
Ackermann’s Function in Iterative Form:
A Subtle Termination Proof with Isabelle/HOL

Lawrence C. Paulson

Computer Laboratory, University of Cambridge, England
lp15@cam.ac.uk

Abstract. An iterative version of Ackermann’s function is proved equiv-
alent to the familiar recursive definition. The proof is extremely short but
subtle, proceeding by introducing a function as partial and afterwards
proving it total. It’s a nice demonstration of Isabelle/HOL’s function
definition package.

1 Ackermann’s Function

In 1928, Wilhelm Ackermann exhibited a function that was obviously com-
putable and total, yet could be proved not to belong to the class of primitive
recursive functions [1, p. 272]. Simplified by Rózsa Péter and Raphael Robinson,
it comes down to us in the following well-known form:

fun ack :: "[nat,nat] ⇒ nat" where
"ack 0 n = Suc n"

| "ack (Suc m) 0 = ack m 1"

| "ack (Suc m) (Suc n) = ack m (ack (Suc m) n)"

It is easy to see that the recursion is well-defined and terminating. In every
recursive call, either the first or the second argument decreases by one, suggest-
ing a termination ordering: the lexicographic combination of < (on the natural
numbers) for the two arguments.

Nevertheless, it’s not straightforward to prove that ack belongs to the class
of computable functions as defined by Turing machines, register machines or
general recursive functions. Heavyweight results such as the recursion theorem
seem to be necessary. This raises the question of whether Ackermann’s function
has some alternative definition that is easier to reason about, and in fact, iter-
ative definitions exist. But then we must prove that the recursive and iterative
definitions are equivalent.

2 An Iterative Version

We can express an iterative definition in terms of the following recursion on lists
(where # denotes list “cons”):

n# 0# L −→ Sucn# L

0 # Sucm# L −→ 1 #m# L

Sucn# Sucm# L −→ n# Sucm#m# L



the idea being to replace the recursive calls by a stack. We hope to obtain

[n,m] −→∗ [ack(m,n)].

An execution trace for ack(2, 3) looks like this:

3 2
2 2 1
1 2 1 1
0 2 1 1 1
1 1 1 1 1
0 1 0 1 1 1
1 0 0 1 1 1
2 0 1 1 1
3 1 1 1
2 1 0 1 1
1 1 0 0 1 1
0 1 0 0 0 1 1
1 0 0 0 0 1 1
2 0 0 0 1 1
3 0 0 1 1
4 0 1 1
5 1 1
4 1 0 1
3 1 0 0 1
2 1 0 0 0 1
1 1 0 0 0 0 1
0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1
3 0 0 0 0 1
4 0 0 0 1
5 0 0 1
6 0 1
7 1
6 1 0
5 1 0 0
4 1 0 0 0
3 1 0 0 0 0
2 1 0 0 0 0 0
1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0
6 0 0 0
7 0 0
8 0
9



We can regard these three reductions as constituting a term rewriting system,
subject to the proviso that they can only rewrite starting with the head of the
list. Equivalently, each rewrite rule can be imagined as beginning with an anchor
symbol, say □:

□# n# 0# L −→ □# Sucn# L

□# 0# Sucm# L −→ □# 1#m# L

□# Sucn# Sucm# L −→ □# n# Sucm#m# L

Termination isn’t obvious. In the first rewrite, the head of the list gets bigger
while the list gets shorter, suggesting that the length of the list should be the
primary termination criterion. But in the third rewrite, the list gets longer. One
might imagine a more sophisticated approach to termination based on multisets
or ordinals; these however could lead nowhere for the second rewrite when m =
0: then 0 # 1 # L −→ 1 # 0 # L and often these approaches ignore the order of
the list elements.

Although some termination ordering surely exists,1 this system is an excellent
way to demonstrate another approach to proving termination: by explicit rea-
soning about the domain of definition. It is easy, using Isabelle/HOL’s function
definition package [2].

3 The Iterative Version in Isabelle/HOL

We transform the rewrite system into a tail-recursive function definition. The
keyword domintros indicates that we wish to defer the termination proof and
instead define a predicate for the domain of definition. The recursion equations
will then be conditional on arguments that satisfy this predicate. Our goal is to
show that the predicate is always satisfied.

function (domintros) ackloop :: "nat list ⇒ nat" where
"ackloop (n # 0 # L) = ackloop (Suc n # L)"

| "ackloop (0 # Suc m # L) = ackloop (1 # m # L)"

| "ackloop (Suc n # Suc m # L) = ackloop (n # Suc m # m # L)"

| "ackloop [m] = m"

| "ackloop [] = 0"

The domain predicate, which is called ackloop dom, is automatically defined ac-
cording to the recursive calls. It satisfies the following properties:2

ackloop dom (Suc n # L) =⇒ ackloop dom (n # 0 # L)

ackloop dom (1 # m # L) =⇒ ackloop dom (0 # Suc m # L)

ackloop dom (n # Suc m # m # L) =⇒ ackloop dom (Suc n # Suc m # L)

ackloop dom [m]

ackloop dom []

1 René Thiemann has kindly run some tests using termination checkers. Without the
anchors, the rewrite system is non-terminating because rewrite rules can be applied
within a list. With the anchors, no termination checker delivers a conclusion.

2 For clarity, Suc 0 has been replaced by 1.



The predicate obviously holds for all lists of length less than two. The properties
allow us to prove instances for longer lists (establishing termination of ackloop
for those lists), but the necessary argument isn’t obvious. At closer examination,
remembering that ackloop embodies the recursion of Ackermann’s function, we
might come up with the following lemma:

ackloop dom (ack m n # L) =⇒ ackloop dom (n # m # L)

This could be the solution, since it implies that ackloop terminates on the list
n#m#L provided it terminates on ack(m,n)#L, which is shorter. And indeed
it can easily be proved by mathematical induction on m followed by a further
induction on n. If m = 0 then it simplifies to the first ackloop dom property:

ackloop dom (Suc n # L) =⇒ ackloop dom (n # 0 # L)

In the Sucm case, after the induction on n, the n = 0 case simplifies to

ackloop dom (ack m 1 # L) =⇒ ackloop dom (0 # Suc m # L)

but from ackloop dom (ack m 1 # L) the induction hypothesis yields ackloop dom

(1 # m # L), from which we obtain ackloop dom (0 # Suc m # L) by the second
ackloop dom property. The Sucn case is also straightforward:

ackloop dom (ack (Suc m) (Suc n) # L) =⇒ ackloop dom (Suc n # Suc m # L)

It needs the third ackloop dom property and both induction hypotheses.
In Isabelle, the proof sketched above is a one-liner thanks to a special in-

duction rule, ack.induct. Function definitions in Isabelle automatically yield an
induction rule customised to the recursive calls. For ack, it simply has the ef-
fect of two nested mathematical inductions. The proof above reduces to a single
induction followed by automation:

lemma ackloop dom longer:

"ackloop dom (ack m n # L) =⇒ ackloop dom (n # m # L)"

by (induction m n arbitrary: L rule: ack.induct) auto

4 Completing the Proof

Given the lemma above, it’s straightforward to prove that every list L satisfies
ackloop dom by induction on the length of L. If its length is shorter than two
then the result is immediate, and otherwise it has the form n#m#L, which the
lemma reduces to ack(m,n)#L and we are finished by the induction hypothesis.

A shorter proof turns out to be possible. Consider what ackloop is actually
supposed to do: to replace the first two list elements by an Ackermann’s function
application. The following function codifies this point.

fun acklist :: "nat list ⇒ nat" where
"acklist (n#m#L) = acklist (ack m n # L)"

| "acklist [m] = m"

| "acklist [] = 0"



As mentioned above, recursive function definitions automatically provide us
with a customised induction rule. In the case of acklist, it performs exactly the
case analysis sketched at the top of this section. So this proof is also a single
induction followed by automation.

lemma ackloop dom: "ackloop dom L"

by (induction L rule: acklist.induct) (auto simp: ackloop dom longer)

Now we can use the termination result just proved to make the recursion equa-
tions for ackloop unconditional. It is now accepted as a total function.

termination ackloop

by (simp add: ackloop dom)

The equivalence between ackloop and acklist is another one-liner. The spe-
cial induction rule for ackloop considers the five cases of that function’s defini-
tion, which are all proved automatically.

lemma ackloop acklist: "ackloop L = acklist L"

by (induction L rule: ackloop.induct) auto

The equivalence between the iterative and recursive definitions of Ackermann’s
function is now immediate.

theorem ack: "ack m n = ackloop [n,m]"

by (simp add: ackloop acklist)

5 Related Work and Conclusions

Nora Szasz [3] proved that Ackermann’s function is not primitive recursive using
an early type theory-based proof assistant (ALF).

Implementations of Ackermann’s function in more than 200 different pro-
gramming languages, including IBM 360 assembler and Algol 68, are avail-
able online at https://rosettacode.org/wiki/Ackermann_function. Many of
these are iterative.

Proving the termination of the iterative version of Ackermann’s function is by
no means obvious, yet an extremely short machine formalisation can be carried
out.

Acknowledgements. This work was supported by the ERC Advanced Grant
ALEXANDRIA (Project GA 742178). René Thiemann investigated the termi-
nation of the corresponding rewrite systems.

References

1. S. C. Kleene. Introduction to Metamathematics. North-Holland, 1952.
2. A. Krauss. Partial and nested recursive function definitions in higher-order logic.

Journal of Automated Reasoning, 44(4):303–336, 2010.
3. N. Szasz. A machine checked proof that Ackermann’s function is not primitive

recursive. In G. Huet and G. Plotkin, editors, Logical Environments, pages 317–
338. Cambridge University Press, 1993.


