (MPairXn−1Xn).

datatype msg = Agent agent

| Number nat (*guessable*)

| Nonce nat (*non-guessable*)

| Key key

| MPair msg msg

| Hash msg

| Crypt key msg

Again, the various kinds of message are distinct, with AgentA 6= NonceN
and so forth. The injections Agent, Number, Nonce and Key are simply type
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coercions.
Because the datatype creates injections, hashing is collision-free: we have

HashX = HashX ′ only if X = X ′. Encryption is strong. Injectivity yields
the law

CryptKX = CryptK ′X ′ =⇒ K = K ′ ∧X = X ′.

Moreover, the spy cannot alter an encrypted message without first decrypt-
ing it using the relevant key. Exclusive-or violates these assumptions, as
does RSA [37] unless redundancy is incorporated. Such forms of encryption
could be modelled, but the loss of injectiveness would complicate the theory.

3.2 Defining parts, analz and synth

The operators parts, analz and synth are defined inductively, as are protocols
themselves. If H is a set of messages then partsH is the least set including H
and closed under projection and decryption. Formally, it is defined to be
the least set closed under the following rules.

X ∈ H
X ∈ partsH

CryptKX ∈ partsH

X ∈ partsH

{|X,Y |} ∈ partsH

X ∈ partsH

{|X,Y |} ∈ partsH

Y ∈ partsH

Similarly, analzH is defined to be the least set including H and closed under
projection and decryption by known keys.

X ∈ H
X ∈ analzH

CryptKX ∈ analzH K−1 ∈ analzH

X ∈ analzH

{|X,Y |} ∈ analzH

X ∈ analzH

{|X,Y |} ∈ analzH

Y ∈ analzH

Finally, synthH is defined to be the least set that includes H, agent names
and guessable numbers, and is closed under pairing, hashing and encryption.

AgentA ∈ synthH NumberN ∈ synthH

X ∈ H
X ∈ synthH

X ∈ synthH

HashX ∈ synthH

X ∈ synthH Y ∈ synthH

{|X,Y |} ∈ synthH

X ∈ synthH K ∈ H
CryptKX ∈ synthH

To illustrate Isabelle’s syntax for such definitions, here is the one for analz.
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consts analz :: msg set => msg set

inductive "analz H"

intrs

Inj "X∈ H =⇒ X∈ analz H"

Fst "{|X,Y|}∈ analz H =⇒ X ∈ analz H"

Snd "{|X,Y|}∈ analz H =⇒ Y ∈ analz H"

Decrypt "[| Crypt K X ∈ analz H; Key(invKey K)∈ analz H |]

=⇒ X ∈ analz H"

Given such a definition, Isabelle defines an appropriate fixedpoint and proves
the desired rules. These include the introduction rules (those that constitute
the definition itself) as well as case analysis and induction.

The definition of parts does not make X a part of HashX even though it
is a part of CryptKX. There is no inconsistency here: for typical protocols,
private keys might be included in hashes (where they serve as signatures)
but never in encrypted messages. We can prove that uncompromised private
keys are not part of any traffic, and use this basic lemma to prove deeper
properties.

3.3 Derived Laws Governing the Operators

Section 2.2 presented a few of the laws proved for the operators, but protocol
verification requires many more. Let us examine them systematically. All
have been mechanically proved from the preceding definitions.

The operators are monotonic: if G ⊆ H then

partsG ⊆ partsH analzG ⊆ analzH synthG ⊆ synthH.

They are idempotent:

parts(partsH) = partsH

analz(analzH) = analzH

synth(synthH) = synthH.

Similarly, we have the equations

parts(analzH) = partsH analz(partsH) = partsH.

Building up, then breaking down, results in two less trivial equations:

parts(synthH) = partsH ∪ synthH

analz(synthH) = analzH ∪ synthH

We have now considered seven of the nine possible combinations involving
two of the three operators. The remaining combinations, synth(partsH)
and synth(analzH), appear to be irreducible. The latter one models the
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fraudulent messages that a spy could derive from H. We can still prove laws
such as

{|X,Y |} ∈ synth(analzH) ⇐⇒ X ∈ synth(analzH) ∧ Y ∈ synth(analzH).

More generally, we can derive a bound on what the enemy can say:

X ∈ synth(analzH)
parts({X} ∪H) ⊆ synth(analzH) ∪ partsH

H is typically the set of all messages sent during a trace. The rule eliminates
the fraudulent message X, yielding an upper bound on parts({X} ∪ H).
Typically, partsH will be bounded by an induction hypothesis. There is an
analogous rule for analz.1

3.4 Rewrite Rules for Symbolic Evaluation

Applying rewrite rules to a term such as

parts{{|AgentA,Nonce Na|}}

can transform it to the equivalent three-element set

{{|AgentA,Nonce Na|},AgentA,Nonce Na}.

This form of evaluation can deal with partially specified arguments such as
{{|AgentA,X|}} and

{{|AgentA,Nonce Na|}} ∪H.

Symbolic evaluation for parts is straightforward. For a protocol step
that sends the message X we typically consider a subgoal containing the
expression parts({X} ∪ H) or analz({X} ∪ H). The previous section has
discussed the case in which X is fraudulent. In other cases, X will be
something more specific, such as

{|Nonce Na,AgentA,AgentB,

Crypt Ka {|Nonce Na,AgentA,AgentB|}|}.

Now parts({X} ∪ H) expands to a big expression involving all the new el-
ements that are inserted into the set partsH, from Nonce Na and AgentA
to X itself. The expansion may sound impractical, but a subgoal such as
KeyK 6∈ parts({X} ∪H) simplifies to KeyK 6∈ partsH (for the particular X
shown above) because none of the new elements has the form KeyK ′. If this

1The Isabelle theories represent the set {X}∪H by insertXH, and similarly {X,Y }∪H
by insertX (insertY H), etc.
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element were present, then the subgoal would still simplify to a manageable
formula, K 6= K ′ ∧ KeyK 6∈ partsH.

The rules for symbolic evaluation of parts are fairly obvious. They have
straightforward inductive proofs.

parts ∅ = ∅
parts({AgentA} ∪ H) = {AgentA} ∪ partsH

parts({NonceN} ∪ H) = {NonceN} ∪ partsH

parts({KeyK} ∪ H) = {KeyK} ∪ partsH

parts({{|X,Y |}} ∪H) = {{|X,Y |}} ∪ parts({X} ∪ {Y } ∪H)
parts({HashX} ∪ H) = {HashX} ∪ partsH

parts({CryptKX} ∪H) = {CryptKX} ∪ parts({X} ∪H)

Symbolic evaluation of analz is more difficult. Let us first define the set of
keys that can decrypt messages in H:

keysForH
def= {K−1 | ∃X. CryptKX ∈ H}

A key can be pulled through analz if it is not needed for decryption.

K 6∈ keysFor(analzH)
analz({KeyK} ∪ H) = {KeyK} ∪ (analzH)

The rewrite rule for encrypted messages involves case analysis on whether
or not the matching key is available.

analz({CryptKX} ∪H) ={
{CryptKX} ∪ (analz({X} ∪H)) K−1 ∈ analzH

{CryptKX} ∪ (analzH) otherwise

Nested encryptions give rise to nested if-then-else expressions. Sometimes
we know whether the relevant key is secure, but letting automatic tools
generate a full case analysis gives us short proof scripts. Impossible cases
are removed quickly. Redundant case analyses—those that simplify to ‘if
P then Q else Q’—can be simplified to Q. The resulting expression might
be enormous, but symbolic evaluation at least expresses analz({X} ∪H) in
terms of analzH, which should let us invoke the induction hypothesis.

Rewriting by the following rule, which is related to idempotence, sim-
plifies the cases that arise when an agent forwards to another agent some
message that is visible in previous traffic.

X ∈ analzH
analz({X} ∪H) = analzH
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Symbolic evaluation of synth is obviously impossible: its result is infinite.
Fortunately, it is never necessary. Instead, we need to simplify assumptions
of the form X ∈ synthH, which arise when considering whether a certain
message might be fraudulent. The inductive definition regards nonces and
keys as unguessable, giving rise to the implications

NonceN ∈ synthH =⇒ NonceN ∈ H
KeyK ∈ synthH =⇒ KeyK ∈ H

If CryptKX ∈ synthH then either CryptKX ∈ H or else X ∈ synthH
and K ∈ H. If we already know K 6∈ H, then the rule tells us that the
encrypted message is a replay rather than a forgery. There are similar rules
for HashX ∈ synthH and {|X,Y |} ∈ synthH.

The facts mentioned in this section are among over 110 theorems that
have been proved about parts, analz, synth and keysFor. Most of them are
stored in such a way that Isabelle can apply them automatically for simpli-
fication. Logically speaking, some of these proofs are complex. They need
on average under two commands (tactic invocations) each, thanks to Isa-
belle’s automatic tools. The full proof script, over 210 commands, executes
in under 45 seconds.

3.5 Events and Intruder Knowledge

A trace is a list of events, each of the form SaysABX or NotesAX. Isa-
belle/HOL provides lists, while events are trivial to declare as a datatype.

datatype event = Says agent agent msg

| Notes agent msg

Otway-Rees assumes a symmetric-key environment. Every agent A has
a long-term key, shrKA, shared with the server. The spy has such a key
(shrK Spy) and there is even the redundant shrK S. Function initState spec-
ifies agents’ initial knowledge. The spy knows the long-term keys of the
agents in the set bad.

initState S
def= all long-term keys

initState(Friend i) def= {Key(shrK(Friend i))}

initState Spy
def= {Key(shrK(A)) | A ∈ bad}

The function spies models the set of messages the spy can see in a trace.
He sees all messages sent across the network. He even sees the internal notes
of the bad agents, who can be regarded as being under his control. From
the empty trace, he sees only his initial state. Recall that ev#evs is the list
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consisting of ev prefixed to the list evs.

spies [] def= initState Spy

spies ((SaysABX) # evs) def= {X} ∪ spies evs

spies ((NotesAX) # evs) def=

{
{X} ∪ spies evs if A ∈ bad

spies evs otherwise

The function spies describes the spy’s view of traffic in order to formal-
ize message spoofing. For other agents, the formal protocol rules mention
previous messages directly.

The set used evs formalizes the notion of freshness. The set includes
parts(spies evs) as well as the parts of all messages held privately by any
agent. For example, if KeyK 6∈ used evs, then K is fresh (in evs) and differs
from all long-term keys.

used [] def=
⋃
B. parts(initStateB)

used ((SaysABX) # evs) def= parts{X} ∪ used evs

used ((NotesAX) # evs) def= parts{X} ∪ used evs

4 A Shared-Key Protocol: Otway-Rees

Section 2.4 discussed the modelling of a protocol informally, though in detail.
Now, let us consider the specification supplied to the theorem prover (Fig. 1).

The identifiers at the far left name the rules: Nil for the empty trace,
Fake for fraudulent messages, OR1–4 for protocol steps, and Oops for the
accidental loss of a session key. The set of traces is the constant otway.

The Nil rule is trivial, so let us examine Fake. The condition evs ∈ otway
states that evs is an existing trace. Now

X ∈ synth(analz(spies evs))

denotes any message that could be forged from what the spy could decrypt
from the trace; recall that he holds the bad agents’ private keys. The spy
can send forged messages to any other agent B, including the server. All
rules have additional conditions, here B 6= Spy, to ensure that agents send
no messages to themselves; this trivial fact eliminates some impossible cases
in proofs.

Rule OR1 formalizes step 1 of Otway-Rees. List evs1 is the current
trace. (Calling it evs1 instead of simply evs tells the user which subgoals
have arisen from this rule during an inductive proof, even after case-splitting,
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Nil [] ∈ otway

Fake [| evs ∈ otway; B6=Spy; X ∈ synth (analz (spies evs)) |]

=⇒ Says Spy B X # evs ∈ otway

OR1 [| evs1 ∈ otway; A 6= B; B 6= Server; Nonce NA 6∈ used evs1 |]

=⇒ Says A B {|Nonce NA, Agent A, Agent B,

Crypt (shrK A) {|Nonce NA, Agent A, Agent B|} |}

# evs1 ∈ otway

OR2 [| evs2 ∈ otway; B 6= Server; Nonce NB 6∈ used evs2;

Says A’ B {|Nonce NA, Agent A, Agent B, X|} ∈ set evs2 |]

=⇒ Says B Server

{|Nonce NA, Agent A, Agent B, X, Nonce NB,

Crypt (shrK B) {|Nonce NA, Agent A, Agent B|}|}

# evs2 ∈ otway

OR3 [| evs3 ∈ otway; B 6= Server; Key KAB 6∈ used evs3;

Says B’ Server

{|Nonce NA, Agent A, Agent B,

Crypt (shrK A) {|Nonce NA, Agent A, Agent B|},

Nonce NB,

Crypt (shrK B) {|Nonce NA, Agent A, Agent B|}|}

∈ set evs3 |]

=⇒ Says Server B

{|Nonce NA,

Crypt (shrK A) {|Nonce NA, Key KAB|},

Crypt (shrK B) {|Nonce NB, Key KAB|}|}

# evs3 ∈ otway

OR4 [| evs4 ∈ otway; A 6= B;

Says B Server {|Nonce NA, Agent A, Agent B, X’, Nonce NB,

Crypt (shrK B) {|Nonce NA, Agent A, Agent B|}|}

∈ set evs4;

Says S’ B {|Nonce NA, X, Crypt (shrK B) {|Nonce NB, Key K|}|}

∈ set evs4 |]

=⇒ Says B A {|Nonce NA, X|} # evs4 ∈ otway

Oops [| evso ∈ otway; B 6= Spy;

Says Server B {|Nonce NA, X, Crypt (shrK B) {|Nonce NB, Key K|}|}

∈ set evso |]

=⇒ Notes Spy {|Nonce NA, Nonce NB, Key K|} # evso ∈ otway

Figure 1: Specifying the Otway-Rees Protocol
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etc.) The nonce Na must be fresh: not contained in used evs1. An agent
has no sure means of generating fresh nonces, but can do so with a high
probability by choosing enough random bytes.

In rule OR2, set evs2 denotes the set of all events, stripped of their
temporal order. Agent B responds to a past message, no matter how old
it is. We could restrict the rule to ensure that B never responds to a given
message more than once. Current proofs do not require this restriction,
however, and it might prevent the detection of replay attacks.

There is nothing else in the rules that was not already discussed in §2.4
above. Translating informal protocol notation into Isabelle format is perhaps
sufficiently straightforward to be automated.

4.1 Proving Possibility Properties

The first theorems to prove of any protocol description are some possibility
properties. These do not assure liveness, merely that message formats agree
from one step to the next. We cannot prove that anything must happen;
agents are never forced to act. But if the protocol can never proceed from
the first message to the last, then it must have been transcribed incorrectly.

Here is a possibility property for Otway-Rees. For all agents A and B,
distinct from themselves and from the server, there is a key K, nonce N and
a trace such that the final message B → A : Na, {|Na,Kab|}Ka is sent. This
theorem is proved by joining up the protocol rules in order and showing that
all their preconditions can be met.

4.2 Proving Forwarding Lemmas

Some results are proved for reasoning about steps in which an agent forwards
an unknown item. Here is a rule for OR2:

SaysA′B {|N,AgentA,AgentB,X|} ∈ set evs

X ∈ analz(spies evs)

The proof is trivial. The spy sees the whole of the message; since X is
transmitted in clear, analz will find it. The spy can learn nothing new by
seeing X again when B responds to this message.

Sometimes the forwarding party removes a layer of encryption, perhaps
revealing something to the spy. Then the forwarding lemma is weaker: it
is stated using parts instead of analz, and is useful only for those theorems
(‘regularity lemmas’) that can be stated using parts. Otway-Rees has no
nested encryption, but the Oops rule removes a layer of encryption: it takes
K from the server’s message and gives it to the spy. Its forwarding lemma
states that this act does not add new keys to parts(spies evs).

Says SB {|Na, X,Crypt K ′ {|Nb,K|}|} ∈ set evs

K ∈ parts(spies evs)
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4.3 Proving Regularity Lemmas

Statements of the form X ∈ parts(spies evs) −→ · · · impose conditions on
the appearance of X in any message. Many such lemmas can be proved in
the same way.

1. Apply induction, generating cases for each protocol step and Nil, Fake,
Oops.

2. For each step that forwards part of a message, apply the corresponding
forwarding lemma, using analzH ⊆ partsH if needed to express the
conclusion in terms of parts.

3. Prove the trivial Nil case using a standard automatic tactic.

4. Simplify all remaining cases.

In Isabelle (or any programmable tool), the user can define a tactic to per-
form these tasks and return any remaining subgoals. Usually, the Fake case
can then be proved automatically.

A basic regularity law states that secret keys remain secret. If evs ∈
otway (meaning, evs is a trace) then

Key(shrKA) ∈ parts(spies evs) ⇐⇒ A ∈ bad .

Two commands generate the proof.

4.4 Proving Unicity Theorems

Fresh session keys and nonces uniquely identify their message of origin. But
we must exclude the possibility of spoof messages, and this can be done in
two different ways. In the case of session keys, a typical formulation refers
to an event and names the server as the sender (for evs ∈ otway):

∃B′ Na ′ Nb ′ X ′. ∀B Na Nb X.
Says SB {|Na, X,Crypt(shrKB){|Nb,K|}|} ∈ set evs

−→ B = B′ ∧Na = Na ′ ∧Nb = Nb ′ ∧X = X ′.

The free occurrence of K in the event uniquely determines the other four
components shown. To apply such a theorem requires proof that the message
in question really originated with the server.

An alternative formulation, here for nonces, presumes the existence of a
message encrypted with a secure key:

∃B′.∀B.Crypt(shrKA){|Na,AgentA,AgentB|} ∈ parts(spies evs)
−→ B = B′.
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Here evs is some trace and, crucially, A 6∈ bad. The spy could not have
performed the encryption because he lacks A’s key. The free occurrence
of Na in the message determines the identity of B.

As in the BAN logic, we obtain guarantees from encryption by keys
known to be secret. However, such guarantees are not built into the logic:
they are proved. Both formulations of unicity may be regarded as regularity
lemmas. Their proofs are not hard to generate.

4.5 Proving Secrecy Theorems

Section 2.8 discussed the session key compromise theorem. If K can be
obtained from a set of session keys and messages, then either it is one of
those keys, or it can be obtained from the messages alone. The theorem is
formulated as follows, for an arbitrary trace evs (evs ∈ otway).

K ∈ analz(K ∪ spies evs)) ⇐⇒ K ∈ K ∨K ∈ analz(spies evs)

Here K is an arbitrary set of session keys, not necessarily present in the
trace. The right hand side of the equivalence is a simplification of

K ∈ K ∪ analz(spies evs)

Replacing analz by parts, which distributes over union, would render the
theorem trivial. The right-to-left direction is trivial anyway.

To prove such a theorem can be a daunting task. However, there are
techniques that make proving secrecy theorems almost routine.

1. Apply induction.

2. For each step that forwards part of a message, apply the corresponding
forwarding lemma, if its conclusion is expressed in terms of analz.

3. Simplify all cases, using rewrite rules to evaluate analz symbolically:
pulling out agent names, nonces and compound messages and perform-
ing automatic case splits on encrypted messages.

The Fake case usually survives, but it can be proved by a standard
argument involving the properties of synth and analz. This argument can
be programmed as a tactic, which works for all protocols investigated. For
the session key compromise theorem, no further effort is needed. Other
secrecy theorems require a detailed argument. Chief among these is proving
that nonce Nb of the Yahalom protocol [10] remains secret, which requires
establishing a correspondence between nonces and keys [31].
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4.6 Proving the Session Key Secrecy Theorem

This theorem states that the protocol is correct from the server’s viewpoint.
Let evs ∈ otway and A, B 6∈ bad. Suppose that the server issues key K to
A and B:

Says SB {|Na,Crypt(shrKA){|Na,K|},
Crypt(shrKB){|Nb,K|}|} ∈ set evs

Suppose also that the key is not lost in an Oops event involving the same
nonces:

Notes Spy {|Na,Nb,K|} 6∈ set evs

Then we have K 6∈ analz(spies evs); the key is never available to the spy.
This secrecy theorem is slightly harder to prove than the previous one.

In the step 3 case, there are two possibilities. If the new message is the
very one mentioned in the theorem statement then the session key is not
fresh, contradiction; otherwise, the induction hypothesis yields the needed
result. Isabelle can prove the step 3 case automatically. The Oops case
is also nontrivial; showing that any Oops message involving K must also
involve Na and Nb requires unicity of session keys, a theorem discussed in
the previous section. The full proof script consists of seven commands and
executes in eight seconds, generating a proof of over 4000 steps.2

4.7 Proving Authenticity Guarantees

The session key secrecy theorem described above is worthless on its own.
It holds of a protocol variant that can be attacked (§2.9). In the correct
protocol, if A or B receive the expected nonce, then the server has sent
message 3 in precisely the right form. Agents need guarantees (subject to
conditions they can check) confirming that their certificates are authentic.
Proving such guarantees for A and B completes the security argument, via
an appeal to the session key secrecy theorem.

The correct protocol differs in message 2, which now encrypts Nb:

1. A→ B : Na, A,B, {|Na, A,B|}Ka

2. B → S : Na, A,B, {|Na, A,B|}Ka , {|Na,Nb, A,B|}Kb

3. S → B : Na, {|Na,Kab|}Ka , {|Nb,Kab|}Kb

4. B → A : Na, {|Na,Kab|}Ka

After receiving the step 3 message, B can inspect the certificate that is
encrypted with his key, but not the one he forwards to A.

2All runtimes were measured on a 300MHz Pentium II. A human could probably
generate a much shorter proof by omitting irrelevant steps.
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B’s guarantee states that if a trace contains an event of the form

SaysS′B {|Na, X,Crypt(shrKB){|Nb,KeyK|}|}

and if B is uncompromised and has previously sent message 2,

SaysB S {|Na,AgentA,AgentB,X ′,

Crypt(shrKB){|Na,Nb,AgentA,AgentB|}|}

then the server has sent a correct instance of step 3. The theorem does
not establish S′ = S or even that the X component is correct: the message
may have been tampered with. But the session key secrecy theorem can be
applied. Checking his nonce assures B that K is a good key for talking to A,
subject to the conditions of the secrecy theorem.

B’s guarantee follows from a lemma proved by induction. It resembles a
regularity lemma. Its main premise is that B’s certificate has appeared,

Crypt(shrKB){|Nb,KeyK|} ∈ parts(spies evs),

with other premises and conclusion as in the guarantee itself. Its proof is
complex, requiring several subsidiary lemmas:

• If the encrypted part of message 2 appears, then a suitable version of
message 2 was actually sent.

• The nonce Nb uniquely identifies the other components of message 2’s
encrypted part. This was discussed above (§4.4).

• A nonce cannot be used both as Na and as Nb in two protocol runs.
If A 6∈ bad then the elements

Crypt(shrKA){|Na,AgentA,AgentB|}
Crypt(shrKA){|Na ′,Na,AgentA′,AgentA|}

cannot both be in parts(spies evs).

The proof complexity arises from the use of nonces for binding and because
the two encrypted messages in step 3 have identical formats.

Now consider what A (if uncompromised) can safely conclude upon re-
ceiving message 4. If a trace contains a message of the form

SaysB′A {|Na,Crypt(shrKA){|Na,KeyK|}|}

and if A recalls sending message 1,

SaysAB {|Na,AgentA,AgentB,

Crypt(shrKA){|Na,AgentA,AgentB|}|}
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then the server has sent a message of the correct form, for some Nb. There
are many similarities, in both statement and proof, with B’s guarantee. A
message, purportedly from B, is considered as A would see it. Nonces are
compared with those from another message sent from A to B. The proof
again requires our proving by induction a lemma whose main premise is

Crypt(shrKA){|Na,KeyK|} ∈ parts(spies evs),

with a detailed consideration of how nonces can be used.

4.8 Proving a Simplified Protocol

Abadi and Needham [1] suggest simplifying Otway-Rees by eliminating the
encryption in the first two messages. Nonces serve only for freshness, not
for binding. Message 3 explicitly names the intended recipients.

1. A→ B : A,B,Na
2. B → S : A,B,Na,Nb
3. S → B : Na, {|Na, A,B,Kab|}Ka , {|Nb, A,B,Kab|}Kb

4. B → A : Na, {|Na, A,B,Kab|}Ka

The authors claim [1, page 11], ‘The protocol is not only more efficient but
conceptually simpler after this modification.’ The machine proofs support
their claims. The vital guarantees to B and A, from the last two messages,
become almost trivial to prove. Nonces do not need to be unique and no
facts need to be proved about them. The new proof script is smaller and
runs faster.3

The new protocol is slightly weaker than the original. The lack of encryp-
tion in message 2 allows an intruder to masquerade as B, though without
learning the session key. The original Otway-Rees protocol assures A that B
is present (I have proved this using Isabelle), but the new protocol does not.
However, the original version never assured B that A was present; anybody
could replay message 1, as Burrows et al. have noted [10, page 247].

5 A Public-Key Protocol: Needham-Schroeder

Needham-Schroeder is the obvious choice for demonstrating the inductive
method on public-key protocols. Many researchers have investigated it, and
Lowe has discovered a subtle flaw [23].

5.1 The Protocol and Lowe’s Attack

The full Needham-Schroeder protocol consists of seven steps, four of which
are devoted to distributing public keys. Burrows et al. [10] identified a flaw

3From 82 to 40 seconds, and from 88 proof commands to 53.
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in this part of the protocol: there was no guarantee that the public keys were
fresh. Assuming public keys to be universally known reduces the protocol
to three steps:

1. A→ B : {|Na, A|}Kb

2. B → A : {|Na,Nb|}Ka

3. A→ B : {|Nb|}Kb

Message 2 assures A of B’s presence, since only B could have decrypted
{|Na, A|}Kb to extract the freshly-invented nonce Na. Similarly, message 3
assures B of A’s presence. Burrows et al. claimed a further property, namely
that Na and Nb become known only to A and B. (Such shared secrets might
be used to compute a session key.) Lowe refuted this claim, noting that if A
ran the protocol with an enemy C, then C could start a new run with any
agent B, masquerading as A [23].

One might argue that this is no attack at all. An agent who is careless
enough to talk to the enemy cannot expect any guarantees. The mechanized
analysis presented below reveals that the protocol’s guarantees for A are
adequate. However, those for B are not: they rely upon A’s being careful,
which is a stronger assumption than mere honesty. Moreover, the attack
can also occur if A talks to an honest agent whose private key has been
compromised. Lowe suggests a simple fix that provides good guarantees for
both A and B.

5.2 Modelling the Protocol

In the public-key model, an agent A has a public key pubKA, known to all
agents, and a private key priKA. The spy knows the bad agents’ private
keys. No private key coincides with any public key. In other respects, the
model resembles the shared-key one described above (§3.5).

Let us start with the original, flawed, Needham-Schroeder. Figure 2
presents the inductive definition. There are five rules: three for the protocol
steps and two standard ones, identical to those in Fig. 1. There is no Oops
message because the protocol does not distribute session keys. However, one
could ask—as has Meadows [28]—what might happen if one of the nonces
is compromised.

More precisely, the protocol steps are as follows:

1. If, in the current trace, Na is a fresh nonce and B is an agent distinct
from A, then we may add the event

SaysAB (Crypt(pubKB){|Na, A|}).

2. If the current trace contains an event of the form

SaysA′B (Crypt(pubKB){|Na, A|}),
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Nil [] ∈ ns_public

Fake [| evs ∈ ns_public; B6=Spy;

X ∈ synth (analz (spies evs)) |]

=⇒ Says Spy B X # evs ∈ ns_public

NS1 [| evs1 ∈ ns_public; A6=B; Nonce NA 6∈ used evs1 |]

=⇒ Says A B (Crypt (pubK B) {|Nonce NA, Agent A|})

# evs1 ∈ ns_public

NS2 [| evs2 ∈ ns_public; A6=B; Nonce NB 6∈ used evs2;

Says A’ B (Crypt (pubK B) {|Nonce NA, Agent A|}) ∈ set evs2 |]

=⇒ Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB|})

# evs2 ∈ ns_public

NS3 [| evs3 ∈ ns_public;

Says A B (Crypt (pubK B) {|Nonce NA, Agent A|}) ∈ set evs3;

Says B’ A (Crypt (pubK A) {|Nonce NA, Nonce NB|}) ∈ set evs3 |]

=⇒ Says A B (Crypt (pubK B) (Nonce NB))

# evs3 ∈ ns_public

Figure 2: Specifying the Needham-Schroeder Protocol

and Nb is a fresh nonce and A 6= B, then we may add the event

SaysBA (Crypt(pubKA){|Na,Nb|}).

Writing the sender as A′ means that B does not know who sent the
message.

3. If the current trace contains the two events

SaysAB (Crypt(pubKB){|Na, A|})
SaysB′A (Crypt(pubKA){|Na,Nb|})

then we may add the event

SaysAB (Crypt(pubKB){|Nb|}).

A decrypts the message and checks that Na agrees with the nonce she
previously sent to B. She replies to B’s challenge by sending back Nb.

As mentioned in §2.4, we could model the implicit fourth step, in which
B inspects the message arriving from A. But it suffices to prove theorems
stating what B can infer from such an inspection, such as that A is present.

5.3 Proving Guarantees for A

The guarantees for A are that her nonce remains secret—from the spy—and
that B is present. The latter follows from the former, for if the spy does
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not know Na then he could not have sent message 2. The proofs require, as
lemmas, unicity properties for Na saying that Na is only used once.

• No value is ever used both as Na and as Nb, even in separate runs.

• In any message of the form Crypt(pubKB){|Na, A|}, the value of nonce
Na uniquely determines the agents A and B, over all traffic.

Both lemmas assume Na to be secret and form part of an inductive proof
that Na really is secret. They hold because honest agents are specified to
choose unpredictable nonces with a negligible probability of collision.

The guarantee for A after step 2 is that the message indeed originated
with B, provided it contains the expected nonce. The guarantee is consis-
tent with Lowe’s attack because, as always, it considers runs between two
uncompromised principals. If A runs the protocol with the spy then her
guarantee is void. Lowe himself found no problem with the protocol from
A’s viewpoint [23, §3.2]; his attack concerns the guarantee for B.

5.4 Proving Guarantees for B

The situation as seen by B is almost symmetrical to that seen by A. Proving
by induction that Nb remains secret would authenticate A. Most of the Isa-
belle proof scripts for A’s theorems also work for B with trivial alterations.
It is easy to prove that, if Nb is secret, then its value in any message of the
form Crypt(pubKA){|Na,Nb|} uniquely determines A and Na.

Unfortunately, Nb does not remain secret. The attempt to prove its
secrecy fails, leaving a subgoal that contains (as a past event) A’s sending
message 1 to a compromised agent. The subgoal describes a consistent set
of circumstances: Lowe’s attack. Details appear in §5.5 below.

Weaker properties can be proved. If A never sends Nb to anybody in
step 3 of the protocol, then Nb remains secret. In consequence, if B receives
Nb in step 3 then A has sent it, and is therefore present. However, A may
have sent it to anybody.

The proof follows the usual argument (based on A’s proofs), but assumes
that A says no messages of the form Crypt(pubKC)Nb for any C. With this
additional assumption, Nb does remain secret; it then follows that if B sends
Crypt(pubKA){|Na,Nb|} as step 2 and receives Crypt(pubKB)Nb, then this
reply came from A. Since this conclusion contradicts the assumption, B
cannot receive Crypt(pubKB)Nb.

The result above has the form ¬Q implies ¬P , which is equivalent to P
implies Q. If B does receive Crypt(pubKB)Nb, then A has indeed sent the
message Crypt(pubKC)Nb for some C.

This example suggests a general strategy to prove that decrypting a
message of the form Crypt(pubKA)X indicates A’s presence. Prove that if
A never performs the step in which that message is decrypted, then some
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1 [| Crypt (pubK B) {|Nonce NA, Agent A|}∈ parts(spies evs);

Nonce NA 6∈ analz(spies evs);

evs∈ ns_public |]

=⇒ Crypt (pubK C) {|NA’, Nonce NA|} 6∈ parts(spies evs)

2 [| Nonce NA 6∈ analz(spies evs); evs∈ ns_public |]

=⇒ ∃ A’ B’. ∀ A B.

Crypt (pubK B) {|Nonce NA, Agent A|}∈ parts(spies evs)

−→ A=A’ & B=B’

3 [| Crypt(pubK B) {|Nonce NA, Agent A|} ∈ parts(spies evs);

Crypt(pubK B’) {|Nonce NA, Agent A’|}∈ parts(spies evs);

Nonce NA 6∈ analz(spies evs);

evs∈ ns_public |]

=⇒ A=A’ & B=B’

4 [| Says A B (Crypt (pubK B) {|Nonce NA, Agent A|})∈ set evs;

A 6∈ bad; B 6∈ bad; evs∈ ns_public |]

=⇒ Nonce NA 6∈ analz(spies evs)

5 [| Says A B (Crypt (pubK B) {|Nonce NA, Agent A|}) ∈ set evs;

Says B’ A (Crypt (pubK A) {|Nonce NA, Nonce NB|})∈ set evs;

A 6∈ bad; B 6∈ bad; evs∈ ns_public |]

=⇒ Says B A (Crypt(pubK A) {|Nonce NA, Nonce NB|})∈ set evs

Figure 3: The Guarantees for A in Isabelle/HOL Notation

item in X remains secret. Conclude that if X is revealed then A must have
performed the decryption.

This roundabout procedure is necessary because the mere act of decryp-
tion gives weaker guarantees than exhibiting a signed message. Consider
the following protocol:

1. A→ B : Na, A
2. B → A : {|Na|}Kb−1 ,Nb
3. A→ B : {|Nb|}Ka−1

The nonces are broadcast to the world, but the signatures obviously assure
A and B of the other’s presence.

5.5 A Glimpse at the Machine Proofs

To give an impression of the Isabelle formalization, Fig. 3 presents the the-
orems providing guarantees for A. They are numbered as follows.

1. This unicity lemma states that Na (if secret) is not also used as Nb.
It is proved by induction.
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2. This unicity lemma states that, if Na is secret, then its appearance in
any instance of message 1 determines the other components. It too
follows by induction, with a standard proof script.

3. This corollary of the previous lemma has a trivial proof.

These unicity lemmas refer to the presence of encrypted messages any-
where in past traffic. The remaining theorems refer to events of the
form SaysABX involving such encrypted messages.

4. This crucial theorem guarantees the secrecy of Na. The conditions
A 6∈ bad and B 6∈ bad express that both A and B are uncompromised.
The proof is by induction; it relies on the previous three lemmas, which
assume the secrecy of Na as an induction hypothesis.

5. This theorem is A’s final guarantee. If A has used Na to start a run
with B and receives the message Crypt(pubKA){|Na,Nb|}, then B has
sent that message. It is subject to both agents’ being uncompromised.
The proof is by induction and relies on the secrecy and unicity of Na.

The proof script for all five theorems comprises 27 commands (tactic invo-
cations) and executes in ten seconds, or two seconds per theorem.

What about the guarantees for B? Attempting to prove the secrecy
of Nb leads to a subgoal that appears to have no proof.

[| A 6∈ bad; B 6∈ bad; C∈ bad;
evs3∈ ns_public;
Says A C (Crypt (pubK C) {|Nonce NA, Agent A|}) ∈ set evs3;

Says B’ A (Crypt (pubK A) {|Nonce NA, Nonce NB|}) ∈ set evs3;

Says B A (Crypt (pubK A) {|Nonce NA, Nonce NB|}) ∈ set evs3;

Nonce NB 6∈ analz (spies evs3) |]

==> False

This situation might arise when the last event is an instance of step 3, as
we can tell because the trace is called evs3. Agents A and B are uncom-
promised and A has used Na to start a run with a compromised agent, C.
Somebody has sent the message Crypt(pubKA){|Na,Nb|}. We must show that
these circumstances are contradictory, since the conclusion is just False. The
conclusion is the simplified form of the claim that Nb remains secret even
after A has sent the step 3 message Crypt(pubKC){|Nb|}, but this message
reveals Nb to the spy.

Such proof states can be hard to interpret. Does the induction formula
require strengthening? Must additional lemmas be proved? But, in this
case, we easily recognize Lowe’s attack. The assumptions describe events
that could actually occur: Nb need not remain secret.
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5.6 Analyzing the Strengthened Protocol

Lowe [23] suggests improving the Needham-Schroeder protocol by adding
explicitness. In step 2, agent B includes his identity:

1. A→ B : {|Na, A|}Kb

2. B → A : {|Na,Nb, B|}Ka

3. A→ B : {|Nb|}Kb

The previous proof scripts, by and large, still work for this version. Thanks
to Isabelle’s high level of automation, minor changes such as that above
seldom interfere with existing proofs. The guarantees for A are proved
precisely as before.

In proving guarantees for B, we naturally seek to strengthen them. The
unicity property for Nb states that, if Nb is secret, then its presence in step 2
uniquely determines all other message components (recall §5.4). Step 2 now
has the form

Crypt(pubKA){|Na,Nb, B|}.

Nonce Nb determines not only A and Na but also B. This additional fact
lets us prove the secrecy of Nb. Recall the subgoal presented in §5.5. With
the new version of the protocol, somebody has sent the message

Crypt(pubKA){|Na,Nb, C|}.

Also, agent B has sent the message

Crypt(pubKA){|Na,Nb, B|}.

The unicity theorem for Nb implies B = C, a contradiction because C is
compromised and B is not.

6 A Recursive Protocol

This protocol [9] generalizes Otway-Rees to an arbitrary number of parties.
First, A contacts B. If B then contacts the authentication server then
the run resembles Otway-Rees. But B may choose to contact some other
agent C, and so forth; a chain of arbitrary length may form. During each
such round, an agent adds its name and a fresh nonce to an ever-growing
request message.

For the sake of discussion, suppose that C does not extend the chain
but instead contacts the authentication server. The server generates fresh
session keys Kab and Kbc—in the general case, one key for each pair of
agents adjacent in the chain. It encloses each session key in two certificates,
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A B C

S

A,B,Na,~ A,B,Na,~

B,C,Nb,

A,B,Na,~

B,C,Nb,

C,S,Nc,

{Kab,B,Na}Ka

{Kab,B,Na}Ka

{Kbc,C,Nb}Kb,

{Kab,A,Nb}Kb,

{Kab,B,Na}Ka

{Kbc,C,Nb}Kb,

{Kab,A,Nb}Kb,

{Kcs,S,Nc}Kc,

{Kbc,B,Nc}Kc,

Figure 4: The Recursive Authentication Protocol with Three Clients

one for each party, and gives the bundle to C. Each agent removes two
certificates and forwards the rest to its predecessor in the chain. Finally, A
receives one certificate, containing Kab.

Such a protocol is hard to specify, let alone analyze. The number of
steps, the number of parties and the number of session keys can vary. The
server’s response to the agents’ accumulated requests must be given as a
recursive program.

Even which properties to prove are not obvious. One might simplify the
protocol to distribute a single session key, common to all the agents in the
chain. But then, security between A and B would depend upon the honesty
of C, an agent possibly not known to A. There may be applications where
such a weak guarantee might be acceptable, but it seems better to give a
separate session key to each adjacent pair.

I have proved a general guarantee for each participant. If it receives a
certificate containing a session key and the name of another agent, then the
spy will never know the key. The Isabelle proofs are modest in scale. Fewer
than 30 results are proved, using under 130 commands; they run in about
three minutes.

6.1 The Recursive Authentication Protocol

The protocol was invented by John Bull of APM Ltd. In the description
below, let HashX be the hash of X and HashX Y the pair {|Hash{|X,Y |}, Y |}.
Typically, X is an agent’s long-term shared key and Hash{|X,Y |} is a mes-
sage digest, enabling the server to check that Y originated with that agent.
Figure 4 shows a typical run, omitting the hashing.

Agent A starts a run by sending B a request:

1. A→ B : HashKa{|A,B,Na,−|}
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Here Ka is A’s long-term shared key, Na is a fresh nonce, and (−) is a
placeholder indicating that this message started the run. In response, B
sends something similar but with A’s message in the last position:

2. B → C : HashKb{|B,C,Nb,

from A︷ ︸︸ ︷
HashKa{|A,B,Na,−|}|}

Step 2 may be repeated as many times as desired. Each time, new compo-
nents are added to the message and a new message digest is prefixed. The
recursion terminates when some agent performs step 2 with the server as
the destination.

In step 3, the server prepares session keys for each caller-callee pair. It
traverses the accumulated requests to build up its response. If (as in §6.1)
the callers were A, B and C in that order, then the final request is

HashKc{|C
↑
, S,Nc,HashKb{|B,C

↑
,Nb,HashKa{|A,B,Na,−|}|}|}.

The arrows point to the occurrences of C, which appear in the outer two
levels. C has called S (the server) and was called by B. The server generates
session keys Kcs and Kbc and prepares the certificates {|Kcs, S,Nc|}Kc and
{|Kbc, B,Nc|}Kc . The session key Kcs is redundant because C already shares
Kc with the server. Including it allows the last agent in the chain to be
treated like all other agents except the first: the initiator receives only one
session key.

Having dealt with C’s request, the server discards it. Looking at the
remaining outer two levels, the request message is

HashKb{|B
↑
, C,Nb,HashKa{|A,B

↑
,Na,−|}|}.

The server now prepares two certificates for B, namely {|Kbc, C,Nb|}Kb and
{|Kab, A,Nb|}Kb . Note that Kbc appears in two certificates, one intended
for C (containing nonce Nc and encrypted with key Kc) and one for B.

At the last iteration, the request message contains only one level:

HashKa{|A
↑
, B,Na,−|}.

The (−) token indicates the end of the requests. The server generates one
session key and certificate for A, namely {|Kab, B,Na|}Ka .

Having processed the request message, the server returning a bundle of
certificates. In our example, it would return five certificates to C.

3. S → C : {|Kcs, S,Nc|}Kc , {|Kbc, B,Nc|}Kc ,

{|Kbc, C,Nb|}Kb , {|Kab, A,Nb|}Kb ,

{|Kab, B,Na|}Ka
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In step 4, an agent accepts the first two certificates and forwards the rest
to its predecessor in the chain. Every agent performs this step except the
one who started the run.

4. C → B : {|Kbc, C,Nb|}Kb , {|Kab, A,Nb|}Kb ,

{|Kab, B,Na|}Ka

4′. B → A : {|Kab, B,Na|}Ka

The description above describes a special case: a protocol run with three
clients. The conventional protocol notation cannot cope with arbitrary num-
bers of participants, let alone recursive processing of nested messages. Sec-
tion §6.3 below will specify the protocol as an inductive definition.

6.2 Deviations from the Protocol

I have corrected a flaw in the original protocol. My formalization of the
protocol differs from the original in some other respects, as well.

In the original protocol, an agent’s two certificates are distinguished only
by their order of arrival; an intruder could easily exchange them. To correct
this flaw, I have added the other party’s name to each certificate. Such
explicitness is good engineering practice [1]. It also simplifies the proofs
(recall §4.8). Bull and Otway have accepted my change to their protocol [9].

The dummy session key Kcs avoids having to treat the last agent as a
special case. All agents except the first take two certificates. An implemen-
tation can safely omit the dummy certificate. Removing information from
the system makes less information available to an intruder.

The original protocol implements encryption using exclusive-or (XOR)
and hashing. For verification purposes, encryption should be taken as prim-
itive. Correctness of the protocol does not depend upon the precise form
of encryption, provided it is implemented properly; the original use of XOR
was flawed (see §6.6).

Protocol certificates are accompanied by agent names sent in clear. It is
safe to simplify the specification by omitting these names.

6.3 Modelling the Protocol

Requests in the protocol have the form HashX Y , where Y may contain an-
other request. The HashX Y notation for message digests is trivially defined
in Isabelle:

Hash[X]Y ≡ {|Hash{|X,Y |}, Y |}.

Most proofs do not apply this definition directly. The default rewrite rules
apply only if HashX Y appears, say, in the argument of parts, where the
expression can be simplified. Such rules help prevent exponential blowup.
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A further law is subject to X 6∈ synth(analzH), as when X is an uncom-
promised long-term key:

HashX Y ∈ synth(analzH) ⇐⇒
Hash{|X,Y |} ∈ analzH ∧ Y ∈ synth(analzH)

The message HashX Y can be spoofed iff Y can be and a suitable message
digest is available (an unlikely circumstance).

Nil [] ∈ recur

Fake [| evs ∈ recur; B6=Spy;

X ∈ synth (analz (spies evs)) |]

=⇒ Says Spy B X # evs ∈ recur

RA1 [| evs1 ∈ recur; A6=B; A6=Server; Nonce NA 6∈ used evs1 |]

=⇒ Says A B

(Hash[Key(shrK A)]

{|Agent A, Agent B, Nonce NA, Agent Server|})

# evs1 ∈ recur

RA2 [| evs2 ∈ recur; B6=C; B6=Server; Nonce NB 6∈ used evs2;

Says A’ B PA ∈ set evs2 |]

=⇒ Says B C (Hash[Key(shrK B)]{|Agent B, Agent C, Nonce NB, PA|})

# evs2 ∈ recur

RA3 [| evs3 ∈ recur; B6=Server;

Says B’ Server PB ∈ set evs3;

(PB,RB,K) ∈ respond evs3 |]

=⇒ Says Server B RB # evs3 ∈ recur

RA4 [| evs4 ∈ recur; A6=B;

Says B C {|XH, Agent B, Agent C, Nonce NB,

XA, Agent A, Agent B, Nonce NA, P|}

∈ set evs4;

Says C’ B {|Crypt (shrK B) {|Key KBC, Agent C, Nonce NB|},

Crypt (shrK B) {|Key KAB, Agent A, Nonce NB|},

RA|}

∈ set evs4 |]

=⇒ Says B A RA # evs4 ∈ recur

Figure 5: Specifying the Recursive Protocol

For the most part, the protocol is modelled just like the fixed-length
protocols discussed above. Figure 5 presents the inductive definition. The
rules for the empty trace and the spy are standard. The other rules can be
paraphrased as follows:

1. If, in the current trace, Na is a fresh nonce and B is an agent distinct
from A and S, then we may add the event

SaysAB (HashshrKA{|A,B,Na,−|}).
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A’s long-term key is written shrKA. For the token (−) I used the name
S, but any fixed message would do as well.

2. If the current trace contains the event SaysA′B Pa, where Pa =
{|Xa,A,B,Na, P |}, and Nb is a fresh nonce and B 6= C, then we may
add the event

SaysBC (HashshrKB{|B,C,Nb, Pa|}).

The variable Xa is how B sees A’s hash value; he does not have the
key needed to verify it. Component P is (−) if A started the run or
might have the same form as Pa, nested to any depth. Agent C might
be the server or anybody else.

The specification actually omits the equation defining Pa. It appears
to be unnecessary, and its omission simplifies the proofs. They there-
fore hold of a weaker protocol in which any agent may react to any
message by sending an instance of step 2. Ill-formed requests may
result, but the server will ignore them.

3. If the current trace contains the event SaysB′ SPb, and B 6= S, and if
the server can build from request Pb a response Rb, then we may add
the event

Says SBRb.

The construction of Rb includes verifying the integrity of Pb; this
process is itself defined inductively, as we shall see. The rule does
not constrain the agent B, allowing the server to send the response to
anybody. We could get the right value of B from Pb, but the proofs
do not require such details.

4. If the current trace contains the two events

Says B C (HashshrKB{|B,C,Nb, Pa|})
Says C ′B {|Crypt(shrKB){|Kbc, C,Nb|},

Crypt(shrKB){|Kab, A,Nb|}, R|}

and A 6= B, then we may add the event

SaysBAR.

B decrypts the two certificates, compares their nonces with the value
of Nb he used, and forwards the remaining certificates (R).

The final step of the protocol is the initiator’s acceptance of the last
certificate, Crypt(shrKA){|Kab, B,Na|}. This implicit step need not be mod-
elled; all certificates will be proved to be authentic.
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There is no Oops message (recall §2.5). It cannot easily be expressed for
the recursive authentication protocol because a key never appears together
with both its nonces. The spy can still get hold of session keys using the
long-term keys of compromised agents.

6.4 Modelling the Server

The server creates the list of certificates according to another inductive
definition. It defines not a set of traces but a set of triples (P,R,K) where
P is a request, R is a response and K is a session key. Such triples belong
to the set respond evs, where evs (the current trace) is supplied to prevent
the reuse of old session keys. Component K returns the newest session key
to the caller for inclusion in a second certificate.

One [| A 6= Server; Key KAB 6∈ used evs |]

=⇒ (Hash[Key(shrK A)] {|Agent A, Agent B, Nonce NA, Agent Server|},

{|Crypt(shrK A) {|Key KAB, Agent B, Nonce NA|}, Agent Server|},

KAB) ∈ respond evs

Cons [| (PA, RA, KAB) ∈ respond evs;

Key KBC 6∈ used evs; Key KBC 6∈ parts {RA};

PA = Hash[Key(shrK A)] {|Agent A, Agent B, Nonce NA, P|};

B 6= Server |]

=⇒ (Hash[Key(shrK B)] {|Agent B, Agent C, Nonce NB, PA|},

{|Crypt (shrK B) {|Key KBC, Agent C, Nonce NB|},

Crypt (shrK B) {|Key KAB, Agent A, Nonce NB|},

RA|},

KBC) ∈ respond evs

Figure 6: Specifying the Server

The occurrences of Hash in the definition ensure that the server accepts
requests only if he can verify the hashes using his knowledge of the long-term
keys. The inductive definition (Fig. 6) consists of two cases.

1. If Kab is a fresh key (that is, not used in evs) then

( HashshrKA{|A,B,Na,−|},
{|Crypt(shrKA){|Kab, B,Na|}, −|},
Kab) ∈ respond evs.

This base case handles the end of the request list, where A seeks a
session key with B.

2. If (Pa,Ra,Kab) ∈ respond evs and Kbc is fresh (not used in evs or Ra)
and

Pa = HashshrKA{|A,B,Na, P |}
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then

( HashshrKB{|B,C,Nb, Pa|},
{|Crypt(shrKB){|Kbc, C,Nb|},

Crypt(shrKB){|Kab, A,Nb|}, Ra|},
Kbc) ∈ respond evs.

The recursive case handles a request list where B seeks a session
key with C and has himself been contacted by A. The respond re-
lation is best understood as a pure Prolog program. Argument Pa of
(Pa,Ra,Kab) is the input, while Ra and Kab are outputs. Key Kab
has been included in the response Ra and must be included in one of
B’s certificates too.

An inductive definition can serve as a logic program. Because the con-
cept is Turing powerful, it can express the most complex behaviours. Such
programs are easy to reason about.

A Coarser Model of the Server

For some purposes, respond is needlessly complicated. Its input is a list of n
requests, for n > 0, and its output is a list of 2n+1 certificates. Many routine
lemmas hold for any list of certificates of the form Crypt(shrKB){|K,A,N |}.
The inductive relation responses generates the set of all such lists. It contains
all possible server responses and many impossible ones.

The base case is simply (−) ∈ responses evs and the recursive case is

{|Crypt(shrKB){|K,A,N |}, R|} ∈ responses evs

if R ∈ responses evs and K is not used in evs.
In secrecy theorems (those expressed in terms of analz), each occurrence

of Crypt can cause a case split, resulting in a substantial blowup after simpli-
fication. Induction over responses introduces only one Crypt, but induction
over respond introduces three. Because responses includes invalid outputs,
some theorems can only be proved for respond.

6.5 Main Results Proved

For the most part, the analysis resembles that of the Otway-Rees proto-
col. Possibility properties are proved first, then regularity lemmas. Secrecy
theorems govern the use of session keys, leading to the session key secrecy
theorem: if the certificate Crypt(shrKA){|Kab, B,Na|} appears as part of any
traffic, where A and B are uncompromised, then Kab will never reach the
spy. Another theorem guarantees that such certificates originate only with
the server.



38 6 A RECURSIVE PROTOCOL

Possibility properties are logically trivial. All they tell us is that the
rules’ message formats are compatible. However, their machine proofs re-
quire significant effort (or computation) due to the complexity of the terms
that arise and the number of choices available. I proved cases corresponding
to runs with up to three agents plus the server and spy. General theorems
for n agents could be proved by induction on n, but the necessary effort
hardly seems justified.

A typical regularity lemma states that the long-term keys of uncompro-
mised agents never form part of any message. They do form part of hashed
messages, however; recall the discussion in §3.2 above.

Security properties are proved, as always, by induction over the protocol
definition. For this protocol, the main inductive set (recur) is defined in
terms of another (respond). All but the most trivial proofs require induction
over both definitions.

An easily-proved result lets us reduce responses to respond, justifying the
use of induction over responses:

(Pa,Rb,Kab) ∈ respond evs

Rb ∈ responses evs

Most results are no harder to prove than for a fixed-length protocol.
Proving a theorem requires four commands on average, of which two are
quite predictable: induction and simplification. The outer induction yields
six subgoals: one for each protocol step, plus the base and fake cases. The
inner induction replaces the step 3 case by two subgoals: the server’s base
case and inductive step. Few of these seven subgoals survive simplification.
Only the theorems described below have difficult proofs.

Nonces generated in requests are unique. There can be at most one
hashed value containing the key of an uncompromised agent (A 6∈ bad) and
any specified nonce value, Na.

∃B′ P ′.∀B P.
Hash{|Key(shrKA),AgentA,AgentB,Na, P |} ∈ parts(spies evs)

−→ B = B′ ∧ P = P ′.

Although it is not used in later proofs, this theorem is important. It lets
agents identify runs by their nonces. The theorem applies to all requests,
whether generated in step 1 or step 2. For the Otway-Rees protocol, each of
the two steps requires its own theorem. The reasoning here is similar, but
one theorem does the work of two, thanks to the protocol’s symmetry. The
nesting of requests does not affect the reasoning.

The session key compromise theorem is formulated just as for Otway-
Rees (see §4.5), but its proof is much more difficult. The inner induction
over respond leads to excessive case splits. It was to simplify this proof that
I defined the set responses.
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Unicity for session keys is unusually complicated because each key ap-
pears in two certificates. Moreover, the certificates are created in different
iterations of respond. The unicity theorem states that, for any K, if there is
a certificate of the form

Crypt(shrKA){|K,B,Na|}

(where A and B are uncompromised) then the only other certificate con-
taining K must have the form

Crypt(shrKB){|K,A,Nb|},

for some Nb. If (PB,RB,K) ∈ respond evs then

∃A′B′.∀ABN.
Crypt(shrKA){|KeyK,AgentB,N |} ∈ parts{RB}

−→ (A′ = A ∧B′ = B) ∨ (A′ = B ∧B′ = A).

This theorem seems quite strong. An agent who receives a certificate imme-
diately learns which other agent can receive its mate, subject to the security
of both agents’ long-term keys. One might hope that the session key secrecy
theorem would follow without further ado. The only messages containing
session keys contain them as part of such certificates, and thus the keys are
safe from the spy. But such reasoning amounts to another induction over all
possible messages in the protocol. The theorem must be stated (stipulating
A, A′ 6∈ bad) and proved:

Crypt(shrKA){|KeyK,AgentA′, N |} ∈ parts(spies evs)
−→ KeyK 6∈ analz(spies evs)

The induction is largely straightforward except for the step 3 case. The
inner induction over respond leads to such complications that it must be
proved beforehand as a lemma. If (PB,RB,Kab) ∈ respond evs then

∀AA′N.A 6∈ bad∧A′ 6∈ bad

−→ Crypt(shrKA){|KeyK,AgentA′, N |} ∈ parts{RB}
−→ KeyK 6∈ analz({RB} ∪ spies evs)

Although each session key appears in two certificates, they both have the
same format. A single set of proofs applies to all certificates. Once again,
the protocol’s symmetry halves the effort compared with Otway-Rees.
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It may be instructive to see some theorems in Isabelle syntax. Here is
the session key compromise theorem:

[| evs ∈ recur; KAB 6∈ range shrK |]

=⇒ (Key K ∈ analz (insert (Key KAB) (spies evs))) =
(K = KAB ∨ Key K ∈ analz (spies evs))

And here is the session key secrecy theorem:

[| Crypt (shrK A) {|Key K, Agent A’, N|} ∈ parts (spies evs);

A 6∈ bad; A’ 6∈ bad; evs ∈ recur |]

=⇒ Key K 6∈ analz (spies evs)

6.6 Potential Attacks

All proofs are subject to the assumptions implicit in the model. Attacks
against the protocol or implementations of it can still be expected. One
‘attack’ is obvious: in step 2, agent B does not know whether A’s message
is recent; at the conclusion of the run, B still has no evidence that A is
present. The spy can masquerade as A by replaying an old message of hers,
but cannot read the resulting certificate without her long-term key.

Allowing type confusion (such as passing a nonce as a key) often admits
attacks [26, 28] in which one form of certificate is mistaken for another. The
recursive authentication protocol is safe from such attacks because it has
only one form of certificate. However, encryption must be secure.

In the original protocol, each session key was encrypted by forming its
XOR with a hash value, used as a one-time pad. Unfortunately, each hash
value was used twice: B’s session keys Kab and Kbc were encrypted as

Kab ⊕ Hash{|Kb,Nb|} and Kbc ⊕ Hash{|Kb,Nb|}.

By forming their XOR, an eavesdropper could immediately obtain Kab ⊕
Kbc, Kbc ⊕ Kcd , etc. Compromise of any one session key would reveal all
the others [40].

7 Related Work

Several other researchers are using inductive or trace models. Verification is
done using general-purpose theorem provers or model checkers, or by hand.

In early work, Kemmerer [22] analyzed a protocol in the Ina Jo specifica-
tion language, which is based on first-order logic. Using an animation tool,
he identified two weaknesses in the protocol. He modelled the system as
an automaton, defining the initial state and the state transformations, and
specifying security goals as invariants. Proving that state transformations
preserve an invariant is the same style of reasoning as induction. Gray and
McLean [18] also establish a security invariant by induction, though their
work is based on temporal logic and their proofs are done by hand.
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Bolignano’s work [5] is based on the Coq proof checker. His Xknown inH
is equivalent to my X ∈ synth(analzH) and models fraudulent messages. In-
stead of formalizing traces, he models the states of the four agents A, B, S
and the spy. He and Ménissier-Morain [6] have formalized the Otway-Rees
protocol. In their model, the server uses the function KeyAB to choose
session keys: whenever A and B participate in a run, the server issues
KeyAB(A,B). They have proved three properties. The first resembles the
forwarding lemmas described in §4.2. The second states that the secret
keys Ka and Kb remain secret; it is similar to a regularity lemma described
in §4.3. The third property states that KeyAB(A,B) cannot be decrypted
from traffic even with the help of all other session keys.

Their model is somewhat restrictive. The constants A and B are fixed in
the roles of initiator and responder, respectively. The spy starts off holding
no keys, which gives him no prospect of impersonating honest agents or
decrypting messages. Also, note that the attack of §2.9 works not by giving
KeyAB(A,B) to the spy, but by getting A to accept KeyAB(C,A) as a good
key for talking to B.

Lowe’s approach is based on traces, which are specified using the process
calculus CSP [20] and examined using the model-checker FDR. His work
originates in that of Roscoe [38]. Like Bolignano, he models the four agents
A, B, S and the spy. However, his model is more realistic. A and B may
engage in concurrent runs, playing either role; the spy has an identity and
a long-term key. Lowe has discovered numerous attacks, some of which are
serious [23, 24, 25]. I have found his papers most useful in developing the
Isabelle model.

Meadows’s paper on Needham-Schroeder [28] makes direct comparisons
with Lowe’s. She examines the same variants of the protocol and discusses
differences in speed between the NRL Protocol Analyzer and FDR (the
latter is faster). She reports many other experiments, for example on the
possibility of nonces being compromised. Not all of these attempts are
successful: sometimes the state space becomes too large.

Her Protocol Analyzer performs an unusual combination of search and
proof. Ostensibly based on brute-force state enumeration, it can also prove
by induction that infinite sets of states are unreachable. A full analysis car-
ries the same assurance as a formal proof. The precise relationship between
Meadows’s and my uses of induction needs to be examined.

Schneider [41], like Lowe, bases his work on CSP [20]. But instead of us-
ing a model checker, he applies the laws of CSP in proofs. A rank function
is used to describe how an undesirable event is prevented. Proving cer-
tain theorems about the rank function establishes the property in question.
Schneider has published detailed hand analyses of both the original protocol
and Lowe’s version. He considers a number of authentication properties in
increasingly general settings, ultimately allowing concurrent runs. Recently,
Dutertre and Schneider [15] have mechanized these hand proofs, revealing
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many errors in them. Bryans and Schneider [8] have proved some simple
properties for a single run of the recursive authentication protocol.

Schneider has considered the consequences of allowing messages to sat-
isfy equational laws on messages. Many protocols—and attacks!—exploit
algebraic properties of encryption method, particularly RSA [37].

8 Conclusions

The inductive method is simple and general. We have seen how it han-
dles three versions of Otway-Rees, two versions of Needham-Schroeder (with
public keys), and a recursive protocol. The analysis of Needham-Schroeder
reveals Lowe’s attack, and I have discovered a new attack in a variant of
Otway-Rees. In addition to the protocols discussed above, I have analyzed
two variants of Yahalom [31], a simplified version of Woo-Lam [1] and the
shared-key version of Needham-Schroeder. Bella and I have looked at Ker-
beros, which is based on timestamps; its use of session keys to encrypt other
keys complicates its analysis [4]. I have modelled part of the Internet proto-
col TLS [14, 35] in which secret nonces are exchanged, then used to compute
session keys.

Proofs are highly automated. One Isabelle command can generate thou-
sands of inferences. Small changes to protocols involve only small changes
to proof scripts.4 Analyzing Needham-Schroeder took only 30 hours of my
time, the recursive protocol two weeks. These figures include time spent
extending the model with public-key encryption and hashing. Adherence to
design principles such as explicitness [1] simplifies proofs.

Model checking is an effective means of finding attacks [23, 24, 25], but
it cannot replace theorem proving. It copes with only finitely many states,
and the failure to find an attack says nothing about how a protocol works.

An inductive proof is a symbolic examination of the protocol. Each step
is analyzed in turn. The reasoning can be explained informally, letting us
understand how the protocol copes with various circumstances. When a
protocol is modified, the proof scripts for the old version form the starting
point for its analysis. These scripts take only a few minutes to run, which
is competitive with model checking.

The two methods complement each other. A protocol designer might
use model checking for a quick inspection and apply the inductive approach
to investigate deeper properties.

Formal methods cannot guarantee security. Theorems can easily be mis-
interpreted. Needham-Schroeder is correct from A’s point of view, but not
from B’s. The flawed version of Otway-Rees is correct from the server’s
point of view, but the other participants cannot detect tampering (recall

4Proof scripts are distributed with Isabelle, which can be obtained from URL http:

//www.cl.cam.ac.uk/Research/HVG/Isabelle/dist/; see subdirectory HOL/Auth.

http://www.cl.cam.ac.uk/Research/HVG/Isabelle/dist/
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§4.7). A protocol proof must contain a separate guarantee—under reason-
able assumptions—for each participant.

The attack on the recursive protocol [40] is a sobering reminder of the
limitations of formal methods. Models idealize the real world: here, by
assuming strong encryption. Making the model more detailed makes rea-
soning harder and, eventually, infeasible. A compositional approach seems
necessary: different levels of abstraction, such as protocol messages, crypto-
graphic algorithms, and transport protocols, should be verified separately.
Devising such an approach will be a challenge.
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