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special functions

* Many application domains concern statements
involving the functions sin, cos, In, exp, etc.

* We prove them by combining a resolution theorem

prover (Metis) with a decision procedure for real
closed fields (QEPCAD).

* MetiTarski works automatically and delivers
machine-readable proofs.




the basic Idea

% Our approach involves replacing functions by
rational function upper or lower bounds.

* The eventual polynomial inequalities belong to a
decidable theory: real closed fields (RCF).

% Logical formulae over the reals involving + — x <
and quantifiers are decidable (Tarski).
We call such formelae algebraic.




bounds for exp

% Special functions can be approximated, e.g. by
Taylor series or continued fractions.

* Typical bounds are only valid (or close) over a
restricted range of arguments.

* \We need several formulas to cover a range of
intervals. Here are a few of the options.

exp(x)=1+x+---+x"/n! (n odd)

exp(x)<1+x+---+x"/n! (n even, x <0)

exp(x) < 1/(1—-x+x°/2!—x>/3) (x < 1.596)




Bounds and thelr quirks

% Some are extremely
accurate at first, but
veer away drastically.

* There Is no general
upper bound for the
exponential function.




pbounds for In

* based on the continued fraction for In(x+1)

* much more accurate than the Taylor expansion

(1+19x+10x%)(x—1) (x°+19x+10)(x—1)
<lnx<
3x(3 +6x + x?2) 3(3x2+6x+1)




RCF decision procedure

% Quantifier elimination reduces a formula to TRUE
or FALSE, provided it has no free variables.

* HOL-Light implements Hormander’s decision
procedure. It is fairly simple, but it hangs if the
polynomial’s degree exceeds 6.

% Cylindrical Algebraic Decomposition (due to
Collins) is still doubly exponential in the number of
variables, but it is polynomial in other parameters.
We use QEPCAD B (Hoon Hong, C. W. Brown).




Vletis resolution prover

* a full iImplementation % acceptable
of the superposition performance

calculus |
% easy to modify

* Integrated with
interactive theorem * due to Joe Hurd
provers (HOLA4,

|sabelle)

% coded in Standard ML




resolution primer

* Resolution provers work with clauses: disjunctions
of literals (atoms or their negations).

* They seek to contradict the negation of the goal.

* Each step combines two clauses and yields new
clauses, which are simplified and perhaps kept.

* |f the empty clause is produced, we have the
desired contradiction.




a resolution step




resolution data flow

passive selected active
clause set clause clause set

contra- V. new inference
diction!! *© clauses rules

l

deduced

simplification
clauses




modifications to Metis

% algebraic literal deletion, via decision procedure
% algebraic redundancy test (subsumption)

* formula normalization and simplification

* modified Knuth-Bendix ordering

* “dividing out” products




algebraic literal deletion

% Our version of Metis keeps a list of all ground,
algebraic clauses (+ — x <, no variables).

* Any literal that is inconsistent with those clauses
can be deleted.

% Metis simplifies new clauses by calling QEPCAD
to detect inconsistent literals.

* Deleting literals brings us closer to the empty
clause!




iteral deletion examples

* We delete x°+1 < 0, as it has no real solutions.
* Knowing xy > 1, we delete the literal x=0.

* \We take adjacent literals into account: in the
clause x2 > 2 v x > 3, we delete x > 3.

Specifically, §EPCAD £inds
el e o A TRa Lt e
e?a/\/a/enZ‘ e TR




algebraic subsumption

* |f a new clause is an instance of another, it Is
redundant and should be DELETED.

* We apply this idea to ground algebraic formulas,
deleting any that follow from existing facts.

% Example: knowing x? > 4 we can delete the clause
Koo e

FEPCAHD: Ax Lx? > 4 A Ax < =1V x > 2)1
1S e?a/\/a/enz( Zo FALSE.




formula normalization

* How do we suppress redundant equivalent forms
such as 2x+1, x+1+x, 2(x+1)-1? Horner canonical
form Is a recursive representation of polynomials.

a,x" +--+ax+ a
=aqp+x(a;+x(ap+---x(a,.1 +xa;))

T he norralised Forsel/a 15 an/fae and

reads ondé/ }/ COMPQCLZ‘ 4




normalization example

2

3XYy
= y(23)] + x([z1 + y(y3)] + x[y(z2)])

first variable

2x2yz+ ZxX+3yz

* The “variables” can be arbitrarily non-algebraic
sub-expressions.

* Thus, formulas containing special functions can
also be simplified, and the function isolated.




formula simplification

* Finally we simplify the output of the Horner
transformation using laws like 0+z=z and 1xz=z.

* The maximal function term, say In E, is isolated (if
possible) on one side of an inequality.

% Formulas are converted to rational functions:

<§> (aﬁlL s y(wgi 1)




choosing the best literal

g 2\/exp:w§2V% <u
This is the cridical one:
iZ 15 Cthe most difficu/t!
And then 2HsS one
Shoetld be Zackled next.




Knuth-Bendix ordering

* Superposition is a refinement of resolution,
selecting the largest literals using an ordering.

% Since In, exp, ... are complex, we give them high
weights. This focuses the search on them.

* The Knuth-Bendix ordering (KBO) also counts
occurrences of variables, so t is more complex
than u if it contains more variables.




modified KBO

* Our bounds for f(x) contain multiple occurrences of
X, so standard KBO regards the bounds as worse
than the functions themselves!

* Ludwig and Waldmann (2007) propose a
modification of KBO that lets us say e.g. “In(x) is
more complex than 100 occurrences of x.”

* This change greatly improves the is performance
for our examples.




dividing out products

* The heuristics presented so far only isolate
function occurrences that are additive.

* If a function is MULTIPLIED by an expression u, then
we must divide both sides of the inequality by u.

* The outcome depends upon the sign of u.

* In general, u could be positive, negative or zero; its
sign does not need to be fixed.




dividing out example

% Given a clause of the form f()-u<vvcC

% deduce the three clauses f(®O)=viuvu=s0vC
O<vvu#0vC

f)zviuvu=0vC

* Numerous problems can only be solved using
this form of inference.




notes on the axioms

* We omit general laws: transitivity is too prolific!

% The decision procedure, QEPCAD, catches many
instances of general laws.

* We build transitivity into our bounding axioms.

* We use Igen(R,X,Y) to express both X<Y (when
R=0) and X<Y (when R=1).

* We identify x<y with =(y<x).




some exp lower bounads
Covers AOZ(/I

< and < '7;ancﬁiA4éy'ks

A&(/‘/ ¢ 15 o Shoeo
cnf(expNower_taylor_1,axfom, Y<exs(X), show

( ~ lgen(R,Y,1+X)
| lgen(R,Y,exp(X)) )). V<X

chnf(exp_lower_bound_cf2,axiom,
( ~ 1lgen(R, Y, (XA2 + 6*X + 12) /
(XA2 - 6*X + 12))
| 1gen(R,Y,exp(X)) )).




absolute value axioms

% Simply [X| = X if X=0 and [X| = —X otherwise.

* It helps to give abs a high weight, discouraging the
introduction of occurrences of abs.

chf(abs_nonnegative,axiom,
( ~0 <= X
| ~abs(X) = X))

cnf(abs_negative,axiom,
(0 <= X
| abs(X) = -X )).




a few solved propblems

problem seconds

x| <1 = |In(1+x)| <- In(1-|x|) 0.153
lexp(x) — 1| =exp(|x]) -1 0.318
—1<x=2|x|/2+x) <|In(1+ x)| 4.266
x| <1=|In(Q+x)| | x|(Q1+]|x])/|1+ x| 0.604
O0<x<m/2=1/sin°x<1/x*+1—-4/m° 410




nyorid systems

* Many hybrid systems can be specified by systems
of linear differential equations. (The HSOLVEF
Benchmark Database presents 18 examples.)

* \We can solve these equations using Maple,
typically yielding a problem involving the
exponential function.

* MetiTarski can often solve these problems.




collision avoldance system

* differential equations for the velocity,
acceleration and gap between two vehicles:

v=a, a=-3a-3(v—-vf)+gap—(v+10), gap=vy—v
% solution for the gap (as a function of ?):

gap — 12 =l oe="" "t c 3D loe et cos(1 61— (. Ibdes=o“sm(1167)

* MetiTarski can prove that the gap is positive!




some limitations

* No range reduction: proofs about exp(20) or
sin(3000) are likely to fall.

* Not everything can be proved using upper and
lower bounds. Adding laws like exp(X+Y) =
exp(X)exp(Y) greatly increases the search space.

* Problems can have only a few variables or
QEPCAD will never terminate.




example of a limitation

* We can prove this theorem if we replace 1/2 by
100/201. Approximating 1t by a fraction loses
information.

O<x<l1l/2=cos(mx)>1—-2x




related work”?

* SPASS+T and SPASS(T) combine the SPASS
prover with various decision procedures.

% Ratschan’s F

SOLVER

' solves quantified inequality

constraints over the real numbers using constraint
programming methods.

* There are many attempts to add quantification to
SMT solvers, which solve propositional assertions
iInvolving linear arithmetic, etc.




final remarks

* By combining a resolution prover with a decision
procedure, we can solve many hard problems.

* The system works by deduction and outputs
proofs that could be checked independently.

* A similar architecture would probably perform well
using other decision procedures.




acknowledgements

* Assistance from C. W. Brown, A. Cuyt, |. Grant, J.
Harrison, J. Hurd, D. Lester, C. Muhoz, U.
Waldmann, etc.

* The research was supported by the Engineering
and Physical Sciences Research Council [grant
number EP/C013409/1].




