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1 Introduction

Sledgehammer is a tool that applies automatic theorem provers (ATPs) and
satisfiability-modulo-theories (SMT) solvers on the current goal.1 The sup-
ported ATPs are AgsyHOL [13], Alt-Ergo [4], E [15], E-SInE [10], E-ToFoF
[17], iProver [11], iProver-Eq [12], LEO-II [3], Satallax [7], SNARK [16],
SPASS [19], Vampire [14], Waldmeister [9], and Zipperposition [8]. The
ATPs are run either locally or remotely via the SystemOnTPTP web service

1The distinction between ATPs and SMT solvers is convenient but mostly historical.
The two communities are converging, with more and more ATPs supporting typical SMT
features such as arithmetic and sorts, and a few SMT solvers parsing ATP syntaxes.
There is also a strong technological connection between instantiation-based ATPs (such
as iProver and iProver-Eq) and SMT solvers.
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[18]. The supported SMT solvers are CVC3 [2], CVC4 [1], veriT [6], and Z3
[20]. These are always run locally.

The problem passed to the external provers (or solvers) consists of your cur-
rent goal together with a heuristic selection of hundreds of facts (theorems)
from the current theory context, filtered by relevance.

The result of a successful proof search is some source text that usually (but
not always) reconstructs the proof within Isabelle. For ATPs, the recon-
structed proof typically relies on the general-purpose metis proof method,
which integrates the Metis ATP in Isabelle/HOL with explicit inferences
going through the kernel. Thus its results are correct by construction.

For Isabelle/jEdit users, Sledgehammer provides an automatic mode that can
be enabled via the “Auto Sledgehammer” option under “Plugins > Plugin Op-
tions > Isabelle > General.” In this mode, a reduced version of Sledgehammer
is run on every newly entered theorem for a few seconds.

To run Sledgehammer, you must make sure that the theory Sledgehammer is
imported—this is rarely a problem in practice since it is part of Main. Exam-
ples of Sledgehammer use can be found in Isabelle’s src/HOL/Metis_Examples
directory. Comments and bug reports concerning Sledgehammer or this man-
ual should be directed to the author at blanNOSPAMchette@in.tum.de.

2 Installation

Sledgehammer is part of Isabelle, so you do not need to install it. However,
it relies on third-party automatic provers (ATPs and SMT solvers).

Among the ATPs, AgsyHOL, Alt-Ergo, E, LEO-II, Satallax, SPASS, Vam-
pire, and Zipperposition can be run locally; in addition, AgsyHOL, E, E-
SInE, E-ToFoF, iProver, iProver-Eq, LEO-II, Satallax, SNARK, Vampire,
and Waldmeister are available remotely via SystemOnTPTP [18]. The SMT
solvers CVC3, CVC4, veriT, and Z3 can be run locally.

There are three main ways to install automatic provers on your machine:

• If you installed an official Isabelle package, it should already include
properly setup executables for CVC4, E, SPASS, and Z3, ready to use.2

2Vampire’s license prevents us from doing the same for this otherwise remarkable tool.
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• Alternatively, you can download the Isabelle-aware CVC3, CVC4,
E, SPASS, and Z3 binary packages from http://isabelle.in.
tum.de/components/. Extract the archives, then add a line to
your $ISABELLE_HOME_USER/etc/components3 file with the absolute
path to CVC3, CVC4, E, SPASS, or Z3. For example, if the
components file does not exist yet and you extracted SPASS to
/usr/local/spass-3.8ds, create it with the single line

/usr/local/spass-3.8ds

in it.

• If you prefer to build AgsyHOL, Alt-Ergo, E, LEO-II, Satal-
lax, or SPASS manually, or found a Vampire executable some-
where (e.g., http://www.vprover.org/), set the environment variable
AGSYHOL_HOME, E_HOME, LEO2_HOME, SATALLAX_HOME, SPASS_HOME, or
VAMPIRE_HOME to the directory that contains the agsyHOL, eprover
(and/or eproof or eproof_ram), leo, satallax, SPASS, or vampire
executable; for Alt-Ergo, set the environment variable WHY3_HOME to
the directory that contains the why3 executable. Sledgehammer has
been tested with AgsyHOL 1.0, Alt-Ergo 0.95.2, E 1.6 to 1.8, LEO-II
1.3.4, Satallax 2.2 to 2.7, SPASS 3.8ds, and Vampire 0.6 to 3.0.4Since
the ATPs’ output formats are neither documented nor stable, other ver-
sions might not work well with Sledgehammer. Ideally, you should also
set E_VERSION, LEO2_VERSION, SATALLAX_VERSION, SPASS_VERSION, or
VAMPIRE_VERSION to the prover’s version number (e.g., “3.0”).

Similarly, if you want to install CVC3, CVC4, veriT, or Z3, set the
environment variable CVC3_SOLVER, CVC4_SOLVER, VERIT_SOLVER, or
Z3_SOLVER to the complete path of the executable, including the file
name. Sledgehammer has been tested with CVC3 2.2 and 2.4.1, CVC4
1.5-prerelease, veriT smtcomp2014, and Z3 4.3.2. Since Z3’s out-
put format is somewhat unstable, other versions of the solver might
not work well with Sledgehammer. Ideally, also set CVC3_VERSION,
CVC4_VERSION, VERIT_VERSION, or Z3_VERSION to the solver’s version
number (e.g., “4.4.0”).

To check whether E, SPASS, Vampire, and/or Z3 are successfully installed,
try out the example in § 3. If the remote versions of any of these provers is

3The variable $ISABELLE_HOME_USER is set by Isabelle at startup. Its value can be
retrieved by executing isabelle getenv ISABELLE_HOME_USER on the command line.

4Following the rewrite of Vampire, the counter for version numbers was reset to 0;
hence the (new) Vampire versions 0.6, 1.0, 1.8, 2.6, and 3.0 are more recent than 9.0 or
11.5.
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used (identified by the prefix “remote_”), or if the local versions fail to solve
the easy goal presented there, something must be wrong with the installation.

Remote prover invocation requires Perl with the World Wide Web Library
(libwww-perl) installed. If you must use a proxy server to access the Inter-
net, set the http_proxy environment variable to the proxy, either in the envi-
ronment in which Isabelle is launched or in your $ISABELLE_HOME_USER/etc/settings
file. Here are a few examples:

http_proxy=http://proxy.example.org
http_proxy=http://proxy.example.org:8080
http_proxy=http://joeblow:pAsSwRd@proxy.example.org

3 First Steps

To illustrate Sledgehammer in context, let us start a theory file and attempt
to prove a simple lemma:

theory Scratch
imports Main
begin

lemma “ [a] = [b] =⇒ a = b”
sledgehammer

Instead of issuing the sledgehammer command, you can also use the Sledge-
hammer panel in Isabelle/jEdit. Sledgehammer produces the following out-
put after a few seconds:

Sledgehammer: “cvc4 ”
Try this: by (metis last_ConsL) (64 ms).

Sledgehammer: “z3 ”
Try this: by (metis list.inject) (20 ms).

Sledgehammer: “remote_vampire”
Try this: by (metis hd.simps) (14 ms).

Sledgehammer: “spass”
Try this: by (metis list.inject) (17 ms).
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Sledgehammer ran CVC4, SPASS, Vampire, and Z3 in parallel. Depending
on which provers are installed and how many processor cores are available,
some of the provers might be missing or present with a remote_ prefix.

For each successful prover, Sledgehammer gives a one-line metis or smt2
method call. Rough timings are shown in parentheses, indicating how fast
the call is. You can click the proof to insert it into the theory text.

In addition, you can ask Sledgehammer for an Isar text proof by enabling
the isar_proofs option (§ 7.4):

sledgehammer [isar_proofs ]

When Isar proof construction is successful, it can yield proofs that are more
readable and also faster than the metis or smt2 one-line proofs. This feature
is experimental and is only available for ATPs.

4 Hints

This section presents a few hints that should help you get the most out of
Sledgehammer. Frequently asked questions are answered in § 5.

4.1 Presimplify the goal

For best results, first simplify your problem by calling auto or at least safe
followed by simp_all. The SMT solvers provide arithmetic decision proce-
dures, but the ATPs typically do not (or if they do, Sledgehammer does not
use it yet). Apart from Waldmeister, they are not particularly good at heavy
rewriting, but because they regard equations as undirected, they often prove
theorems that require the reverse orientation of a simp rule. Higher-order
problems can be tackled, but the success rate is better for first-order prob-
lems. Hence, you may get better results if you first simplify the problem to
remove higher-order features.

4.2 Make sure E, SPASS, Vampire, and Z3 are locally
installed

Locally installed provers are faster and more reliable than those running on
servers. See § 2 for details on how to install them.
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4.3 Familiarize yourself with the main options

Sledgehammer’s options are fully documented in § 6. Many of the options
are very specialized, but serious users of the tool should at least familiarize
themselves with the following options:

• provers (§ 7.1) specifies the automatic provers (ATPs and SMT solvers)
that should be run whenever Sledgehammer is invoked (e.g., “provers =
e spass remote_vampire”). For convenience, you can omit “provers =”
and simply write the prover names as a space-separated list (e.g., “e
spass remote_vampire”).

• max_facts (§ 7.2) specifies the maximum number of facts that should
be passed to the provers. By default, the value is prover-dependent but
varies between about 50 and 1000. If the provers time out, you can try
lowering this value to, say, 25 or 50 and see if that helps.

• isar_proofs (§ 7.4) specifies that Isar proofs should be generated, in
addition to one-line metis or smt2 proofs. The length of the Isar proofs
can be controlled by setting compress (§ 7.4).

• timeout (§ 7.6) controls the provers’ time limit. It is set to 30 seconds,
but since Sledgehammer runs asynchronously you should not hesitate
to raise this limit to 60 or 120 seconds if you are the kind of user who
can think clearly while ATPs are active.

Options can be set globally using sledgehammer_params (§ 6). The com-
mand also prints the list of all available options with their current value.
Fact selection can be influenced by specifying “(add: my_facts)” after the
sledgehammer call to ensure that certain facts are included, or simply
“(my_facts)” to force Sledgehammer to run only with my_facts (and any
facts chained into the goal).

5 Frequently Asked Questions

This sections answers frequently (and infrequently) asked questions about
Sledgehammer. It is a good idea to skim over it now even if you do not have
any questions at this stage. And if you have any further questions not listed
here, send them to the author at blanNOSPAMchette@in.tum.de.

7



5.1 Which facts are passed to the automatic provers?

Sledgehammer heuristically selects a few hundred relevant lemmas from the
currently loaded libraries. The component that performs this selection is
called relevance filter.

• The traditional relevance filter, called MePo (Meng–Paulson), assigns
a score to every available fact (lemma, theorem, definition, or axiom)
based upon how many constants that fact shares with the conjecture.
This process iterates to include facts relevant to those just accepted.
The constants are weighted to give unusual ones greater significance.
MePo copes best when the conjecture contains some unusual constants;
if all the constants are common, it is unable to discriminate among the
hundreds of facts that are picked up. The filter is also memoryless: It
has no information about how many times a particular fact has been
used in a proof, and it cannot learn.

• An alternative to MePo is MaSh (Machine Learner for Sledgehammer).
It applies machine learning to the problem of finding relevant facts.

• The MeSh filter combines MePo and MaSh.

The default is either MePo or MeSh, depending on whether the environment
variable MASH is set and what class of provers the target prover belongs to
(§ 7.2).

The number of facts included in a problem varies from prover to prover, since
some provers get overwhelmed more easily than others. You can show the
number of facts given using the verbose option (§ 7.4) and the actual facts
using debug (§ 7.4).

Sledgehammer is good at finding short proofs combining a handful of existing
lemmas. If you are looking for longer proofs, you must typically restrict the
number of facts, by setting the max_facts option (§ 7.2) to, say, 25 or 50.

You can also influence which facts are actually selected in a number of ways.
If you simply want to ensure that a fact is included, you can specify it using
the “(add: my_facts)” syntax. For example:

sledgehammer (add : hd.simps tl.simps)

The specified facts then replace the least relevant facts that would otherwise
be included; the other selected facts remain the same. If you want to direct
the selection in a particular direction, you can specify the facts via using:
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using hd.simps tl.simps
sledgehammer

The facts are then more likely to be selected than otherwise, and if they are
selected at iteration j they also influence which facts are selected at iterations
j + 1, j + 2, etc. To give them even more weight, try

using hd.simps tl.simps
apply –
sledgehammer

5.2 Why does Metis fail to reconstruct the proof?

There are many reasons. If Metis runs seemingly forever, that is a sign that
the proof is too difficult for it. Metis’s search is complete for first-order logic
with equality, so if the proof was found by an ATP such as E, SPASS, or
Vampire, Metis should eventually find it, but that’s little consolation.

In some rare cases, metis fails fairly quickly, and you get the error message
“One-line proof reconstruction failed.” This indicates that Sledgehammer
determined that the goal is provable, but the proof is, for technical reasons,
beyond metis ’s power. You can then try again with the strict option (§ 7.3).

If the goal is actually unprovable and you did not specify an unsound encod-
ing using type_enc (§ 7.3), this is a bug, and you are strongly encouraged to
report this to the author at blanNOSPAMchette@in.tum.de.

5.3 How can I tell whether a suggested proof is sound?

Earlier versions of Sledgehammer often suggested unsound proofs—either
proofs of nontheorems or simply proofs that rely on type-unsound inferences.
This is a thing of the past, unless you explicitly specify an unsound encod-
ing using type_enc (§ 7.3). Officially, the only form of “unsoundness” that
lurks in the sound encodings is related to missing characteristic theorems of
datatypes. For example,

lemma “∃xs . xs 6= []”
sledgehammer ()

suggests an argumentless metis call that fails. However, the conjecture does
actually hold, and the metis call can be repaired by adding list.distinct. We
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hope to address this problem in a future version of Isabelle. In the meantime,
you can avoid it by passing the strict option (§ 7.3).

5.4 What are the full_types, no_types, and mono_tags
arguments to Metis?

The metis (full_types) proof method and its cousin metis (mono_tags) are
fully-typed versions of Metis. It is somewhat slower than metis, but the proof
search is fully typed, and it also includes more powerful rules such as the ax-
iom “x = True ∨ x = False” for reasoning in higher-order places (e.g., in
set comprehensions). The method is automatically tried as a fallback when
metis fails, and it is sometimes generated by Sledgehammer instead of metis
if the proof obviously requires type information or ifmetis failed when Sledge-
hammer preplayed the proof. (By default, Sledgehammer tries to run metis
with various sets of option for up to 1 second each time to ensure that the
generated one-line proofs actually work and to display timing information.
This can be configured using the preplay_timeout and dont_preplay options
(§ 7.6).) At the other end of the soundness spectrum, metis (no_types) uses
no type information at all during the proof search, which is more efficient but
often fails. Calls to metis (no_types) are occasionally generated by Sledge-
hammer. See the type_enc option (§ 7.3) for details.

Incidentally, if you ever see warnings such as

Metis: Falling back on “metis (full_types)”.

for a successful metis proof, you can advantageously pass the full_types op-
tion to metis directly.

5.5 And what are the lifting and hide_lams arguments
to Metis?

Orthogonally to the encoding of types, it is important to choose an appropri-
ate translation of λ-abstractions. Metis supports three translation schemes,
in decreasing order of power: Curry combinators (the default), λ-lifting, and
a “hiding” scheme that disables all reasoning under λ-abstractions. The more
powerful schemes also give the automatic provers more rope to hang them-
selves. See the lam_trans option (§ 7.3) for details.
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5.6 Are generated proofs minimal?

Automatic provers frequently use many more facts than are necessary. Sledge-
hammer includes a minimization tool that takes a set of facts returned by
a given prover and repeatedly calls a prover or proof method with subsets
of those facts to find a minimal set. Reducing the number of facts typically
helps reconstruction, while also removing superfluous clutter from the proof
scripts.

In earlier versions of Sledgehammer, generated proofs were systematically
accompanied by a suggestion to invoke the minimization tool. This step is
now performed by default but can be disabled using the minimize option
(§ 7.1).

5.7 A strange error occurred—what should I do?

Sledgehammer tries to give informative error messages. Please report any
strange error to the author at blanNOSPAMchette@in.tum.de. This applies doubly
if you get the message

The prover derived “False” using “foo”, “bar ”, and “baz ”. This could be
due to inconsistent axioms (including “sorry”s) or to a bug in Sledge-
hammer. If the problem persists, please contact the Isabelle developers.

5.8 Auto can solve it—why not Sledgehammer?

Problems can be easy for auto and difficult for automatic provers, but the
reverse is also true, so do not be discouraged if your first attempts fail.
Because the system refers to all theorems known to Isabelle, it is particularly
suitable when your goal has a short proof but requires lemmas that you do
not know about.

5.9 Why are there so many options?

Sledgehammer’s philosophy should work out of the box, without user guid-
ance. Many of the options are meant to be used mostly by the Sledgehammer
developers for experiments. Of course, feel free to try them out if you are so
inclined.
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6 Command Syntax

6.1 Sledgehammer

Sledgehammer can be invoked at any point when there is an open goal by
entering the sledgehammer command in the theory file. Its general syntax
is as follows:

sledgehammer 〈subcommand〉? 〈options〉? 〈facts_override〉? 〈num〉?

In the general syntax, the 〈subcommand〉 may be any of the following:

• run (the default): Runs Sledgehammer on subgoal number 〈num〉
(1 by default), with the given options and facts.

• messages: Redisplays recent messages issued by Sledgehammer. This
allows you to examine results that might have been lost due to Sledge-
hammer’s asynchronous nature. The 〈num〉 argument specifies a limit
on the number of messages to display (10 by default).

• supported_provers: Prints the list of automatic provers supported
by Sledgehammer. See § 2 and § 7.1 for more information on how to
install automatic provers.

• running_provers: Prints information about currently running au-
tomatic provers, including elapsed runtime and remaining time until
timeout.

• kill_all : Terminates all running threads (automatic provers and ma-
chine learners).

• refresh_tptp: Refreshes the list of remote ATPs available at System-
OnTPTP [18].

In addition, the following subcommands provide finer control over machine
learning with MaSh:

• unlearn: Resets MaSh, erasing any persistent state.

• learn_isar : Invokes MaSh on the current theory to process all the
available facts, learning from their Isabelle/Isar proofs. This happens
automatically at Sledgehammer invocations if the learn option (§ 7.2)
is enabled.
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• learn_prover : Invokes MaSh on the current theory to process all the
available facts, learning from proofs generated by automatic provers.
The prover to use and its timeout can be set using the prover (§ 7.1)
and timeout (§ 7.6) options. It is recommended to perform learning
using an efficient first-order ATP (such as E, SPASS, and Vampire) as
opposed to a higher-order ATP or an SMT solver.

• relearn_isar : Same as unlearn followed by learn_isar.

• relearn_prover : Same as unlearn followed by learn_prover.

• running_learners: Prints information about currently running ma-
chine learners, including elapsed runtime and remaining time until
timeout.

Sledgehammer’s behavior can be influenced by various 〈options〉, which can
be specified in brackets after the sledgehammer command. The 〈options〉
are a list of key–value pairs of the form “[k1 = v1, . . . , kn = vn ]”. For Boolean
options, “= true” is optional. For example:

sledgehammer [isar_proofs, timeout = 120]

Default values can be set using sledgehammer_params:

sledgehammer_params 〈options〉

The supported options are described in § 7.

The 〈facts_override〉 argument lets you alter the set of facts that go through
the relevance filter. It may be of the form “(〈facts〉)”, where 〈facts〉 is a space-
separated list of Isabelle facts (theorems, local assumptions, etc.), in which
case the relevance filter is bypassed and the given facts are used. It may
also be of the form “(add : 〈facts1〉)”, “(del : 〈facts2〉)”, or “(add : 〈facts1〉 del :
〈facts2〉)”, where the relevance filter is instructed to proceed as usual except
that it should consider 〈facts1〉 highly-relevant and 〈facts2〉 fully irrelevant.

If you use Isabelle/jEdit, Sledgehammer also provides an automatic mode
that can be enabled via the “Auto Sledgehammer” option under “Plugins >
Plugin Options > Isabelle > General.” For automatic runs, only the first
prover set using provers (§ 7.1) is considered (typically E), slice (§ 7.1) is
disabled, minimize (§ 7.1) is disabled, fewer facts are passed to the prover,
fact_filter (§ 7.2) is set to mepo, strict (§ 7.3) is enabled, verbose (§ 7.4) and
debug (§ 7.4) are disabled, preplay_timeout (§ 7.6) is set to 0, and timeout
(§ 7.6) is superseded by the “Auto Time Limit” option in jEdit. Sledgeham-
mer’s output is also more concise.
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6.2 Metis

The metis proof method has the syntax

metis (〈options〉)? 〈facts〉?

where 〈facts〉 is a list of arbitrary facts and 〈options〉 is a comma-separated
list consisting of at most one λ translation scheme specification with the same
semantics as Sledgehammer’s lam_trans option (§ 7.3) and at most one type
encoding specification with the same semantics as Sledgehammer’s type_enc
option (§ 7.3). The supported λ translation schemes are hide_lams, lifting,
and combs (the default). All the untyped type encodings listed in § 7.3 are
supported. For convenience, the following aliases are provided:

• full_types: Alias for poly_guards_query.

• partial_types: Alias for poly_args.

• no_types: Alias for erased.

7 Option Reference

Sledgehammer’s options are categorized as follows: mode of operation (§ 7.1),
problem encoding (§ 7.3), relevance filter (§ 7.2), output format (§ 7.4), regres-
sion testing (§ 7.5), and timeouts (§ 7.6).

The descriptions below refer to the following syntactic quantities:

• 〈string〉: A string.

• 〈bool〉: true or false.

• 〈smart_bool〉: true, false, or smart.

• 〈int〉: An integer.

• 〈float〉: A floating-point number (e.g., 2.5 or 60) expressing a number
of seconds.

• 〈float_pair〉: A pair of floating-point numbers (e.g., 0.6 0.95).

• 〈smart_int〉: An integer or smart.

Default values are indicated in curly brackets ({}). Boolean options have a
negative counterpart (e.g., blocking vs. non_blocking). When setting Boolean
options or their negative counterparts, “= true” may be omitted.
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7.1 Mode of Operation[
provers =

]
〈string〉

Specifies the automatic provers to use as a space-separated list (e.g.,
“e spass remote_vampire”). Provers can be run locally or remotely; see
§ 2 for installation instructions.

The following local provers are supported:

• agsyhol : AgsyHOL is an automatic higher-order prover devel-
oped by Fredrik Lindblad [13], with support for the TPTP typed
higher-order syntax (THF0). To use AgsyHOL, set the environ-
ment variable AGSYHOL_HOME to the directory that contains the
agsyHOL executable. Sledgehammer has been tested with version
1.0.

• alt_ergo: Alt-Ergo is a polymorphic ATP developed by Bobot
et al. [4]. It supports the TPTP polymorphic typed first-order
format (TFF1) via Why3 [5]. To use Alt-Ergo, set the environ-
ment variable WHY3_HOME to the directory that contains the why3
executable. Sledgehammer requires Alt-Ergo 0.95.2 and Why3
0.83.

• cvc3 : CVC3 is an SMT solver developed by Clark Barrett, Cesare
Tinelli, and their colleagues [2]. To use CVC3, set the environment
variable CVC3_SOLVER to the complete path of the executable, in-
cluding the file name, or install the prebuilt CVC3 package from
http://isabelle.in.tum.de/components/. Sledgehammer has
been tested with versions 2.2 and 2.4.1.

• cvc4 : CVC4 [1] is the successor to CVC3. To use CVC4, set
the environment variable CVC4_SOLVER to the complete path of
the executable, including the file name, or install the prebuilt
CVC4 package from http://isabelle.in.tum.de/components/.
Sledgehammer has been tested with version 1.5-prerelease.

• e: E is a first-order resolution prover developed by Stephan Schulz
[15]. To use E, set the environment variable E_HOME to the direc-
tory that contains the eproof executable and E_VERSION to the
version number (e.g., “1.8”), or install the prebuilt E package from
http://isabelle.in.tum.de/components/. Sledgehammer has
been tested with versions 1.6 to 1.8.

• e_males: E-MaLeS is a metaprover developed by Daniel
Kühlwein that implements strategy scheduling on top of E. To
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use E-MaLeS, set the environment variable E_MALES_HOME to the
directory that contains the emales.py script. Sledgehammer has
been tested with version 1.1.

• e_par : E-Par is an experimental metaprover developed by Josef
Urban that implements strategy scheduling on top of E. To
use E-Par, set the environment variable E_HOME to the direc-
tory that contains the runepar.pl script and the eprover and
epclextract executables, or use the prebuilt E package from
http://isabelle.in.tum.de/components/. Be aware that E-
Par is experimental software. It has been known to generate zom-
bie processes. Use at your own risks.

• iprover : iProver is a pure instantiation-based prover developed
by Konstantin Korovin [11]. To use iProver, set the environment
variable IPROVER_HOME to the directory that contains the iprover
and vclausify_rel executables. Sledgehammer has been tested
with version 0.99.

• iprover_eq : iProver-Eq is an instantiation-based prover with na-
tive support for equality developed by Konstantin Korovin and
Christoph Sticksel [12]. To use iProver-Eq, set the environ-
ment variable IPROVER_EQ_HOME to the directory that contains
the iprover-eq and vclausify_rel executables. Sledgehammer
has been tested with version 0.8.

• leo2 : LEO-II is an automatic higher-order prover developed by
Christoph Benzmüller et al. [3], with support for the TPTP typed
higher-order syntax (THF0). To use LEO-II, set the environment
variable LEO2_HOME to the directory that contains the leo exe-
cutable. Sledgehammer requires version 1.3.4 or above.

• satallax : Satallax is an automatic higher-order prover developed
by Chad Brown et al. [7], with support for the TPTP typed higher-
order syntax (THF0). To use Satallax, set the environment vari-
able SATALLAX_HOME to the directory that contains the satallax
executable. Sledgehammer requires version 2.2 or above.

• spass: SPASS is a first-order resolution prover developed by
Christoph Weidenbach et al. [19]. To use SPASS, set the en-
vironment variable SPASS_HOME to the directory that contains
the SPASS executable and SPASS_VERSION to the version num-
ber (e.g., “3.8ds”), or install the prebuilt SPASS package from
http://isabelle.in.tum.de/components/. Sledgehammer re-
quires version 3.8ds or above.
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• vampire: Vampire is a first-order resolution prover developed
by Andrei Voronkov and his colleagues [14]. To use Vampire, set
the environment variable VAMPIRE_HOME to the directory that con-
tains the vampire executable and VAMPIRE_VERSION to the version
number (e.g., “3.0”). Sledgehammer has been tested with versions
0.6 to 3.0. Versions strictly above 1.8 support the TPTP typed
first-order format (TFF0).

• verit : veriT [6] is an SMT solver developed by David DÃľharbe,
Pascal Fontaine, and their colleagues. It is specifically designed
to produce detailed proofs for reconstruction in proof assistants.
To use veriT, set the environment variable VERIT_SOLVER to the
complete path of the executable, including the file name. Sledge-
hammer has been tested with version smtcomp2014.

• z3 : Z3 is an SMT solver developed at Microsoft Research [20]. To
use Z3, set the environment variable Z3_SOLVER to the complete
path of the executable, including the file name. Sledgehammer
has been tested with a pre-release version of 4.4.0.

• z3_tptp: This version of Z3 pretends to be an ATP, exploiting
Z3’s support for the TPTP untyped and typed first-order formats
(FOF and TFF0). It is included for experimental purposes. It re-
quires version 4.3.1 of Z3 or above. To use it, set the environment
variable Z3_TPTP_HOME to the directory that contains the z3_tptp
executable.

• zipperposition: Zipperposition [8] is an experimental first-order
resolution prover developed by Simon Cruane. To use Zipperpo-
sition, set the environment variable ZIPPERPOSITION_HOME to the
directory that contains the zipperposition executable.

Moreover, the following remote provers are supported:

• remote_agsyhol : The remote version of AgsyHOL runs on Geoff
Sutcliffe’s Miami servers [18].

• remote_e: The remote version of E runs on Geoff Sutcliffe’s
Miami servers [18].

• remote_e_sine: E-SInE is a metaprover developed by Kryštof
Hoder [10] based on E. It runs on Geoff Sutcliffe’s Miami servers.

• remote_e_tofof : E-ToFoF is a metaprover developed by Geoff
Sutcliffe [17] based on E running on his Miami servers. This ATP
supports the TPTP typed first-order format (TFF0). The remote
version of E-ToFoF runs on Geoff Sutcliffe’s Miami servers.
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• remote_iprover : The remote version of iProver runs on Geoff
Sutcliffe’s Miami servers [18].

• remote_iprover_eq : The remote version of iProver-Eq runs on
Geoff Sutcliffe’s Miami servers [18].

• remote_leo2 : The remote version of LEO-II runs on Geoff Sut-
cliffe’s Miami servers [18].

• remote_pirate: Pirate is a highly experimental first-order reso-
lution prover developed by Daniel Wand. The remote version of
Pirate run on a private server he generously set up.

• remote_satallax : The remote version of Satallax runs on Geoff
Sutcliffe’s Miami servers [18].

• remote_snark : SNARK is a first-order resolution prover devel-
oped by Stickel et al. [16]. It supports the TPTP typed first-order
format (TFF0). The remote version of SNARK runs on Geoff
Sutcliffe’s Miami servers.

• remote_vampire: The remote version of Vampire runs on Geoff
Sutcliffe’s Miami servers.

• remote_waldmeister : Waldmeister is a unit equality prover
developed by Hillenbrand et al. [9]. It can be used to prove uni-
versally quantified equations using unconditional equations, cor-
responding to the TPTP CNF UEQ division. The remote version
of Waldmeister runs on Geoff Sutcliffe’s Miami servers.

By default, Sledgehammer runs a subset of CVC4, E, E-SInE, SPASS,
Vampire, veriT, and Z3 in parallel, either locally or remotely—depending
on the number of processor cores available and on which provers are
actually installed. It is generally a good idea to run several provers in
parallel.

prover = 〈string〉
Alias for provers.

blocking
[
= 〈bool〉

]
{false} (neg.: non_blocking)

Specifies whether the sledgehammer command should operate syn-
chronously. The asynchronous (non-blocking) mode lets the user start
proving the putative theorem manually while Sledgehammer looks for
a proof, but it can also be more confusing. Irrespective of the value of
this option, Sledgehammer is always run synchronously if debug (§ 7.4)
is enabled.

18



slice
[
= 〈bool〉

]
{true} (neg.: dont_slice)

Specifies whether the time allocated to a prover should be sliced into
several segments, each of which has its own set of possibly prover-
dependent options. For SPASS and Vampire, the first slice tries the
fast but incomplete set-of-support (SOS) strategy, whereas the second
slice runs without it. For E, up to three slices are tried, with different
weighted search strategies and number of facts. For SMT solvers, sev-
eral slices are tried with the same options each time but fewer and fewer
facts. According to benchmarks with a timeout of 30 seconds, slicing
is a valuable optimization, and you should probably leave it enabled
unless you are conducting experiments.

See also verbose (§ 7.4).

minimize
[
= 〈bool〉

]
{true} (neg.: dont_minimize)

Specifies whether the minimization tool should be invoked automati-
cally after proof search.

See also preplay_timeout (§ 7.6) and dont_preplay (§ 7.6).

spy
[
= 〈bool〉

]
{false} (neg.: dont_spy)

Specifies whether Sledgehammer should record statistics in $ISABELLE_
HOME_USER/spy_sledgehammer. These statistics can be useful to the
developers of Sledgehammer. If you are willing to have your interactions
recorded in the name of science, please enable this feature and send
the statistics file every now and then to the author of this manual
(blanNOSPAMchette@in.tum.de). To change the default value of this option
globally, set the environment variable SLEDGEHAMMER_SPY to yes.

See also debug (§ 7.4).

overlord
[
= 〈bool〉

]
{false} (neg.: no_overlord)

Specifies whether Sledgehammer should put its temporary files in $ISA-
BELLE_HOME_USER, which is useful for debugging Sledgehammer but
also unsafe if several instances of the tool are run simultaneously. The
files are identified by the prefixes prob_ and mash_; you may safely
remove them after Sledgehammer has run.

Warning: This option is not thread-safe. Use at your own risks.

See also debug (§ 7.4).
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7.2 Relevance Filter

fact_filter = 〈string〉 {smart}

Specifies the relevance filter to use. The following filters are available:

• mepo: The traditional memoryless MePo relevance filter.

• mash: The MaSh machine learner. Three learning algorithms are
provided:
• nb is an implementation of naive Bayes.
• knn is an implementation of k -nearest neighbors.
• nb_knn (also called yes and sml) is a combination of naive
Bayes and k -nearest neighbors.

In addition, the special value none is used to disable machine
learning by default (cf. smart below).
The default algorithm is nb_knn. The algorithm can be selected
by setting MASH—either in the environment in which Isabelle is
launched, in your $ISABELLE_HOME_USER/etc/settings file, or
via the “MaSh” option under “Plugins > Plugin Options > Isabelle
> General” in Isabelle/jEdit. Persistent data for both algorithms
is stored in the directory $ISABELLE_HOME_USER/mash.

• mesh: The MeSh filter, which combines the rankings from MePo
and MaSh.

• smart : A combination of MePo, MaSh, and MeSh. If the learning
algorithm is set to be none, smart behaves like MePo.

max_facts = 〈smart_int〉 {smart}

Specifies the maximum number of facts that may be returned by the
relevance filter. If the option is set to smart (the default), it effectively
takes a value that was empirically found to be appropriate for the
prover. Typical values lie between 50 and 1000.

fact_thresholds = 〈float_pair〉 {0.45 0.85}

Specifies the thresholds above which facts are considered relevant by
the relevance filter. The first threshold is used for the first iteration of
the relevance filter and the second threshold is used for the last iteration
(if it is reached). The effective threshold is quadratically interpolated
for the other iterations. Each threshold ranges from 0 to 1, where 0
means that all theorems are relevant and 1 only theorems that refer to
previously seen constants.
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learn
[
= 〈bool〉

]
{true} (neg.: dont_learn)

Specifies whether MaSh should be run automatically by Sledgeham-
mer to learn the available theories (and hence provide more accurate
results). Learning takes place only if MaSh is enabled.

max_new_mono_instances = 〈int〉 {smart}

Specifies the maximum number of monomorphic instances to generate
beyond max_facts. The higher this limit is, the more monomorphic
instances are potentially generated. Whether monomorphization takes
place depends on the type encoding used. If the option is set to smart
(the default), it takes a value that was empirically found to be appro-
priate for the prover. For most provers, this value is 100.

See also type_enc (§ 7.3).

max_mono_iters = 〈int〉 {smart}

Specifies the maximum number of iterations for the monomorphization
fixpoint construction. The higher this limit is, the more monomor-
phic instances are potentially generated. Whether monomorphization
takes place depends on the type encoding used. If the option is set to
smart (the default), it takes a value that was empirically found to be
appropriate for the prover. For most provers, this value is 3.

See also type_enc (§ 7.3).

7.3 Problem Encoding

lam_trans = 〈string〉 {smart}

Specifies the λ translation scheme to use in ATP problems. The sup-
ported translation schemes are listed below:

• hide_lams: Hide the λ-abstractions by replacing them by un-
specified fresh constants, effectively disabling all reasoning under
λ-abstractions.

• lifting : Introduce a new supercombinator c for each cluster of
n λ-abstractions, defined using an equation c x1 . . . xn = t (λ-
lifting).

• combs: Rewrite lambdas to the Curry combinators (I, K, S, B, C).
Combinators enable the ATPs to synthesize λ-terms but tend to
yield bulkier formulas than λ-lifting: The translation is quadratic
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in the worst case, and the equational definitions of the combinators
are very prolific in the context of resolution.

• combs_and_lifting : Introduce a new supercombinator c for
each cluster of λ-abstractions and characterize it both using a
lifted equation c x1 . . . xn = t and via Curry combinators.

• combs_or_lifting : For each cluster of λ-abstractions, heuristi-
cally choose between λ-lifting and Curry combinators.

• keep_lams: Keep the λ-abstractions in the generated problems.
This is available only with provers that support the THF0 syntax.

• smart : The actual translation scheme used depends on the ATP
and should be the most efficient scheme for that ATP.

For SMT solvers, the λ translation scheme is always lifting, irrespective
of the value of this option.

uncurried_aliases
[
= 〈smart_bool〉

]
{smart}
(neg.: no_uncurried_aliases)

Specifies whether fresh function symbols should be generated as aliases
for applications of curried functions in ATP problems.

type_enc = 〈string〉 {smart}

Specifies the type encoding to use in ATP problems. Some of the type
encodings are unsound, meaning that they can give rise to spurious
proofs (unreconstructible using metis). The type encodings are listed
below, with an indication of their soundness in parentheses. An asterisk
(*) indicates that the encoding is slightly incomplete for reconstruction
with metis, unless the strict option (described below) is enabled.

• erased (unsound): No type information is supplied to the ATP,
not even to resolve overloading. Types are simply erased.

• poly_guards (sound): Types are encoded using a predicate
g(τ, t) that guards bound variables. Constants are annotated with
their types, supplied as extra arguments, to resolve overloading.

• poly_tags (sound): Each term and subterm is tagged with its
type using a function t(τ, t).

• poly_args (unsound): Like for poly_guards constants are an-
notated with their types to resolve overloading, but otherwise no
type information is encoded. This is the default encoding used by
the metis proof method.
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• raw_mono_guards, raw_mono_tags (sound);
raw_mono_args (unsound):
Similar to poly_guards, poly_tags, and poly_args, respectively,
but the problem is additionally monomorphized, meaning that
type variables are instantiated with heuristically chosen ground
types. Monomorphization can simplify reasoning but also leads
to larger fact bases, which can slow down the ATPs.

• mono_guards,mono_tags (sound); mono_args (unsound):
Similar to raw_mono_guards, raw_mono_tags, and raw_mono_args,
respectively but types are mangled in constant names instead of
being supplied as ground term arguments. The binary predicate
g(τ, t) becomes a unary predicate g_τ(t), and the binary function
t(τ, t) becomes a unary function t_τ(t).

• mono_native (sound): Exploits native first-order types if the
prover supports the TFF0, TFF1, or THF0 syntax; otherwise,
falls back on mono_guards. The problem is monomorphized.

• mono_native_higher (sound): Exploits native higher-order
types if the prover supports the THF0 syntax; otherwise, falls
back onmono_native ormono_guards. The problem is monomor-
phized.

• poly_native (sound): Exploits native first-order polymorphic
types if the prover supports the TFF1 syntax; otherwise, falls back
on mono_native.

• poly_guards?, poly_tags?, raw_mono_guards?,
raw_mono_tags?, mono_guards?, mono_tags?,
mono_native? (sound*):
The type encodings poly_guards, poly_tags, raw_mono_guards,
raw_mono_tags,mono_guards,mono_tags, andmono_native are
fully typed and sound. For each of these, Sledgehammer also pro-
vides a lighter variant identified by a question mark (‘?’) that
detects and erases monotonic types, notably infinite types. (For
mono_native, the types are not actually erased but rather re-
placed by a shared uniform type of individuals.) As argument
to the metis proof method, the question mark is replaced by a
“_query” suffix.

• poly_guards??, poly_tags??, raw_mono_guards??,
raw_mono_tags??, mono_guards??, mono_tags??
(sound*):
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Even lighter versions of the ‘?’ encodings. As argument to the
metis proof method, the ‘??’ suffix is replaced by “_query_query”.

• poly_guards@, poly_tags@, raw_mono_guards@,
raw_mono_tags@ (sound*):
Alternative versions of the ‘??’ encodings. As argument to the
metis proof method, the ‘@’ suffix is replaced by “_at”.

• poly_args?, raw_mono_args? (unsound):
Lighter versions of poly_args and raw_mono_args.

• smart : The actual encoding used depends on the ATP and should
be the most efficient sound encoding for that ATP.

For SMT solvers, the type encoding is alwaysmono_native, irrespective
of the value of this option.

See also max_new_mono_instances (§ 7.2) and max_mono_iters (§ 7.2).

strict
[
= 〈bool〉

]
{false} (neg.: non_strict)

Specifies whether Sledgehammer should run in its strict mode. In that
mode, sound type encodings marked with an asterisk (*) above are
made complete for reconstruction withmetis, at the cost of some clutter
in the generated problems. This option has no effect if type_enc is
deliberately set to an unsound encoding.

7.4 Output Format

verbose
[
= 〈bool〉

]
{false} (neg.: quiet)

Specifies whether the sledgehammer command should explain what
it does.

debug
[
= 〈bool〉

]
{false} (neg.: no_debug)

Specifies whether Sledgehammer should display additional debugging
information beyond what verbose already displays. Enabling debug also
enables verbose and blocking (§ 7.1) behind the scenes.

See also spy (§ 7.1) and overlord (§ 7.1).

isar_proofs
[
= 〈smart_bool〉

]
{smart} (neg.: no_isar_proofs)

Specifies whether Isar proofs should be output in addition to one-line
proofs. The construction of Isar proof is still experimental and may
sometimes fail; however, when they succeed they are usually faster and
more intelligible than one-line proofs. If the option is set to smart (the
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default), Isar proofs are only generated when no working one-line proof
is available.

compress = 〈int〉 {smart}

Specifies the granularity of the generated Isar proofs if isar_proofs is
explicitly enabled. A value of n indicates that each Isar proof step
should correspond to a group of up to n consecutive proof steps in the
ATP proof. If the option is set to smart (the default), the compression
factor is 10 if the isar_proofs option is explicitly enabled; otherwise, it
is ∞.

dont_compress
[
= true

]
Alias for “compress = 1”.

try0
[
= 〈bool〉

]
{true} (neg.: dont_try0 )

Specifies whether standard proof methods such as auto and blast should
be tried as alternatives to metis in Isar proofs. The collection of meth-
ods is roughly the same as for the try0 command.

smt_proofs
[
= 〈smart_bool〉

]
{smart} (neg.: no_smt_proofs)

Specifies whether the smt2 proof method should be tried in addition
to Isabelle’s other proof methods. If the option is set to smart (the
default), the smt2 method is used for one-line proofs but not in Isar
proofs.

7.5 Regression Testing

expect = 〈string〉
Specifies the expected outcome, which must be one of the following:

• some: Sledgehammer found a proof.

• none: Sledgehammer found no proof.

• timeout : Sledgehammer timed out.

• unknown: Sledgehammer encountered some problem.

Sledgehammer emits an error (if blocking is enabled) or a warning (oth-
erwise) if the actual outcome differs from the expected outcome. This
option is useful for regression testing.

See also blocking (§ 7.1) and timeout (§ 7.6).
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7.6 Timeouts

timeout = 〈float〉 {30}
Specifies the maximum number of seconds that the automatic provers
should spend searching for a proof. This excludes problem preparation
and is a soft limit.

preplay_timeout = 〈float〉 {1}
Specifies the maximum number of seconds that metis or other proof
methods should spend trying to “preplay” the found proof. If this
option is set to 0, no preplaying takes place, and no timing information
is displayed next to the suggested proof method calls.
See also minimize (§ 7.1).

dont_preplay
[
= true

]
Alias for “preplay_timeout = 0”.
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