
Verifying the SET Protocol: Overview

Lawrence C. Paulson

Computer Laboratory, University of Cambridge
JJ Thomson Avenue, Cambridge CB30 0FD, England

lcp@cl.cam.ac.uk

Abstract. The project to verify SET, an e-commerce protocol, is described. The
main tasks are to comprehend the written documentation, to produce an accu-
rate formal model, to identify specific protocol goals, and finally to prove them.
The main obstacles are the protocol’s complexity (due in part to its use of digital
envelopes) and its unusual goals involving partial information sharing. Brief ex-
amples are taken from the registration and purchase phases. The protocol does not
completely satisfy its goals, but only minor flaws have been found. The primary
outcome of the project is experience with handling enormous and complicated
protocols.

1 Introduction

SET (Secure Electronic Transaction) is an e-commerce protocol devised by Visa and
MasterCard. It enables credit card holders to pay for purchases while protecting their
personal information, which includes both their account details and their purchasing
habits. Most research on protocol verification focuses on simple protocols that have
simple objectives. One reason for verifying SET is to demonstrate that verification
technology is mature enough to cope with the demands of a huge, complex industrial
protocol.

Protocol verification techniques fall into several categories. A general-purpose
model-checker can verify protocols, as pioneered by Lowe and his colleagues at Ox-
ford [7]. A general-purpose proof tool can also be effective, as in my work [13]. Ad-
ditionally, there exist several specialized protocol analysis tools. Most perform an ex-
haustive search in the spirit of model checking; among the best is Meadows’ NRL [11],
which has deductive capabilities. Cohen’s TAPS processes the protocol specification
and verifies the desired properties using a resolution theorem prover [6].

Formal proof is preferable for establishing properties, while model-checking is best
for finding attacks. Exhaustive search is only feasible if the model is kept as small as
possible, for example by minimizing the number of permitted executions. If the as-
sumptions are too strong, the absence of an attack does not guarantee correctness. In-
teractive proof tools are not automatic, but offer flexibility in expressing specifications
and proofs. Models need not be finite and can therefore be more realistic.

My colleagues and I have verified [2,3] the main phases of the SET protocol using
the inductive approach and the theorem prover Isabelle. A substantial proportion of the
effort was devoted to understanding the documentation rather than to proving proper-
ties. This paper is a brief overview of the project, referring to other papers that describe
the separate tasks.

The paper begins by outlining the SET protocol (Sect.2). It briefly introduces the
inductive approach and Isabelle (Sect.3). It discusses the issues we faced in converting
the documentation into a formal model (Sect.4). It outlines our proofs of the registration
protocols (Sect.5) and the payment protocol (Sect.6). Finally, There are some general
conclusions (Sect.7).

2 The SET Protocol

People today pay for online purchases by sending their credit card details to the mer-
chant. A protocol such as SSL or TLS keeps the card details safe from eavesdroppers,
but does nothing to protect merchants from dishonest customers or vice-versa. SET
addresses this situation by requiring cardholders and merchants to register before they
may engage in transactions. A cardholder registers by contacting a certificate authority,
supplying security details and the public half of his proposed signature key. Registration
allows the authorities to vet an applicant, who if approved receives a certificate confirm-
ing that his signature key is valid. All orders and confirmations bear digital signatures,
which provide authentication and could potentially help to resolve disputes.

A SET purchase involves three parties: the cardholder, the merchant, and the pay-
ment gateway (essentially a bank). The cardholder shares the order information with the
merchant but not with the payment gateway. He shares the payment information with
the bank but not with the merchant. A setdual signatureaccomplishes this partial shar-
ing of information while allowing all parties to confirm that they are handling the same
transaction. The method is simple: each party receives the hash of the withheld infor-
mation. The cardholder signs the hashes of both the order information and the payment
information. Each party can confirm that the hashes in their possession agrees with the
hash signed by the cardholder. In addition, the cardholder and merchant compute equiv-
alent hashes for the payment gateway to compare. He confirms their agreement on the
details withheld from him.

All parties are protected. Merchants do not normally have access to credit card num-
bers. Moreover, the mere possession of credit card details does not enable a criminal to
make a SET purchase; he needs the cardholder’s signature key and a secret number
that the cardholder receives upon registration. The criminal would have better luck with
traditional frauds, such as ordering by telephone. It is a pity that other features of SET
(presumably demanded by merchants) weaken these properties. A merchant can be au-
thorized to receive credit card numbers and has the option of accepting payments given
a credit card number alone.

SET is a family of protocols. The five main ones are cardholder registration,
merchant registration, purchase request, payment authorization, and payment capture.
There are many minor protocols, for example to handle errors. SET is enormously more
complicated than SSL, which merely negotiates session keys between the cardholder’s
and merchant’s Internet service providers. Because of this complexity, much of which
is unnecessary, the protocol is hardly used. However, SET contains many features of
interest:

– The model is unusual. In the registration protocols, the initiator possesses no digi-
tal proof of identity. Instead, he authenticates himself by filing a registration form

whose format is not specified. Authentication takes place outside the protocol,
when the cardholder’s bank examines the completed form.

– The dual signature is a novel construction. The partial sharing of information
among three peers leads to unusual protocol goals.

– SET uses several types ofdigital envelope. A digital envelope consists of two parts:
one, encrypted using a public key, contains a fresh symmetric keyK and identifying
information; the other, encrypted usingK, conveys the full message text. Digital
envelopes keep public-key encryption to a minimum, but the many symmetric keys
complicate the reasoning. Most verified protocols distribute just one or two secrets.

3 Isabelle and Inductive Protocol Verification

My colleagues and I used the Isabelle theorem prover with the inductive approach to
protocol verification. It is not clear that model checking could cope with this protocol’s
complexity. Specialized verification tools are more powerful than Isabelle, but less flex-
ible. Most protocols, even esoteric ones like non-repudiation and fair exchange proto-
cols, involve the standard cast of characters: Alice, Bob, and a trusted third party. SET
is different: it has cardholders, merchants, payment gateways, and a hierarchy of certifi-
cate authorities. Changing Isabelle’s theory of protocols to use SET’s cast of characters
was easy.

The inductive approach [13] verifies protocols using the standard techniques of op-
erational semantics. An inductive definition defines the possible executions of a system
consisting of the honest protocol participants and an active attacker. An execution com-
prises any number of attempted protocol runs and is a trace of message transmissions
and other events. A standard theory of messages and their operations underlies these
inductive models. Safety properties are proved by induction on traces. For example, we
can prove that any trace containing a particular eventx must also contain some other
eventy; such properties can express authentication or agreement. Secrecy properties are
hardest to prove. For example, if we are concerned with the secrecy of a certain keyK,
then we must proveK 6= K ′ for each keyK ′ that might be compromised. Every en-
crypted message produces a case split, since we must prove thatK is secure whether or
not the encrypting key is. Huge case analyses can arise. Despite the difficulties, we can
use established techniques and tools in our attempt to prove secrecy.

The model includes a set of honest agents. Typically we can prove (perhaps op-
timistically) that their long-term keys cannot become compromised. The spy controls
another set of agents, with full access to their internal states. The spy also controls
the network and retains every transmitted message. Session keys may become compro-
mised. If a key becomes compromised then the spy can read all ciphertexts encrypted
using that key, and if it has been used to encrypt other keys, then the consequential
losses cascade. Proving secrecy in this situation requires special techniques, which I
have presented for the Yahalom protocol [15] and applied also to Kerberos [5].

Messages in our model have types. A nonce can never equal an agent name or a
session key, for example. Such assumptions can be defended: in the real world, different
kinds of items are likely to have different lengths. However, our model does not allow
reasoning about operators like exclusive-OR. Because(X ⊕ Y) ⊕ Y = X, exclusive-

OR can yield a result of essentially any type. Reasoning about exclusive-OR probably
requires a bit-level formalization.

Isabelle/HOL [12] is an interactive proof tool for higher-order logic. Isabelle pro-
vides a simplifier, a predicate calculus theorem prover, a choice of proof languages,
and automatic generation of LaTeX documents. Isabelle’s support for inductive defini-
tions is particularly strong, both in its specification language and in its prover automa-
tion. However, other tools for higher-order logic could be suitable. We have applied
the inductive approach to a wide range of protocols, including industrial ones such as
Kerberos and TLS [14].

4 Modelling Issues

Researchers compete to produce the fastest automatic tools. However, the main obsta-
cle to protocol verification lies in digesting the documentation and producing a formal
model. Understanding hundreds of pages of text is a massive undertaking. Meticulous
care is essential to avoid defining an incorrect model.

The main SET documents are theBusiness Description[8], the Programmer’s
Guide[10], and theFormal Protocol Definition[9]. SET is defined using Abstract Syn-
tax Notation One (ASN.1).1 The programmers guide presents each message format as
a figure based on the underlying ASN.1 definition, augmented with a detailed English
description of how to process each message. The formal protocol definition consists of
the programmers guide with the ASN.1 notation inserted and the English text removed.
Since the ASN.1 adds little to the figures, the formal protocol definition essentially con-
sists of the syntax without the semantics. We derived our model from the programmer’s
guide.

The enormous size and complexity of the SET message formats demanded simplifi-
cation. As we have discussed elsewhere [4], this was not always straightforward. A field
might be described as optional and yet seem to play an essential role. Additional simpli-
fications were necessary, forcing us to decide what constituted SET’s core feature set.
One detail that we eliminated was payment by instalments. Most payment cards provide
payment by instalments anyway, so SET does not have to provide a similar mechanism.
However, critics might reject this reasoning.

Attacks against protocols often arise from unclear assumptions about the operating
environment rather than from flaws in the protocols themselves. Experts can dispute
whether the formal model accurately reflects the real world and thus whether the attack
is realistic. For example, Lowe’s famous attack [7] against the Needham-Schroeder
public-key protocol relies on the possibility that insiders can be compromised. However,
Needham-Schroeder designed the protocol with the express purpose of protecting the
honest insiders from outsiders.

SET has a much more complex environment and parts of its operation are specifi-
cally left “out of band.” Our formal model has to make reasonable assumptions about
these undefined parts. It also must specify which insiders can be compromised and in-
numerable other details. It also has to define the protocol goals, since the documentation
outlines them only in general management terms.

1 http://www.asn1.org

http://www.asn1.org

5 Verifying The Registration Protocols

Cardholder
Computer

Certificate
Authority (CA)

Process

Cardholder
initiates

registration
Certificate
Authority

sends response
Cardholder
requests

registration
form

Certificate
Authority takes
request and

sends
registration form

Cardholder
completes

registration form
and requests
certificate

Certificate
Authority checks
registration form

and issues
certificate

Cardholder
receives
certificate

Initiate request

Initiate response

Registration form
request

Registration form

Cardholder
certificate request

Cardholder certificate

Fig. 1.Cardholder Registration

The cardholder registration protocol (Fig.1) comprises three message exchanges
between the cardholder and a certificate authority. In the first exchange, the cardholder
requests registration and is given the certificate authority’s public keys. In the second
exchange, the cardholder supplies his credit card number, called the PAN, or Primary
Account Number; he receives an application form suitable for the bank that issued his
credit card. In the third exchange, the cardholder returns the completed application
form; in addition, he delivers his public signature key and supplies a 20-byte secret
number (the CardSecret). Finally, the cardholder receives a certificate that contains his
public signature key and another 20-byte secret number, the PANSecret. The registra-
tion protocol for merchants is simpler: it has only two message exchanges and involves
no credit card number. My colleagues and I verified both cardholder registration and
merchant registration. Cardholder registration is the one I discuss below.

Conceptually, cardholder registration is straightforward. Its chief peculiarity is that
the cardholder is authenticated by the registration form, not by the possession of a
secret key. The protocol as defined in SET however is difficult to verify, mainly because
it employs digital envelopes. While Yahalom and Kerberos have a dependency chain
of length one — one session key encrypts just one secret — with digital envelopes

the dependency chains could be arbitrarily long. (In the current model of cardholder
registration, the chain links only three items, though at one point it was longer.)

I was able to generalise the previous technique [15] in order to cope with arbitrary
dependency relationships. A relation must be defined in higher-order logic, identifying
the protocol events that cause one secret to depend upon another. (This relation is nec-
essarily transitive.) Lemmas must be proved, saying in effect that the loss of a key can
cause no losses other than the obvious ones given by the relation. Such lemmas put a
bound on the consequential losses. The proofs employ induction and the intermediate
subgoals can be many pages long.

Let us consider these points more precisely. Here is the fifth message,Cardholder
Certificate Request:

5. C → CA : CryptKC3(m, S),
CryptpubEK CA(KC3, PAN, CardSecret)

wherem = C, NC3, KC2, pubSK C

andS = CryptpriSK C(Hash(m, PAN, CardSecret))

The cardholder chooses an asymmetric signature key pair. He gives the CA the public
key, pubSK C, and the number CardSecret. This message is a digital envelope, sealed
using the key KC3; it contains another key, KC2, which the CA uses for encrypting the
Cardholder Certificate:

6. CA→ C : CryptKC2

(Sign CA(C, NC3, CA, NonceCCA),
CertCA(pubSK C, PANSecret),
CertRCA(pubSK CA)))

where PANSecret= CardSecret⊕ NonceCCA

The CA returns a certificate for the cardholder’s public signature key. The certifi-
cate also includes the cryptographic hash of PANSecret. This 20-byte number is the
exclusive-OR of the CardSecret and NonceCCA: a nonce chosen by the CA. The card-
holder must use the PANSecret to prove his identity when making purchases.

Cardholder registration does not have to be this complicated. Since the cardholder
has a private signature key, why does he also need the PANSecret? If he really does
need the PANSecret to prove his identity, why must the CA contribute to its calcu-
lation through NonceCCA? The point of such an calculation is to avoid sending the
secret across the network, but the cardholder must disclose the PANSecret each time he
makes a purchase. Eliminating NonceCCA would eliminate the need to encrypt mes-
sage 6, which would contain only public-key certificates. We could dispense with the
key KC2 and eliminate the dependency chain KC3, KC2, NonceCCA. These changes
would make the protocol simpler and more secure, as we shall see.

Figure2 presents the Isabelle specification of message 5. You will find it hard to
read, but comparing it with the informal notation above conveys an idea of the syntax.
The inductive definition consists of one rule for each protocol message, which extends
a given trace. (Note that# is Isabelle’s syntax for the list “cons” operator. In message 5,

the current trace is calledevs5 .) One of the rule’s preconditions is thatCardSecret

must be fresh:

Nonce CardSecret /∈ used evs5

The nonceNC3and the two symmetric keys (KC2 andKC3) must also be fresh. Other
preconditions check that the cardholder has sent an appropriate instance of message 3
to the CA and has received a well-formed reply. If the preconditions are satisfied, then
C can generate the corresponding instance of message 5.

[[evs5 ∈ set cr; C = Cardholder k;
Nonce NC3 /∈ used evs5; Nonce CardSecret /∈ used evs5;
NC3 6= CardSecret;
Key KC2 /∈ used evs5; KC2 ∈ symKeys;
Key KC3 /∈ used evs5; KC3 ∈ symKeys; KC2 6=KC3;
Gets C {|sign (invKey SKi) {|Agent C, Nonce NC2, Nonce NCA |},

cert (CA i) EKi onlyEnc (priSK RCA),
cert (CA i) SKi onlySig (priSK RCA) |}

∈ set evs5;
Says C (CA i)

{|Crypt KC1 {|Agent C, Nonce NC2, Hash (Pan (pan C)) |},
Crypt EKi {|Key KC1, Pan (pan C),

Hash {|Agent C, Nonce NC2 |}|}|}
∈ set evs5]]

=⇒ Says C (CA i)
{|Crypt KC3
{|Agent C, Nonce NC3, Key KC2, Key (pubSK C),

Crypt (priSK C)
(Hash {|Agent C, Nonce NC3, Key KC2,

Key(pubSK C), Pan(pan C), Nonce CardSecret |}) |},
Crypt EKi {|Key KC3, Pan (pan C), Nonce CardSecret |}|}

evs5 ∈ set cr

Fig. 2.Cardholder Registration in Isabelle (Message 5)

My colleagues and I did not discover any attacks against cardholder registration.
Under reasonable assumptions, the PAN, PANSecret and other sensitive information
remain secure. However, merely by inspection, I observed a flaw. The PANSecret is
computed by exclusive-OR, which gives the certificate authority full control over its
value. One would like to be able to trust the certificate authorities, but banks have issued
insecure Personal Information Numbers [1, p. 35]:

One small upper-crust private bank belied its exclusive image by giving all its
customers the same PIN. This was a simple programming error; but in another,
more down-market institution, a programmer deliberately arranged things so
that only three different PINs were issued, with the idea that this would provide
his personal pension fund.

The remedy is trivial: compute the PANSecret by hashing instead of exclusive-OR.
Another remedy is to leave its choice entirely to the cardholder’s computer — after all,
it exists for the cardholder’s protection.

6 Verifying the Purchase Phase

A SET purchase can involve three protocols: purchase request, payment authorisation,
and payment capture. The first two of these often behave as a single protocol, which is
how we model them. (We have yet to investigate payment capture.) The protocol is too
complex to present here. Even the means of identifying the transaction is complicated.
The cardholder and merchant may each have an identifying number; sometimes a third
number is chosen. The choice of method is actually left open. For the sake of simplicity,
we discard all but one of the identification options, and use the merchant’s transaction
identifier.

The essential parameters of any transaction are theorder description(presumably a
text string) and thepurchase amount. The cardholder forms a dual signature on the order
information and payment information, as outlined above and sends it to the merchant.
The merchant forwards the payment information, under his signature, to the payment
gateway. Only the payment gateway can read the account details, which include the
Primary Account Number and the PANSecret. If they are acceptable, he replies to the
merchant, who confirms the transaction with the cardholder.

A look at message 3 illustrates the complexity of the dual signature:

3. C →M : PIDualSign, OIDualSign

Here, the cardholderC has computed

HOD = Hash(OrderDesc, PurchAmt)
PIHead= LID M, XID , HOD, PurchAmt, M,

Hash(XID , CardSecret)
OIData= XID , Chall C, HOD, Chall M

PANData= PAN, PANSecret

PIData= PIHead, PANData

PIDualSign= SignpriSK C(Hash(PIData), Hash(OIData)),

CryptpubEK P (PIHead, Hash(OIData), PANData)

OIDualSign= OIData, Hash(PIData)

Figure3 presents this message using Isabelle syntax. Because of the hashing, all the
information appears repeatedly. Although in the real world the hash of any message is a
short string of bytes, in the formal model the hash of messageX is literally Hash X: a
construction involvingX. The formal model of message 3 involves massive repetition.
Most digital envelopes involve hashing, causing further repetition.

Other details of our model include a dummy message to model the initial shopping
agreement, which lies outside SET. Our model includes the possibility of unsigned

[[evsPReqS ∈ set pur; C = Cardholder k; CardSecret k 6= 0;
Key KC2 /∈ used evsPReqS; KC2 ∈ symKeys;
Transaction = {|Agent M, Agent C, Number OrderDesc, Number PurchAmt |};
HOD = Hash{|Number OrderDesc, Number PurchAmt |};
OIData = {|Number LID M, Number XID, Nonce Chall C, HOD, Nonce Chall M|};
PIHead = {|Number LID M, Number XID, HOD, Number PurchAmt, Agent M,

Hash{|Number XID, Nonce (CardSecret k) |}|};
PANData = {|Pan (pan C), Nonce (PANSecret k) |};
PIData = {|PIHead, PANData |};
PIDualSign = {|sign (priSK C) {|Hash PIData, Hash OIData |},

EXcrypt KC2 EKj {|PIHead, Hash OIData |} PANData|};
OIDualSign = {|OIData, Hash PIData |};
Gets C (sign (priSK M) {|Number LID M, Number XID,

Nonce Chall C, Nonce Chall M,
cert P EKj onlyEnc (priSK RCA) |})

∈ set evsPReqS;
Says C M {|Number LID M, Nonce Chall C|} ∈ set evsPReqS;
Notes C {|Number LID M, Transaction |} ∈ set evsPReqS]]

=⇒ Says C M {|PIDualSign, OIDualSign |} # evsPReqS ∈ set pur

Fig. 3.The Signed Purchase Request Message

purchases. These allow unregistered cardholders to use SET using a credit card number
alone and offer little protection to merchants. SET perhaps offers this option in order to
provide an upgrade path from SSL.

Because the SET documentation did not tell us what properties to prove, we speci-
fied them ourselves. Obviously, the PAN and PANSecret must remain secure. Correct-
ness also means that each party to a purchase must be assured that the other parties agree
on all the essential details: namely, the purchase amount, the transaction identifier, the
order description, and the names of the other agents. We were able to prove most of
these properties. Digital envelopes cause further problems, however. Agreement among
principals obviously refers to important fields such as the order description and pur-
chase amount. While we certainly hope the two parties will agree on which session key
was used in a digital envelope, that property is not essential. Given the choice of either
devoting much effort to proving agreement on session keys or ignoring them, I adopted
the latter course.

Agreement fails in one important respect: the payment gateway cannot be certain
that the cardholder intended him to take part in the transaction. Message 3 involves six
copies of the field XID (transaction identifier) and nine copies of the field PurchAmt
(purchase amount), but it never mentions the identity of the intended payment gate-
way! Although the failure of this property is disappointing, it does not appear to allow
a significant attack. It could only be exploited by a rogue payment gateway, who would
presumably prefer harvesting credit card numbers to causing anomalous SET execu-
tions. Thus, we must reject the dualistic view that every protocol is either correct or
vulnerable to attack. Anomalous executions that do little harm cannot be called attacks.

7 Conclusions

Our study demonstrates that enormous protocols such as SET are amenable to formal
analysis. Such work is challenging, however. Understanding the documentation and
defining a formal model can take months. Some assertions are too long to be compre-
hensible, comprising a dozen or two lines of formalism. Whether those assertions are
specifications or theorem statements, their incomprehensibility raises the possibility
that they could be misinterpreted.

During an interactive proof, Isabelle may present the user with subgoals that are
hundreds of lines long. Such monstrosities impose a heavy burden on the computer. A
simplification step can take 10 or 20 seconds on a 1.8 gigahertz processor. Diagnosing
a failed proof requires meticulous examination of huge and unintuitive formulae, where
all abbreviations have been fully expanded.

The bar chart shows the runtime required to execute the proofs for several protocols
on a 1.8GHz machine. There are three SET protocols (dark shading) and three others
(light shading). This data is suggestive rather than compelling, because minor changes
to a proof script can cause dramatic changes to the required runtime. It suggests that
merchant registration is very simple. Cardholder registration requires more effort, partly
because it is longer and partly because it demands more secrecy proofs. The purchase
phase is twice as difficult again.

0s 50s 100s 150s 200s 250s 300s 350s

Purchase

Cardholder Reg

Merchant Reg

Kerberos

TLS

Otway-Rees

I doubt that existing methods can cope with protocols that are more complicated
than SET. (Perhaps such protocols should not exist.) The single greatest advance would
be a method of abstraction allowing constructions such as the digital envelope to be
verified independently. We could then model these constructions abstractly in protocol
specifications. In the case of SET, we could replace all digital envelopes by simple en-
cryptions. Assertions would become more concise; proofs would become much simpler.
Abstraction in the context of security is ill understood, however, and can mask grave
flaws [16].

The other advance can happen now, if protocol designers will co-operate. They
should provide a Formal Protocol Definition worthy of the name. It should not em-
ploy a logical formalism — people would disagree on which one to use — but it should
precisely specify several things:

1. an abstract version of the message flow, comprising the core security features only
2. the protocol’s precise objectives, expressed as guarantees to each party
3. the protocol’s operating environment, including the threat model

At present, we are forced to reverse engineer the protocol’s core design from its docu-
mentation, and we have to guess what the protocol is supposed to achieve.

Acknowledgements.The SET verification is joint work with Giampaolo Bella, Fabio
Massacci and Piero Tramontano. Bella also commented on this paper. The EPSRC grant
GR/R01156/R01Verifying Electronic Commerce Protocolssupported the Cambridge
work. In Italy, CNR and MURST grants supported Massacci.

References

1. R. Anderson. Why cryptosystems fail.Comm. of the ACM, 37(11):32–40, Nov. 1994.
2. G. Bella, F. Massacci, and L. C. Paulson. The verification of an industrial payment

protocol: The SET purchase phase. In V. Atluri, editor,9th ACM Conference on Computer
and Communications Security, pages 12–20. ACM Press, 2002.

3. G. Bella, F. Massacci, and L. C. Paulson. Verifying the SET registration protocols.IEEE J.
of Selected Areas in Communications, 21(1):77–87, 2003.

4. G. Bella, F. Massacci, L. C. Paulson, and P. Tramontano. Formal verification of cardholder
registration in SET. In F. Cuppens, Y. Deswarte, D. Gollman, and M. Waidner, editors,
Computer Security — ESORICS 2000, LNCS 1895, pages 159–174. Springer, 2000.

5. G. Bella and L. C. Paulson. Kerberos version IV: Inductive analysis of the secrecy goals. In
J.-J. Quisquater, Y. Deswarte, C. Meadows, and D. Gollmann, editors,Computer Security
— ESORICS 98, LNCS 1485, pages 361–375. Springer, 1998.

6. E. Cohen. TAPS: A first-order verifier for cryptographic protocols. InProc. of the 13th
IEEE Comp. Sec. Found. Workshop, pages 144–158. IEEE Comp. Society Press, 2000.

7. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using CSP and
FDR. In T. Margaria and B. Steffen, editors,Tools and Algorithms for the Construction and
Analysis of Systems: second international workshop, TACAS ’96, LNCS 1055, pages
147–166. Springer, 1996.

8. Mastercard & VISA.SET Secure Electronic Transaction Specification: Business
Description, May 1997. Available electronically at
http://www.setco.org/set specifications.html .

9. Mastercard & VISA.SET Secure Electronic Transaction Specification: Formal Protocol
Definition, May 1997. Available electronically at
http://www.setco.org/set specifications.html .

10. Mastercard & VISA.SET Secure Electronic Transaction Specification: Programmer’s
Guide, May 1997. Available electronically at
http://www.setco.org/set specifications.html .

11. C. Meadows. Analysis of the Internet Key Exchange protocol using the NRL Protocol
Analyzer. InSSP-99, pages 216–231. IEEE Comp. Society Press, 1999.

12. T. Nipkow, L. C. Paulson, and M. Wenzel.Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer, 2002. LNCS Tutorial 2283.

13. L. C. Paulson. The inductive approach to verifying cryptographic protocols.J. of Comp.
Sec., 6:85–128, 1998.

14. L. C. Paulson. Inductive analysis of the internet protocol TLS.ACM Trans. on Inform. and
Sys. Sec., 2(3):332–351, 1999.

15. L. C. Paulson. Relations between secrets: Two formal analyses of the Yahalom protocol.J.
of Comp. Sec., 9(3):197–216, 2001.

16. P. Ryan and S. Schneider. An attack on a recurive authentication protocol. a cautionary tale.
Inform. Processing Lett., 65(15):7–16, 1998.

	Verifying the SET Protocol: Overview

