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Abstract—MetiTarski, an automatic theorem prover for in-  functions by appropriate bounds. The general resoluti@n pr
equalities on real-valued elementary functions, can be ude cedure, aided by heuristics that isolate function occueen
to verify properties of analog circuits. First, a closed fom  5ccomplishes this transformation. Proofs are typicallyni

solution to the model of the circuit is obtained. We presentwo . f ds 13]. MetiTarski outout hi dabl
techniques for obtaining the closed form solution. One is bsed in a few seconds [3]. MetiTarski outputs machine-readable

on piecewise linear modeling and the inverse Laplace transfm. ~ resolution proofs, which include algebraic simplificatiand
The other is based on small-signal analysis and transfer furtion decision procedure calls in addition to the familiar retolu

theory. Second, the properties of interest are turned into aset ryles. These proofs, which can be checked separately,d&ovi
of inequalities involving analytic functions, which are proved hard evidence for the correctness of the results.
automatically using MetiTarski. We verify properties concerning . . . .
oscillation and the change in gain due to component tolerarss. In the last decade a new engineering f'eld called hybr_ld Sys-
tems has emerged. It encompasses techniques for the aittomat
l. INTRODUCTION design_ and analysis of systems with real-time and contiauou
behavior. Much work has thus been conducted on the formal
The verification of analog integrated circuits is time converification of hybrid systems. A hybrid system can be viewed
suming and requires a great deal of expertise on part £ the mathematical model of an analog circuit, which is
the designer. Unlike digital designs, the behaviour of agal essentially a set of differential algebraic equations.nfair
circuits varies over continuous electrical quantitiesef#iore methods are now a serious candidate for the verification of
they are highly sensitive to factors including signal npis@nalog systems. In analog circuit verification, one is iesézd
temperature and component variation. In addition, higheéeo in properties connected to the dynamic behavior of the syste
physical effects such as parasitics and current leakage afVe are interested in properties such &gill the circuit
when designing at the submicron level. With the constant dgscillate for a given set of parametersand “For all sets
mand of shorter time-to-market, the development of compuigf constant input voltages, will switching occur in lessritea
aided and automated tools for verifying analog designs is gecific amount of time?”
great importance. We demonstrate in this paper a methodology for the auto-
Traditionally, simulation is used to verify analog designsnatic verification of functional properties of analog desig
However, because the state space search cannot be complgiag MetiTarski. We apply the verification methodology on
simulation methods lack the rigor to ensure the correctoésstwo examples including a tunnel diode oscillator and an
the design. By contrast, formal methods can be used to verdfgerational amplifier. The rest of the paper is organized as
a model completely. Unlike in the digital domain, scalabléllows: We start with an overview of the relevant work in
solutions for the automated and formal verification of agalcSect. Il. Then describe the internals of MetiTarski in SHtt.
circuits remain elusive. Promising abstraction based andein After that we describe the verification methodology in Sect.
checking methods have been developed where properties panThis is followed by the application examples in Sect. V.
be checked and counter-examples automatically generdatedThe results are shown in Sect. VI before concluding the paper
particular, theorem proving can deliver the highest leviel avith Sect. VII.
assurance for verification: an explicit formal proof.
MetiTarski [1] is an automatic theorem prover for real-
valued analytical functions, including the trigonometand The verification of analog circuits started with the work
exponential functions. It works by a combination of resiolnt on developing finite-state discrete abstractions for cdampu
inference and algebraic simplification, invoking a degisioing reachability relations. Unfortunately, these methads
procedure (QEPCAD) [2] to prove polynomial inequalitigs. | time bounded and computationally expensive. Greenstrekt a
axiomatic basis consists primarily of upper and lower baunditchell [4] attempted to overcome these limitations by-dis
for the special functions, obtained from their power sedes cretizing the state space by incorporating projectionréeples
continued fraction expansions. The conjecture to be proved the state variables. This introduces larger overappraxi
is transformed in stages, replacing occurrences of spediahs but makes the verification more tractable. This allbwe

Il. RELATED WORK



circuits with a large state space to be verified using redtityab ~ MetiTarski further depends upon being supplied with ax-
analysis. These ideas inspired later work as in the modeins approximating the functions of interest with upper or
checking tools d/dt [5], Checkmate [6] and PHaver [7] anldwer bounds. These approximations could be polynomials,
were respectively used in the verification of a biquad lowatios of polynomials or expressions involving other fuocs.
pass filter, a tunnel diode oscillator and a voltage corddbll For example, one axiom asserts that

oscillator. Unfortunately, these three tools still rely thie use
of time bounded reachability algorithms.

Another track of work has been conducted on qualitative an upper bound for exp(x) providedl < 2 < 4. Each
based methods for the construction and verification of abstraxiom will give a good approximation for some part of the
models, which overcomes the time bound requirement of theal line, but typically several axioms are needed to solve a
reachability methods. In [8], the authors used HybridSAL [$roblem. Other axioms allow division (which QEPCAD does
to generate an abstract model of several analog oscillatatst accept) to be replaced by multiplication. The resohutio
Symbolic model checking was then used to prove safgtyoof procedure automatically tries various combinations!
properties on the generated abstract state space. Theiltifficit is successful. A failing proof typically runs forever,aiagh
in particular with this method is that the generation of thi some cases MetiTarski recognizes that no proof exists and
predicates that define the abstract model is nontrivial. Blumhalts with an appropriate message.
intervention is required to choose the useful and correeson  Competing methods [13], [14] typically use a combination
Additionally, the abstraction can cause spurious cour&Te of constraint programming and interval arithmetic. Theg ar
ples to be generated even if the circuit's behaviour is @brreoften powerful, but have their own limitations. They do not

Our concern is the automated verification of analog circuiteturn proof certificates, and they require all variablesbéo
using deductive methods. In an early attempt at using thheor&ounded by finite intervals. They can also run forever under
proving for the formal verification of synthesized analogertain circumstances.
circuits, Ghosh and Vermuri [10] proved the equivalence of
analog designs that contain linear components and comgmnen IV. VERIFICATION METHODOLOGY

with behaviour that can be represented by piecewise-linearrpe methodology we follow to verify analog properties is
(PWL) models. The PVS higher-order logic theorem prover ihown in Fig. 1. Starting with an analog circuit, a functibna
then used to prove the implication between implementatioB%perty describing some required behaviour is chosemgJsi
and behavioural specifications built in VHDL-AMS. the computer algebra system Maple [15], the behavioural
In similar work with theorem provers, Hanna [11] usegnodel of the circuit is transformed into a closed form. The
formal logic to define the behaviour of predicates over \g#ta property is then combined with the closed form solution and
and current waveforms. The basic behaviour of componerignually transformed into an inequality. The resulting ex-
such as resistors, power supplies and transistors are defiggession is then processed by MetiTarski which automégical
and then used to verify the behaviour of a NOT gate. generates a proof if it can determine that the inequalitg$ol
These early attempts are mostly based around heuristics Toiis resulting proof indicates that the property is true.
constructing the circuit component models and for deteimgin | MetiTarski is successful, it delivers a proof and we are
the specification of the observed behaviour. Due to the undgbne. If unsuccessful, it will run until terminated by the
lying higher-order logic, they cannot be automated and aiiger. Additional axioms are then added or removed to aid
therefore not suited for larger applications. The methogpl MetiTarski in formulating a proof. There are certain axioms
we present in this paper can be entirely automated and
therefore could be applied to more than just basic academic
problems. For information about the state of analog and daixe Analog
signal verification, see the survey article [12]. Spec. ircui

Circuit
IIl. METITARSKI: AN AUTOMATIC PROVER FOR Property 0 Closed Form
Interest Solution
ELEMENTARY FUNCTIONS

MetiTarski is an automated theorem prover for real-valued

— (2 + 1227 4+ 60z + 120) /(2* — 1222 + 60x — 120)

-

. . . Express a:
special functions such as arctan, log, exp, sin, cos andIsqrt inequalty P MetiTarski [——= Fr00f Generatex
consists of a resolution theorem prover (Metis) combinetth wi 5 .
o oes not terminate
a decision procedure (QEPCAD) for the theory of real-closed Add
fields. Resolution works with clauses, which are typically Axioms
disjunctions of inequalities, and the decision procedgsists Does not terminate
resolution by deleting from a clause any inequalities that i Range
. . . . . Reduction
finds to be inconsistent with known facts or assumptions.

Deleting a literal makes progress because the aim of résolut
is to generate the empty clause, which represents contiatlic Fig. 1. MetiTarski Verification Methodology



that are available for special functions that take on exérem « Piecewise-linear circuits are the simplest class of nenlin

values. Including them unnecessarily in proofs will inaea ear circuits.

the computation time. « The behaviour of many op-amp and diodes and switch
If still unsuccessful, an attempt at applying basic range circuits can be reasonably approximated as piecewise-

reduction is made to the trigonometric functions to further linear.

eliminate any extreme values that can cause problems foe Linear methods are substantially more tractable than

MetiTarski’'s decision procedure. nonlinear ones, even when they divide the problem into
There are two main difficulties: one is obtaining the closed multiple modes.

form solution and the other is transforming the property

inequality. The choice of property governs whether theatios The transition relation between each mode of the PWL

form solution should be dependent on time or frequenapodel is determined and ordinary differential equations

As well, the number and type of components in the desig®@DES) are constructed over each piecewise segment. The

determine the required solution generation method. work performed by the Maple computer algebra system
Two closed form solution generation methods are presenisdshown in Fig. 3. Starting in any mode, the ODEs and

and they both rely on some amount of linearization. One iisitial conditions are supplied to Maple’s inverse Laplace

based on converting the nonlinear behaviour of a compondr@nsform routine ifivlaplace to calculate a closed form

into a piecewise linear approximation. The other, similar isolution for each state variable as a function of time.

nature to the first, is based on linearizing the entire ciratii Using the transition relations, the numerical solvésolve

its DC-operating point. These methods inherently intredudetermines the exact time where the system switches modes.

some degree of error to the verification problem. In thiat that time instance, the initial conditions for the next

work, we assume that the linearization is valid in the chosemode are then evaluatecev@) and the inverse Laplace

neighbourhood. transform is performed again to find the closed form solution

A. Obtaining the Closed Form Solution: Piecewise Linerstriza-lrhIS is repeated until each mode of the model has been visited

tion

To obtain a closed form solution for nonlinear component ,ote. We take the results_ of Maple as_belng correct even
ough no formal proof of its transformations is produced.

we follow the method described in Fig. 2. The idea is t
separate the behaviour of the circuit in terms of its digcret
“modes”, such as the oscillation modes of an oscillator.rOve
each mode, the circuit will operate according to a different
mathematical relation.

Initial Condition:
Mode N

Analog
Circuit ODEs

Mode N

Maple
= Inviaplace

!

Closed Form
Solution
Mode N

Y

Transition
Relations

Initial
Conditions|

Piecewise
ODEs

Maple
Fsolve

@ Mode N Switching Time|
into Mode N+1
Fig. 2. Generation of the Closed Form Solution of each Mode :

Closed form
solutions fo
each mode

We first obtain the system of differential equations from M.;?gf
the circuit of interest. Any nonlinear elements are trarmsfd I
into an approximated PWL model. Due to this, there will be a — —
certain amount of error introduced at this stage. The degfree '”'“i,',&?;,‘f,‘ﬂg”
error is set by choosing the number of segments in the PWL \_/—\

model. The higher number of segments, the more precise the

model will b.e: buj[ with an. mcr_eased compu'Flng cost. Even Fig. 3. Determining the Closed Form Solutions for Each Mode
though precision is lost with this transformation, we defen

our modeling choice for the following reasons [16]:



B. Obtaining the Closed Form Solution : Linearization at thep-amps, operational transconductance amplifiers andegiod
DC Operating Point The work done with Maple is interactive and could easily

In the first method, we were concerned with separating tR§ automated. The verification performed by MetiTarski is
modes of operation of a single nonlinear component. Tl,ﬁgurely automated. To show the feasibility of the proposed

method works well when dealing with a design that contaiﬁgethOdomgy we h_ave applied it on several standard analog
components that operate equally over each mode of operatigﬁs'gns’ two of which we present next.
When the number of nonlinear circuit elements increases, th
amount of work required to keep track of the states and the
transitions becomes increasingly difficult. One simplifia  |n this section, we will describe the application of our
is to assume that the components only operate over a singléthodology to an analog oscillator and an Operational Am-
mode and are centered at a single voltage (DC operating)poiplifier (Op-Amp). Oscillators play a critical role in many
This is the case with a transistor that operates linearly gommunication systems, in particularly for generating a pe
its saturation mode of operation. By assuming that a smalbdic signal needed for the frequency translation between
AC signal is superimposed on top of the DC signal, it isarriers. The tunnel diode oscillator has been previousgdu
possible to usemall signalanalysis for calculating the closedin [6], [20], as a benchmark for analog formal verification
form solution. Linearizing the entire circuit at a DC opéngt techniques and thus serves as an appropriate example for
point greatly simplifies the generation of a single closeunfo demonstrating our methodology. Amplifiers are the mostdasi
solution for designs with several nonlinear components.  component in analog circuits, which are used to control and
To obtain a closed form solution we follow the methodnanipulate the currents and voltages to achieve the retjuire
described in Fig. 4. The circuit is linearized at its opergti specifications. One of the issues with verifying such cisis
point. Then using circuit analysis, a transfer functiontthahat their operation is highly dependent on process variati
relates the input to the output is extracted from the singalifi and therefore require many lengthy simulations.
model. This method is particularly useful for generating a
closed form solution that is dependent on frequency. A. Tunnel Diode Oscillator

V. APPLICATIONS

The tunnel diode oscillator shown in Fig. 5 demonstrates the
Analog effect of resonant tunneling that causes a negative resista
Circuit to appear at small forward bias voltages as shown in Fig. 6.
Essentially, for some range of voltages the current thrahgh
L tunnel diode decreases with increasing voltage. This hegat

Linearize resistance can be used to create a reliable oscillator uhat f
tions under many different operating conditions. We intend
{ to verify that for certain initial states and component eslu
Kirchoff's the tunnel diode oscillator will not oscillate. By verifgrthis
Laws property, we will be able to eliminate designs that do notkvor
\__/\

I
—

R L
vV — I C Y, D Ip
T T '
Fig. 4. Generation of the Parametric Based Closed Form iSolut =

Closed form
solution

Fig. 5. Tunnel Diode Oscillator
C. Property Transformation
Circuit analysis is used to determine the differential equa

The next step is to turn the verification property into an s of the circuit They are defined as

inequality over special functions, as shown in Fig. 1. A first

order formula in the Thousands of Problems for Theorem Vo = l(—ID(VC) +1p)

Provers (TPTP) format, including the corresponding axioms C

is then supplied to MetiTarski. MetiTarski uses an extemsio I; = l(—VC —Rx I+ Vi)

of the TPTP format, including infix notation for the arithrizet L

and relational symbols [17], [18]. where Ip (Vo) is a PWL model that has three modes of

There exist advanced methods to automatically extramperation. Takingt; and F- to represent the voltages where
ODEs from a circuit description. In our previous work [8], wahe model switches modes aii¢h, G; and G2 to represent
used the Dymola modeling framework to extract simplifiethe separate contributions to the slope of the best fit curve i
ODEs from a SPICE netlist. Chua and Deng [19] provideach mode, we can define the PWL model [16] of the tunnel
an automated method to generate the PWL model of certdiiode as



3 can be written as the first-order linear differential syste
1 1 1 i = Ax + B, where the A matrix represents the coefficients
Ip(Ve) = - §(G1E1 +GaB2) + (Go + §G1 + §G2)VD of the state variables and the B matrix represents the aussta

1 1
+ §G1 |VC — E1| + §G2 |VC — E2|

[ 4 -3x20 -10¢
Fig. 6 shows the real continuous behaviour of the tunnel * = | v, |77 10° —2.621 x 108

diode as well as the PWL approximation. From the graph, 5

the linearized variables are: in regiongk,= Gy. In region 2, B= [ 3x10 ]

g2 = Go+G1. Inregion 3,g3 = Go+G1+G2. In our example, 0

Go = 0.2616, G; = —0.3608, G2 = 0.3591, E; = 0.276 and Let X denote the Laplace transform of (X = Lz); then

Ey = 0.723 giving sX —zg = AX + £, and solving forX we haveX = (sI —
A)~Y(zo) + £. With the initial states as, = (0.025,0.74) (a
0.2616Ve if Vo <0.276 transposed matrix) and using Maple we construct the matrix
Ip(Vo) =<{ —0.0992Ve + 0.0997  if 0.276 < Vg < 0.723 as shown in Fig. 8.
0.2599Ve — 0.1599 if Vo > 0.723. The closed form solutions of the state variables are obdiaine

by taking the inverse Laplace transfoit! X and we obtain

"7 Mot | viode2 Mode 3 Vo(t) = 0.116e~>58%10 4 0,278 — 0.262¢~+19x10"
IL(t) = 0.448 x 10~ 3¢258x10% 4 o727
_ 0'0677874.19X106t

@ Now we have the state space representation of the system
for Mode 3 in Fig. 6. The next step is to determine the time
when the tunnel diode switches from Mode 3 to Mode 2. By
using Maple, we determine that the conditibp < 0.723
is true att = 2.38 x 107° s. The values of botlVz and
I; are evaluated at this time. We then use these values for
0 02 51 04 | 06 208 ] xo and again repeat the process of finding the mafXix

" and taking its inverse Laplace transform. This is repeated a
shown in Fig. 3 until we have visited each mode and have
) y generated the closed form solutions for the two state viasab

The system is now completely specified. Each mode Is

defined by a set of ODEs and switching constraints. Th& Mode 2 in Fig. 6, the closed form solutions are
resulting time-deterministic hybrid model can be illustc , ,
as an FSM as shown in Fig. 7. Each mode of operation ¥ (t) = 0.278 + 0.0025¢> 791" — 0.0045¢ 110%™
represented by a state circle and the switching constramets IL(t) = 0.0727 + 0.00039¢—1-10X107t _ 4 0000288 79x 107t
indicated above each directional arrow.

gl

Fig. 6. Tunnel Diode Current Linearization

Vi > 0.276 Vp > 0.723 For Mode 1 in Fig. 6, the closed form solutions are

> (\> < Vc(t) =0.323 — 01.64672'56X108t 4 0.56674'21X106t
Mode 1 Mode 2 Mode ] . )
IL,(t) = —0.076 — 0.00064~256X10° | ( 144¢~421x10%

Vp <0.276 V Vb <0723V

To demonstrate the power of MetiTarski, we seek to define
Fig. 7. The Hybrid Model of the Tunnel Diode Current an oscillation property that can be proved over all modes
of operation. One such property i$or a set of initial
Suppose the parameter values &e= 50 Q, L = 10~% conditions, the circuit will not oscillate”In this example we
H, C =107 FandV = 0.3 V, the dynamics of Mode focus on the current through the inductor. When the Tunnel

., 0.300 x 106
(s 4 0.262 x 10%)(0.55 x 1072 4 ——— ") 0.131 x 108

S _
(57 +0.262 x 10% + 0.108 x 101°) (52 +0.262 x 109 + 0.108 x 1016)
0.300 x 10
7
(0.550 x 107 + ————) (0.131s + 0.393 x 10%)

S
(s24+0.262 x 1095 4 0.108 x 1016) ' (% + 0.262 x 10%s + 0.108 x 1019))

Fig. 8. Tunnel Diode Matrix



Diode oscillates, the current through the inductor willgan The Op-Amp is a popular device because of its versatility.[22
between a set of values. A necessary condition for osaifiatilt is a fundamental building block of many designs including
is that the current pass some threshold. Since this reqaitemdifferential amplifiers, integrators, differentiatorstagigital to
is not sufficient for oscillation to occur we must focus omnalog converters. One characteristic that makes vertfitaf
non-oscillation. If we choose an initial point and the catre Op-Amps a simpler task is that its behaviour approaches the
does not exceed the threshold, then we can conclude thatittealized model under certain operating conditions.
circuit does not oscillate. This property can be more eyactl The analysis of the frequency domain is important since an
defined as‘For all time and all possible paths, the currentinput signal is usually not constrained to a single freqyenc
through the inductor will never pass some upper or lowerhe performance of a device will behave differently at high
bound”. For example, when the upper bound is 0.03, thfeequencies. Consider the circuit in Fig. 9, as the frequenc
property can be expressed as: of the input signal increases, there will be a point where the
gain drops below a specified level.
Property 1: [I1, < 0.03]

The first order formula we supply to MetiTarski is in its
TPTP-syntax. For example, to prove that in modelj,is &—1[,
In, )

always less than 0.03 we use the following

fof( In. IlJ _I}J || Out
Tunnel,conjecture, ! [X] : IL'I_T__F'J !
(0 <= X & X <= 239 *107(-9)) => Igias
(- 0.076 - 0.00064 *exp(-2.56 *107°8 *X) @ L{[: L{q |_|
+ 0.144 *xexp(-4.21 *1076 * X)) Vee
< 0.03)).

Fig. 9. Operational Amplifier [23]

where fof’ indicates to MetiTarski that the logic language

used is a first-order formula. It is then followed by a label TO begin verification, the circuit is first linearized at its
of the proof as well as the keywordonjecture’ indicating OPerating point and then using nodal analysis (Kirchhoff's
that the following formula is to be proved with the includedurrent and voltage laws), the following transfer functisn

axioms. The conjecture is read as follows: For all (repreesén €xtracted

by "I") X between 0 and2.39 x 10~ the formula is always Age”?
less than 0.03. H(s) = 1+ AySnlhm) o 4 coslphm) 1 oo 123
Now suppose we choose the component valles 0.3 2, gbw2m gbw?dn*

L =10%H, C =10°F V = 0.3 V. Using the same wherephm represents the phase margimw the gain band-
inverse Laplace transform methodology, we get the closeddth, A® the phase tolerance amh the closed loop gain.
form solutions of the state variables. The property of iesér The phase margin is an indicator of amplifier stability. The
is now: For a set of initial conditions, the trajectory of thephase tolerance represents the change in phase from input
oscillation reaches a final set and remains boun{&tl. The to output. The closed loop gain represents the gain of the
variables of the circuit that oscillate ai& and I;,. This can Op-Amp when connected in a feedback configuration. What
be described formally as: we would like to determine is that over a certain range of
parameter values, does the gain of the circuit remain above
some minimum value.

MetiTarski proves both properties over the three modes ofBY taking the absolute value or magnitudefd(s), a closed
operation. For property 1, it is proved that the circuit dod@rm solution for the gain of the circuit is obtained. Witheth
not oscillate. For property 2, it is proved that the osdifiat closed loop gain chosen to be 93 dB and the gain bandwidth
present in the circuit is bounded. Complete runtime resflts to be 5 MHz, the gain is now characterized by the equation
this example can be found in Tables | and II. in Fig. 10.
B. Operational Amplifier From the specification of the circuit [23], we are given that

' in the frequency range of 100 to 120 Hz the gain of the circuit

In this final example, a frequency domain property of ghould be greater than 57000 and this can be expressed as:
CMOS Operational Amplifier will be analyzed and verified.

Property 2: [Ve > 0A Ve <0.9A I >0A I <0.08]

. 5.9 x 1017
[H (jw)| =
1029 10%w*cos(phm)  105w*cos(phm)  1029w? cos(phm) +wt + 1024w?2  10%*w? cos(phm)?
0.1 0.28 0.83 0.83 w 0.28 0.28

Fig. 10. Gain of the Operational Amplifier



Property 3:
[F'reqs.100 to 120 Hzphm 45 to 60 Deg |H (s)| > 57000]
Using MetiTarski

fof(OPAMP,conjecture, ! [X,Y] :
((100 <= X & X <= 120 &
Pl/4 <= Y & Y <= PI3) =>
(5.9 =10719/
(sqrt(9.7  x10°29
- 3.6 *1079 * X4 *cos(Y)"2
- 1.2 *10°5 * X4 * cos(Y)
- 1.2 *10720 *X"2 *cos(Y)
+ X4 + 3.6 *10724 « X2
- 3.6 10724 = X"2 xcos(Y)"2))
> 5700))).

circuit properties could be verified. The experimental ltssu
are presented in Tables I, Il and Ill. In each table, the name
of each experiment represents the mode (1, 2 or 3), variable
under test Y or I;) and either the upper (U) or lower (L)
bound. For the tunnel diode oscillator we first proved in one
case that oscillation is not present. The results show three
experiments that indicaté, never passes some upper bound
in any mode. In the other case, it was necessary to conduct
12 experiments to prove that each of the three variables are
bounded in each mode. The frequency dependent gain of an
operational amplifier was also verified. The runtimes were
measured on a 2.8 GHz Dual Quad-Core Mac Pro, with 4GB
of RAM.

The experimental results indicate that it is possible to
solve simple analog circuit verification problems using an
_automated theorem prover. We obtain formal proofs that ean b

MetiTarski proves that the property holds over the entifgqyacteq in order to increase our confidence that the design

frequency range. Specifically, that the gain of the circoi¢sl

correctly matches its specification. Most of the experiraent

not decrease below the required level. The runtime rest8ts @t in less than 5 seconds. For those that took longer

found in Table IlII.

Mode | Variable | Bound || CPU Time (sec.)
1 Iy, U 0.1
2 I U 4.0
3 I U 0.3
TABLE |

TUNNEL DIODE OSCILLATOR - PROPERTY1 RESULTS

Mode | Variable | Bound || CPU Time (sec.)
1 Ve U 0.2
1 Ve L 0.4
2 Ve U 2.7
2 Ve L 0.6
3 Ve U 0.3
3 Ve L 0.5
1 I U 0.5
1 I L 0.3
2 I U 0.6
2 I L 3.9
3 I U 0.3
3 I L 0.6

TABLE I

TUNNEL DIODE OSCILLATOR - PROPERTY2 RESULTS

Mode Variable | Bound || CPU Time (sec.)
Saturation| |H(s)| L 8.64
TABLE Il

OPAMP - PROPERTY3 RESULTS

VI. EXPERIMENTAL RESULTS

this is explained by the extreme values taken by the special
functions of the closed form solutions. It is sometimes jides

to perform range reduction to reduce the time that is necgssa
to complete the proof. Unfortunately, range reduction i$ no
trivial to apply to trigonometric equations.

VIl. CONCLUSION

First and foremost we have developed a viable methodology
for the automated verification of analog designs. Startiitg w
the system of equations model of the analog circuit, theeclos
form solutions of each mode of operation is generated using
Maple. The closed form solutions are then passed to the
MetiTarski theorem prover along with properties of intéres
defined in terms of inequalities. MetiTarski then generates
full proof of its claim of truth. Secondly, we have demontgth
that the methodology can be applied to a certain set of analog
circuits. The tunnel diode oscillator analyzed in the papss
an interesting and complex behaviour that requires a hig le
of verification to ensure proper functionality. The resuttat
we have obtained are promising and we are now interested
in applying the methodology to different classes of cirguit
The proofs we have obtained are performed quickly and this
is an indication that our methodology could be scaled to more
complicated problems.

To scale to larger problems, we will need to investigate
efficient methods for analyzing nonlinear systems. Extarsi
to our work could include methods for analytically solving
systems of polynomial nonlinear ordinary differential a¢u
tions. One such method is the Prelle-Singer procedure [24],
which is implemented in computer algebra systems such as
REDUCE (the PSODE package [25]) and Maple (the PSsolver
package [26]). Furthermore, the automation of the mechnic
steps must be addressed. This will include an investigation
on methods to automatically calculate the piecewise linear

In the previous section we presented concrete exampfaactions of nonlinear circuit elements and to automate the
of how, using the theorem prover MetiTarski, various analogork performed by Maple.



We are quite motivated by the results of the work in thig3] L. Hedrich and E. Barke, “A formal approach to verificati of linear
paper and further experimentation is ongoing. A necessary analog circuits with parameter tolerances,” [EEE/ACM Design, Au-

addition to the methodology would be to increase the pmisi[24]
of the PWL models by introducing an error bound. Indeed,

we will need to apply MetiTarski to bigger and more complef<25]

examples, where a limiting factor is formulating the prdaper
of interest in terms of analytical functions.
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