
MetiTarski’s Menagerie of Cooperating Systems

Lawrence C. Paulson

Computer Laboratory, University of Cambridge, England
lp15@cl.cam.ac.uk

Abstract. MetiTarski, an automatic theorem prover for real-valued spe-
cial functions, is briefly introduced. Its architecture is sketched, with a
focus on the arithmetic reasoning systems that it invokes. Finally, the
paper describes some applications where MetiTarski is itself invoked by
other tools.

1 Introduction

As we all know, connecting systems together is easy; the difficulty lies in getting
them to cooperate productively. Combining theorem proving with computer al-
gebra has long been regarded as a promising idea, but it has been difficult to
realise in practice. MetiTarski is an automatic theorem prover for real-valued
special functions [2]. In its original form it consisted of two separate systems
linked together: Metis [14, 15] (a resolution theorem prover) and QEPCAD [5,
13] (a quantifier elimination procedure for real-closed fields). Today, MetiTarski
can invoke three separate reasoning tools (QEPCAD, Mathematica and Z3) and
can itself be invoked by other tools, in particular, KeYmaera and PVS.

2 Architectural Overview

The core idea in MetiTarski is to reduce problems involving special functions (sin,
cos, ln, etc.) to decidable polynomial inequalities, which can then be supplied
to QEPCAD. First-order formulas over polynomial inequalities over the real
numbers admit quantifier elimination [11], and are therefore decidable. This
decision problem is known as RCF, for real closed fields. Dolzmann et al. [10]
have written a useful overview of both the theory and its practical applications.

An early design decision was to adopt an existing theorem prover (namely
Metis), rather than to write a tableau-style theorem prover from scratch, which
was the approach adopted for Analytica [7] and Weierstrass [3], two earlier sys-
tems that combined mathematical software with logic. It seemed clear to us
that the resolution method would turn out to be much more sophisticated and
effective than the naive methods our small group would be able to concoct on
our own. Instead of having to write an entire theorem prover, we would merely
need to write some interface code and modify certain standard aspects of reso-
lution. Arithmetic simplification obviously had to be introduced (for example,
to identify 2x+y with x+y + 0 +x), and the standard mechanisms for selecting



the most promising clause and literal were tuned to our application [1, 2]. Early
versions of MetiTarski performed well despite having only a modest amount of
specialist code. By now, however, we have extended MetiTarski’s code base ex-
tensively. We introduced case-splitting with backtracking [4], as is found in SMT
solvers. We also included our own code for interval constraint solving, to either
supplement or replace the external decision procedures.

MetiTarski relies on collections of upper and lower bounds (consisting of
polynomials or rational functions) for the various special functions. The main
effort in 2009 focused on refining these bounds, in particular through the intro-
duction of continued fractions. Resolution chooses which axioms to use in a proof
automatically. A single proof may use different axioms to cover different inter-
vals of the region under consideration. A further benefit of our use of standard
resolution is that other forms of axioms (concerning the absolute value function,
or the min and max functions) can be written in first-order logic. The absolute
value axioms state the obvious properties:

¬(0 ≤ x) ∨ |x| = x 0 ≤ x ∨ |x| = −x

Resolution performs the appropriate sign reasoning automatically.
Resolution operates on clauses, or disjunctions of literals, which for Meti-

Tarski are typically real inequalities. Under certain circumstances, MetiTarski
can simplify the selected disjunction by formulating a problem that it can submit
to an external decision procedure. Such problems involve a particular inequal-
ity in a disjunction, within its context. This context consists of the remainder
of the disjunction and certain global facts. If the decision procedure finds the
conjunction of these assertions to be inconsistent, then the inequality can be
deleted from the clause. This connection between the basic resolution method
and an external decision procedure is the key idea. Given another application
domain, other decision procedures could probably be substituted for those called
by MetiTarski. The only difficulty is that such a system would probably have to
compete head-on with SMT solvers, which are highly refined and effective.

MetiTarski also uses the decision procedure for a form of redundancy elim-
ination. As the proof search proceeds, polynomial formulas accumulate, and
these are supplied to every decision procedure call. But if some of these formulas
are redundant, they slow down subsequent calls without providing any benefit.
Therefore, every time a new polynomial formula emerges from the resolution
process, it is tested for redundancy—does it follow in the theory of RCF from
previously known formulas?—and possibly discarded. The poor complexity of
RCF quantifier elimination makes this step necessary.

3 MetiTarski’s Decision Procedures

We adopted QEPCAD originally because it was free and easy to use, dedicated
as it was to the single task of quantifier elimination. Moreover, QEPCAD worked
extremely well in our first experiments. But QEPCAD had a number of limita-
tions, concerning both portability (the code base seems to date from the distant



past) and performance. Our decision problem is inherently intractable: doubly
exponential in the number of variables in the problem [8]. This caused no difficul-
ties at first, when virtually our entire problem set was univariate, but there are
other ways to settle univariate special-function inequalities, and many important
problems involve multiple variables.

Mathematica, the well-known computer algebra system, was next to be in-
tegrated with MetiTarski, as an alternative to QEPCAD. Though we regret
the reliance on commercial software, many institutions already have Mathe-
matica licences, and its quantifier elimination procedure is much more modern
and powerful than QEPCAD’s. It copes with problems in up to five variables,
where QEPCAD cannot be expected to terminate at all. Mathematica has many
configurable options, leaving us with many possible refinements to investigate.
Mathematica can solve many special-function inequalities itself, and MetiTarski
can take advantage of this capability to solve even harder problems.

The theorem prover Z3 [9], with its new extension for non-linear arithmetic
[17], provides the third of our decision procedures. The great advantage for us
is the possibility of working with its developers. We can tune it to our specific
needs. Where it performs badly, we can send the problems for examination and
know that they will be looked at. In some cases, Z3 has coped with problems in
up to nine variables [21]. Z3 is free to non-commercial users.

Much of the effort needed to integrate different systems concerns overcoming
conceptually trivial but serious obstacles. For many months, our team strug-
gled with mysterious failures involving QEPCAD. These mainly happened dur-
ing lengthy, overnight regression testing, where certain jobs would mysteriously
hang and eventually bring all testing to a halt. Eventually, the problem was
isolated to one of QEPCAD’s peculiarities: unless it is used at a normal ter-
minal, it performs its own echoing of input lines. (This allowed it to produce
a readable output transcript when running in batch mode.) Because the inputs
to QEPCAD can exceed 50K characters, and because MetiTarski never reads
the output of QEPCAD until after it has sent a full problem to it, QEPCAD’s
output buffer would fill up, blocking its execution. Similar difficulties involving
the other decision procedures take a surprising amount of time to diagnose and
fix. Today as I write this, we are struggling with a mysterious problem plaguing
integration with Z3.

Note that the choice among these three decision procedures is not straight-
forward. QEPCAD performs best in many situations.

4 Ongoing Research

We can often get better results if we do not regard the reasoning components
of our system as black boxes. Automatically generated problems tend to be
regular, and should if possible be tailored to the strengths of the component
that will process them, or conversely, that component could itself be modified to
perform better on those automatically generated problems. In the case of Z3, we
were able to find a number of refinements that greatly improved its performance



with MetiTarski [20]. One such refinement is to switch off a processing stage
(univariate polynomial factorisation) that we could predict to be unnecessary.
Another refinement, called model sharing, involved Z3 passing counterexamples
to MetiTarski that it could use to eliminate some future Z3 calls.

Choosing which of the arithmetic solvers to call, given a particular problem,
is itself a research question. A Cambridge student, Zongyan Huang, is currently
investigating whether machine learning can be effective here. The basic idea is
that features present in the special-function problem originally given to Meti-
Tarski may be sufficient to predict which decision procedure will perform best on
the polynomial decision problems that MetiTarski will generate for that prob-
lem. Features that we are examining include which special functions are present
and how many variables there are. Zongyan is using Support Vector Machines
(SVMs). This modelling approach, implemented as SVM-Light [16], is a form of
machine learning that offers good results with reasonable efficiency. Her work
is still experimental, but if it is successful, then realising it would involve Meti-
Tarski running some machine learning code near the beginning of its execution.

MetiTarski opens the possibility of verifying dynamical systems using non-
linear models involving transcendental functions. Such models are common in
engineering, for example in problems involving rotation. William Denman is
investigating this area. He uses Mathematica (manually) to derive differential
equations to model a given dynamical system. Such a model is a system of differ-
ential equations. Denman has written a Python program based on the algorithm
implemented in HybridSAL [23], which is a tool for creating discrete models of
hybrid systems. His program transforms the system of differential equations into
a set of MetiTarski problems. MetiTarski is used to identify infeasible states in
the abstract model, thereby simplifying it; the attraction of this approach is that
it does not require MetiTarski to solve all the problems. The outcome of this
procedure is a discrete, finite model suitable for model checking (currently, using
NuSMV [6]).

5 Prospects for Further Integration

KeYmaera is a sophisticated interactive theorem prover designed for verifying
hybrid systems [22]. We have recently joined MetiTarski to KeYmaera as a back-
end, hoping to provide the possibility of verifying systems whose models involve
special functions. PVS is an interactive theorem prover designed for a variety of
application areas, including hardware and hybrid systems [19]. William Denman,
in collaboration with César Muñoz, has created an experimental linkup between
MetiTarski and PVS. In both cases, the calling system invokes MetiTarski and
trusts the result. These experiments should help identify new application areas
for MetiTarski, suggesting areas for further development as well as providing
justification for the effort needed to build a more robust integration. MetiTarski
returns machine-readable proofs that combine standard resolution steps with a
few additional inference rules, reflecting its use of computer algebra computa-
tions steps. These proofs can be used to facilitate the integration of MetiTarski



with other systems, even if MetiTarski’s conclusions are not trusted. In such
applications, MetiTarski becomes a hub lying at the centre of a network of com-
municating reasoners.

The motivation for this research, years ago, was to equip Isabelle (an interac-
tive theorem prover [18]) with support for reasoning about special functions. The
original idea was to use lightweight methods that could prove relatively easy the-
orems. MetiTarski can prove difficult theorems, but through heavyweight meth-
ods that are difficult to include in an LCF-style theorem prover such as Isabelle.
In such theorem provers, there is a strong preference to use only tools that justify
every step in the proof kernel; so-called oracles that trust an external reasoner
are frowned upon. The PVS community is more accommodating to oracles, and
the present linkup between PVS and MetiTarski will be invaluable for investi-
gating the potential of such combined systems. An integration with Sage [12],
an open-source computer algebra system, is also planned for the near future.

Acknowledgements. Other members of the team include (in Edinburgh) Paul
Jackson, Grant Passmore and Andrew Sogokon, and (in Cambridge) James
Bridge, William Denman and Zongyan Huang. In the text above, “we” refers
to all of us. We are grateful to our outside collaborators such as Eva Navarro,
André Platzer, and many others not listed here.

The research was supported by the Engineering and Physical Sciences Re-
search Council [grant numbers EP/C013409/1, EP/I011005/1, EP/I010335/1].

References

1. Behzad Akbarpour and Lawrence Paulson. MetiTarski: An automatic prover for
the elementary functions. In Serge Autexier et al., editors, Intelligent Computer
Mathematics, LNCS 5144, pages 217–231. Springer, 2008.

2. Behzad Akbarpour and Lawrence Paulson. MetiTarski: An automatic theo-
rem prover for real-valued special functions. Journal of Automated Reasoning,
44(3):175–205, March 2010.

3. Michael Beeson. Automatic generation of a proof of the irrationality of e. Journal
of Symbolic Computation, 32(4):333–349, 2001.

4. James Bridge and Lawrence Paulson. Case splitting in an automatic theorem
prover for real-valued special functions. Journal of Automated Reasoning, 2012. In
press; online at http://dx.doi.org/10.1007/s10817-012-9245-6.

5. Christopher W. Brown. QEPCAD B: a program for computing with semi-algebraic
sets using CADs. SIGSAM Bulletin, 37(4):97–108, 2003.

6. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. NuSMV version 2: An opensource tool for symbolic
model checking. In Ed Brinksma and Kim Guldstrand Larsen, editors, Computer
Aided Verification, LNCS 2404, pages 359–364. Springer, 2002.

7. Edmund Clarke and Xudong Zhao. Analytica: A theorem prover for Mathematica.
Mathematica Journal, 3(1):56–71, 1993.

8. J. H. Davenport and J. Heintz. Real quantifier elimination is doubly exponential.
J. Symbolic Comp., 5:29–35, 1988.



9. Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In C. Ra-
makrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction
and Analysis of Systems, volume 4963 of Lecture Notes in Computer Science, pages
337–340. Springer, 2008.

10. Andreas Dolzmann, Thomas Sturm, and Volker Weispfenning. Real quantifier
elimination in practice. In B.Heinrich Matzat, Gert-Martin Greuel, and Gerhard
Hiss, editors, Algorithmic Algebra and Number Theory, pages 221–247. Springer,
1999.

11. Lou van den Dries. Alfred Tarski’s elimination theory for real closed fields. Journal
of Symbolic Logic, 53(1):7–19, 1988.

12. M.A. Gray. Sage: A new mathematics software system. Computing in Science
Engineering, 10(6):72–75, 2008.

13. Hoon Hong. QEPCAD — quantifier elimination by partial cylindrical algebraic
decomposition. Sources and documentation are on the Internet at http://www.

cs.usna.edu/~qepcad/B/QEPCAD.html.
14. Joe Hurd. First-order proof tactics in higher-order logic theorem provers. In

Myla Archer, Ben Di Vito, and César Muñoz, editors, Design and Application
of Strategies/Tactics in Higher Order Logics, number NASA/CP-2003-212448 in
NASA Technical Reports, pages 56–68, September 2003.

15. Joe Hurd. Metis first order prover. Website at http://gilith.com/software/

metis/, 2007.
16. Thorsten Joachims. Making large-scale support vector machine learning practical.

In Bernhard Schölkopf, Christopher J. C. Burges, and Alexander J. Smola, editors,
Advances in Kernel Methods, pages 169–184. MIT Press, 1999.

17. Dejan Jovanovic and Leonardo Mendonça de Moura. Solving non-linear arithmetic.
In Bernhard Gramlich, Dale Miller, and Uli Sattler, editors, IJCAR 2012, LNCS
7364, pages 339–354. Springer, 2012.

18. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof
Assistant for Higher-Order Logic. Springer, 2002. LNCS Tutorial 2283.

19. S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: Combining
specification, proof checking, and model checking. In Rajeev Alur and Thomas A.
Henzinger, editors, Computer Aided Verification: 8th International Conference,
CAV ’96, LNCS 1102, pages 411–414. Springer, 1996.

20. Grant Passmore, Lawrence Paulson, and Leonardo de Moura. Real algebraic strate-
gies for MetiTarski proofs. In Johan Jeuring, John Campbell, Jacques Carette,
Gabriel Dos Reis, Petr Sojka, Makarius Wenzel, and Volker Sorge, editors, Intelli-
gent Computer Mathematics, volume 7362 of Lecture Notes in Computer Science,
pages 358–370. Springer, 2012.

21. Lawrence C. Paulson. MetiTarski: Past and future. In Lennart Beringer and
Amy P. Felty, editors, ITP, LNCS 7406, pages 1–10. Springer, 2012.

22. André Platzer and Jan-David Quesel. KeYmaera: A hybrid theorem prover for
hybrid systems. In Alessandro Armando, Peter Baumgartner, and Gilles Dowek,
editors, Automated Reasoning — 4th International Joint Conference, IJCAR 2008,
LNCS 5195, pages 171–178. Springer, 2008.

23. Ashish Tiwari. HybridSAL relational abstracter. In P. Madhusudan and Sanjit A.
Seshia, editors, Computer Aided Verification, volume 7358 of Lecture Notes in
Computer Science, pages 725–731. Springer Berlin Heidelberg, 2012.


