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I. A Brief History of Ackermann’s Function



Wilhelm Ackermann’s “generalised exponential” (1928)



Rózsa Péter’s 2-argument function (1935)



Raphael Robinson’s refinement (1948)



Basic facts about Ackermann’s function, ϕm(n)

• Its purpose was always to exhibit a computable function wasn’t “recursive”. 

• what we now call primitive recursive (PR) 

• if f is PR, then there exists m where  is a strict upper bound for f 

• It generates huge numbers:  

• Expressing it in most formal models of computation is difficult.

ϕm

ϕ4(3) = 2265536 − 3



II. Ackermann’s Function using a Stack 



Ackermann’s function in Isabelle

the recursive version that we all know and love



A stack-oriented version as a term rewriting system 

• The box constrains rewriting to the head of the list 

• A stack represents a nest of calls:  

• Does it terminate? No term rewriting termination checker knows!

ack(kn, ack(kn − 1,…, k1))



3 2 
2 2 1 
1 2 1 1 
0 2 1 1 1 
1 1 1 1 1 
0 1 0 1 1 1 
1 0 0 1 1 1 
2 0 1 1 1 
3 1 1 1 
2 1 0 1 1 
1 1 0 0 1 1 
0 1 0 0 0 1 1 
1 0 0 0 0 1 1 
2 0 0 0 1 1 
3 0 0 1 1 
4 0 1 1

= ack(1,ack(2,2))

A stack-oriented computation of ack(2,3)

5 1 1 
4 1 0 1 
3 1 0 0 1 
2 1 0 0 0 1 
1 1 0 0 0 0 1 
0 1 0 0 0 0 0 1 
1 0 0 0 0 0 0 1 
2 0 0 0 0 0 1 
3 0 0 0 0 1 
4 0 0 0 1 
5 0 0 1 
6 0 1 

ack(1,ack(1,5))
7 1 
6 1 0 
5 1 0 0 
4 1 0 0 0 
3 1 0 0 0 0 
2 1 0 0 0 0 0 
1 1 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 
3 0 0 0 0 0 0 
4 0 0 0 0 0 
5 0 0 0 0 
6 0 0 0 
7 0 0 
8 0 
9 

ack(1,7)

what is the ordering here??

ack(2,2) = 7



Defining a recursive function without a proof of termination

• All recursion calls hold conditionally: only if the domain predicate holds 

• Our task is to prove that the domain predicate is always true



III. Verifying Ackermann’s Function in Isabelle/HOL



Built-in properties of the domain predicate

• It terminates for empty and single-element lists. 

• It terminates for some longer lists. 

• Does it terminate for all lists?



Proving termination in all cases: by induction on  ack m n

this implies termination for a longer list beginning with n and m

The base case is  ack 0 n # L

which reduces to Suc n # L, and we have (by definition)



Continuing the induction on  ack m n

The case  ack (Suc m) 0 # L reduces to ack m 1 # L

The case  ack (Suc m) (Suc n) # L is similar, but needs 2 induction hyps

We have the induction hypothesis

then (by definition)



The entire inductive proof is a one-liner!

It’s fully automatic, using the 
special Ackermann induction rule



An auxiliary function to complete the proof

• This formalises how the list  represents  

• … and its induction rule is just right, case-splitting on whether .

k1, …, kn ack(kn, ack(kn − 1,…, k1))

n < 2



Terminating the termination argument

Another one-liner using a special 
induction and our lemma

Finally, Isabelle recognises our function as total!



Concluding the proof: Ackermann can be computed iteratively

Equivalence between the term rewriting system 
 and direct calls to Ackermann’s function



Concluding remarks

• The verification of the iterative Ackermann function is easy in Isabelle/HOL 

• … yet the termination of the term rewriting system is an open question! 

• Implementations of Ackermann's function in > 200 different languages are 
available online: 

https://rosettacode.org/wiki/Ackermann_function
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