
Defining (Co)datatypes and Primitively
(Co)recursive Functions in Isabelle/HOL

Jasmin Christian Blanchette, Martin Desharnais,
Lorenz Panny, Andrei Popescu, and Dmitriy Traytel

25 May 2015

Abstract

This tutorial describes the definitional package for datatypes and co-
datatypes, and for primitively recursive and corecursive functions,
in Isabelle/HOL. The package provides these commands: datatype,
datatype_compat, primrec, codatatype, primcorec, primco-
recursive, bnf, bnf_axiomatization, print_bnfs, and free_
constructors.

Contents
1 Introduction 3

2 Defining Datatypes 5
2.1 Introductory Examples . 5

2.1.1 Nonrecursive Types 5
2.1.2 Simple Recursion . 6
2.1.3 Mutual Recursion . 6
2.1.4 Nested Recursion . 6
2.1.5 Auxiliary Constants 7

2.2 Command Syntax . 9
2.2.1 datatype . 9
2.2.2 datatype_compat 12

2.3 Generated Constants . 13
2.4 Generated Theorems . 13

2.4.1 Free Constructor Theorems 14
2.4.2 Functorial Theorems 16
2.4.3 Inductive Theorems 19

1

Contents 2

2.5 Compatibility Issues . 20

3 Defining Primitively Recursive Functions 21
3.1 Introductory Examples . 22

3.1.1 Nonrecursive Types 22
3.1.2 Simple Recursion . 22
3.1.3 Mutual Recursion . 23
3.1.4 Nested Recursion . 24
3.1.5 Nested-as-Mutual Recursion 25

3.2 Command Syntax . 26
3.2.1 primrec . 26

3.3 Generated Theorems . 27
3.4 Recursive Default Values for Selectors 28
3.5 Compatibility Issues . 29

4 Defining Codatatypes 29
4.1 Introductory Examples . 29

4.1.1 Simple Corecursion 29
4.1.2 Mutual Corecursion 30
4.1.3 Nested Corecursion 30

4.2 Command Syntax . 31
4.2.1 codatatype . 31

4.3 Generated Constants . 31
4.4 Generated Theorems . 31

4.4.1 Coinductive Theorems 32

5 Defining Primitively Corecursive Functions 33
5.1 Introductory Examples . 34

5.1.1 Simple Corecursion 34
5.1.2 Mutual Corecursion 36
5.1.3 Nested Corecursion 36
5.1.4 Nested-as-Mutual Corecursion 37
5.1.5 Constructor View . 38
5.1.6 Destructor View . 39

5.2 Command Syntax . 40
5.2.1 primcorec and primcorecursive 40

5.3 Generated Theorems . 42

6 Registering Bounded Natural Functors 43
6.1 Bounded Natural Functors 44
6.2 Introductory Examples . 44

1 Introduction 3

6.3 Command Syntax . 46
6.3.1 bnf . 46
6.3.2 bnf_axiomatization 47
6.3.3 print_bnfs . 49

7 Deriving Destructors and Theorems for Free Constructors 49
7.1 Command Syntax . 49

7.1.1 free_constructors 49

8 Selecting Plugins 50
8.1 Code Generator . 50
8.2 Size . 51
8.3 Transfer . 52
8.4 Lifting . 53
8.5 Quickcheck . 53
8.6 Program Extraction . 53

9 Known Bugs and Limitations 53

1 Introduction
The 2013 edition of Isabelle introduced a definitional package for freely gen-
erated datatypes and codatatypes. This package replaces the earlier imple-
mentation due to Berghofer and Wenzel [1]. Perhaps the main advantage
of the new package is that it supports recursion through a large class of
non-datatypes, such as finite sets:

datatype ′a tree f s = Node f s (lbl f s :
′a) (subf s : “ ′a tree f s fset ”)

Another strong point is the support for local definitions:

context linorder
begin
datatype flag = Less | Eq | Greater
end

Furthermore, the package provides a lot of convenience, including automat-
ically generated discriminators, selectors, and relators as well as a wealth of
properties about them.

In addition to inductive datatypes, the package supports coinductive data-
types, or codatatypes, which allow infinite values. For example, the following
command introduces the type of lazy lists, which comprises both finite and
infinite values:

1 Introduction 4

codatatype ′a llist = LNil | LCons ′a “ ′a llist ”

Mixed inductive–coinductive recursion is possible via nesting. Compare the
following four Rose tree examples:

datatype ′a tree f f = Node f f
′a “ ′a tree f f list ”

datatype ′a tree f i = Node f i
′a “ ′a tree f i llist ”

codatatype ′a tree i f = Node i f
′a “ ′a tree i f list ”

codatatype ′a tree i i = Node i i
′a “ ′a tree i i llist ”

The first two tree types allow only paths of finite length, whereas the last
two allow infinite paths. Orthogonally, the nodes in the first and third types
have finitely many direct subtrees, whereas those of the second and fourth
may have infinite branching.

The package is part of Main. Additional functionality is provided by the
theory BNF_Axiomatization, located in the directory ~~/src/HOL/Library.

The package, like its predecessor, fully adheres to the LCF philosophy [4]:
The characteristic theorems associated with the specified (co)datatypes are
derived rather than introduced axiomatically.1 The package is described
in a number of papers [2, 3, 7, 8]. The central notion is that of a bounded
natural functor (BNF)—a well-behaved type constructor for which nested
(co)recursion is supported.

This tutorial is organized as follows:

• Section 2, “Defining Datatypes,” describes how to specify datatypes
using the datatype command.
• Section 3, “Defining Primitively Recursive Functions,” describes how to

specify functions using primrec. (A separate tutorial [5] describes the
more general fun and function commands.)
• Section 4, “Defining Codatatypes,” describes how to specify codatatypes

using the codatatype command.
• Section 5, “Defining Primitively Corecursive Functions,” describes how

to specify functions using the primcorec and primcorecursive com-
mands.
• Section 6, “Registering Bounded Natural Functors,” explains how to

use the bnf command to register arbitrary type constructors as BNFs.
• Section 7, “Deriving Destructors and Theorems for Free Constructors,”

explains how to use the command free_constructors to derive de-
structor constants and theorems for freely generated types, as per-
formed internally by datatype and codatatype.

1However, some of the internal constructions and most of the internal proof obligations
are omitted if the quick_and_dirty option is enabled.

2 Defining Datatypes 5

• Section 8, “Selecting Plugins,” is concerned with the package’s inter-
operability with other Isabelle packages and tools, such as the code
generator, Transfer, Lifting, and Quickcheck.

• Section 9, “Known Bugs and Limitations,” concludes with known open
issues at the time of writing.

Comments and bug reports concerning either the package or this tutorial
should be directed to the authors at blanNOSPAMchette@in.tum.de, deshNOSPAMarna@in.
tum.de, loreNOSPAMnz.panny@in.tum.de, popeNOSPAMscua@in.tum.de, and trayNOSPAMtel@in.
tum.de.

2 Defining Datatypes
Datatypes can be specified using the datatype command.

2.1 Introductory Examples
Datatypes are illustrated through concrete examples featuring different fla-
vors of recursion. More examples can be found in the directory ~~/src/HOL/
Datatype_Examples.

2.1.1 Nonrecursive Types

Datatypes are introduced by specifying the desired names and argument
types for their constructors. Enumeration types are the simplest form of
datatype. All their constructors are nullary:

datatype trool = Truue | Faalse | Perhaaps

Truue, Faalse, and Perhaaps have the type trool.
Polymorphic types are possible, such as the following option type, modeled

after its homologue from the Option theory:

datatype ′a option = None | Some ′a

The constructors are None :: ′a option and Some :: ′a ⇒ ′a option.
The next example has three type parameters:

datatype (′a, ′b, ′c) triple = Triple ′a ′b ′c

The constructor is Triple :: ′a ⇒ ′b ⇒ ′c ⇒ (′a, ′b, ′c) triple. Unlike in
Standard ML, curried constructors are supported. The uncurried variant is
also possible:

2 Defining Datatypes 6

datatype (′a, ′b, ′c) tripleu = Tripleu “ ′a ∗ ′b ∗ ′c ”

Occurrences of nonatomic types on the right-hand side of the equal sign must
be enclosed in double quotes, as is customary in Isabelle.

2.1.2 Simple Recursion

Natural numbers are the simplest example of a recursive type:

datatype nat = Zero | Succ nat

Lists were shown in the introduction. Terminated lists are a variant that
stores a value of type ′b at the very end:

datatype (′a, ′b) tlist = TNil ′b | TCons ′a “ (′a, ′b) tlist ”

2.1.3 Mutual Recursion

Mutually recursive types are introduced simultaneously and may refer to each
other. The example below introduces a pair of types for even and odd natural
numbers:

datatype even_nat = Even_Zero | Even_Succ odd_nat
and odd_nat = Odd_Succ even_nat

Arithmetic expressions are defined via terms, terms via factors, and factors
via expressions:

datatype (′a, ′b) exp =
Term “ (′a, ′b) trm ” | Sum “ (′a, ′b) trm ” “ (′a, ′b) exp ”

and (′a, ′b) trm =
Factor “ (′a, ′b) fct ” | Prod “ (′a, ′b) fct ” “ (′a, ′b) trm ”

and (′a, ′b) fct =
Const ′a | Var ′b | Expr “ (′a, ′b) exp ”

2.1.4 Nested Recursion

Nested recursion occurs when recursive occurrences of a type appear under
a type constructor. The introduction showed some examples of trees with
nesting through lists. A more complex example, that reuses our option type,
follows:

datatype ′a btree =
BNode ′a “ ′a btree option ” “ ′a btree option ”

Not all nestings are admissible. For example, this command will fail:

datatype ′a wrong = W 1 | W 2 “ ′a wrong ⇒ ′a ”

2 Defining Datatypes 7

The issue is that the function arrow ⇒ allows recursion only through its
right-hand side. This issue is inherited by polymorphic datatypes defined in
terms of ⇒:

datatype (′a, ′b) fun_copy = Fun “ ′a ⇒ ′b ”
datatype ′a also_wrong = W 1 | W 2 “ (′a also_wrong , ′a) fun_copy ”

The following definition of ′a-branching trees is legal:

datatype ′a ftree = FTLeaf ′a | FTNode “ ′a ⇒ ′a ftree ”

And so is the definition of hereditarily finite sets:

datatype hfset = HFSet “hfset fset ”

In general, type constructors (′a1, . . . ,
′am) t allow recursion on a subset of

their type arguments ′a1, . . . , ′am . These type arguments are called live; the
remaining type arguments are called dead. In ′a ⇒ ′b and (′a, ′b) fun_copy,
the type variable ′a is dead and ′b is live.

Type constructors must be registered as BNFs to have live arguments.
This is done automatically for datatypes and codatatypes introduced by the
datatype and codatatype commands. Section 6 explains how to register
arbitrary type constructors as BNFs.

Here is another example that fails:

datatype ′a pow_list = PNil ′a | PCons “ (′a ∗ ′a) pow_list ”

This attempted definition features a different flavor of nesting, where the
recursive call in the type specification occurs around (rather than inside)
another type constructor.

2.1.5 Auxiliary Constants

The datatype command introduces various constants in addition to the con-
structors. With each datatype are associated set functions, a map function,
a relator, discriminators, and selectors, all of which can be given custom
names. In the example below, the familiar names null, hd, tl, set, map, and
list_all2 override the default names is_Nil, un_Cons1, un_Cons2, set_list,
map_list, and rel_list :

datatype (set : ′a) list =
null : Nil
| Cons (hd : ′a) (tl : “ ′a list ”)
for
map: map
rel : list_all2

where

2 Defining Datatypes 8

“ tl Nil = Nil ”

The types of the constants that appear in the specification are listed below.

Constructors: Nil :: ′a list
Cons :: ′a ⇒ ′a list ⇒ ′a list

Discriminator: null :: ′a list ⇒ bool
Selectors: hd :: ′a list ⇒ ′a

tl :: ′a list ⇒ ′a list
Set function: set :: ′a list ⇒ ′a set
Map function: map :: (′a ⇒ ′b) ⇒ ′a list ⇒ ′b list
Relator: list_all2 :: (′a ⇒ ′b ⇒ bool) ⇒ ′a list ⇒ ′b list ⇒ bool

The discriminator null and the selectors hd and tl are characterized by
the following conditional equations:

null xs =⇒ xs = Nil ¬ null xs =⇒ Cons (hd xs) (tl xs) = xs

For two-constructor datatypes, a single discriminator constant is sufficient.
The discriminator associated with Cons is simply λxs . ¬ null xs.

The where clause at the end of the command specifies a default value
for selectors applied to constructors on which they are not a priori specified.
In the example, it is used to ensure that the tail of the empty list is itself
(instead of being left unspecified).

Because Nil is nullary, it is also possible to use λxs . xs = Nil as a dis-
criminator. This is the default behavior if we omit the identifier null and
the associated colon. Some users argue against this, because the mixture of
constructors and selectors in the characteristic theorems can lead Isabelle’s
automation to switch between the constructor and the destructor view in
surprising ways.

The usual mixfix syntax annotations are available for both types and
constructors. For example:

datatype (′a, ′b) prod (infixr “∗” 20) = Pair ′a ′b

datatype (set : ′a) list =
null : Nil (“ []”)
| Cons (hd : ′a) (tl : “ ′a list ”) (infixr “#” 65)
for
map: map
rel : list_all2

Incidentally, this is how the traditional syntax can be set up:

syntax “_list ” :: “args ⇒ ′a list ” (“ [(_)]”)

translations

2 Defining Datatypes 9

“ [x , xs]” == “x # [xs]”
“ [x]” == “x # []”

2.2 Command Syntax
2.2.1 datatype

datatype : local_theory → local_theory

datatype
�� ���

�target

�
�

�
�dt-options

�
�

dt-spec

dt-options

(
���� plugins�

�discs_sels
�� ��

�
�

�

� ,
����

�

�

)
����

plugins

plugins
�� �� only

�� ���
�del

�� ��
�
�

:
���� name�

�
�
�

2 Defining Datatypes 10

dt-spec

dt-name =
���� dt-ctor�

� |
����

�
�

�

��
��

�map-rel

�
�

�
�where

�� �� prop�
� |

����
�
�

�
�

�

��

� and
�� ��

�

�
map-rel

for
�� �� map

�� ���
�rel

�� ��
�
�

:
����name�

�

�

�
The datatype command introduces a set of mutually recursive datatypes
specified by their constructors.

The syntactic entity target can be used to specify a local context (e.g.,
(in linorder) [9]), and prop denotes a HOL proposition.

The optional target is optionally followed by a combination of the follow-
ing options:

• The plugins option indicates which plugins should be enabled (only) or
disabled (del). By default, all plugins are enabled.
• The discs_sels option indicates that discriminators and selectors should

be generated. The option is implicitly enabled if names are specified
for discriminators or selectors.

The optional where clause specifies default values for selectors. Each
proposition must be an equation of the form un_D (C . . .) = . . . , where C
is a constructor and un_D is a selector.

The left-hand sides of the datatype equations specify the name of the type
to define, its type parameters, and additional information:

2 Defining Datatypes 11

dt-name

�
�tyargs

�
�

name �
�mixfix

�
�

tyargs

typefree�
� (

���� �
� dead

�� ���
�name :

����
�
�

�
�

typefree�

� ,
����

�

�

)
����

�
�

The syntactic entity name denotes an identifier, mixfix denotes the usual
parenthesized mixfix notation, and typefree denotes fixed type variable (′a,
′b, . . .) [9].

The optional names preceding the type variables allow to override the
default names of the set functions (set1_t, . . . , setm_t). Type arguments
can be marked as dead by entering dead in front of the type variable (e.g.,
(dead ′a)); otherwise, they are live or dead (and a set function is generated or
not) depending on where they occur in the right-hand sides of the definition.
Declaring a type argument as dead can speed up the type definition but will
prevent any later (co)recursion through that type argument.

Inside a mutually recursive specification, all defined datatypes must men-
tion exactly the same type variables in the same order.

dt-ctor

�
�name :

����
�
�

name �
�dt-ctor-arg

�
�

�
�mixfix

�
�

The main constituents of a constructor specification are the name of the
constructor and the list of its argument types. An optional discriminator
name can be supplied at the front. If discriminators are enabled (cf. the

2 Defining Datatypes 12

discs_sels option) but no name is supplied, the default is λx . x = C j for
nullary constructors and t .is_C j otherwise.

dt-ctor-arg

type�
� (

����name :
����type)

����
�
�

The syntactic entity type denotes a HOL type [9].
In addition to the type of a constructor argument, it is possible to specify a

name for the corresponding selector. The same selector name can be reused
for arguments to several constructors as long as the arguments share the
same type. If selectors are enabled (cf. the discs_sels option) but no name
is supplied, the default name is un_C j i.

2.2.2 datatype_compat

datatype_compat : local_theory → local_theory

datatype_compat
�� �� name�

�
�
�

The datatype_compat command registers new-style datatypes as old-style
datatypes and invokes the old-style plugins. For example:

datatype_compat even_nat odd_nat

ML {∗ Old_Datatype_Data.get_info @{theory} @{type_name even_nat} ∗}

The syntactic entity name denotes an identifier [9].
The command is sometimes useful when migrating from the old datatype

package to the new one.
A few remarks concern nested recursive datatypes:

• The old-style, nested-as-mutual induction rule and recursor theorems
are generated under their usual names but with “compat_” prefixed
(e.g., compat_tree.induct, compat_tree.inducts, and compat_tree.rec).
• All types through which recursion takes place must be new-style data-

types or the function type.

2 Defining Datatypes 13

2.3 Generated Constants
Given a datatype (′a1, . . . ,

′am) t with m live type variables and n construc-
tors t .C 1, . . . , t .C n , the following auxiliary constants are introduced:

Case combinator: t .case_t (rendered using the familiar case–of syntax)
Discriminators: t .is_C 1, . . . ,t .is_C n

Selectors: t .un_C 11, . . . ,t .un_C 1k 1
...

t .un_C n1, . . . ,t .un_C nkn

Set functions: t .set1_t, . . . , t .setm_t
Map function: t .map_t
Relator: t .rel_t
Recursor: t .rec_t

The discriminators and selectors are generated only if the discs_sels option
is enabled or if names are specified for discriminators or selectors. The set
functions, map function, and relator are generated only if m > 0.

In addition, some of the plugins introduce their own constants (Section 8).
The case combinator, discriminators, and selectors are collectively called de-
structors. The prefix “t .” is an optional component of the names and is
normally hidden.

2.4 Generated Theorems
The characteristic theorems generated by datatype are grouped in three
broad categories:

• The free constructor theorems (Section 2.4.1) are properties of the con-
structors and destructors that can be derived for any freely generated
type. Internally, the derivation is performed by free_constructors.

• The functorial theorems (Section 2.4.2) are properties of datatypes re-
lated to their BNF nature.

• The inductive theorems (Section 2.4.3) are properties of datatypes re-
lated to their inductive nature.

The full list of named theorems can be obtained as usual by entering the com-
mand print_theorems immediately after the datatype definition. This list
includes theorems produced by plugins (Section 8), but normally excludes
low-level theorems that reveal internal constructions. To make these acces-
sible, add the line

declare [[bnf_note_all]]

2 Defining Datatypes 14

to the top of the theory file.

2.4.1 Free Constructor Theorems

The free constructor theorems are partitioned in three subgroups. The first
subgroup of properties is concerned with the constructors. They are listed
below for ′a list :

t .inject [iff , induct_simp]:
(x21 # x22 = y21 # y22) = (x21 = y21 ∧ x22 = y22)

t .distinct [simp, induct_simp]:
[] 6= x21 # x22
x21 # x22 6= []

t .exhaust [cases t , case_names C 1 . . . C n]:
[[y = [] =⇒ P ;

∧
x21 x22. y = x21 # x22 =⇒ P]] =⇒ P

t .nchotomy :
∀ list . list = [] ∨ (∃ x21 x22. list = x21 # x22)

In addition, these nameless theorems are registered as safe elimination rules:

t .distinct [THEN notE , elim!]:
[] = x21 # x22 =⇒ R
x21 # x22 = [] =⇒ R

The next subgroup is concerned with the case combinator:

t .case [simp, code]:
(case [] of [] ⇒ f 1 | x # xa ⇒ f 2 x xa) = f 1
(case x21 # x22 of [] ⇒ f 1 | x # xa ⇒ f 2 x xa) = f 2 x21 x22
The [code] attribute is set by the code plugin (Section 8.1).

t .case_cong [fundef_cong]:
[[list = list ′; list ′ = [] =⇒ f 1 = g1;

∧
x21 x22. list ′ = x21 # x22 =⇒

f 2 x21 x22 = g2 x21 x22]] =⇒ (case list of [] ⇒ f 1 | x21 # x22 ⇒
f 2 x21 x22) = (case list ′ of [] ⇒ g1 | x21 # x22 ⇒ g2 x21 x22)

t .case_cong_weak [cong]:
list = list ′ =⇒ (case list of [] ⇒ f 1 | x # xa ⇒ f 2 x xa) = (case
list ′ of [] ⇒ f 1 | x # xa ⇒ f 2 x xa)

t .case_distrib:
h (case list of [] ⇒ f 1 | x # xa ⇒ f 2 x xa) = (case list of [] ⇒ h
f 1 | x1 # x2 ⇒ h (f 2 x1 x2))

2 Defining Datatypes 15

t .split :
P (case list of [] ⇒ f 1 | x # xa ⇒ f 2 x xa) = ((list = [] −→ P f 1)
∧ (∀ x21 x22. list = x21 # x22 −→ P (f 2 x21 x22)))

t .split_asm :
P (case list of [] ⇒ f 1 | x # xa ⇒ f 2 x xa) = (¬ (list = [] ∧ ¬ P
f 1 ∨ (∃ x21 x22. list = x21 # x22 ∧ ¬ P (f 2 x21 x22))))

t .splits = split split_asm

The third subgroup revolves around discriminators and selectors:

t .disc [simp]:
null []
¬ null (x21 # x22)

t .discI :
list = [] =⇒ null list
list = x21 # x22 =⇒ ¬ null list

t .sel [simp, code]:
hd (x21 # x22) = x21
tl (x21 # x22) = x22
The [code] attribute is set by the code plugin (Section 8.1).

t .collapse [simp]:
null list =⇒ list = []
¬ null list =⇒ hd list # tl list = list
The [simp] attribute is exceptionally omitted for datatypes equipped
with a single nullary constructor, because a property of the form x
= C is not suitable as a simplification rule.

t .distinct_disc [dest]:
These properties are missing for ′a list because there is only one
proper discriminator. If the datatype had been introduced with a
second discriminator called nonnull, they would have read thusly:
null list =⇒ ¬ nonnull list
nonnull list =⇒ ¬ null list

t .exhaust_disc [case_names C 1 . . . C n]:
[[null list =⇒ P ; ¬ null list =⇒ P]] =⇒ P

t .exhaust_sel [case_names C 1 . . . C n]:
[[list = [] =⇒ P ; list = hd list # tl list =⇒ P]] =⇒ P

t .expand :
[[null list = null list ′; [[¬ null list ; ¬ null list ′]] =⇒ hd list = hd list ′
∧ tl list = tl list ′]] =⇒ list = list ′

2 Defining Datatypes 16

t .split_sel :
P (case list of [] ⇒ f 1 | x # xa ⇒ f 2 x xa) = ((list = [] −→ P f 1)
∧ (list = hd list # tl list −→ P (f 2 (hd list) (tl list))))

t .split_sel_asm :
P (case list of [] ⇒ f 1 | x # xa ⇒ f 2 x xa) = (¬ (list = [] ∧ ¬ P
f 1 ∨ list = hd list # tl list ∧ ¬ P (f 2 (hd list) (tl list))))

t .split_sels = split_sel split_sel_asm

t .case_eq_if :
(case list of [] ⇒ f 1 | x # xa ⇒ f 2 x xa) = (if null list then f 1 else
f 2 (hd list) (tl list))

t .disc_eq_case :
null list = (case list of [] ⇒ True | uu_ # uua_ ⇒ False)
(¬ null list) = (case list of [] ⇒ False | uu_ # uua_ ⇒ True)

In addition, equational versions of t .disc are registered with the [code] at-
tribute. The [code] attribute is set by the code plugin (Section 8.1).

2.4.2 Functorial Theorems

The functorial theorems are partitioned in two subgroups. The first subgroup
consists of properties involving the constructors or the destructors and either
a set function, the map function, or the relator:

t .case_transfer [transfer_rule]:
rel_fun S (rel_fun (rel_fun R (rel_fun (list_all2 R) S)) (rel_fun
(list_all2 R) S)) case_list case_list
The [transfer_rule] attribute is set by the transfer plugin (Section 8.3)
for type constructors with no dead type arguments.

t .sel_transfer [transfer_rule]:
This property is missing for ′a list because there is no common se-
lector to all constructors.
The [transfer_rule] attribute is set by the transfer plugin (Section 8.3)
for type constructors with no dead type arguments.

t .ctr_transfer [transfer_rule]:
list_all2 R [] []
rel_fun R (rel_fun (list_all2 R) (list_all2 R)) op # op #
The [transfer_rule] attribute is set by the transfer plugin (Section 8.3)
for type constructors with no dead type arguments.

2 Defining Datatypes 17

t .disc_transfer [transfer_rule]:
rel_fun (list_all2 R) op = null null
rel_fun (list_all2 R) op = (λlist . ¬ null list) (λlist . ¬ null list)
The [transfer_rule] attribute is set by the transfer plugin (Section 8.3)
for type constructors with no dead type arguments.

t .set [simp, code]:
set [] = {}
set (x21 # x22) = insert x21 (set x22)
The [code] attribute is set by the code plugin (Section 8.1).

t .set_cases [consumes 1, cases set : set i_t]:
[[e ∈ set a;

∧
z2. a = e # z2 =⇒ thesis ;

∧
z1 z2. [[a = z1 # z2; e

∈ set z2]] =⇒ thesis]] =⇒ thesis
t .set_intros :

a1 ∈ set (a1 # a2)
x ∈ set a2 =⇒ x ∈ set (a1 # a2)

t .set_sel :
¬ null a =⇒ hd a ∈ set a
[[¬ null a; x ∈ set (tl a)]] =⇒ x ∈ set a

t .map [simp, code]:
map f [] = []
map f (x21 # x22) = f x21 # map f x22
The [code] attribute is set by the code plugin (Section 8.1).

t .map_disc_iff [simp]:
null (map f a) = null a

t .map_sel :
¬ null a =⇒ hd (map f a) = f (hd a)

¬ null a =⇒ tl (map f a) = map f (tl a)

t .rel_inject [simp]:
list_all2 R [] []
list_all2 R (x21 # x22) (y21 # y22) = (R x21 y21 ∧ list_all2 R
x22 y22)

t .rel_distinct [simp]:
¬ list_all2 R [] (y21 # y22)
¬ list_all2 R (y21 # y22) []

t .rel_intros :
list_all2 R [] []
[[R x21 y21; list_all2 R x22 y22]] =⇒ list_all2 R (x21 # x22) (y21
y22)

2 Defining Datatypes 18

t .rel_cases [consumes 1, case_names t1 . . . tm , cases pred]:
[[list_all2 R a b; [[a = []; b = []]] =⇒ thesis ;

∧
x1 x2 y1 y2. [[a = x1

x2; b = y1 # y2; R x1 y1; list_all2 R x2 y2]] =⇒ thesis]] =⇒
thesis

t .rel_sel :
list_all2 R a b = (null a = null b ∧ (¬ null a −→ ¬ null b −→ R
(hd a) (hd b) ∧ list_all2 R (tl a) (tl b)))

In addition, equational versions of t .rel_inject and rel_distinct are registered
with the [code] attribute. The [code] attribute is set by the code plugin
(Section 8.1).

The second subgroup consists of more abstract properties of the set func-
tions, the map function, and the relator:

t .inj_map:
inj f =⇒ inj (map f)

t .inj_map_strong :
[[
∧
z za. [[z ∈ set x ; za ∈ set xa; f z = fa za]] =⇒ z = za; map f x =

map fa xa]] =⇒ x = xa

t .set_map:
set (map f v) = f ‘ set v

t .set_transfer [transfer_rule]:
rel_fun (list_all2 R) (rel_set R) set set
The [transfer_rule] attribute is set by the transfer plugin (Section 8.3)
for type constructors with no dead type arguments.

t .map_cong0 :
(
∧
z . z ∈ set x =⇒ f z = g z) =⇒ map f x = map g x

t .map_cong [fundef_cong]:
[[x = y ;

∧
z . z ∈ set y =⇒ f z = g z]] =⇒ map f x = map g y

t .map_cong_simp:
[[x = y ;

∧
z . z ∈ set y =simp=> f z = g z]] =⇒ map f x = map g y

t .map_id0 :
map id = id

t .map_id :
map id t = t

t .map_ident :
map (λx . x) t = t

2 Defining Datatypes 19

t .map_transfer [transfer_rule]:
rel_fun (rel_fun Rb Sd) (rel_fun (list_all2 Rb) (list_all2 Sd)) map
map
The [transfer_rule] attribute is set by the transfer plugin (Section 8.3)
for type constructors with no dead type arguments.

t .rel_compp [relator_distr]:
list_all2 (R OO S) = list_all2 R OO list_all2 S
The [relator_distr] attribute is set by the lifting plugin (Section 8.4).

t .rel_conversep:
list_all2 R−− = (list_all2 R)−−

t .rel_eq :
list_all2 op = = op =

t .rel_flip:
list_all2 R−− a b = list_all2 R b a

t .rel_map:
list_all2 Sb (map i x) y = list_all2 (λx . Sb (i x)) x y
list_all2 Sa x (map g y) = list_all2 (λx y . Sa x (g y)) x y

t .rel_mono [mono, relator_mono]:
R ≤ Ra =⇒ list_all2 R ≤ list_all2 Ra
The [relator_mono] attribute is set by the lifting plugin (Section 8.4).

t .rel_refl :
(
∧
x . Ra x x) =⇒ list_all2 Ra x x

t .rel_transfer [transfer_rule]:
rel_fun (rel_fun Sa (rel_fun Sc op =)) (rel_fun (list_all2 Sa)
(rel_fun (list_all2 Sc) op =)) list_all2 list_all2
The [transfer_rule] attribute is set by the transfer plugin (Section 8.3)
for type constructors with no dead type arguments.

2.4.3 Inductive Theorems

The inductive theorems are as follows:

t .induct [case_names C 1 . . . C n , induct t]:
[[P [];

∧
x1 x2. P x2 =⇒ P (x1 # x2)]] =⇒ P list

t .rel_induct [case_names C 1 . . . C n , induct pred]:
[[list_all2 R x y ; Q [] [];

∧
a21 a22 b21 b22. [[R a21 b21; Q a22 b22]]

=⇒ Q (a21 # a22) (b21 # b22)]] =⇒ Q x y

2 Defining Datatypes 20

t1_. . ._tm .induct [case_names C 1 . . . C n]:
t1_. . ._tm .rel_induct [case_names C 1 . . . C n]:

Given m > 1 mutually recursive datatypes, this induction rule can
be used to prove m properties simultaneously.

t .rec [simp, code]:
rec_list f 1 f 2 [] = f 1
rec_list f 1 f 2 (x21 # x22) = f 2 x21 x22 (rec_list f 1 f 2 x22)
The [code] attribute is set by the code plugin (Section 8.1).

t .rec_o_map:
rec_list g ga ◦ map f = rec_list g (λx xa. ga (f x) (map f xa))

t .rec_transfer [transfer_rule]:
rel_fun S (rel_fun (rel_fun R (rel_fun (list_all2 R) (rel_fun S S)))
(rel_fun (list_all2 R) S)) rec_list rec_list
The [transfer_rule] attribute is set by the transfer plugin (Section 8.3)
for type constructors with no dead type arguments.

For convenience, datatype also provides the following collection:

t .simps = t .inject t .distinct t .case t .rec t .map t .rel_inject
t .rel_distinct t .set

2.5 Compatibility Issues
The command datatype has been designed to be highly compatible with
the old command (which is now called old_datatype), to ease migration.
There are nonetheless a few incompatibilities that may arise when porting:

• The Standard ML interfaces are different. Tools and extensions writ-
ten to call the old ML interfaces will need to be adapted to the new
interfaces. The BNF_LFP_Compat structure provides convenience
functions that simulate the old interfaces in terms of the new ones.

• The recursor rec_t has a different signature for nested recursive data-
types. In the old package, nested recursion through non-functions was
internally reduced to mutual recursion. This reduction was visible in
the type of the recursor, used by primrec. Recursion through func-
tions was handled specially. In the new package, nested recursion (for
functions and non-functions) is handled in a more modular fashion.
The old-style recursor can be generated on demand using primrec if
the recursion is via new-style datatypes, as explained in Section 3.1.5.

3 Defining Primitively Recursive Functions 21

• Accordingly, the induction rule is different for nested recursive data-
types. Again, the old-style induction rule can be generated on demand
using primrec if the recursion is via new-style datatypes, as explained
in Section 3.1.5. For recursion through functions, the old-style induc-
tion rule can be obtained by applying the [unfolded all_mem_range]
attribute on t .induct.

• The size function has a slightly different definition. The new function
returns 1 instead of 0 for some nonrecursive constructors. This depar-
ture from the old behavior made it possible to implement size in terms
of the generic function t .size_t. Moreover, the new function considers
nested occurrences of a value, in the nested recursive case. The old
behavior can be obtained by disabling the size plugin (Section 8) and
instantiating the size type class manually.

• The internal constructions are completely different. Proof texts that
unfold the definition of constants introduced by old_datatype will
be difficult to port.

• Some constants and theorems have different names. For non-mutually
recursive datatypes, the alias t .inducts for t .induct is no longer gener-
ated. For m > 1 mutually recursive datatypes, rec_t1_. . ._tm_i has
been renamed rec_t i for each i ∈ {1, . . . , t}, t1_. . ._tm .inducts(i)
has been renamed t i .induct for each i ∈ {1, . . . , t}, and the collection
t1_. . ._tm .size (generated by the size plugin, Section 8.2) has been
divided into t1.size, . . . , tm .size.

• The t .simps collection has been extended. Previously available theorems
are available at the same index as before.

• Variables in generated properties have different names. This is rarely
an issue, except in proof texts that refer to variable names in the [where
. . .] attribute. The solution is to use the more robust [of . . .] syntax.

In the other direction, there is currently no way to register old-style data-
types as new-style datatypes. If the goal is to define new-style datatypes with
nested recursion through old-style datatypes, the old-style datatypes can be
registered as a BNF (Section 6). If the goal is to derive discriminators and
selectors, this can be achieved using free_constructors (Section 7).

3 Defining Primitively Recursive Functions
Recursive functions over datatypes can be specified using the primrec com-
mand, which supports primitive recursion, or using the more general fun,

3 Defining Primitively Recursive Functions 22

function, and partial_function commands. In this tutorial, the focus is
on primrec; fun and function are described in a separate tutorial [5].

3.1 Introductory Examples
Primitive recursion is illustrated through concrete examples based on the
datatypes defined in Section 2.1. More examples can be found in the directory
~~/src/HOL/Datatype_Examples.

3.1.1 Nonrecursive Types

Primitive recursion removes one layer of constructors on the left-hand side
in each equation. For example:

primrec (nonexhaustive) bool_of_trool :: “ trool ⇒ bool ” where
“bool_of_trool Faalse ←→ False ” |
“bool_of_trool Truue ←→ True ”

primrec the_list :: “ ′a option ⇒ ′a list ” where
“ the_list None = []” |
“ the_list (Some a) = [a]”

primrec the_default :: “ ′a ⇒ ′a option ⇒ ′a ” where
“ the_default d None = d ” |
“ the_default _ (Some a) = a ”

primrec mirrror :: “ (′a, ′b, ′c) triple ⇒ (′c, ′b, ′a) triple ” where
“mirrror (Triple a b c) = Triple c b a ”

The equations can be specified in any order, and it is acceptable to leave out
some cases, which are then unspecified. Pattern matching on the left-hand
side is restricted to a single datatype, which must correspond to the same
argument in all equations.

3.1.2 Simple Recursion

For simple recursive types, recursive calls on a constructor argument are
allowed on the right-hand side:

primrec replicate :: “nat ⇒ ′a ⇒ ′a list ” where
“ replicate Zero _ = []” |
“ replicate (Succ n) x = x # replicate n x ”

primrec (nonexhaustive) at :: “ ′a list ⇒ nat ⇒ ′a ” where
“at (x # xs) j =

3 Defining Primitively Recursive Functions 23

(case j of
Zero ⇒ x
| Succ j ′⇒ at xs j ′)”

primrec tfold :: “ (′a ⇒ ′b ⇒ ′b) ⇒ (′a, ′b) tlist ⇒ ′b ” where
“ tfold _ (TNil y) = y ” |
“ tfold f (TCons x xs) = f x (tfold f xs)”

Pattern matching is only available for the argument on which the recursion
takes place. Fortunately, it is easy to generate pattern-maching equations
using the simps_of_case command provided by the theory ~~/src/HOL/
Library/Simps_Case_Conv.

simps_of_case at_simps: at .simps

This generates the lemma collection at_simps :

at (x # xs) Zero = x at (xa # xs) (Succ x) = at xs x

The next example is defined using fun to escape the syntactic restrictions
imposed on primitively recursive functions:

fun at_least_two :: “nat ⇒ bool ” where
“at_least_two (Succ (Succ _)) ←→ True ” |
“at_least_two _ ←→ False ”

3.1.3 Mutual Recursion

The syntax for mutually recursive functions over mutually recursive data-
types is straightforward:

primrec
nat_of_even_nat :: “even_nat ⇒ nat ” and
nat_of_odd_nat :: “odd_nat ⇒ nat ”

where
“nat_of_even_nat Even_Zero = Zero ” |
“nat_of_even_nat (Even_Succ n) = Succ (nat_of_odd_nat n)” |
“nat_of_odd_nat (Odd_Succ n) = Succ (nat_of_even_nat n)”

primrec
evale :: “ (′a ⇒ int) ⇒ (′b ⇒ int) ⇒ (′a, ′b) exp ⇒ int ” and
eval t :: “ (′a ⇒ int) ⇒ (′b ⇒ int) ⇒ (′a, ′b) trm ⇒ int ” and
eval f :: “ (′a ⇒ int) ⇒ (′b ⇒ int) ⇒ (′a, ′b) fct ⇒ int ”

where
“evale γ ξ (Term t) = eval t γ ξ t ” |
“evale γ ξ (Sum t e) = eval t γ ξ t + evale γ ξ e ” |
“eval t γ ξ (Factor f) = eval f γ ξ f ” |

3 Defining Primitively Recursive Functions 24

“eval t γ ξ (Prod f t) = eval f γ ξ f + eval t γ ξ t ” |
“eval f γ _ (Const a) = γ a ” |
“eval f _ ξ (Var b) = ξ b ” |
“eval f γ ξ (Expr e) = evale γ ξ e ”

Mutual recursion is possible within a single type, using fun:
fun
even :: “nat ⇒ bool ” and
odd :: “nat ⇒ bool ”

where
“even Zero = True ” |
“even (Succ n) = odd n ” |
“odd Zero = False ” |
“odd (Succ n) = even n ”

3.1.4 Nested Recursion

In a departure from the old datatype package, nested recursion is normally
handled via the map functions of the nesting type constructors. For example,
recursive calls are lifted to lists using map:

primrec at f f :: “ ′a tree f f ⇒ nat list ⇒ ′a ” where
“at f f (Node f f a ts) js =

(case js of
[] ⇒ a
| j # js ′⇒ at (map (λt . at f f t js ′) ts) j)”

The next example features recursion through the option type. Although
option is not a new-style datatype, it is registered as a BNF with the map
function map_option:

primrec sum_btree :: “ (′a::{zero,plus}) btree ⇒ ′a ” where
“ sum_btree (BNode a lt rt) =

a + the_default 0 (map_option sum_btree lt) +
the_default 0 (map_option sum_btree rt)”

The same principle applies for arbitrary type constructors through which
recursion is possible. Notably, the map function for the function type (⇒) is
simply composition (op ◦):

primrec relabel_ft :: “ (′a ⇒ ′a) ⇒ ′a ftree ⇒ ′a ftree ” where
“ relabel_ft f (FTLeaf x) = FTLeaf (f x)” |
“ relabel_ft f (FTNode g) = FTNode (relabel_ft f ◦ g)”

For convenience, recursion through functions can also be expressed using λ-
abstractions and function application rather than through composition. For
example:

3 Defining Primitively Recursive Functions 25

primrec relabel_ft :: “ (′a ⇒ ′a) ⇒ ′a ftree ⇒ ′a ftree ” where
“ relabel_ft f (FTLeaf x) = FTLeaf (f x)” |
“ relabel_ft f (FTNode g) = FTNode (λx . relabel_ft f (g x))”

primrec (nonexhaustive) subtree_ft :: “ ′a ⇒ ′a ftree ⇒ ′a ftree ” where
“ subtree_ft x (FTNode g) = g x ”

For recursion through curried n-ary functions, n applications of op ◦ are
necessary. The examples below illustrate the case where n = 2:

datatype ′a ftree2 = FTLeaf 2 ′a | FTNode2 “ ′a ⇒ ′a ⇒ ′a ftree2”

primrec relabel_ft2 :: “ (′a ⇒ ′a) ⇒ ′a ftree2 ⇒ ′a ftree2” where
“ relabel_ft2 f (FTLeaf 2 x) = FTLeaf 2 (f x)” |
“ relabel_ft2 f (FTNode2 g) = FTNode2 (op ◦ (op ◦ (relabel_ft2 f)) g)”

primrec relabel_ft2 :: “ (′a ⇒ ′a) ⇒ ′a ftree2 ⇒ ′a ftree2” where
“ relabel_ft2 f (FTLeaf 2 x) = FTLeaf 2 (f x)” |
“ relabel_ft2 f (FTNode2 g) = FTNode2 (λx y . relabel_ft2 f (g x y))”

primrec (nonexhaustive) subtree_ft2 :: “ ′a ⇒ ′a ⇒ ′a ftree2⇒ ′a ftree2” where
“ subtree_ft2 x y (FTNode2 g) = g x y ”

3.1.5 Nested-as-Mutual Recursion

For compatibility with the old package, but also because it is sometimes con-
venient in its own right, it is possible to treat nested recursive datatypes as
mutually recursive ones if the recursion takes place though new-style data-
types. For example:

primrec (nonexhaustive)
at f f :: “ ′a tree f f ⇒ nat list ⇒ ′a ” and
ats f f :: “ ′a tree f f list ⇒ nat ⇒ nat list ⇒ ′a ”

where
“at f f (Node f f a ts) js =

(case js of
[] ⇒ a
| j # js ′⇒ ats f f ts j js ′)” |

“ats f f (t # ts) j =
(case j of

Zero ⇒ at f f t
| Succ j ′⇒ ats f f ts j ′)”

Appropriate induction rules are generated as at f f .induct, ats f f .induct, and
at f f_ats f f .induct. The induction rules and the underlying recursors are gen-
erated on a per-need basis and are kept in a cache to speed up subsequent
definitions.

3 Defining Primitively Recursive Functions 26

Here is a second example:

primrec
sum_btree :: “ (′a::{zero,plus}) btree ⇒ ′a ” and
sum_btree_option :: “ ′a btree option ⇒ ′a ”

where
“ sum_btree (BNode a lt rt) =

a + sum_btree_option lt + sum_btree_option rt ” |
“ sum_btree_option None = 0” |
“ sum_btree_option (Some t) = sum_btree t ”

3.2 Command Syntax
3.2.1 primrec

primrec : local_theory → local_theory

primrec
�� ���

�target

�
�

�
�pr-options

�
�

fixes �

��
�where

�� �� pr-equation�
� |

����
�
�

pr-options

(
���� plugins�

�nonexhaustive
�� ���transfer
�� ��

�
�
�

�

� ,
����

�

�

)
����

3 Defining Primitively Recursive Functions 27

pr-equation

�
�thmdecl

�
�

prop

The primrec command introduces a set of mutually recursive functions over
datatypes.

The syntactic entity target can be used to specify a local context, fixes
denotes a list of names with optional type signatures, thmdecl denotes an
optional name for the formula that follows, and prop denotes a HOL propo-
sition [9].

The optional target is optionally followed by a combination of the follow-
ing options:

• The plugins option indicates which plugins should be enabled (only) or
disabled (del). By default, all plugins are enabled.

• The nonexhaustive option indicates that the functions are not necessar-
ily specified for all constructors. It can be used to suppress the warning
that is normally emitted when some constructors are missing.

• The transfer option indicates that an unconditional transfer rule should
be generated and proved by transfer_prover. The [transfer_rule] at-
tribute is set on the generated theorem.

3.3 Generated Theorems
The primrec command generates the following properties (listed for tfold):

f .simps [simp, code]:
tfold uu (TNil y) = y
tfold f (TCons x xs) = f x (tfold f xs)
The [code] attribute is set by the code plugin (Section 8.1).

f .transfer [transfer_rule]:
rel_fun (rel_fun R2 (rel_fun R1 R1)) (rel_fun (rel_tlist R2 R1)
R1) tfold tfold
This theorem is generated by the transfer plugin (Section 8.3) for
functions declared with the transfer option enabled.

3 Defining Primitively Recursive Functions 28

f .induct [case_names C 1 . . . C n]:
This induction rule is generated for nested-as-mutual recursive func-
tions (Section 3.1.5).

f 1_. . ._f m .induct [case_names C 1 . . . C n]:
This induction rule is generated for nested-as-mutual recursive func-
tions (Section 3.1.5). Given m > 1 mutually recursive functions, this
rule can be used to prove m properties simultaneously.

3.4 Recursive Default Values for Selectors
A datatype selector un_D can have a default value for each constructor
on which it is not otherwise specified. Occasionally, it is useful to have
the default value be defined recursively. This leads to a chicken-and-egg
situation, because the datatype is not introduced yet at the moment when
the selectors are introduced. Of course, we can always define the selectors
manually afterward, but we then have to state and prove all the characteristic
theorems ourselves instead of letting the package do it.

Fortunately, there is a workaround that relies on overloading to relieve us
from the tedium of manual derivations:

1. Introduce a fully unspecified constant un_D0 :: ′a using consts.

2. Define the datatype, specifying un_D0 as the selector’s default value.

3. Define the behavior of un_D0 on values of the newly introduced data-
type using the overloading command.

4. Derive the desired equation on un_D from the characteristic equations
for un_D0.

The following example illustrates this procedure:

consts termi0 :: ′a

datatype (′a, ′b) tlist =
TNil (termi : ′b)
| TCons (thd : ′a) (ttl : “ (′a, ′b) tlist ”)
where
“ ttl (TNil y) = TNil y ”
| “ termi (TCons _ xs) = termi0 xs ”

overloading
termi0 ≡ “ termi0 :: (′a, ′b) tlist ⇒ ′b ”

begin

4 Defining Codatatypes 29

primrec termi0 :: “ (′a, ′b) tlist ⇒ ′b ” where
“ termi0 (TNil y) = y ” |
“ termi0 (TCons x xs) = termi0 xs ”

end

lemma termi_TCons[simp]: “ termi (TCons x xs) = termi xs ”
by (cases xs) auto

3.5 Compatibility Issues
The command primrec’s behavior on new-style datatypes has been designed
to be highly compatible with that for old-style datatypes, to ease migration.
There is nonetheless at least one incompatibility that may arise when porting
to the new package:

• Some theorems have different names. For m > 1 mutually recursive
functions, f 1_. . ._f m .simps has been broken down into separate sub-
collections f i .simps.

4 Defining Codatatypes
Codatatypes can be specified using the codatatype command. The com-
mand is first illustrated through concrete examples featuring different flavors
of corecursion. More examples can be found in the directory ~~/src/HOL/
Datatype_Examples. The Archive of Formal Proofs also includes some useful
codatatypes, notably for lazy lists [6].

4.1 Introductory Examples
4.1.1 Simple Corecursion

Non-corecursive codatatypes coincide with the corresponding datatypes, so
they are rarely used in practice. Corecursive codatatypes have the same
syntax as recursive datatypes, except for the command name. For example,
here is the definition of lazy lists:

codatatype (lset : ′a) llist =
lnull : LNil
| LCons (lhd : ′a) (ltl : “ ′a llist ”)
for
map: lmap
rel : llist_all2

4 Defining Codatatypes 30

where
“ ltl LNil = LNil ”

Lazy lists can be infinite, such as LCons 0 (LCons 0 (. . .)) and LCons 0
(LCons 1 (LCons 2 (. . .))). Here is a related type, that of infinite streams:

codatatype (sset : ′a) stream =
SCons (shd : ′a) (stl : “ ′a stream ”)

for
map: smap
rel : stream_all2

Another interesting type that can be defined as a codatatype is that of the
extended natural numbers:

codatatype enat = EZero | ESucc enat

This type has exactly one infinite element, ESucc (ESucc (ESucc (. . .))),
that represents ∞. In addition, it has finite values of the form ESucc (. . .
(ESucc EZero). . .).

Here is an example with many constructors:

codatatype ′a process =
Fail
| Skip (cont : “ ′a process ”)
| Action (prefix : ′a) (cont : “ ′a process ”)
| Choice (left : “ ′a process ”) (right : “ ′a process ”)

Notice that the cont selector is associated with both Skip and Action.

4.1.2 Mutual Corecursion

The example below introduces a pair of mutually corecursive types:

codatatype even_enat = Even_EZero | Even_ESucc odd_enat
and odd_enat = Odd_ESucc even_enat

4.1.3 Nested Corecursion

The next examples feature nested corecursion:

codatatype ′a tree i i = Node i i (lbl i i : ′a) (subi i : “ ′a tree i i llist ”)

codatatype ′a tree i s = Node i s (lbl i s : ′a) (subi s : “ ′a tree i s fset ”)

codatatype ′a sm = SM (accept : bool) (trans: “ ′a ⇒ ′a sm ”)

4 Defining Codatatypes 31

4.2 Command Syntax
4.2.1 codatatype

codatatype : local_theory → local_theory

codatatype
�� ���

�target

�
�

�
�dt-options

�
�

dt-spec

Definitions of codatatypes have almost exactly the same syntax as for data-
types (Section 2.2). The discs_sels option is superfluous because discrimi-
nators and selectors are always generated for codatatypes.

4.3 Generated Constants
Given a codatatype (′a1, . . . ,

′am) t with m > 0 live type variables and n
constructors t .C 1, . . . , t .C n , the same auxiliary constants are generated as
for datatypes (Section 2.3), except that the recursor is replaced by a dual
concept:

Corecursor: t .corec_t

4.4 Generated Theorems
The characteristic theorems generated by codatatype are grouped in three
broad categories:

• The free constructor theorems (Section 2.4.1) are properties of the con-
structors and destructors that can be derived for any freely generated
type.

• The functorial theorems (Section 2.4.2) are properties of datatypes re-
lated to their BNF nature.

• The coinductive theorems (Section 4.4.1) are properties of datatypes
related to their coinductive nature.

The first two categories are exactly as for datatypes.

4 Defining Codatatypes 32

4.4.1 Coinductive Theorems

The coinductive theorems are listed below for ′a llist :

t .coinduct [consumes m, case_names t1 . . . tm ,
case_conclusion D1 . . . Dn , coinduct t]:

[[R llist llist ′;
∧
llist llist ′. R llist llist ′ =⇒ lnull llist = lnull llist ′ ∧

(¬ lnull llist −→ ¬ lnull llist ′ −→ lhd llist = lhd llist ′ ∧ R (ltl llist)
(ltl llist ′))]] =⇒ llist = llist ′

t .coinduct_strong [consumes m, case_names t1 . . . tm ,
case_conclusion D1 . . . Dn]:

[[R llist llist ′;
∧
llist llist ′. R llist llist ′ =⇒ lnull llist = lnull llist ′ ∧

(¬ lnull llist −→ ¬ lnull llist ′ −→ lhd llist = lhd llist ′ ∧ (R (ltl llist)
(ltl llist ′) ∨ ltl llist = ltl llist ′))]] =⇒ llist = llist ′

t .rel_coinduct [consumes m, case_names t1 . . . tm ,
case_conclusion D1 . . . Dn , coinduct pred]:

[[P x y ;
∧
llist llist ′. P llist llist ′ =⇒ lnull llist = lnull llist ′ ∧ (¬ lnull

llist −→ ¬ lnull llist ′ −→ R (lhd llist) (lhd llist ′) ∧ P (ltl llist) (ltl
llist ′))]] =⇒ llist_all2 R x y

t1_. . ._tm .coinduct [case_names t1 . . . tm , case_conclusion D1 . . . Dn]
t1_. . ._tm .coinduct_strong [case_names t1 . . . tm ,

case_conclusion D1 . . . Dn]:
t1_. . ._tm .rel_coinduct [case_names t1 . . . tm ,

case_conclusion D1 . . . Dn]:

Given m > 1 mutually corecursive codatatypes, these coinduction
rules can be used to prove m properties simultaneously.

t1_. . ._tm .set_induct [case_names C 1 . . . C n ,
induct set : set j_t1, . . . , induct set : set j_tm]:

[[x ∈ lset a;
∧
z1 z2. P z1 (LCons z1 z2);

∧
z1 z2 xa. [[xa ∈ lset z2;

P xa z2]] =⇒ P xa (LCons z1 z2)]] =⇒ P x a
If m = 1, the attribute [consumes 1] is generated as well.

t .corec:
p a =⇒ corec_llist p g21 q22 g221 g222 a = LNil
¬ p a =⇒ corec_llist p g21 q22 g221 g222 a = LCons (g21 a) (if
q22 a then g221 a else corec_llist p g21 q22 g221 g222 (g222 a))

t .corec_code [code]:
corec_llist p g21 q22 g221 g222 a = (if p a then LNil else LCons
(g21 a) (if q22 a then g221 a else corec_llist p g21 q22 g221 g222
(g222 a)))
The [code] attribute is set by the code plugin (Section 8.1).

5 Defining Primitively Corecursive Functions 33

t .corec_disc:
p a =⇒ lnull (corec_llist p g21 q22 g221 g222 a)
¬ p a =⇒ ¬ lnull (corec_llist p g21 q22 g221 g222 a)

t .corec_disc_iff [simp]:
lnull (corec_llist p g21 q22 g221 g222 a) = p a
(¬ lnull (corec_llist p g21 q22 g221 g222 a)) = (¬ p a)

t .corec_sel [simp]:
¬ p a =⇒ lhd (corec_llist p g21 q22 g221 g222 a) = g21 a
¬ p a =⇒ ltl (corec_llist p g21 q22 g221 g222 a) = (if q22 a then
g221 a else corec_llist p g21 q22 g221 g222 (g222 a))

t .map_o_corec:
lmap f ◦ corec_llist g ga gb gc gd = corec_llist g (f ◦ ga) gb (lmap
f ◦ gc) gd

t .corec_transfer [transfer_rule]:
rel_fun (rel_fun S op =) (rel_fun (rel_fun S R) (rel_fun (rel_fun
S op =) (rel_fun (rel_fun S (llist_all2 R)) (rel_fun (rel_fun S S)
(rel_fun S (llist_all2 R)))))) corec_llist corec_llist
The [transfer_rule] attribute is set by the transfer plugin (Section 8.3)
for type constructors with no dead type arguments.

For convenience, codatatype also provides the following collection:

t .simps = t .inject t .distinct t .case t .corec_disc_iff t .corec_sel
t .map t .rel_inject t .rel_distinct t .set

5 Defining Primitively Corecursive Functions
Corecursive functions can be specified using the primcorec and primcorec-
ursive commands, which support primitive corecursion, or using the more
general partial_function command. In this tutorial, the focus is on the first
two. More examples can be found in the directory ~~/src/HOL/Datatype_
Examples.

Whereas recursive functions consume datatypes one constructor at a time,
corecursive functions construct codatatypes one constructor at a time. Partly
reflecting a lack of agreement among proponents of coalgebraic methods,
Isabelle supports three competing syntaxes for specifying a function f :

• The destructor view specifies f by implications of the form

. . . =⇒ is_C j (f x 1 . . . xn)

5 Defining Primitively Corecursive Functions 34

and equations of the form

un_C j i (f x 1 . . . xn) = . . .

This style is popular in the coalgebraic literature.

• The constructor view specifies f by equations of the form

. . . =⇒ f x 1 . . . xn = C j . . .

This style is often more concise than the previous one.

• The code view specifies f by a single equation of the form

f x 1 . . . xn = . . .

with restrictions on the format of the right-hand side. Lazy functional
programming languages such as Haskell support a generalized version
of this style.

All three styles are available as input syntax. Whichever syntax is chosen,
characteristic theorems for all three styles are generated.

5.1 Introductory Examples
Primitive corecursion is illustrated through concrete examples based on the
codatatypes defined in Section 4.1. More examples can be found in the di-
rectory ~~/src/HOL/Datatype_Examples. The code view is favored in the
examples below. Sections 5.1.5 and 5.1.6 present the same examples ex-
pressed using the constructor and destructor views.

5.1.1 Simple Corecursion

Following the code view, corecursive calls are allowed on the right-hand side
as long as they occur under a constructor, which itself appears either directly
to the right of the equal sign or in a conditional expression:

primcorec literate :: “ (′a ⇒ ′a) ⇒ ′a ⇒ ′a llist ” where
“ literate g x = LCons x (literate g (g x))”

primcorec siterate :: “ (′a ⇒ ′a) ⇒ ′a ⇒ ′a stream ” where
“ siterate g x = SCons x (siterate g (g x))”

The constructor ensures that progress is made—i.e., the function is produc-
tive. The above functions compute the infinite lazy list or stream [x , g x ,
g (g x), . . .]. Productivity guarantees that prefixes [x , g x , g (g x), . . . , (g
^^ k) x] of arbitrary finite length k can be computed by unfolding the code
equation a finite number of times.

5 Defining Primitively Corecursive Functions 35

Corecursive functions construct codatatype values, but nothing prevents
them from also consuming such values. The following function drops every
second element in a stream:

primcorec every_snd :: “ ′a stream ⇒ ′a stream ” where
“every_snd s = SCons (shd s) (stl (stl s))”

Constructs such as let–in, if –then–else, and case–of may appear around
constructors that guard corecursive calls:

primcorec lappend :: “ ′a llist ⇒ ′a llist ⇒ ′a llist ” where
“ lappend xs ys =

(case xs of
LNil ⇒ ys
| LCons x xs ′⇒ LCons x (lappend xs ′ ys))”

Pattern matching is not supported by primcorec. Fortunately, it is easy to
generate pattern-maching equations using the simps_of_case command
provided by the theory ~~/src/HOL/Library/Simps_Case_Conv.

simps_of_case lappend_simps: lappend .code

This generates the lemma collection lappend_simps :

lappend LNil ys = ys
lappend (LCons xa x) ys = LCons xa (lappend x ys)

Corecursion is useful to specify not only functions but also infinite objects:

primcorec infty :: enat where
“ infty = ESucc infty ”

The example below constructs a pseudorandom process value. It takes a
stream of actions (s), a pseudorandom function generator (f), and a pseudo-
random seed (n):

primcorec
random_process :: “ ′a stream ⇒ (int ⇒ int) ⇒ int ⇒ ′a process ”

where
“ random_process s f n =

(if n mod 4 = 0 then
Fail

else if n mod 4 = 1 then
Skip (random_process s f (f n))

else if n mod 4 = 2 then
Action (shd s) (random_process (stl s) f (f n))

else
Choice (random_process (every_snd s) (f ◦ f) (f n))

5 Defining Primitively Corecursive Functions 36

(random_process (every_snd (stl s)) (f ◦ f) (f (f n))))”

The main disadvantage of the code view is that the conditions are tested
sequentially. This is visible in the generated theorems. The constructor and
destructor views offer nonsequential alternatives.

5.1.2 Mutual Corecursion

The syntax for mutually corecursive functions over mutually corecursive data-
types is unsurprising:

primcorec
even_infty :: even_enat and
odd_infty :: odd_enat

where
“even_infty = Even_ESucc odd_infty ” |
“odd_infty = Odd_ESucc even_infty ”

5.1.3 Nested Corecursion

The next pair of examples generalize the literate and siterate functions (Sec-
tion 5.1.3) to possibly infinite trees in which subnodes are organized either as
a lazy list (tree i i) or as a finite set (tree i s). They rely on the map functions
of the nesting type constructors to lift the corecursive calls:

primcorec iterate i i :: “ (′a ⇒ ′a llist) ⇒ ′a ⇒ ′a tree i i ” where
“ iterate i i g x = Node i i x (lmap (iterate i i g) (g x))”

primcorec iterate i s :: “ (′a ⇒ ′a fset) ⇒ ′a ⇒ ′a tree i s ” where
“ iterate i s g x = Node i s x (fimage (iterate i s g) (g x))”

Both examples follow the usual format for constructor arguments associated
with nested recursive occurrences of the datatype. Consider iterate i i . The
term g x constructs an ′a llist value, which is turned into an ′a tree i i llist
value using lmap.

This format may sometimes feel artificial. The following function con-
structs a tree with a single, infinite branch from a stream:

primcorec tree i i_of_stream :: “ ′a stream ⇒ ′a tree i i ” where
“ tree i i_of_stream s =

Node i i (shd s) (lmap tree i i_of_stream (LCons (stl s) LNil))”

A more natural syntax, also supported by Isabelle, is to move corecursive
calls under constructors:

primcorec tree i i_of_stream :: “ ′a stream ⇒ ′a tree i i ” where
“ tree i i_of_stream s =

5 Defining Primitively Corecursive Functions 37

Node i i (shd s) (LCons (tree i i_of_stream (stl s)) LNil)”

The next example illustrates corecursion through functions, which is a
bit special. Deterministic finite automata (DFAs) are traditionally defined
as 5-tuples (Q , Σ, δ, q0, F), where Q is a finite set of states, Σ is a finite
alphabet, δ is a transition function, q0 is an initial state, and F is a set of
final states. The following function translates a DFA into a state machine:

primcorec sm_of_dfa :: “ (′q ⇒ ′a ⇒ ′q) ⇒ ′q set ⇒ ′q ⇒ ′a sm ” where
“ sm_of_dfa δ F q = SM (q ∈ F) (sm_of_dfa δ F ◦ δ q)”

The map function for the function type (⇒) is composition (op ◦). For
convenience, corecursion through functions can also be expressed using λ-
abstractions and function application rather than through composition. For
example:

primcorec sm_of_dfa :: “ (′q ⇒ ′a ⇒ ′q) ⇒ ′q set ⇒ ′q ⇒ ′a sm ” where
“ sm_of_dfa δ F q = SM (q ∈ F) (λa. sm_of_dfa δ F (δ q a))”

primcorec empty_sm :: “ ′a sm ” where
“empty_sm = SM False (λ_. empty_sm)”

primcorec not_sm :: “ ′a sm ⇒ ′a sm ” where
“not_sm M = SM (¬ accept M) (λa. not_sm (trans M a))”

primcorec or_sm :: “ ′a sm ⇒ ′a sm ⇒ ′a sm ” where
“or_sm M N =

SM (accept M ∨ accept N) (λa. or_sm (trans M a) (trans N a))”

For recursion through curried n-ary functions, n applications of op ◦ are
necessary. The examples below illustrate the case where n = 2:

codatatype (′a, ′b) sm2 =
SM 2 (accept2: bool) (trans2: “ ′a ⇒ ′b ⇒ (′a, ′b) sm2”)

primcorec
sm2_of_dfa :: “ (′q ⇒ ′a ⇒ ′b ⇒ ′q) ⇒ ′q set ⇒ ′q ⇒ (′a, ′b) sm2”

where
“ sm2_of_dfa δ F q = SM 2 (q ∈ F) (op ◦ (op ◦ (sm2_of_dfa δ F)) (δ q))”

primcorec
sm2_of_dfa :: “ (′q ⇒ ′a ⇒ ′b ⇒ ′q) ⇒ ′q set ⇒ ′q ⇒ (′a, ′b) sm2”

where
“ sm2_of_dfa δ F q = SM 2 (q ∈ F) (λa b. sm2_of_dfa δ F (δ q a b))”

5.1.4 Nested-as-Mutual Corecursion

Just as it is possible to recurse over nested recursive datatypes as if they
were mutually recursive (Section 3.1.5), it is possible to pretend that nested
codatatypes are mutually corecursive. For example:

5 Defining Primitively Corecursive Functions 38

primcorec
iterate i i :: “ (′a ⇒ ′a llist) ⇒ ′a ⇒ ′a tree i i ” and
iterates i i :: “ (′a ⇒ ′a llist) ⇒ ′a llist ⇒ ′a tree i i llist ”

where
“ iterate i i g x = Node i i x (iterates i i g (g x))” |
“ iterates i i g xs =

(case xs of
LNil ⇒ LNil
| LCons x xs ′⇒ LCons (iterate i i g x) (iterates i i g xs ′))”

Coinduction rules are generated as iterate i i .coinduct, iterates i i .coinduct, and
iterate i i_iterates i i .coinduct and analogously for coinduct_strong. These rules
and the underlying corecursors are generated on a per-need basis and are kept
in a cache to speed up subsequent definitions.

5.1.5 Constructor View

The constructor view is similar to the code view, but there is one separate
conditional equation per constructor rather than a single unconditional equa-
tion. Examples that rely on a single constructor, such as literate and siterate,
are identical in both styles.

Here is an example where there is a difference:

primcorec lappend :: “ ′a llist ⇒ ′a llist ⇒ ′a llist ” where
“ lnull xs =⇒ lnull ys =⇒ lappend xs ys = LNil ” |
“_ =⇒ lappend xs ys = LCons (lhd (if lnull xs then ys else xs))

(if xs = LNil then ltl ys else lappend (ltl xs) ys)”

With the constructor view, we must distinguish between the LNil and the
LCons case. The condition for LCons is left implicit, as the negation of that
for LNil.

For this example, the constructor view is slightly more involved than the
code equation. Recall the code view version presented in Section 5.1.1. The
constructor view requires us to analyze the second argument (ys). The code
equation generated from the constructor view also suffers from this.

In contrast, the next example is arguably more naturally expressed in the
constructor view:

primcorec
random_process :: “ ′a stream ⇒ (int ⇒ int) ⇒ int ⇒ ′a process ”

where
“n mod 4 = 0 =⇒ random_process s f n = Fail ” |
“n mod 4 = 1 =⇒

random_process s f n = Skip (random_process s f (f n))” |

5 Defining Primitively Corecursive Functions 39

“n mod 4 = 2 =⇒
random_process s f n = Action (shd s) (random_process (stl s) f (f n))” |

“n mod 4 = 3 =⇒
random_process s f n = Choice (random_process (every_snd s) f (f n))
(random_process (every_snd (stl s)) f (f n))”

Since there is no sequentiality, we can apply the equation for Choice without
having first to discharge n mod 4 6= 0, n mod 4 6= 1, and n mod 4 6= 2.
The price to pay for this elegance is that we must discharge exclusiveness
proof obligations, one for each pair of conditions (n mod 4 = i , n mod 4 =
j) with i < j. If we prefer not to discharge any obligations, we can enable
the sequential option. This pushes the problem to the users of the generated
properties.

5.1.6 Destructor View

The destructor view is in many respects dual to the constructor view. Con-
ditions determine which constructor to choose, and these conditions are in-
terpreted sequentially or not depending on the sequential option. Consider
the following examples:

primcorec literate :: “ (′a ⇒ ′a) ⇒ ′a ⇒ ′a llist ” where
“¬ lnull (literate _ x)” |
“ lhd (literate _ x) = x ” |
“ ltl (literate g x) = literate g (g x)”

primcorec siterate :: “ (′a ⇒ ′a) ⇒ ′a ⇒ ′a stream ” where
“ shd (siterate _ x) = x ” |
“ stl (siterate g x) = siterate g (g x)”

primcorec every_snd :: “ ′a stream ⇒ ′a stream ” where
“ shd (every_snd s) = shd s ” |
“ stl (every_snd s) = stl (stl s)”

The first formula in the local .literate specification indicates which construc-
tor to choose. For local .siterate and local .every_snd, no such formula is
necessary, since the type has only one constructor. The last two formulas are
equations specifying the value of the result for the relevant selectors. Core-
cursive calls appear directly to the right of the equal sign. Their arguments
are unrestricted.

The next example shows how to specify functions that rely on more than
one constructor:

primcorec lappend :: “ ′a llist ⇒ ′a llist ⇒ ′a llist ” where
“ lnull xs =⇒ lnull ys =⇒ lnull (lappend xs ys)” |

5 Defining Primitively Corecursive Functions 40

“ lhd (lappend xs ys) = lhd (if lnull xs then ys else xs)” |
“ ltl (lappend xs ys) = (if xs = LNil then ltl ys else lappend (ltl xs) ys)”

For a codatatype with n constructors, it is sufficient to specify n − 1 dis-
criminator formulas. The command will then assume that the remaining
constructor should be taken otherwise. This can be made explicit by adding

“_ =⇒ ¬ lnull (lappend xs ys)”
to the specification. The generated selector theorems are conditional.

The next example illustrates how to cope with selectors defined for several
constructors:

primcorec
random_process :: “ ′a stream ⇒ (int ⇒ int) ⇒ int ⇒ ′a process ”

where
“n mod 4 = 0 =⇒ random_process s f n = Fail ” |
“n mod 4 = 1 =⇒ is_Skip (random_process s f n)” |
“n mod 4 = 2 =⇒ is_Action (random_process s f n)” |
“n mod 4 = 3 =⇒ is_Choice (random_process s f n)” |
“cont (random_process s f n) = random_process s f (f n)” of Skip |
“prefix (random_process s f n) = shd s ” |
“cont (random_process s f n) = random_process (stl s) f (f n)” of Action |
“ left (random_process s f n) = random_process (every_snd s) f (f n)” |
“ right (random_process s f n) = random_process (every_snd (stl s)) f (f n)”

Using the of keyword, different equations are specified for cont depending
on which constructor is selected.

Here are more examples to conclude:

primcorec
even_infty :: even_enat and
odd_infty :: odd_enat

where
“even_infty 6= Even_EZero ” |
“un_Even_ESucc even_infty = odd_infty ” |
“un_Odd_ESucc odd_infty = even_infty ”

primcorec iterate i i :: “ (′a ⇒ ′a llist) ⇒ ′a ⇒ ′a tree i i ” where
“ lbl i i (iterate i i g x) = x ” |
“ subi i (iterate i i g x) = lmap (iterate i i g) (g x)”

5.2 Command Syntax
5.2.1 primcorec and primcorecursive

primcorec : local_theory → local_theory
primcorecursive : local_theory → proof (prove)

5 Defining Primitively Corecursive Functions 41

primcorec
�� ���

�primcorecursive
�� ��

�
�

�
�target

�
�

�

��
��

�pcr-options

�
�

fixes where
�� �� pcr-formula�

� |
����

�
�

pcr-options

(
���� plugins�

�sequential
�� ���exhaustive
�� ���transfer
�� ��

�
�
�
�

�

� ,
����

�

�

)
����

pcr-formula

�
�thmdecl

�
�

prop �
�of

�����
�term

�
�

�
�

The primcorec and primcorecursive commands introduce a set of mutu-
ally corecursive functions over codatatypes.

The syntactic entity target can be used to specify a local context, fixes
denotes a list of names with optional type signatures, thmdecl denotes an
optional name for the formula that follows, and prop denotes a HOL propo-
sition [9].

The optional target is optionally followed by a combination of the follow-
ing options:

5 Defining Primitively Corecursive Functions 42

• The plugins option indicates which plugins should be enabled (only) or
disabled (del). By default, all plugins are enabled.

• The sequential option indicates that the conditions in specifications
expressed using the constructor or destructor view are to be interpreted
sequentially.

• The exhaustive option indicates that the conditions in specifications
expressed using the constructor or destructor view cover all possible
cases. This generally gives rise to an additional proof obligation.

• The transfer option indicates that an unconditional transfer rule should
be generated and proved by transfer_prover. The [transfer_rule] at-
tribute is set on the generated theorem.

The primcorec command is an abbreviation for primcorecursive with
by auto? to discharge any emerging proof obligations.

5.3 Generated Theorems
The primcorec and primcorecursive commands generate the following
properties (listed for literate):

f .code [code]:
literate g x = LCons x (literate g (g x))
The [code] attribute is set by the code plugin (Section 8.1).

f .ctr :
literate g x = LCons x (literate g (g x))

f .disc [simp, code]:
¬ lnull (literate g x)
The [code] attribute is set by the code plugin (Section 8.1). The
[simp] attribute is set only for functions for which f .disc_iff is not
available.

f .disc_iff [simp]:
¬ lnull (literate g x)
This property is generated only for functions declared with the ex-
haustive option or whose conditions are trivially exhaustive.

f .sel [simp, code]:
¬ lnull (literate g x)
The [code] attribute is set by the code plugin (Section 8.1).

6 Registering Bounded Natural Functors 43

f .exclude :
These properties are missing for literate because no exclusiveness
proof obligations arose. In general, the properties correspond to the
discharged proof obligations.

f .exhaust :
This property is missing for literate because no exhaustiveness proof
obligation arose. In general, the property correspond to the dis-
charged proof obligation.

f .coinduct [consumes m, case_names t1 . . . tm ,
case_conclusion D1 . . . Dn]:

This coinduction rule is generated for nested-as-mutual corecursive
functions (Section 5.1.4).

f .coinduct_strong [consumes m, case_names t1 . . . tm ,
case_conclusion D1 . . . Dn]:

This coinduction rule is generated for nested-as-mutual corecursive
functions (Section 5.1.4).

f 1_. . ._f m .coinduct [case_names t1 . . . tm ,
case_conclusion D1 . . . Dn]:

This coinduction rule is generated for nested-as-mutual corecursive
functions (Section 5.1.4). Given m > 1 mutually corecursive func-
tions, this rule can be used to prove m properties simultaneously.

f 1_. . ._f m .coinduct_strong [case_names t1 . . . tm ,
case_conclusion D1 . . . Dn]:

This coinduction rule is generated for nested-as-mutual corecursive
functions (Section 5.1.4). Given m > 1 mutually corecursive func-
tions, this rule can be used to prove m properties simultaneously.

For convenience, primcorec and primcorecursive also provide the follow-
ing collection:

f .simps = f .disc_iff (or f .disc) t .sel

6 Registering Bounded Natural Functors
The (co)datatype package can be set up to allow nested recursion through
arbitrary type constructors, as long as they adhere to the BNF requirements
and are registered as BNFs. It is also possible to declare a BNF abstractly
without specifying its internal structure.

6 Registering Bounded Natural Functors 44

6.1 Bounded Natural Functors
Bounded natural functors (BNFs) are a semantic criterion for where (co)re-
cursion may appear on the right-hand side of an equation [3, 8].

An n-ary BNF is a type constructor equipped with a map function (func-
torial action), n set functions (natural transformations), and an infinite car-
dinal bound that satisfy certain properties. For example, ′a llist is a unary
BNF. Its relator llist_all2 :: (′a ⇒ ′b ⇒ bool) ⇒ ′a llist ⇒ ′b llist ⇒ bool
extends binary predicates over elements to binary predicates over parallel
lazy lists. The cardinal bound limits the number of elements returned by the
set function; it may not depend on the cardinality of ′a.

The type constructors introduced by datatype and codatatype are au-
tomatically registered as BNFs. In addition, a number of old-style datatypes
and non-free types are preregistered.

Given an n-ary BNF, the n type variables associated with set functions,
and on which the map function acts, are live; any other variables are dead.
Nested (co)recursion can only take place through live variables.

6.2 Introductory Examples
The example below shows how to register a type as a BNF using the bnf
command. Some of the proof obligations are best viewed with the theory
Cardinal_Notations, located in ~~/src/HOL/Library, imported.

The type is simply a copy of the function space ′d ⇒ ′a, where ′a is live
and ′d is dead. We introduce it together with its map function, set function,
and relator.

typedef (′d , ′a) fn = “UNIV :: (′d ⇒ ′a) set ”
by simp

setup_lifting type_definition_fn

lift_definition map_fn :: “ (′a ⇒ ′b) ⇒ (′d , ′a) fn ⇒ (′d , ′b) fn ” is “op ◦” .
lift_definition set_fn :: “ (′d , ′a) fn ⇒ ′a set ” is range .

lift_definition
rel_fn :: “ (′a ⇒ ′b ⇒ bool) ⇒ (′d , ′a) fn ⇒ (′d , ′b) fn ⇒ bool ”

is
“ rel_fun (op =)” .

bnf “ (′d , ′a) fn ”
map: map_fn
sets: set_fn
bd : “natLeq +c |UNIV :: ′d set |”

6 Registering Bounded Natural Functors 45

rel : rel_fn
proof −
show “map_fn id = id ”
by transfer auto

next
fix f :: “ ′a ⇒ ′b ” and g :: “ ′b ⇒ ′c ”
show “map_fn (g ◦ f) = map_fn g ◦ map_fn f ”
by transfer (auto simp add : comp_def)

next
fix F :: “ (′d , ′a) fn ” and f g :: “ ′a ⇒ ′b ”
assume “

∧
x . x ∈ set_fn F =⇒ f x = g x ”

thus “map_fn f F = map_fn g F ”
by transfer auto

next
fix f :: “ ′a ⇒ ′b ”
show “ set_fn ◦ map_fn f = op ‘ f ◦ set_fn ”
by transfer (auto simp add : comp_def)

next
show “card_order (natLeq +c |UNIV :: ′d set |)”
apply (rule card_order_csum)
apply (rule natLeq_card_order)
by (rule card_of_card_order_on)

next
show “cinfinite (natLeq +c |UNIV :: ′d set |)”
apply (rule cinfinite_csum)
apply (rule disjI 1)
by (rule natLeq_cinfinite)

next
fix F :: “ (′d , ′a) fn ”
have “ |set_fn F | ≤o |UNIV :: ′d set |” (is “_ ≤o ?U ”)
by transfer (rule card_of_image)

also have “?U ≤o natLeq +c ?U ”
by (rule ordLeq_csum2) (rule card_of_Card_order)

finally show “ |set_fn F | ≤o natLeq +c |UNIV :: ′d set |” .
next
fix R :: “ ′a ⇒ ′b ⇒ bool ” and S :: “ ′b ⇒ ′c ⇒ bool ”
show “ rel_fn R OO rel_fn S ≤ rel_fn (R OO S)”
by (rule, transfer) (auto simp add : rel_fun_def)

next
fix R :: “ ′a ⇒ ′b ⇒ bool ”
show “ rel_fn R =

(BNF_Def .Grp {x . set_fn x ⊆ Collect (split R)} (map_fn fst))−− OO
BNF_Def .Grp {x . set_fn x ⊆ Collect (split R)} (map_fn snd)”

6 Registering Bounded Natural Functors 46

unfolding Grp_def fun_eq_iff relcompp.simps conversep.simps
apply transfer
unfolding rel_fun_def subset_iff image_iff
by auto (force, metis pair_collapse)

qed

print_theorems
print_bnfs

Using print_theorems and print_bnfs, we can contemplate and show the
world what we have achieved.

This particular example does not need any nonemptiness witness, because
the one generated by default is good enough, but in general this would be nec-
essary. See ~~/src/HOL/Basic_BNFs.thy, ~~/src/HOL/Library/FSet.thy,
and ~~/src/HOL/Library/Multiset.thy for further examples of BNF reg-
istration, some of which feature custom witnesses.

The next example declares a BNF axiomatically. This can be convenient
for reasoning abstractly about an arbitrary BNF. The bnf_axiomatization
command below introduces a type (′a, ′b, ′c) F, three set constants, a map
function, a relator, and a nonemptiness witness that depends only on ′a. The
type ′a ⇒ (′a, ′b, ′c) F of the witness can be read as an implication: Given a
witness for ′a, we can construct a witness for (′a, ′b, ′c) F. The BNF properties
are postulated as axioms.

bnf_axiomatization (setA: ′a, setB : ′b, setC : ′c) F
[wits: “ ′a ⇒ (′a, ′b, ′c) F ”]

print_theorems
print_bnfs

6.3 Command Syntax
6.3.1 bnf

bnf : local_theory → proof (prove)

6 Registering Bounded Natural Functors 47

bnf
�� ���

�target

�
�

�
�name :

����
�
�

type �

��
�map:

�� ��term �
�sets:

�� �� term�
�

�
�

�
�

bd:
�� ��term �

��
��

�wits:
�� �� term�

�
�
�

�
�

�
�rel:

�� ��term

�
�

�

��
��

�plugins

�
�

The bnf command registers an existing type as a bounded natural functor
(BNF). The type must be equipped with an appropriate map function (func-
torial action). In addition, custom set functions, relators, and nonemptiness
witnesses can be specified; otherwise, default versions are used.

The syntactic entity target can be used to specify a local context, type
denotes a HOL type, and term denotes a HOL term [9].

The plugins option indicates which plugins should be enabled (only) or
disabled (del). By default, all plugins are enabled.

6.3.2 bnf_axiomatization

bnf_axiomatization : local_theory → local_theory

6 Registering Bounded Natural Functors 48

bnf_axiomatization
�� ���

�target

�
�

�
� (

����plugins)
����

�
�

�

��
��

�tyargs

�
�

name �
�wit-types

�
�

�

��
��

�mixfix

�
�

�
�map-rel

�
�

wit-types

[
����wits

�� ��:
����types]

����
The bnf_axiomatization command declares a new type and associated
constants (map, set, relator, and cardinal bound) and asserts the BNF prop-
erties for these constants as axioms.

The syntactic entity target can be used to specify a local context, name
denotes an identifier, typefree denotes fixed type variable (′a, ′b, . . .), and
mixfix denotes the usual parenthesized mixfix notation [9].

The plugins option indicates which plugins should be enabled (only) or
disabled (del). By default, all plugins are enabled.

Type arguments are live by default; they can be marked as dead by enter-
ing dead in front of the type variable (e.g., (dead ′a)) instead of an identifier
for the corresponding set function. Witnesses can be specified by their types.
Otherwise, the syntax of bnf_axiomatization is identical to the left-hand
side of a datatype or codatatype definition.

The command is useful to reason abstractly about BNFs. The axioms are
safe because there exist BNFs of arbitrary large arities. Applications must
import the theory BNF_Axiomatization, located in the directory ~~/src/
HOL/Library, to use this functionality.

7 Deriving Destructors and Theorems for Free Constructors 49

6.3.3 print_bnfs

print_bnfs : local_theory →

print_bnfs
�� ��

7 Deriving Destructors and Theorems for Free
Constructors

The derivation of convenience theorems for types equipped with free construc-
tors, as performed internally by datatype and codatatype, is available as
a stand-alone command called free_constructors.

7.1 Command Syntax
7.1.1 free_constructors

free_constructors : local_theory → proof (prove)

free_constructors
�� ���

�target

�
�

dt-options �

��
�name for

�� �� fc-ctor�
� |

����
�
�

�

��
��

�where
�� �� prop�

� |
����

�
�

�
�

8 Selecting Plugins 50

fc-ctor

�
�name :

����
�
�

term �
�name

�
�

The free_constructors command generates destructor constants for freely
constructed types as well as properties about constructors and destructors. It
also registers the constants and theorems in a data structure that is queried
by various tools (e.g., function).

The syntactic entity target can be used to specify a local context, name
denotes an identifier, prop denotes a HOL proposition, and term denotes a
HOL term [9].

The syntax resembles that of datatype and codatatype definitions (Sec-
tions 2.2 and 4.2). A constructor is specified by an optional name for the
discriminator, the constructor itself (as a term), and a list of optional names
for the selectors.

Section 2.4 lists the generated theorems. For bootstrapping reasons, the
generally useful [fundef_cong] attribute is not set on the generated case_cong
theorem. It can be added manually using declare.

8 Selecting Plugins
Plugins extend the (co)datatype package to interoperate with other Isa-
belle packages and tools, such as the code generator, Transfer, Lifting, and
Quickcheck. They can be enabled or disabled individually using the plugins
option to the commands datatype, primrec, codatatype, primcorec,
primcorecursive, bnf , bnf_axiomatization, and free_constructors.
For example:

datatype (plugins del : code “quickcheck ”) color = Red | Black

8.1 Code Generator
The code plugin registers freely generated types, including (co)datatypes,
and (co)recursive functions for code generation. No distinction is made be-
tween datatypes and codatatypes. This means that for target languages with
a strict evaluation strategy (e.g., Standard ML), programs that attempt to
produce infinite codatatype values will not terminate.

For types, the plugin derives the following properties:

8 Selecting Plugins 51

t .eq.refl [code nbe]:
equal_class .equal x x ≡ True

t .eq.simps [code]:
equal_class .equal [] (x21 # x22) ≡ False
equal_class .equal (x21 # x22) [] ≡ False
equal_class .equal (x21 # x22) [] ≡ False
equal_class .equal [] (x21 # x22) ≡ False
equal_class .equal (x21 # x22) (y21 # y22) ≡ x21 = y21 ∧ x22 =
y22
equal_class .equal [] [] ≡ True

In addition, the plugin sets the [code] attribute on a number of properties
of freely generated types and of (co)recursive functions, as documented in
Sections 2.4, 3.3, 4.4, and 5.3.

8.2 Size
For each datatype, the size plugin generates a generic size function t .size_t
as well as a specific instance size :: t ⇒ nat belonging to the size type class.
The fun command relies on size to prove termination of recursive functions
on datatypes.

The plugin derives the following properties:

t .size [simp, code]:
size_list x [] = 0
size_list x (x21 # x22) = x x21 + size_list x x22 + Suc 0
size [] = 0
size (x21 # x22) = size x22 + Suc 0

t .size_gen :
size_list x [] = 0
size_list x (x21 # x22) = x x21 + size_list x x22 + Suc 0

t .size_gen_o_map:
size_list f ◦ map g = size_list (f ◦ g)

t .size_neq :
This property is missing for ′a list. If the size function always eval-
uates to a non-zero value, this theorem has the form size x 6= 0.

8 Selecting Plugins 52

8.3 Transfer
For each (co)datatype with live type arguments and each manually registered
BNF, the transfer plugin generates a predicator t .pred_t and properties
that guide the Transfer tool.

For types with no dead type arguments (and at least one live type argu-
ment), the plugin derives the following properties:

t .Domainp_rel [relator_domain]:
Domainp (list_all2 R) = pred_list (Domainp R)

t .pred_inject [simp]:
pred_list P []
pred_list P (a # aa) = (P a ∧ pred_list P aa)
This property is generated only for (co)datatypes.

t .rel_eq_onp:
list_all2 (eq_onp P) = eq_onp (pred_list P)

t .left_total_rel [transfer_rule]:
left_total R =⇒ left_total (list_all2 R)

t .left_unique_rel [transfer_rule]:
left_unique R =⇒ left_unique (list_all2 R)

t .right_total_rel [transfer_rule]:
right_total R =⇒ right_total (list_all2 R)

t .right_unique_rel [transfer_rule]:
right_unique R =⇒ right_unique (list_all2 R)

t .bi_total_rel [transfer_rule]:
bi_total R =⇒ bi_total (list_all2 R)

t .bi_unique_rel [transfer_rule]:
bi_unique R =⇒ bi_unique (list_all2 R)

In addition, the plugin sets the [transfer_rule] attribute on the follow-
ing (co)datatypes properties: t .case_transfer, t .sel_transfer, t .ctr_transfer,
t .disc_transfer, t .set_transfer, t .map_transfer, t .rel_transfer, t .rec_transfer,
and t .corec_transfer.

For primrec, primcorec, and primcorecursive, the plugin implements
the generation of the f .transfer property, conditioned by the transfer option,
and sets the [transfer_rule] attribute on these.

9 Known Bugs and Limitations 53

8.4 Lifting
For each (co)datatype and each manually registered BNF with at least one
live type argument and no dead type arguments, the lifting plugin generates
properties and attributes that guide the Lifting tool.

The plugin derives the following property:

t .Quotient [quot_map]:
Quotient R Abs Rep T =⇒ Quotient (list_all2 R) (map Abs) (map
Rep) (list_all2 T)

In addition, the plugin sets the [relator_eq_onp] attribute on a variant of
the t .rel_eq_onp property generated by the lifting plugin, the [relator_mono]
attribute on t .rel_mono, and the [relator_distr] attribute on t .rel_compp.

8.5 Quickcheck
The integration of datatypes with Quickcheck is accomplished by the quick-
check plugin. It combines a number of subplugins that instantiate specific
type classes. The subplugins can be enabled or disabled individually. They
are listed below:

quickcheck_random
quickcheck_exhaustive
quickcheck_bounded_forall
quickcheck_full_exhaustive
quickcheck_narrowing

8.6 Program Extraction
The extraction plugin provides realizers for induction and case analysis,
to enable program extraction from proofs involving datatypes. This func-
tionality is only available with full proof objects, i.e., with the HOL-Proofs
session.

9 Known Bugs and Limitations
This section lists the known bugs and limitations in the (co)datatype package
at the time of this writing. Many of them are expected to be addressed in
future releases.

REFERENCES 54

1. Defining mutually (co)recursive (co)datatypes is slow. Fortunately, it
is always possible to recast mutual specifications to nested ones, which
are processed more efficiently.

2. Locally fixed types cannot be used in (co)datatype specifications. This
limitation can be circumvented by adding type arguments to the local
(co)datatypes to abstract over the locally fixed types.

3. The primcorec command does not allow user-specified names and at-
tributes next to the entered formulas. The less convenient syntax, using
the lemmas command, is available as an alternative.

4. There is no way to use an overloaded constant from a syntactic type
class, such as 0, as a constructor.

5. There is no way to register the same type as both a datatype and a
codatatype. This affects types such as the extended natural numbers, for
which both views would make sense (for a different set of constructors).

6. The names of variables are often suboptimal in the properties generated
by the package.

Acknowledgment
Tobias Nipkow and Makarius Wenzel encouraged us to implement the new
(co)datatype package. Andreas Lochbihler provided lots of comments on ear-
lier versions of the package, especially on the coinductive part. Brian Huff-
man suggested major simplifications to the internal constructions. Ondřej
Kunčar implemented the transfer and lifting plugins. Christian Sternagel
and René Thiemann ported the derive command from the Archive of For-
mal Proofs to the new datatypes. Florian Haftmann and Christian Urban
provided general advice on Isabelle and package writing. Stefan Milius and
Lutz Schröder found an elegant proof that eliminated one of the BNF proof
obligations. Gerwin Klein, Andreas Lochbihler, Tobias Nipkow, and Chris-
tian Sternagel suggested many textual improvements to this tutorial.

References
[1] S. Berghofer and M. Wenzel. Inductive datatypes in HOL — lessons

learned in Formal-Logic Engineering. In Y. Bertot, G. Dowek,
A. Hirschowitz, C. Paulin, and L. Thery, editors, Theorem Proving in

REFERENCES 55

Higher Order Logics: TPHOLs ’99, volume 1690 of Lecture Notes in
Computer Science. Springer-Verlag, 1999.

[2] J. C. Blanchette, J. Hölzl, A. Lochbihler, L. Panny, A. Popescu, and
D. Traytel. Truly modular (co)datatypes for Isabelle/HOL. In G. Klein
and R. Gamboa, editors, ITP 2014, volume 8558 of LNCS, pages 93–110.
Springer, 2014.

[3] J. C. Blanchette, A. Popescu, and D. Traytel. Witnessing (co)datatypes.
http://www21.in.tum.de/~blanchet/wit.pdf, 2014.

[4] M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A
Mechanised Logic of Computation. LNCS 78. Springer, 1979.

[5] A. Krauss. Defining Recursive Functions in Isabelle/HOL. http:
//isabelle.in.tum.de/doc/functions.pdf.

[6] A. Lochbihler. Coinductive. In G. Klein, T. Nipkow, and L. C. Paulson,
editors, The Archive of Formal Proofs. http://afp.sourceforge.net/
entries/Coinductive.shtml, Feb. 2010.

[7] L. Panny, J. C. Blanchette, and D. Traytel. Primitively (co)recursive
definitions for Isabelle/HOL. In Isabelle Workshop 2014, 2014.

[8] D. Traytel, A. Popescu, and J. C. Blanchette. Foundational, composi-
tional (co)datatypes for higher-order logic—Category theory applied to
theorem proving. In LICS 2012, pages 596–605. IEEE, 2012.

[9] M. Wenzel. The Isabelle/Isar Reference Manual. http://isabelle.in.
tum.de/doc/isar-ref.pdf.

http://www21.in.tum.de/~blanchet/wit.pdf
http://isabelle.in.tum.de/doc/functions.pdf
http://isabelle.in.tum.de/doc/functions.pdf
http://afp.sourceforge.net/entries/Coinductive.shtml
http://afp.sourceforge.net/entries/Coinductive.shtml
http://isabelle.in.tum.de/doc/isar-ref.pdf
http://isabelle.in.tum.de/doc/isar-ref.pdf

	Introduction
	Defining Datatypes
	Introductory Examples
	Nonrecursive Types
	Simple Recursion
	Mutual Recursion
	Nested Recursion
	Auxiliary Constants

	Command Syntax
	datatype
	datatype_compat

	Generated Constants
	Generated Theorems
	Free Constructor Theorems
	Functorial Theorems
	Inductive Theorems

	Compatibility Issues

	Defining Primitively Recursive Functions
	Introductory Examples
	Nonrecursive Types
	Simple Recursion
	Mutual Recursion
	Nested Recursion
	Nested-as-Mutual Recursion

	Command Syntax
	primrec

	Generated Theorems
	Recursive Default Values for Selectors
	Compatibility Issues

	Defining Codatatypes
	Introductory Examples
	Simple Corecursion
	Mutual Corecursion
	Nested Corecursion

	Command Syntax
	codatatype

	Generated Constants
	Generated Theorems
	Coinductive Theorems

	Defining Primitively Corecursive Functions
	Introductory Examples
	Simple Corecursion
	Mutual Corecursion
	Nested Corecursion
	Nested-as-Mutual Corecursion
	Constructor View
	Destructor View

	Command Syntax
	primcorec and primcorecursive

	Generated Theorems

	Registering Bounded Natural Functors
	Bounded Natural Functors
	Introductory Examples
	Command Syntax
	bnf
	bnf_axiomatization
	print_bnfs

	Deriving Destructors and Theorems for Free Constructors
	Command Syntax
	free_constructors

	Selecting Plugins
	Code Generator
	Size
	Transfer
	Lifting
	Quickcheck
	Program Extraction

	Known Bugs and Limitations

