Ackermann's Function in Iterative Form

A Subtle Termination Proof with Isabelle/HOL

Lawrence C Paulson FRS, Computer Laboratory, University of Cambridge Isabelle Workshop 2020
I. A Brief History of Ackermann's Function

Wilhelm Ackermann’s "generalised exponential" (1928)

Wie man daraus erkennt, ist $\varphi(a, b, 1)$ mit $a \cdot b$ identisch. $\varphi(a, b, 2)$ stimmt mit a^{b} überein. $\varphi(a, b ; 3)$ ist die b-malige Iteration von a^{b}, genommen für a, usw. Unsere gesuchte Funktion erhalten wir nun, wenn wir in $\varphi(a, b, c)$ alle drei Argumente gleichnehmen. Wir behaupten also, $\varphi(a, a, a)$ kann nicht ohne Benutzung des zweiten Typs definiert werden ${ }^{3}$).

Die Ausschließung von simultanen Rekursionen ist für unsere Behauptung wesentlich. Es gelten nämlich die folgenden Formeln:

$$
\begin{aligned}
\varphi(a, b, 0) & =a+b \\
\varphi(a, 0, n+1) & =\alpha(a, n) \\
\varphi(a, b+1, n+1) & =\varphi(a, \varphi(a, b, n+1), n) .
\end{aligned}
$$

Rózsa Péter’s 2-argument function (1935)

Die Funktion $\varphi_{0}(n)=2 n$, welche der Ackermannschen Ausgangsfunktion $\psi_{0}(n, a)=n+a$ entspricht, genügt für $n=0$ der Bedingung a) nicht. Statt ihrer nehme ich die ebenfalls lineare und den Bedingungen a), b) genügende Funktion $2 n+1$ als Ausgangsfunktion.

Also definiere ich die Funktionen $\varphi_{m}(n)$ wie folgt:
und für alle m

$$
\varphi_{0}(n)=2 n+1
$$

$$
\left\{\begin{aligned}
\varphi_{m+1}(0) & =\varphi_{m}(1) \\
\varphi_{m+1}(n+1) & =\varphi_{m}\left(\varphi_{m+1}(n)\right) .
\end{aligned}\right.
$$

Raphael Robinson's refinement (1948)
2. The majorizing function. Let the function $G_{n} x$ be defined by the double recursion

$$
G_{0} x=S x, \quad G_{S n} 0=G_{n} 1, \quad G_{S n} S x=G_{n} G_{S n} x .
$$

${ }^{3}$ W. Ackermann, Zum Hilbertschen Aufbau der reelen Zahlen, Math. Ann. vol. 99 (1928) pp. 118-133.
${ }^{4}$ R. Péter, Über die mehrfache Rekursion, Math. Ann. vol. 113 (1936) pp. 489-527.

Basic facts about Ackermann's function, $\phi_{m}(n)$

- Its purpose was always to exhibit a computable function wasn’t "recursive".
- what we now call primitive recursive (PR)
- if f is PR, then there exists m where ϕ_{m} is a strict upper bound for f
- It generates huge numbers: $\phi_{4}(3)=2^{2^{65536}}-3$
- Expressing it in most formal models of computation is difficult.
II. Ackermann's Function using a Stack

Ackermann's function in Isabelle

$$
\begin{aligned}
\text { fun ack :: "[nat, nat] } & \Rightarrow \text { nat" where } \\
& \text { "ack } 0 n \\
& =\text { Suc } n " \\
\text { | "ack (Suc m) 0 } & =\text { ack } m \text { 1" } \\
\text { | "ack (Suc } m \text {) (Suc } n) & =\text { ack } m \text { (ack (Suc m) n)" }
\end{aligned}
$$

the recursive version that we all know and love

A stack-oriented version as a term rewriting system

$$
\begin{gathered}
\square \# n \# 0 \# L \longrightarrow \square \# \operatorname{Suc} n \# L \\
\square \# 0 \# \operatorname{Suc} m \# L \longrightarrow \square \# 1 \# m \# L \\
\square \# \operatorname{Suc} n \# \operatorname{Suc} m \# L \longrightarrow \square \# n \# \operatorname{Suc} m \# m \# L
\end{gathered}
$$

- The box constrains rewriting to the head of the list
- A stack represents a nest of calls: $\operatorname{ack}\left(k_{n}, \operatorname{ack}\left(k_{n}-1, \ldots, k_{1}\right)\right)$
- Does it terminate? No term rewriting termination checker knows!

A stack-oriented computation of $\operatorname{ack}(2,3)$

$\mathbf{2 2 1}=\operatorname{ack}(1, \operatorname{ack}(2,2)$) $\quad \operatorname{ack}(2,2)=7$	$\operatorname{ack}(1,7)$
1211	$\operatorname{ack}(1, \operatorname{ack}(1,5))$	610
02111		5100
11111	511	41000
010111	4101	310000
100111	31001	2100000
20111	210001	1100000
3111	1100001	010000000
21011	01000001	10000000
110011	10000001	20000000
0100011	2000001	3000000
1000011	300001	400000
200011	40001	50000
30011	5001	6000
4011	601	700
		80
	?	9

Defining a recursive function without a proof of termination

```
function "(domintros)" ackloop : : "nat list \(\Rightarrow\) nat" where
    "ackloop ( \(n\) \# \# \# L \()=\) ackloop (Suc n \# L)"
| "ackloop ( 0 \# Suc m \# L) = ackloop (1 \# m \# L)"
| "ackloop (Suc n \# Suc m \# L) = ackloop ( \(n\) \# Suc m \# m \# L)"
| "ackloop [m] = m"
| "ackloop [] = 0"
```

- All recursion calls hold conditionally: only if the domain predicate holds
- Our task is to prove that the domain predicate is always true
III. Verifying Ackermann's Function in Isabelle/HOL

Built-in properties of the domain predicate

```
ackloop_dom (Suc n # L) \Longrightarrow ackloop_dom (n # O # L)
ackloop_dom (1 # m # L) \Longrightarrow ackloop_dom (0 # Suc m # L)
ackloop_dom (n # Suc m # m # L) \Longrightarrow ackloop_dom (Suc n # Suc m # L)
ackloop_dom [m]
ackloop_dom []
```

- It terminates for empty and single-element lists.
- It terminates for some longer lists.
- Does it terminate for all lists?

Proving termination in all cases: by induction on ack m n
ackloop_dom (ack m n \# L) \Longrightarrow ackloop_dom (n \# m \# L)
this implies termination for a longer list beginning with n and m

The base case is ack $0 n \# L$
which reduces to Suc n \# L, and we have (by definition)
ackloop_dom (Suc n \# L) \Longrightarrow ackloop_dom (n \# O \# L)

Continuing the induction on ack $m n$

The case ack (Suc m) 0 \# L reduces to ack m 1 \# L

We have the induction hypothesis

$$
\begin{array}{r}
\text { ackloop_dom (ack m } 1 \text { \# L) } \Longrightarrow \text { ackloop_dom (1 \# m \# L) } \\
\text { then (by definition) ackloop_dom (} 0 \text { \# Suc m \# L) }
\end{array}
$$

The case ack (Suc m) (Suc n) \# L is similar, but needs 2 induction hyps

The entire inductive proof is a one-liner!
lemma ackloop_dom_longer:
"ackloop_dom (ack m n \# L) \Longrightarrow ackloop_dom (n \# m \# L)" by (induction $m n$ arbitrary: L rule: ack.induct) auto

$$
\begin{aligned}
& \text { It's fully automatic, using the } \\
& \text { special Ackermann induction rule }
\end{aligned}
$$

An auxiliary function to complete the proof

```
fun acklist :: "nat list }=>\mathrm{ nat" where
    "acklist (n#m#L) = acklist (ack m n # L)"
| "acklist [m] = m"
| "acklist [] = 0"
```

- This formalises how the list k_{1}, \ldots, k_{n} represents $\operatorname{ack}\left(k_{n}, \operatorname{ack}\left(k_{n}-1, \ldots, k_{1}\right)\right)$
- ... and its induction rule is just right, case-splitting on whether $n<2$.

Terminating the termination argument

lemma ackloop_dom: "ackloop_dom L"
by (induction L rule: acklist.induct) (auto simp: ackloop_dom_longer)

$$
\begin{gathered}
\text { Another one-liner using a special } \\
\text { induction and our lemma }
\end{gathered}
$$

termination ackloop
by (simp add: ackloop_dom)
Finally, Isabelle recognises our function as total!

Concluding the proof: Ackermann can be computed iteratively
lemma ackloop_acklist: "ackloop L = acklist L" by (induction L rule: ackloop.induct) auto

Equivalence between the term rewriting system and direct calls to Ackermann's function
theorem lack: "ark m $n=$ ackloop $[n, m] "$ by (simp add: ackloop_acklist)

Concluding remarks

- The verification of the iterative Ackermann function is easy in Isabelle/HOL
- ... yet the termination of the term rewriting system is an open question!
- Implementations of Ackermann's function in > 200 different languages are available online:
https://rosettacode.org/wiki/Ackermann_function

Funded by ERC Advanced Grant ALEXANDRIA (Project GA 742178). Rene Thiemann investigated the rewrite systems.

