Ackermann's Function in Iterative Form: A Subtle Termination Proof with Isabelle/HOL

Lawrence C. Paulson
Computer Laboratory, University of Cambridge, England
lp15@cam.ac.uk

Abstract

An iterative version of Ackermann's function is proved equivalent to the familiar recursive definition. The proof is extremely short but subtle, proceeding by introducing a function as partial and afterwards proving it total. It's a nice demonstration of Isabelle/HOL's function definition package.

1 Ackermann's Function

In 1928, Wilhelm Ackermann exhibited a function that was obviously computable and total, yet could be proved not to belong to the class of primitive recursive functions [1, p. 272]. Simplified by Rózsa Péter and Raphael Robinson, it comes down to us in the following well-known form:

```
fun ack :: "[nat,nat] => nat" where
    "ack O n = Suc n"
| "ack (Suc m) 0 = ack m 1"
| "ack (Suc m) (Suc n) = ack m (ack (Suc m) n)"
```

It is easy to see that the recursion is well-defined and terminating. In every recursive call, either the first or the second argument decreases by one, suggesting a termination ordering: the lexicographic combination of $<$ (on the natural numbers) for the two arguments.

Nevertheless, it's not straightforward to prove that ack belongs to the class of computable functions as defined by Turing machines, register machines or general recursive functions. Heavyweight results such as the recursion theorem seem to be necessary. This raises the question of whether Ackermann's function has some alternative definition that is easier to reason about, and in fact, iterative definitions exist. But then we must prove that the recursive and iterative definitions are equivalent.

2 An Iterative Version

We can express an iterative definition in terms of the following recursion on lists (where \# denotes list "cons"):

$$
\begin{gathered}
n \# 0 \# L \longrightarrow \operatorname{Suc} n \# L \\
0 \# \operatorname{Suc} m \# L \longrightarrow 1 \# m \# L \\
\text { Suc } n \# \operatorname{Suc} m \# L \longrightarrow n \# \operatorname{Suc} m \# m \# L
\end{gathered}
$$

the idea being to replace the recursive calls by a stack. We hope to obtain

$$
[n, m] \longrightarrow^{*}[\operatorname{ack}(m, n)] .
$$

An execution trace for ack $(2,3)$ looks like this:

```
3
2 21
1211
02111
11111
010111
100111
20111
3111
21011
110011
0100011
1000011
200011
30011
4011
511
4101
31001
210001
1100001
01000001
10000001
2000001
300001
40001
5001
601
7
610
5100
4000
310000
2100000
11000000
010000000
100000000
20000000
3000000
400000
50000
6000
70
8
9
```

We can regard these three reductions as constituting a term rewriting system, subject to the proviso that they can only rewrite starting with the head of the list. Equivalently, each rewrite rule can be imagined as beginning with an anchor symbol, say \square :

$$
\begin{gathered}
\square \# n \# 0 \# L \longrightarrow \square \# \operatorname{Suc} n \# L \\
\square \# 0 \# \operatorname{Suc} m \# L \longrightarrow \square \# 1 \# m \# L \\
\square \# \operatorname{Suc} n \# \operatorname{Suc} m \# L \longrightarrow \square \# n \# \operatorname{Suc} m \# m \# L
\end{gathered}
$$

Termination isn't obvious. In the first rewrite, the head of the list gets bigger while the list gets shorter, suggesting that the length of the list should be the primary termination criterion. But in the third rewrite, the list gets longer. One might imagine a more sophisticated approach to termination based on multisets or ordinals; these however could lead nowhere for the second rewrite when $m=$ 0 : then $0 \# 1 \# L \longrightarrow 1 \# 0 \# L$ and often these approaches ignore the order of the list elements.

Although some termination ordering surely exists, ${ }^{1}$ this system is an excellent way to demonstrate another approach to proving termination: by explicit reasoning about the domain of definition. It is easy, using Isabelle/HOL's function definition package [2].

3 The Iterative Version in Isabelle/HOL

We transform the rewrite system into a tail-recursive function definition. The keyword domintros indicates that we wish to defer the termination proof and instead define a predicate for the domain of definition. The recursion equations will then be conditional on arguments that satisfy this predicate. Our goal is to show that the predicate is always satisfied.

```
function (domintros) ackloop :: "nat list }=>\mathrm{ nat" where
    "ackloop (n # 0 # L) = ackloop (Suc n # L)"
| "ackloop (0 # Suc m # L) = ackloop (1 # m # L)"
| "ackloop (Suc n # Suc m # L) = ackloop (n # Suc m # m # L)"
| "ackloop [m] = m"
| "ackloop [] = 0"
```

The domain predicate, which is called ackloop_dom, is automatically defined according to the recursive calls. It satisfies the following properties: ${ }^{2}$

```
ackloop_dom (Suc n # L) \Longrightarrow ackloop_dom (n # O # L)
ackloop_dom (1 # m # L) \Longrightarrow ackloop_dom (0 # Suc m # L)
ackloop_dom (n # Suc m # m # L) \Longrightarrow ackloop_dom (Suc n # Suc m # L)
ackloop_dom [m]
ackloop_dom []
```

[^0]The predicate obviously holds for all lists of length less than two. The properties allow us to prove instances for longer lists (establishing termination of ackloop for those lists), but the necessary argument isn't obvious. At closer examination, remembering that ackloop embodies the recursion of Ackermann's function, we might come up with the following lemma:

```
ackloop_dom (ack m n # L) \Longrightarrow ackloop_dom (n # m # L)
```

This could be the solution, since it implies that ackloop terminates on the list $n \# m \# L$ provided it terminates on $\operatorname{ack}(m, n) \# L$, which is shorter. And indeed it can easily be proved by mathematical induction on m followed by a further induction on n. If $m=0$ then it simplifies to the first ackloop_dom property:

```
ackloop_dom (Suc n # L) \Longrightarrow ackloop_dom (n # O # L)
```

In the Suc m case, after the induction on n, the $n=0$ case simplifies to

```
ackloop_dom (ack m 1 # L) \Longrightarrow ackloop_dom (0 # Suc m # L)
```

but from ackloop_dom (ack m 1 \# L) the induction hypothesis yields ackloop_dom (1 \# m \# L), from which we obtain ackloop_dom (0 \# Suc m \# L) by the second ackloop_dom property. The Suc n case is also straightforward:

```
ackloop_dom (ack (Suc m) (Suc n) # L) \Longrightarrow ackloop_dom (Suc n # Suc m # L)
```

It needs the third ackloop_dom property and both induction hypotheses.
In Isabelle, the proof sketched above is a one-liner thanks to a special induction rule, ack.induct. Function definitions in Isabelle automatically yield an induction rule customised to the recursive calls. For ack, it simply has the effect of two nested mathematical inductions. The proof above reduces to a single induction followed by automation:

```
lemma ackloop_dom_longer:
    "ackloop_dom (ack m n # L) \Longrightarrow ackloop_dom (n # m # L)"
    by (induction m n arbitrary: L rule: ack.induct) auto
```


4 Completing the Proof

Given the lemma above, it's straightforward to prove that every list L satisfies ackloop_dom by induction on the length of L. If its length is shorter than two then the result is immediate, and otherwise it has the form $n \# m \# L$, which the lemma reduces to $\operatorname{ack}(m, n) \# L$ and we are finished by the induction hypothesis.

A shorter proof turns out to be possible. Consider what ackloop is actually supposed to do: to replace the first two list elements by an Ackermann's function application. The following function codifies this point.

```
fun acklist :: "nat list => nat" where
    "acklist (n#m#L) = acklist (ack m n # L)"
| "acklist [m] = m"
| "acklist [] = 0"
```

As mentioned above, recursive function definitions automatically provide us with a customised induction rule. In the case of acklist, it performs exactly the case analysis sketched at the top of this section. So this proof is also a single induction followed by automation.

```
lemma ackloop_dom: "ackloop_dom L"
    by (induction L rule: acklist.induct) (auto simp: ackloop_dom_longer)
```

Now we can use the termination result just proved to make the recursion equations for ackloop unconditional. It is now accepted as a total function.

```
termination ackloop
    by (simp add: ackloop_dom)
```

The equivalence between ackloop and acklist is another one-liner. The special induction rule for ackloop considers the five cases of that function's definition, which are all proved automatically.

```
lemma ackloop_acklist: "ackloop L = acklist L"
    by (induction L rule: ackloop.induct) auto
```

The equivalence between the iterative and recursive definitions of Ackermann's function is now immediate.

```
theorem ack: "ack m n = ackloop [n,m]"
    by (simp add: ackloop_acklist)
```


5 Related Work and Conclusions

Nora Szasz [3] proved that Ackermann's function is not primitive recursive using an early type theory-based proof assistant (ALF).

Implementations of Ackermann's function in more than 200 different programming languages, including IBM 360 assembler and Algol 68, are available online at https://rosettacode.org/wiki/Ackermann_function. Many of these are iterative.

Proving the termination of the iterative version of Ackermann's function is by no means obvious, yet an extremely short machine formalisation can be carried out.

Acknowledgements. This work was supported by the ERC Advanced Grant ALEXANDRIA (Project GA 742178). René Thiemann investigated the termination of the corresponding rewrite systems.

References

1. S. C. Kleene. Introduction to Metamathematics. North-Holland, 1952.
2. A. Krauss. Partial and nested recursive function definitions in higher-order logic. Journal of Automated Reasoning, 44(4):303-336, 2010.
3. N. Szasz. A machine checked proof that Ackermann's function is not primitive recursive. In G. Huet and G. Plotkin, editors, Logical Environments, pages 317338. Cambridge University Press, 1993.

[^0]: ${ }^{1}$ René Thiemann has kindly run some tests using termination checkers. Without the anchors, the rewrite system is non-terminating because rewrite rules can be applied within a list. With the anchors, no termination checker delivers a conclusion.
 ${ }^{2}$ For clarity, Suc 0 has been replaced by 1.

