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Abstract

We model and verify noise in analog/RF designs using an automated theorem
prover. We model the designs using stochastic differential equations (SDE), due
to the statistical nature of noise. We find a closed form solution for the SDEs
based on stochastic calculus, and then verify properties using the MetiTarski
theorem prover. Our approach is illustrated on an RL High-Pass Filter and a
Sample-and-Hold Bottom-Plate Mixer circuit.
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1 Introduction

In recent years, advanced technologies have allowed designers to develop smaller, faster,
low power integrated analog/RF/digital designs in a single chip, known as systems-on-
a-chip (SoC). With this complex integration among various blocks and due to non-
linear dynamics of analog/RF designs, effects like inheritance or interactive noise have
been responsible for inexplicable design failures [10]. In general, the sources of noise
could be due to unwanted interaction between the different circuit blocks (e.g., inter-
ference noise) or it could be inherited from the circuit elements (e.g., thermal, shot and
flicker) [11]. To fully understand the influence of noise on the overall performance of
the analog/RF design and meet the specification, it is necessary to model and verify all
the dynamics involved in the design. Hence, a growing number of research groups and
industry have looked at the effect of noise during the various design and verification
phases.

The first step is to find an adequate model for analog/RF designs with noise. Unfor-
tunately, the usual statistical analysis of stochastic processes does not allow designers
to describe the random behavior of a system in the time domain. In fact, for a time-
invariant design model, the assumption is that noise does not affect the operating
points and the inputs are periodic. However, when the noise is large and the operating
points vary due to nonlinearity, accurate results can only be achieved through transient
simulation. Due to the statistical behavior of the noise, we are interested in finding a
statistical solution rather than a detailed response of the system, therefore we propose
to use stochastic differential equations (SDE) [3] as an analog/RF noise model allowing
designers to capture the statistical properties of the design in continuous-time. How-
ever, the challenge is to incorporate verification techniques that are suited for SDE
based modeling.

2 Related Work

For noise analysis, current industrial designs rely heavily on the harmonic-balance
method in the frequency-domain and monte-carlo techniques in the time-domain, which
of course will still be important in future. The former suffers from capacity problems,
while the monte-carlo based technique suffers from expensive simulation run-times.
More recently, model checkers such as PRISM [1] have been advocated for formal mod-
eling and analysis of probabilistic systems because of their ability to support different
types of probabilistic models. In [6], statistical based model checking has been success-
fully used to verify saturation property in a simple analog circuits such as a third-order
∆Σ modulator [6]. However, no such model checker has been used to verifying noise in
analog circuits. Also, for large circuits model checking can easily run into state-space
explosion. To overcome the drawbacks, Akbarpour and Paulson [2] have proposed an
automatic proof procedure for inequalities on elementary functions called MetiTarski
and which we will adapt in this paper. They have successfully verified control and hy-
brid systems such as the inverted pendulum and a magnetic disk drive reader system.
However, the challenge is to incorporate the above technique for noise verification using
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SDEs. There exist a number of efficient SAT solvers that can be considered for auto-
matic checking of inequalities. For example, bounded model checker such as HySAT [8]
that combines arithmetic constraints over real- and integer-valued variables can only
prove if a property is unsatisfied.

In summary, though there is on-going research that targets analog design modeling
and verification, none of them provides a common platform for reasoning about noise
in a formal framework. In this paper, we take this verification process a step further,
by investigating the usefulness of an automated theorem prover for analog/RF designs,
especially in the presence of noise. We propose an SDE based verification methodology
in a theorem proving environment using MetiTarski [2]. MetiTarski combines a resolu-
tion theorem prover with set of axioms and a decision procedure to automatically prove
inequalities concerning the elementary functions such as sine, cosine, exp. As most of
the closed form solution in an analog/RF circuits involve elementary functions it is
intriguing to study the effects of noise using MetiTarski. Our approach is illustrated
on a RL High-Pass Filter and a Sample-and-Hold Bottom-Plate Mixer circuit.

3 Preliminaries

3.1 Stochastic Differential Equation

A SDE is an ordinary differential equation (ODE) with stochastic process that can
model unpredictable real-life behavior of any continuous systems [3]. A stochastic
process is a collection of random variables {Xt; t ε T} defined on a given probability
space indexed by the parameter time t that vary over an index set T. The random term
in SDE can be purely additive or it may multiply with some deterministic term [3]. For
Example, consider the population growth model describe by the following differential
equation

dN

dt
= a(t)N(t); N(0) = A (1)

where N(t) is the size of the population at time t, and a(t) is the relative rate of
growth at time t and A is some initial constant. But, a(t) is unknown and is random
in nature. Hence a reasonable mathematical interpretation of the randomness for the
above equation can be described as

dN

dt
= a(t)N(t) + ξtN(t); N(0) = A (2)

The term a(t)N(t) is the deterministic drift coefficient while the term ξtN(t) represents
the stochastic effect [3]. However, in SDE terminology, the above equation can be
represented in two forms [3]: Itô or Stratonovich for more mathematical explanation of
Stratonovich form. If we consider ξt to be the pathwise derivative of Brownian motion
(or Wiener Process) dBt, then Equation 2 can be written in Itô differential and integral
form as given by

dN = a(t)N(t)dt +N(t)dBt

N =

∫ t

0

a(s)N(s)ds +

∫ t

0

N(s)dBs
(3)
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However, to solve Equation 3 traditional calculus lack the structure to handle
stochastic process, and hence we need special mathematical interpretation in the form
of stochastic calculus to solve the equations involving brownian motion [3]. A Brown-
ian (or a Wiener process) is a family of random variables Wt, indexed by nonnegative
real numbers t, defined on a common probability space with the following properties:

� W0 = 0.

� With probability 1, the function t → Wt is continuous in t.

� The process Wt has stationary, independent increments.

� The increment Wt+s - Ws has the Normal(0, t) distribution.

In addition, stochastic calculus uses the concept of expectation and Itô isometry to solve
SDEs. Expectation determines the behavior of any system in the absence of randomness
and hence it is easy to conclude that the expectation of any random process (Brownian
or Wiener) is zero. As brownian motion cannot be solved using definite integral, the
goal of Itô isometry is to replace the brownian motion dBsby deterministic term ds
for solving SDEs. Table 1 summarizes some of the theorem and axioms that will be
adopted in this research for solving SDEs.

Table 1: SDE Formulas [3]

Expectation of a Brownian motion

∫ t

0

FsdBs = 0

Substitution-by-parts d(etXt) = etXtdt + etdXt

Itô Isometry Property E

([∫ t

0

FsdBs

]2
)

= E

([∫ t

0

F 2
s ds

])

Noise Nt = Xt − E[Xt]
Variance of the noise V ar[N2

t ] = E[X2
t ]− E[Xt]

2

3.2 MetiTarski

MetiTarski [2] combines a resolution theorem prover with a set of axioms and a decision
procedure to automatically prove the elementary functions. As most of the closed form
solution in an analog/RF circuits involve elementary functions such as sine, cosine,
exp, log, etc., it is intriguing to study the effect of noise using MetiTarski.

In general, MetiTarski turns the verification property into an inequality over special
functions and is included as a first-order formula. Since MetiTarski uses polynomial
substitution for special functions, axioms must be appended in every format to tell
what clauses to be used. For example, to prove that the current in the RL High-Pass
Filter is less than or equal to certain threshold in MetiTarski, we follow the following
syntax
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fof(RL Circuit,conjecture, ! [X] :
(
(0 ≤ X & X ≤ 0.1) =>0.1*(1−exp(−50*X)) + 0.01*(1−exp(−100*X)) ≤ 0.15)

).

where ”fof” indicates the logic language used is a first-order formula. It is followed
by a label name, in this case it is RL Circuit, and a keyword “conjecture” indicating
that the following formula is to be proved with the included axioms. The above formula
can be read as follows: For All (!) X between 0 to 0.1, the formula which represents
the current through the inductor is always less than or equal to 0.15 amps. The first
part in the formula 0.1 ∗ (1 − exp(−50 ∗X)) is the deterministic value of the current
through the inductor, and the second part 0.01 ∗ (1 − exp(−100 ∗X)) is the variance
of the output current due to noise. The main advantage of the using MetiTarski is
that its a complete proof with logical inference steps generated automatically, thereby
giving raise to higher confidence in the proof.

4 Proposed Methodology

Figure 1 depicts the proposed SDE based methodology using the automated theorem
prover MetiTarski for noise verification in an analog/RF circuit. Thereafter, given an
analog/RF design described as a system of ODEs, the idea is to include a stochastic
process that describes the noise behavior. Since there are no functions/procedures that
can automatically incorporate stochastic processes, we manually generate the SDEs of
the form described in Equation 3. Though, there are some tools that can solve simple
SDEs, most of the real-world problems have to be solved manually using theorems
shown in Table 1. Subsequently, the environment constraints such as amplitude of
noise, initial conditions of the circuit current and voltages are included in the SDEs to
get a closed form solution. The closed form solution allows us to express the proper-
ties of interest as inequalities over special functions. Since, MetiTarski uses polynomial
substitution for special functions, appropriate axioms must be appended to every prob-
lem.

If MetiTarski is successful, it delivers a proof and we are done. If unsuccessful, it
will run until terminated by the user. Additional axioms are then added or removed
in formulating a proof. Including them for special functions that take extreme values
will increase the computation time. If still unsuccessful, range reduction is applied
to the trigonometric functions to further eliminate any extreme values that can cause
problems for MetiTarski’s decision procedure. In general, automated methods using
MetiTarski develop a complete proof with logical inference steps, thereby providing
high confidence in the design.

5 Applications

We have applied the proposed methodology to analog/RF circuits, including a RL High-
Pass Filter [7] and a Sample-and-Hold Bottom-Plate Mixer circuit [5]. The experiments
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Figure 1: SDE based Verification Methodology using MetiTarski

were all performed on a ULTRA SPARC (177 MHz CPU, 1024 Mbyte memory).

5.1 Example 1: RL High-Pass Filter

The circuit diagram of a RL high-pass filter is shown in Figure 2. The filter uses a
series resistor R and a shunt inductor L connected to an input source Vin to accomplish
high-pass filtering.

Vin+ξ2(t)

R+ξ1(t)

L

I

VL

Figure 2: RL High-Pass Filter Circuit [7].

The high-pass filter circuit can be described as

L
dI

dt
+ RI(t) = Vin(t), I(0) = I0 (4)

Assuming a white noise process at the input voltage source Vin and at the resistor R,
Equation 4 can be rewritten to incorporate randomness as given by

L
dI

dt
+ (R + αξ1(t))I(t) = Vin(t) + βξ2(t) (5)

where ξ1(t) and ξ2(t) are two independent white noise processes, and α and β de-
scribe the amplitude of the noise. Equation 5 represents Itô SDE in differential form.
Replacing ξt in Equation (5) by Brownian motion derivative, we get

dIt =

(
−R

L
It +

1

L
Vin(t)

)
dt +

1

L
dBt (6)
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In the above equation, the first term is the deterministic part, which describes the
trajectory of the output process without noise, and the second term is the stochastic
part, which modifies the output trajectory due to noise. Our aim is to extract infor-
mation such as mean E[It] and variance E[I2

t ], because the mean represents the output
trajectory in the absence of noise and variance gives the amount of deviation due to
noise. Now, the goal is to find a closed form solution using stochastic calculus and
the following gives a detailed analysis of extracting the mean and variance for the RL
High-Pass filter.

First, we formally multiply both side of Equation (6) by e
R
L

t and by substitution-
by-parts we have,

d(e
R
L

tIt) =
1

L
e

R
L

tV in(t)dt +
1

L
e

R
L

tdBt (7)

Integrating equation (7) on both sides and taking expectation, we have

E[It] = e
−R
L

tI0 +
1

L
e
−R
L

t

∫ t

0

e
R
L

sV in(s)ds (8)

Equation (8) represents the equation describing the mean of the output process, which
happens to be exactly the same as the differential equation for the system without
noise. To calculate E[I2

t ] we need to use the interpretation of stochastic calculus. By
Itô isometry property shown in the Table 1 we can formalize,

E

([∫ t

0

e
R
L

sdBs

]2
)

= E

([∫ t

0

e
2R
L

sds

])
=

(
L

2R

[
e

2R
L

t − 1
])

(9)

If we now define the output noise to be Nt = It - E[It], then by combining Equation
(8) and (9) turns out to be,

V ar(It) = E
(
[It − E (It)]

2) = E
(
N2

t

)
=

1

2RL
e
−2R

L
t
[
e

2R
L

t − 1
]

(10)

Equation (8) and (10) represents the closed form solution of the high-pass filter.
Now, the next step is to formalize and verify circuit correctness properties for a given
set of parameters and input source.

Property Observations
The properties that we verify in this paper are the steady-state condition and gain for
different circuit parameters as shown in Table 2, where ω = 2πf and t is the time.

Property 1: ∀ G[IL < 0.11]
We verify that for the set of parameters shown in Table 2, there is a steady-state
current. The behavior in question is stated as the bounded safety property, meaning
for the property to be satisfied for time 0.1≥ X ≤ 0.5, the current through the inductor
IL has to reach a steady-state value 0.11 amps. The first-order formula of the above
property is described in MetiTarski syntax as
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Table 2: RL High-Pass Filter Parameters
Parameter Property 1 Property 2
Resistor (R) Ω 50 100
Inductor (L) H 1.0 100e-3
Peak-to-Peak (A) Volts Not Applicable 1.0
Frequency(f ) Hz Not Applicable 1000
Vin Volts 5.0 Asin(ωt)

fof(
RL Circuit,conjecture, ! [X] :
( (0.01 ≤ X & X ≤ 0.4) =>0.1*(1−exp(−50*X))
+0.01*(1−exp(−100*X))
< 0.11)).

where ‘fof ‘ indicates the logic language used is a first-order formula. It is followed by
a label name, in this case it is RL Circuit, and a keyword “conjecture” indicating that
the following formula is to be proved with the included axioms. The above formula
can be read as follows: For All (!) X between 0.01 to 0.4, the formula which represents
the steady-state current through the inductor is always less than 0.11 amps. The first
part in the formula 0.1 ∗ (1 − exp(−50 ∗X)) is the deterministic value of the current
through the inductor, and the second part 0.01 ∗ (1 − exp(−100 ∗X)) is the variance
of the output current due to noise.

Property 2: ∀ G[Gain ≤ 0.13]
Equation (8) represents the mean and variance of the output current for an input
DC voltage. However, if we apply a sinusoidal input A sin(ωt) the variance remains
unchanged as it is independent of the input voltage, and the expectation turns out to
be

E[It] = e
−R
L

tI0 + [−e
Rt
L (−ωL + ωLe

Rt
L cos(ωt)

−Re
Rt
L sin(ωt))(R2 + ω2L2)−1] (11)

The property to be proved is stated as the bounded safety property, meaning for the
given set of parameters the gain at the output Gain of the filter should be ≤ 1.3. In
MetiTarski syntax, this property is described as

fof(
RL Circuit,conjecture, ! [X,S,C] :
((0.002≤ X & X ≤0.01 & Sˆ2 + Cˆ2 = 1) =>
(0.02468513854*exp(−1000*X)− 0.1551637280*S
+0.9753148615*C + 10.0*exp(−2000*X))
≤ 1.3)).

Since the Taylor series approximations for sine and cosine are extremely inaccurate
even a short distance from zero, we have replaced the terms sin(ωt) and cos(ωt) by
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new variables S and C constrained to satisfy S2 + C2 = 1. This makes the problem
more abstract and more general.

5.2 Example 2: Sample-and-Hold Mixer Circuit

Consider the mixer circuit shown in Figure 3. A single switch sampling mixer consists

Vg

Vs Vd

C

Figure 3: Sample-and-Hold Bottom Plate Mixer Circuit.

of a MOS transistor followed by a sampling capacitor. The input Vs is at RF or IF
(Intermediate Frequency). The output Vd is sampled and held on the capacitor when
the local oscillator voltage applied at the gate (Vg) goes low. The output is considered
in the sampled data domain. This circuit not only serves as a track and hold front end
to the A/D conversion but also mixes down RF or IF signals to the baseband. For
simplicity, our current analysis is restricted to triode region where the output across
the capacitor is given by

C
dVd

dt
= K(Vgs − Vt)Vds − K

2
V 2

ds (12)

where K = µCox
W
L

, W, L are the width and length of the NMOS transistor, respec-
tively, µ is the electron mobility and Cox is the oxide capacitance. All parameters are
technology dependent and assumed to be constant. To avoid harmonic and intermod-
ulation distortion [5], the mixer is designed with small non-linearity. Hence, it is safe
to neglect V2

ds. Assuming white noise process ξt at the gate input of the transistor,
Equation 12 can be rewritten as a Itô differential form as

gtXtdt + KσXtdWt + CdXt = gtutdt + KσutdBt (13)

where Vgs = Vg − Vs and Vds = Vd − Vs; Vd = Xt; gt = K(Vg − Vt); Vs = ut;

Solving for expectation and variance we get

E[Xt] = A(ω C sin(ωt)gt + gt
2(−e−

gtt
C + cos(ωt)))(gt

2 + ω2C2)−1

E[N2
t ] = AQC(ω2(−gt

2e−
gtt
C + S2C2e−St + cos(ω t)(−S2C2

+gt
2)))(gt

2 + ω2C2)−1(SC − gt)
−1(S2 + ω2)−1

+AQCω(sin(ω t)(SC − gt)(−Cω2 + Sgt) + gt
2S2(−e−

gtt
C

+e−St)(gt
2 + ω2C2)−1(SC − gt)

−1(S2 + ω2)−1)

(14)
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Equation (14) represents the mean and variance of the output across the capacitor in
the Sample-and-Hold Bottom Plate Mixer circuit. Now we are in a position to formal-
ize and verify correctness properties for the circuit.

Property Observation: ∀ G[VC ≤ 0.13]
We verify that for a set of circuit parameters shown in Table 3, and within a bounded
condition, when the gate voltage Vg is applied, the output across the capacitor VC is
within certain threshold. MetiTarski can prove this property provided it is expressed
as

Table 3: Sample-and-Hold Mixer Parameters

Parameter Property 1
Vth Volts 0.3
K 50e-6
Peak-to-Peak (A) Volts 0.5
Capacitor (C ) F 0.4e-12
Frequency(f ) Hz 200e6
Vg Volts 2.5
Vs Volts Acos(ωt)

fof(
Mixer,conjecture, ![X,S,C,SB,CB]:
((0 ≤ X & X ≤10ˆ−7 & Sˆ2 + Cˆ2=1 & SBˆ2 + CBˆ2=1) =>

0.023*C+ 0.104*S − 0.023*exp(−2.75*10ˆ8*X)+ 0.003 +
0.39*10ˆ−3*CB + 0.52*10ˆ−3*SB +7330*exp(−5.5*10ˆ8*X)

*X −0.35*10ˆ−2*exp(−5.5*10ˆ8*X)+0.1*10ˆ−3*exp(−2.75
*10ˆ8*X)*C +0.22*10ˆ−3*exp(−2.75*10ˆ8*X)*S
≤ 0.13)).

In summary, by turning the verification property into an inequality over special
functions, MetiTarski is able to prove the property of interest in the presence of noise
for the high-pass filter and sample-and-hold bottom plate mixer circuits. As it is a
proof based analysis, this process is much more reliable than manual (visual or textual)
inspection of simulation traces which does not guarantee the correctness of the design.
Table 4 summarizes the runtime taken by MetiTarski to prove the properties.

6 Conclusion

In this paper, we have presented a practical automated theorem proving verification
methodology for noise in analog/RF designs. The approach is based on modeling the
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Table 4: MetiTarski Run-Times for Example 1 & 2 (in Seconds)
Circuit Run-Times

Example 1 Property 1 0.36
Property 2 81.58

Example 2 22.53

noise using SDEs and proving properties using MetiTarski. We have used the method-
ology to verify the steady-state condition and gain of a RL High-Pass filter and output
behavior of a Sample-and-Hold Bottom-Plate Mixer circuit. The main advantage of
the methodology proposed is that its a complete proof with logical inference steps that
can even be inspected manually thereby providing confidence during the design devel-
opment.
Future Work

� Scalability of the proposed methodology has to be investigated, meaning, how
the proposed methodology could be used to do noise verification for higher order
designs such as ∆Σ modulator and complex circuits like phase locked loops (PLL)
with one-dimensional and multi-dimensional noise. This involves solving higher
order SDEs using stochastic calculus.

� Not all analog/RF designs have closed form solution, hence there is a need to
investigate if Metitarski can prove properties on the numerical approximations
that may involve error analysis.

� Current methodology involves rigorous paper-pencil technique, meaning, extract-
ing the SDEs from the ODEs is done manually. One goal is to automate this
process.
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