
λ
→

∀
=Is

ab
el
le

β

α

The Isabelle System Manual

Makarius Wenzel and Stefan Berghofer
TU München

25 May 2015

Contents

1 The Isabelle system environment 1
1.1 Isabelle settings . 1

1.1.1 Bootstrapping the environment 2
1.1.2 Common variables . 3
1.1.3 Additional components 6

1.2 The raw Isabelle process . 7
1.3 The Isabelle tool wrapper . 9

2 Isabelle sessions and build management 11
2.1 Session ROOT specifications 11
2.2 System build options . 15
2.3 Invoking the build process . 17

3 Presenting theories 21
3.1 Generating theory browser information 21
3.2 Preparing session root directories 22
3.3 Preparing Isabelle session documents 23
3.4 Running LATEX within the Isabelle environment 25

4 Isabelle/Scala development tools 27
4.1 Java Runtime Environment within Isabelle 27
4.2 Scala toplevel . 27
4.3 Scala compiler . 28
4.4 Scala script wrapper . 28

5 Miscellaneous tools 29
5.1 Theory graph browser . 29

5.1.1 Invoking the graph browser 29
5.1.2 Using the graph browser 30

i

CONTENTS ii

5.1.3 Syntax of graph definition files 31
5.2 Resolving Isabelle components 32
5.3 Raw ML console . 33
5.4 Displaying documents . 34
5.5 Viewing documentation . 34
5.6 Shell commands within the settings environment 34
5.7 Inspecting the settings environment 35
5.8 Installing standalone Isabelle executables 35
5.9 Creating instances of the Isabelle logo 36
5.10 Output the version identifier of the Isabelle distribution 36
5.11 Convert XML to YXML . 37

Bibliography 38

Index 39

Chapter 1

The Isabelle system environment

This manual describes Isabelle together with related tools and user interfaces
as seen from a system oriented view. See also the Isabelle/Isar Reference
Manual [2] for the actual Isabelle input language and related concepts, and
The Isabelle/Isar Implementation Manual [1] for the main concepts of the
underlying implementation in Isabelle/ML.

The Isabelle system environment provides the following basic infrastructure
to integrate tools smoothly.

1. The Isabelle settings mechanism provides process environment variables
to all Isabelle executables (including tools and user interfaces).

2. The raw Isabelle process (isabelle_process) runs logic sessions either
interactively or in batch mode. In particular, this view abstracts over
the invocation of the actual ML system to be used. Regular users rarely
need to care about the low-level process.

3. The main Isabelle tool wrapper (isabelle) provides a generic startup
environment Isabelle related utilities, user interfaces etc. Such tools
automatically benefit from the settings mechanism.

1.1 Isabelle settings

The Isabelle system heavily depends on the settings mechanism. Essen-
tially, this is a statically scoped collection of environment variables, such as
ISABELLE_HOME, ML_SYSTEM, ML_HOME. These variables are not intended to
be set directly from the shell, though. Isabelle employs a somewhat more
sophisticated scheme of settings files — one for site-wide defaults, another
for additional user-specific modifications. With all configuration variables
in clearly defined places, this scheme is more maintainable and user-friendly
than global shell environment variables.

1

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 2

In particular, we avoid the typical situation where prospective users of a soft-
ware package are told to put several things into their shell startup scripts,
before being able to actually run the program. Isabelle requires none such ad-
ministrative chores of its end-users — the executables can be invoked straight
away. Occasionally, users would still want to put the $ISABELLE_HOME/bin
directory into their shell’s search path, but this is not required.

1.1.1 Bootstrapping the environment

Isabelle executables need to be run within a proper settings environment.
This is bootstrapped as described below, on the first invocation of one of
the outer wrapper scripts (such as isabelle). This happens only once for
each process tree, i.e. the environment is passed to subprocesses according to
regular Unix conventions.

1. The special variable ISABELLE_HOME is determined automatically from
the location of the binary that has been run.

You should not try to set ISABELLE_HOME manually. Also note that the
Isabelle executables either have to be run from their original location
in the distribution directory, or via the executable objects created by
the isabelle install tool. Symbolic links are admissible, but a plain
copy of the $ISABELLE_HOME/bin files will not work!

2. The file $ISABELLE_HOME/etc/settings is run as a bash shell script
with the auto-export option for variables enabled.

This file holds a rather long list of shell variable assigments, thus pro-
viding the site-wide default settings. The Isabelle distribution already
contains a global settings file with sensible defaults for most variables.
When installing the system, only a few of these may have to be adapted
(probably ML_SYSTEM etc.).

3. The file $ISABELLE_HOME_USER/etc/settings (if it exists) is run in
the same way as the site default settings. Note that the variable
ISABELLE_HOME_USER has already been set before — usually to some-
thing like $USER_HOME/.isabelle/IsabelleXXXX.

Thus individual users may override the site-wide defaults. Typically, a
user settings file contains only a few lines, with some assignments that
are actually changed. Never copy the central $ISABELLE_HOME/etc/
settings file!

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 3

Since settings files are regular GNU bash scripts, one may use complex shell
commands, such as if or case statements to set variables depending on the
system architecture or other environment variables. Such advanced features
should be added only with great care, though. In particular, external envi-
ronment references should be kept at a minimum.

A few variables are somewhat special:

• ISABELLE_PROCESS and ISABELLE_TOOL are set automatically to the
absolute path names of the isabelle_process and isabelle executa-
bles, respectively.

• ISABELLE_OUTPUT will have the identifiers of the Isabelle distribution
(cf. ISABELLE_IDENTIFIER) and the ML system (cf. ML_IDENTIFIER)
appended automatically to its value.

Note that the settings environment may be inspected with the
isabelle getenv tool. This might help to figure out the effect of com-
plex settings scripts.

1.1.2 Common variables

This is a reference of common Isabelle settings variables. Note that the list
is somewhat open-ended. Third-party utilities or interfaces may add their
own selection. Variables that are special in some sense are marked with ∗.

USER_HOME∗ Is the cross-platform user home directory. On Unix systems
this is usually the same as HOME, but on Windows it is the regular
home directory of the user, not the one of within the Cygwin root
file-system.1

ISABELLE_HOME∗ is the location of the top-level Isabelle distribution direc-
tory. This is automatically determined from the Isabelle executable
that has been invoked. Do not attempt to set ISABELLE_HOME yourself
from the shell!

ISABELLE_HOME_USER is the user-specific counterpart of ISABELLE_HOME.
The default value is relative to $USER_HOME/.isabelle, under rare
circumstances this may be changed in the global setting file. Typically,

1Cygwin itself offers another choice whether its HOME should point to the /home
directory tree or the Windows user home.

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 4

the ISABELLE_HOME_USER directory mimics ISABELLE_HOME to some ex-
tend. In particular, site-wide defaults may be overridden by a private
$ISABELLE_HOME_USER/etc/settings.

ISABELLE_PLATFORM_FAMILY∗ is automatically set to the general platform
family: linux, macos, windows. Note that platform-dependent tools
usually need to refer to the more specific identification according to
ISABELLE_PLATFORM, ISABELLE_PLATFORM32, ISABELLE_PLATFORM64.

ISABELLE_PLATFORM∗ is automatically set to a symbolic identifier for the un-
derlying hardware and operating system. The Isabelle platform identi-
fication always refers to the 32 bit variant, even this is a 64 bit machine.
Note that the ML or Java runtime may have a different idea, depending
on which binaries are actually run.

ISABELLE_PLATFORM64∗ is similar to ISABELLE_PLATFORM but refers to the
proper 64 bit variant on a platform that supports this; the value is
empty for 32 bit. Note that the following bash expression (including
the quotes) prefers the 64 bit platform, if that is available:

"${ISABELLE_PLATFORM64:-$ISABELLE_PLATFORM}"

ISABELLE_PROCESS∗, ISABELLE_TOOL∗ are automatically set to the full path
names of the isabelle_process and isabelle executables, respec-
tively. Thus other tools and scripts need not assume that the
$ISABELLE_HOME/bin directory is on the current search path of the
shell.

ISABELLE_IDENTIFIER∗ refers to the name of this Isabelle distribution, e.g.
“Isabelle2012”.

ML_SYSTEM, ML_HOME, ML_OPTIONS, ML_PLATFORM, ML_IDENTIFIER∗ specify
the underlying ML system to be used for Isabelle. There is only a fixed
set of admissable ML_SYSTEM names (see the $ISABELLE_HOME/etc/
settings file of the distribution).

The actual compiler binary will be run from the directory ML_HOME,
with ML_OPTIONS as first arguments on the command line. The op-
tional ML_PLATFORM may specify the binary format of ML heap im-
ages, which is useful for cross-platform installations. The value of
ML_IDENTIFIER is automatically obtained by composing the values of
ML_SYSTEM, ML_PLATFORM and the Isabelle version values.

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 5

ML_SYSTEM_POLYML∗ is true for ML_SYSTEM values derived from Poly/ML, as
opposed to SML/NJ where it is empty. This is particularly useful with
the build option condition (§2.2) to restrict big sessions to something
that SML/NJ can still handle.

ISABELLE_JDK_HOME needs to point to a full JDK (Java Development Kit)
installation with javac and jar executables. This is essential for
Isabelle/Scala and other JVM-based tools to work properly. Note that
conventional JAVA_HOME usually points to the JRE (Java Runtime En-
vironment), not JDK.

ISABELLE_PATH is a list of directories (separated by colons) where Isabelle
logic images may reside. When looking up heaps files, the value of
ML_IDENTIFIER is appended to each component internally.

ISABELLE_OUTPUT∗ is a directory where output heap files should be stored
by default. The ML system and Isabelle version identifier is appended
here, too.

ISABELLE_BROWSER_INFO is the directory where theory browser information
(HTML text, graph data, and printable documents) is stored (see also
§3.1). The default value is $ISABELLE_HOME_USER/browser_info.

ISABELLE_LOGIC specifies the default logic to load if none is given explicitely
by the user. The default value is HOL.

ISABELLE_LINE_EDITOR specifies the line editor for the isabelle console
interface.

ISABELLE_LATEX, ISABELLE_PDFLATEX, ISABELLE_BIBTEX refer to LATEX
related tools for Isabelle document preparation (see also §3.4).

ISABELLE_TOOLS is a colon separated list of directories that are scanned by
isabelle for external utility programs (see also §1.3).

ISABELLE_DOCS is a colon separated list of directories with documentation
files.

PDF_VIEWER specifies the program to be used for displaying pdf files.

DVI_VIEWER specifies the program to be used for displaying dvi files.

ISABELLE_TMP_PREFIX∗ is the prefix from which any running isabelle_process
derives an individual directory for temporary files.

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 6

1.1.3 Additional components

Any directory may be registered as an explicit Isabelle component. The
general layout conventions are that of the main Isabelle distribution itself,
and the following two files (both optional) have a special meaning:

• etc/settings holds additional settings that are initialized when boot-
strapping the overall Isabelle environment, cf. §1.1.1. As usual, the
content is interpreted as a bash script. It may refer to the component’s
enclosing directory via the COMPONENT shell variable.

For example, the following setting allows to refer to files within the
component later on, without having to hardwire absolute paths:

MY_COMPONENT_HOME="$COMPONENT"

Components can also add to existing Isabelle settings such as
ISABELLE_TOOLS, in order to provide component-specific tools that can
be invoked by end-users. For example:

ISABELLE_TOOLS="$ISABELLE_TOOLS:$COMPONENT/lib/Tools"

• etc/components holds a list of further sub-components of the same
structure. The directory specifications given here can be either absolute
(with leading /) or relative to the component’s main directory.

The root of component initialization is ISABELLE_HOME itself. After initial-
izing all of its sub-components recursively, ISABELLE_HOME_USER is included
in the same manner (if that directory exists). This allows to install private
components via $ISABELLE_HOME_USER/etc/components, although it is of-
ten more convenient to do that programmatically via the init_component
shell function in the etc/settings script of $ISABELLE_HOME_USER (or any
other component directory). For example:

init_component "$HOME/screwdriver-2.0"

This is tolerant wrt. missing component directories, but might produce a
warning.

More complex situations may be addressed by initializing components listed
in a given catalog file, relatively to some base directory:

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 7

init_components "$HOME/my_component_store" "some_catalog_file"

The component directories listed in the catalog file are treated as relative to
the given base directory.
See also §5.2 for some tool-support for resolving components that are formally
initialized but not installed yet.

1.2 The raw Isabelle process

The isabelle_process executable runs bare-bones Isabelle logic sessions —
either interactively or in batch mode. It provides an abstraction over the
underlying ML system, and over the actual heap file locations. Its usage is:

Usage: isabelle_process [OPTIONS] [INPUT] [OUTPUT]

Options are:
-O system options from given YXML file
-P SOCKET startup process wrapper via TCP socket
-S secure mode -- disallow critical operations
-e MLTEXT pass MLTEXT to the ML session
-m MODE add print mode for output
-o OPTION override Isabelle system OPTION (via NAME=VAL or NAME)
-q non-interactive session
-r open heap file read-only
-w reset write permissions on OUTPUT

INPUT (default "$ISABELLE_LOGIC") and OUTPUT specify in/out heaps.
These are either names to be searched in the Isabelle path, or
actual file names (containing at least one /).
If INPUT is "RAW_ML_SYSTEM", just start the bare bones ML system.

Input files without path specifications are looked up in the ISABELLE_PATH
setting, which may consist of multiple components separated by colons —
these are tried in the given order with the value of ML_IDENTIFIER appended
internally. In a similar way, base names are relative to the directory specified
by ISABELLE_OUTPUT. In any case, actual file locations may also be given
by including at least one slash (/) in the name (hint: use ./ to refer to the
current directory).

Options

If the input heap file does not have write permission bits set, or the -r option
is given explicitly, then the session started will be read-only. That is, the ML

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 8

world cannot be committed back into the image file. Otherwise, a writable
session enables commits into either the input file, or into another output heap
file (if that is given as the second argument on the command line).
The read-write state of sessions is determined at startup only, it cannot be
changed intermediately. Also note that heap images may require considerable
amounts of disk space (hundreds of MB or some GB). Users are responsible
for themselves to dispose their heap files when they are no longer needed.

The -w option makes the output heap file read-only after terminating. Thus
subsequent invocations cause the logic image to be read-only automatically.

Using the -e option, arbitrary ML code may be passed to the Isabelle session
from the command line. Multiple -e’s are evaluated in the given order.
Strange things may happen when erroneous ML code is provided. Also make
sure that the ML commands are terminated properly by semicolon.

The -m option adds identifiers of print modes to be made active for this
session. Typically, this is used by some user interface, e.g. to enable output
of proper mathematical symbols.

Isabelle normally enters an interactive top-level loop (after processing the -e
texts). The -q option inhibits interaction, thus providing a pure batch mode
facility.

Option -o allows to override Isabelle system options for this process, see
also §2.2. Alternatively, option -O specifies the full environment of system
options as a file in YXML format (according to the Isabelle/Scala function
isabelle.Options.encode).

The -P option starts the Isabelle process wrapper for Isabelle/Scala, with a
private protocol running over the specified TCP socket. Isabelle/ML and
Isabelle/Scala provide various programming interfaces to invoke protocol
functions over untyped strings and XML trees.

The -S option makes the Isabelle process more secure by disabling some
critical operations, notably runtime compilation and evaluation of ML source
code.

Examples

Run an interactive session of the default object-logic (as specified by the
ISABELLE_LOGIC setting) like this:

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 9

isabelle_process

Usually ISABELLE_LOGIC refers to one of the standard logic images, which
are read-only by default. A writable session — based on HOL, but output to
Test (in the directory specified by the ISABELLE_OUTPUT setting) — may be
invoked as follows:

isabelle_process HOL Test

Ending this session normally (e.g. by typing control-D) dumps the whole ML
system state into Test (be prepared for more than 100MB):
The Test session may be continued later (still in writable state) by:

isabelle_process Test

A read-only Test session may be started by:

isabelle_process -r Test

The next example demonstrates batch execution of Isabelle. We retrieve the
Main theory value from the theory loader within ML (observe the delicate
quoting rules for the Bash shell vs. ML):

isabelle_process -e ’Thy_Info.get_theory "Main";’ -q -r HOL

Note that the output text will be interspersed with additional junk messages
by the ML runtime environment. The -W option allows to communicate with
the Isabelle process via an external program in a more robust fashion.

1.3 The Isabelle tool wrapper

All Isabelle related tools and interfaces are called via a common wrapper —
isabelle:

Usage: isabelle TOOL [ARGS ...]

Start Isabelle tool NAME with ARGS; pass "-?" for tool specific help.

Available tools:
...

In principle, Isabelle tools are ordinary executable scripts that are run within
the Isabelle settings environment, see §1.1. The set of available tools is
collected by isabelle from the directories listed in the ISABELLE_TOOLS
setting. Do not try to call the scripts directly from the shell. Neither should
you add the tool directories to your shell’s search path!

CHAPTER 1. THE ISABELLE SYSTEM ENVIRONMENT 10

Examples

Show the list of available documentation of the Isabelle distribution:

isabelle doc

View a certain document as follows:

isabelle doc system

Query the Isabelle settings environment:

isabelle getenv ISABELLE_HOME_USER

Chapter 2

Isabelle sessions and build
management

An Isabelle session consists of a collection of related theories that may be
associated with formal documents (chapter 3). There is also a notion of
persistent heap image to capture the state of a session, similar to object-code
in compiled programming languages. Thus the concept of session resembles
that of a “project” in common IDE environments, but the specific name
emphasizes the connection to interactive theorem proving: the session wraps-
up the results of user-interaction with the prover in a persistent form.
Application sessions are built on a given parent session, which may be built
recursively on other parents. Following this path in the hierarchy eventually
leads to some major object-logic session like HOL, which itself is based on
Pure as the common root of all sessions.
Processing sessions may take considerable time. Isabelle build management
helps to organize this efficiently. This includes support for parallel build jobs,
in addition to the multithreaded theory and proof checking that is already
provided by the prover process itself.

2.1 Session ROOT specifications

Session specifications reside in files called ROOT within certain directories,
such as the home locations of registered Isabelle components or additional
project directories given by the user.
The ROOT file format follows the lexical conventions of the outer syntax
of Isabelle/Isar, see also [2]. This defines common forms like identifiers,
names, quoted strings, verbatim text, nested comments etc. The grammar
for session_chapter and session_entry is given as syntax diagram below;
each ROOT file may contain multiple specifications like this. Chapters help
to organize browser info (§3.1), but have no formal meaning. The default
chapter is “Unsorted ”.

11

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 12

Isabelle/jEdit [3] includes a simple editing mode isabelle-root for session
ROOT files, which is enabled by default for any file of that name.

session_chapter

chapter
�� ��name

session_entry

session
�� ��spec =

�����
�name +

����
�
�

body

body

�
�description

�
�

�
�options

�
�

theories�
�

�
�

�

��
��

�files

�
�

�
�document_files

�
�

spec

name �
�groups

�
�

�
�dir

�
�

groups

(
���� name�

�
�
�

)
����

dir

in
����name

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 13

description

description
�� ��text

options

options
�� ��opts

opts

[
���� name =

����value�
�name

�
�

�

� ,
����

�

�

]
����

value

name�
�real

�
�

theories

theories
�� ���

�opts

�
�

�
�name

�
�

files

files
�� �� name�

�
�
�

document_files

document_files
�� ���

� (
����dir)

����
�
�

name�
�

�
�

session A = B + body defines a new session A based on parent session
B, with its content given in body (theories and auxiliary source files).

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 14

Note that a parent (like HOL) is mandatory in practical applications:
only Isabelle/Pure can bootstrap itself from nothing.

All such session specifications together describe a hierarchy (tree) of
sessions, with globally unique names. The new session name A should
be sufficiently long and descriptive to stand on its own in a potentially
large library.

session A (groups) indicates a collection of groups where the new ses-
sion is a member. Group names are uninterpreted and merely follow
certain conventions. For example, the Isabelle distribution tags some
important sessions by the group name called “main”. Other projects
may invent their own conventions, but this requires some care to avoid
clashes within this unchecked name space.

session A in dir specifies an explicit directory for this session; by default
this is the current directory of the ROOT file.

All theories and auxiliary source files are located relatively to the ses-
sion directory. The prover process is run within the same as its current
working directory.

description text is a free-form annotation for this session.

options [x = a, y = b, z] defines separate options (§2.2) that are used when
processing this session, but without propagation to child sessions. Note
that z abbreviates z = true for Boolean options.

theories options names specifies a block of theories that are processed
within an environment that is augmented by the given options, in ad-
dition to the global session options given before. Any number of blocks
of theories may be given. Options are only active for each theories
block separately.

files files lists additional source files that are involved in the processing of
this session. This should cover anything outside the formal content of
the theory sources. In contrast, files that are loaded formally within a
theory, e.g. via ML_file, need not be declared again.

document_files (in base_dir) files lists source files for document prepa-
ration, typically .tex and .sty for LATEX. Only these explicitly given
files are copied from the base directory to the document output direc-
tory, before formal document processing is started (see also §3.3). The
local path structure of the files is preserved, which allows to reconstruct
the original directory hierarchy of base_dir.

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 15

document_files files abbreviates document_files (in document) files,
i.e. document sources are taken from the base directory document
within the session root directory.

Examples

See ~~/src/HOL/ROOT for a diversity of practically relevant situations, al-
though it uses relatively complex quasi-hierarchic naming conventions like
HOL-SPARK, HOL-SPARK -Examples. An alternative is to use unqualified
names that are relatively long and descriptive, as in the Archive of Formal
Proofs (http://afp.sourceforge.net), for example.

2.2 System build options

See ~~/etc/options for the main defaults provided by the Isabelle distri-
bution. Isabelle/jEdit [3] includes a simple editing mode isabelle-options
for this file-format.
The following options are particularly relevant to build Isabelle sessions, in
particular with document preparation (chapter 3).

• browser_info controls output of HTML browser info, see also §3.1.

• document specifies the document output format, see isabelle document
option -o in §3.3. In practice, the most relevant values are
document=false or document=pdf.

• document_output specifies an alternative directory for generated out-
put of the document preparation system; the default is within the
ISABELLE_BROWSER_INFO hierarchy as explained in §3.1. See also
isabelle mkroot, which generates a default configuration with out-
put readily available to the author of the document.

• document_variants specifies document variants as a colon-separated
list of name=tags entries, corresponding to isabelle document op-
tions -n and -t.

For example, document_variants=document:outline=/proof,/ML
indicates two documents: the one called document with default tags,
and the other called outline where proofs and ML sections are folded.

http://afp.sourceforge.net

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 16

Document variant names are just a matter of conventions. It is also
possible to use different document variant names (without tags) for
different document root entries, see also §3.3.

• threads determines the number of worker threads for parallel checking
of theories and proofs. The default 0 means that a sensible maxi-
mum value is determined by the underlying hardware. For machines
with many cores or with hyperthreading, this is often requires man-
ual adjustment (on the command-line or within personal settings or
preferences, not within a session ROOT).

• condition specifies a comma-separated list of process environment
variables (or Isabelle settings) that are required for the subsequent
theories to be processed. Conditions are considered “true” if the corre-
sponding environment value is defined and non-empty.

For example, the condition=ISABELLE_FULL_TEST may be used to
guard extraordinary theories, which are meant to be enabled explicitly
via some shell prefix env ISABELLE_FULL_TEST=true before invoking
isabelle build.

• timeout specifies a real wall-clock timeout (in seconds) for the session
as a whole. The timer is controlled outside the ML process by the
JVM that runs Isabelle/Scala. Thus it is relatively reliable in canceling
processes that get out of control, even if there is a deadlock without
CPU time usage.

The isabelle options tool prints Isabelle system options. Its command-
line usage is:

Usage: isabelle options [OPTIONS] [MORE_OPTIONS ...]

Options are:
-b include $ISABELLE_BUILD_OPTIONS
-g OPTION get value of OPTION
-l list options
-x FILE export to FILE in YXML format

Report Isabelle system options, augmented by MORE_OPTIONS given as
arguments NAME=VAL or NAME.

The command line arguments provide additional system options of the form
name=value or name for Boolean options.
Option -b augments the implicit environment of system options by the ones
of ISABELLE_BUILD_OPTIONS, cf. §2.3.

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 17

Option -g prints the value of the given option. Option -l lists all options
with their declaration and current value.
Option -x specifies a file to export the result in YXML format, instead of
printing it in human-readable form.

2.3 Invoking the build process

The isabelle build tool invokes the build process for Isabelle sessions.
It manages dependencies between sessions, related sources of theories and
auxiliary files, and target heap images. Accordingly, it runs instances of the
prover process with optional document preparation. Its command-line usage
is:1

Usage: isabelle build [OPTIONS] [SESSIONS ...]

Options are:
-D DIR include session directory and select its sessions
-R operate on requirements of selected sessions
-X NAME exclude sessions from group NAME and all descendants
-a select all sessions
-b build heap images
-c clean build
-d DIR include session directory
-g NAME select session group NAME
-j INT maximum number of parallel jobs (default 1)
-k KEYWORD check theory sources for conflicts with proposed keywords
-l list session source files
-n no build -- test dependencies only
-o OPTION override Isabelle system OPTION (via NAME=VAL or NAME)
-s system build mode: produce output in ISABELLE_HOME
-v verbose
-x NAME exclude session NAME and all descendants

Build and manage Isabelle sessions, depending on implicit
ISABELLE_BUILD_OPTIONS="..."

ML_PLATFORM="..."
ML_HOME="..."
ML_SYSTEM="..."
ML_OPTIONS="..."

Isabelle sessions are defined via session ROOT files as described in (§2.1).
The totality of sessions is determined by collecting such specifications from

1Isabelle/Scala provides the same functionality via isabelle.Build.build.

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 18

all Isabelle component directories (§1.1.3), augmented by more directories
given via options -d DIR on the command line. Each such directory may
contain a session ROOT file with several session specifications.
Any session root directory may refer recursively to further directories of the
same kind, by listing them in a catalog file ROOTS line-by-line. This helps to
organize large collections of session specifications, or to make -d command
line options persistent (say within $ISABELLE_HOME_USER/ROOTS).

The subset of sessions to be managed is determined via individual SESSIONS
given as command-line arguments, or session groups that are given via one or
more options -g NAME. Option -a selects all sessions. The build tool takes
session dependencies into account: the set of selected sessions is completed
by including all ancestors.

One or more options -x NAME specify sessions to be excluded. All descen-
dents of excluded sessions are removed from the selection as specified above.
Option -X is analogous to this, but excluded sessions are specified by session
group membership.

Option -R reverses the selection in the sense that it refers to its requirements:
all ancestor sessions excluding the original selection. This allows to prepare
the stage for some build process with different options, before running the
main build itself (without option -R).

Option -D is similar to -d, but selects all sessions that are defined in the
given directories.

The build process depends on additional options (§2.2) that are passed to the
prover eventually. The settings variable ISABELLE_BUILD_OPTIONS allows to
provide additional defaults, e.g. ISABELLE_BUILD_OPTIONS="document=pdf
threads=4". Moreover, the environment of system build options may be
augmented on the command line via -o name=value or -o name, which ab-
breviates -o name=true for Boolean options. Multiple occurrences of -o on
the command-line are applied in the given order.

Option -b ensures that heap images are produced for all selected sessions.
By default, images are only saved for inner nodes of the hierarchy of sessions,
as required for other sessions to continue later on.

Option -c cleans all descendants of the selected sessions before performing
the specified build operation.

Option -n omits the actual build process after the preparatory stage (includ-
ing optional cleanup). Note that the return code always indicates the status
of the set of selected sessions.

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 19

Option -j specifies the maximum number of parallel build jobs (prover pro-
cesses). Each prover process is subject to a separate limit of parallel worker
threads, cf. system option threads.

Option -s enables system mode, which means that resulting heap images and
log files are stored in $ISABELLE_HOME/heaps instead of the default location
ISABELLE_OUTPUT (which is normally in ISABELLE_HOME_USER, i.e. the user’s
home directory).

Option -v increases the general level of verbosity. Option -l lists the source
files that contribute to a session.

Option -k specifies a newly proposed keyword for outer syntax (multiple uses
allowed). The theory sources are checked for conflicts wrt. this hypothetical
change of syntax, e.g. to reveal occurrences of identifiers that need to be
quoted.

Examples

Build a specific logic image:

isabelle build -b HOLCF

Build the main group of logic images:

isabelle build -b -g main

Provide a general overview of the status of all Isabelle sessions, without
building anything:

isabelle build -a -n -v

Build all sessions with HTML browser info and PDF document preparation:

isabelle build -a -o browser_info -o document=pdf

Build all sessions with a maximum of 8 parallel prover processes and 4 worker
threads each (on a machine with many cores):

isabelle build -a -j8 -o threads=4

Build some session images with cleanup of their descendants, while retaining
their ancestry:

CHAPTER 2. ISABELLE SESSIONS AND BUILD MANAGEMENT 20

isabelle build -b -c HOL-Algebra HOL-Word

Clean all sessions without building anything:

isabelle build -a -n -c

Build all sessions from some other directory hierarchy, according to the set-
tings variable AFP that happens to be defined inside the Isabelle environment:

isabelle build -D ’$AFP’

Inform about the status of all sessions required for AFP, without building
anything yet:

isabelle build -D ’$AFP’ -R -v -n

Chapter 3

Presenting theories

Isabelle provides several ways to present the outcome of formal developments,
including WWW-based browsable libraries or actual printable documents.
Presentation is centered around the concept of sessions (chapter 2). The
global session structure is that of a tree, with Isabelle Pure at its root, further
object-logics derived (e.g. HOLCF from HOL, and HOL from Pure), and
application sessions further on in the hierarchy.
The tools isabelle mkroot and isabelle build provide the primary
means for managing Isabelle sessions, including proper setup for presentation;
isabelle build takes care to have isabelle_process run any additional
stages required for document preparation, notably the isabelle document
and isabelle latex. The complete tool chain for managing batch-mode
Isabelle sessions is illustrated in figure 3.1.

isabelle mkroot invoked once by the user to initialize the ses-
sion ROOT with optional document directory;

isabelle build invoked repeatedly by the user to keep session
output up-to-date (HTML, documents etc.);

isabelle_process run through isabelle build;
isabelle document run by the Isabelle process if document prepa-

ration is enabled;
isabelle latex universal LATEX tool wrapper invoked multiple

times by isabelle document; also useful for
manual experiments;

Figure 3.1: The tool chain of Isabelle session presentation

3.1 Generating theory browser information

As a side-effect of building sessions, Isabelle is able to generate theory brows-
ing information, including HTML documents that show the theory sources

21

CHAPTER 3. PRESENTING THEORIES 22

and the relationship with its ancestors and descendants. Besides the HTML
file that is generated for every theory, Isabelle stores links to all theories
of a session in an index file. As a second hierarchy, groups of sessions are
organized as chapters, with a separate index. Note that the implicit tree
structure of the session build hierarchy is not relevant for the presentation.
Isabelle also generates graph files that represent the theory dependencies
within a session. There is a graph browser Java applet embedded in the gen-
erated HTML pages, and also a stand-alone application that allows browsing
theory graphs without having to start a WWW client first. The latter ver-
sion also includes features such as generating Postscript files, which are not
available in the applet version. See §5.1 for further information.

The easiest way to let Isabelle generate theory browsing information for ex-
isting sessions is to invoke isabelle build with suitable options:

isabelle build -o browser_info -v -c FOL

The presentation output will appear in $ISABELLE_BROWSER_INFO/FOL/FOL
as reported by the above verbose invocation of the build process.
Many Isabelle sessions (such as HOL-Library in ~~/src/HOL/Library) also
provide actual printable documents. These are prepared automatically as
well if enabled like this:

isabelle build -o browser_info -o document=pdf -v -c HOL-Library

Enabling both browser info and document preparation simultaneously causes
an appropriate “document” link to be included in the HTML index. Docu-
ments may be generated independently of browser information as well, see
§3.3 for further details.

The theory browsing information is stored in a sub-directory directory deter-
mined by the ISABELLE_BROWSER_INFO setting plus a prefix corresponding
to the session chapter and identifier. In order to present Isabelle applications
on the web, the corresponding subdirectory from ISABELLE_BROWSER_INFO
can be put on a WWW server.

3.2 Preparing session root directories

The isabelle mkroot tool configures a given directory as session root, with
some ROOT file and optional document source directory. Its usage is:

CHAPTER 3. PRESENTING THEORIES 23

Usage: isabelle mkroot [OPTIONS] [DIR]

Options are:
-d enable document preparation
-n NAME alternative session name (default: DIR base name)

Prepare session root DIR (default: current directory).

The results are placed in the given directory dir, which refers to the current
directory by default. The isabelle mkroot tool is conservative in the sense
that it does not overwrite existing files or directories. Earlier attempts to
generate a session root need to be deleted manually.

Option -d indicates that the session shall be accompanied by a formal doc-
ument, with DIR/document/root.tex as its LATEX entry point (see also
chapter 3).
Option -n allows to specify an alternative session name; otherwise the base
name of the given directory is used.

The implicit Isabelle settings variable ISABELLE_LOGIC specifies the parent
session, and ISABELLE_DOCUMENT_FORMAT the document format to be filled
filled into the generated ROOT file.

Examples

Produce session Test (with document preparation) within a separate direc-
tory of the same name:

isabelle mkroot -d Test && isabelle build -D Test

Upgrade the current directory into a session ROOT with document prepara-
tion, and build it:

isabelle mkroot -d && isabelle build -D .

3.3 Preparing Isabelle session documents

The isabelle document tool prepares logic session documents, processing
the sources as provided by the user and generated by Isabelle. Its usage is:

CHAPTER 3. PRESENTING THEORIES 24

Usage: isabelle document [OPTIONS] [DIR]

Options are:
-c cleanup -- be aggressive in removing old stuff
-n NAME specify document name (default ’document’)
-o FORMAT specify output format: pdf (default), dvi
-t TAGS specify tagged region markup

Prepare the theory session document in DIR (default ’document’)
producing the specified output format.

This tool is usually run automatically as part of the Isabelle build process,
provided document preparation has been enabled via suitable options. It
may be manually invoked on the generated browser information document
output as well, e.g. in case of errors encountered in the batch run.

The -c option tells isabelle document to dispose the document sources
after successful operation! This is the right thing to do for sources gener-
ated by an Isabelle process, but take care of your files in manual document
preparation!

The -n and -o option specify the final output file name and format, the
default is “document.dvi”. Note that the result will appear in the parent of
the target DIR.

The -t option tells LATEX how to interpret tagged Isabelle command re-
gions. Tags are specified as a comma separated list of modifier/name
pairs: “+foo” (or just “foo”) means to keep, “-foo” to drop, and “/foo”
to fold text tagged as foo. The builtin default is equivalent to the tag
specification “+theory,+proof,+ML,+visible,-invisible”; see also the
LATEX macros \isakeeptag, \isadroptag, and \isafoldtag, in ~~/lib/
texinputs/isabelle.sty.

Document preparation requires a document directory within the session
sources. This directory is supposed to contain all the files needed to produce
the final document — apart from the actual theories which are generated by
Isabelle.

For most practical purposes, isabelle document is smart enough to create
any of the specified output formats, taking root.tex supplied by the user as
a starting point. This even includes multiple runs of LATEX to accommodate
references and bibliographies (the latter assumes root.bib within the same
directory).
In more complex situations, a separate build script for the document sources
may be given. It is invoked with command-line arguments for the document

CHAPTER 3. PRESENTING THEORIES 25

format and the document variant name. The script needs to produce cor-
responding output files, e.g. root.pdf for target format pdf (and default
variants). The main work can be again delegated to isabelle latex, but it
is also possible to harvest generated LATEX sources and copy them elsewhere.

When running the session, Isabelle copies the content of the original
document directory into its proper place within ISABELLE_BROWSER_INFO,
according to the session path and document variant. Then, for any processed
theory A some LATEX source is generated and put there as A.tex. Further-
more, a list of all generated theory files is put into session.tex. Typically,
the root LATEX file provided by the user would include session.tex to get a
document containing all the theories.
The LATEX versions of the theories require some macros defined in ~~/lib/
texinputs/isabelle.sty. Doing \usepackage{isabelle} in root.tex
should be fine; the underlying isabelle latex already includes an appro-
priate path specification for TEX inputs.
If the text contains any references to Isabelle symbols (such as \<forall>)
then isabellesym.sty should be included as well. This package contains a
standard set of LATEX macro definitions \isasymfoo corresponding to \<foo>,
see [1] for a complete list of predefined Isabelle symbols. Users may invent
further symbols as well, just by providing LATEX macros in a similar fashion
as in ~~/lib/texinputs/isabellesym.sty of the Isabelle distribution.
For proper setup of DVI and PDF documents (with hyperlinks and book-
marks), we recommend to include ~~/lib/texinputs/pdfsetup.sty as well.

As a final step of Isabelle document preparation, isabelle document -c is
run on the resulting copy of the document directory. Thus the actual output
document is built and installed in its proper place. The generated sources
are deleted after successful run of LATEX and friends.
Some care is needed if the document output location is configured differently,
say within a directory whose content is still required afterwards!

3.4 Running LATEX within the Isabelle environ-
ment

The isabelle latex tool provides the basic interface for Isabelle document
preparation. Its usage is:

CHAPTER 3. PRESENTING THEORIES 26

Usage: isabelle latex [OPTIONS] [FILE]

Options are:
-o FORMAT specify output format: pdf (default), dvi,

bbl, idx, sty, syms

Run LaTeX (and related tools) on FILE (default root.tex),
producing the specified output format.

Appropriate LATEX-related programs are run on the input file, according to
the given output format: latex, pdflatex, dvips, bibtex (for bbl), and
makeindex (for idx). The actual commands are determined from the settings
environment (ISABELLE_PDFLATEX etc.).
The sty output format causes the Isabelle style files to be updated from the
distribution. This is useful in special situations where the document sources
are to be processed another time by separate tools.
The syms output is for internal use; it generates lists of symbols that are
available without loading additional LATEX packages.

Examples

Invoking isabelle latex by hand may be occasionally useful when debug-
ging failed attempts of the automatic document preparation stage of batch-
mode Isabelle. The abortive process leaves the sources at a certain place
within ISABELLE_BROWSER_INFO, see the runtime error message for details.
This enables users to inspect LATEX runs in further detail, e.g. like this:

cd "$(isabelle getenv -b ISABELLE_BROWSER_INFO)/Unsorted/Test/document"
isabelle latex -o pdf

Chapter 4

Isabelle/Scala development tools

Isabelle/ML and Isabelle/Scala are the two main language environments for
Isabelle tool implementations. There are some basic command-line tools
to work with the underlying Java Virtual Machine, the Scala toplevel and
compiler. Note that Isabelle/jEdit [3] provides a Scala Console for interactive
experimentation within the running application.

4.1 Java Runtime Environment within Isabelle

The isabelle java tool is a direct wrapper for the Java Runtime Environ-
ment, within the regular Isabelle settings environment (§1.1). The command
line arguments are that of the underlying Java version. It is run in -server
mode if possible, to improve performance (at the cost of extra startup time).
The java executable is the one within ISABELLE_JDK_HOME, according to the
standard directory layout for official JDK distributions. The class loader
is augmented such that the name space of Isabelle/Pure.jar is available,
which is the main Isabelle/Scala module.
For example, the following command-line invokes the main method of class
isabelle.GUI_Setup, which opens a windows with some diagnostic infor-
mation about the Isabelle environment:

isabelle java isabelle.GUI_Setup

4.2 Scala toplevel

The isabelle scala tool is a direct wrapper for the Scala toplevel; see
also isabelle java above. The command line arguments are that of the
underlying Scala version.
This allows to interact with Isabelle/Scala in TTY mode like this:

27

CHAPTER 4. ISABELLE/SCALA DEVELOPMENT TOOLS 28

isabelle scala
scala> isabelle.Isabelle_System.getenv("ISABELLE_HOME")
scala> val options = isabelle.Options.init()
scala> options.bool("browser_info")
scala> options.string("document")

4.3 Scala compiler

The isabelle scalac tool is a direct wrapper for the Scala compiler; see
also isabelle scala above. The command line arguments are that of the
underlying Scala version.
This allows to compile further Scala modules, depending on existing
Isabelle/Scala functionality. The resulting class or jar files can be added
to the Java classpath using the classpath Bash function that is provided
by the Isabelle process environment. Thus add-on components can register
themselves in a modular manner, see also §1.1.3.
Note that jEdit [3] has its own mechanisms for adding plugin components,
which needs special attention since it overrides the standard Java class loader.

4.4 Scala script wrapper

The executable $ISABELLE_HOME/bin/isabelle_scala_script allows to
run Isabelle/Scala source files stand-alone programs, by using a suitable
“hash-bang” line and executable file permissions.
The subsequent example assumes that the main Isabelle binaries have
been installed in some directory that is included in PATH (see also
isabelle install):

#!/usr/bin/env isabelle_scala_script

val options = isabelle.Options.init()
Console.println("browser_info = " + options.bool("browser_info"))
Console.println("document = " + options.string("document"))

Alternatively the full $ISABELLE_HOME/bin/isabelle_scala_script may
be specified in expanded form.

Chapter 5

Miscellaneous tools

Subsequently we describe various Isabelle related utilities, given in alphabet-
ical order.

5.1 Theory graph browser

The Isabelle graph browser is a general tool for visualizing dependency
graphs. Certain nodes of the graph (i.e. theories) can be grouped together
in “directories”, whose contents may be hidden, thus enabling the user to
collapse irrelevant portions of information. The browser is written in Java,
it can be used both as a stand-alone application and as an applet.

5.1.1 Invoking the graph browser

The stand-alone version of the graph browser is wrapped up as
isabelle browser:

Usage: isabelle browser [OPTIONS] [GRAPHFILE]

Options are:
-b Admin/build only
-c cleanup -- remove GRAPHFILE after use
-o FILE output to FILE (ps, eps, pdf)

When no file name is specified, the browser automatically changes to the
directory ISABELLE_BROWSER_INFO.

The -b option indicates that this is for administrative build only, i.e. no
browser popup if no files are given.
The -c option causes the input file to be removed after use.
The -o option indicates batch-mode operation, with the output written to
the indicated file; note that pdf produces an eps copy as well.

The applet version of the browser is part of the standard WWW theory
presentation, see the link “theory dependencies” within each session index.

29

CHAPTER 5. MISCELLANEOUS TOOLS 30

5.1.2 Using the graph browser

The browser’s main window, which is shown in figure 5.1, consists of two
sub-windows. In the left sub-window, the directory tree is displayed. The
graph itself is displayed in the right sub-window.

Figure 5.1: Browser main window

The directory tree window

We describe the usage of the directory browser and the meaning of the dif-
ferent items in the browser window.

• A red arrow before a directory name indicates that the directory is
currently “folded”, i.e. the nodes in this directory are collapsed to one
single node. In the right sub-window, the names of nodes corresponding
to folded directories are enclosed in square brackets and displayed in
red color.

• A green downward arrow before a directory name indicates that the
directory is currently “unfolded”. It can be folded by clicking on the
directory name. Clicking on the name for a second time unfolds the
directory again. Alternatively, a directory can also be unfolded by
clicking on the corresponding node in the right sub-window.

CHAPTER 5. MISCELLANEOUS TOOLS 31

• Blue arrows stand before ordinary node names. When clicking on such
a name (i.e. that of a theory), the graph display window focuses to the
corresponding node. Double clicking invokes a text viewer window in
which the contents of the theory file are displayed.

The graph display window

When pointing on an ordinary node, an upward and a downward arrow is
shown. Initially, both of these arrows are green. Clicking on the upward
or downward arrow collapses all predecessor or successor nodes, respectively.
The arrow’s color then changes to red, indicating that the predecessor or
successor nodes are currently collapsed. The node corresponding to the col-
lapsed nodes has the name “[....]”. To uncollapse the nodes again, simply
click on the red arrow or on the node with the name “[....]”. Similar to
the directory browser, the contents of theory files can be displayed by double
clicking on the corresponding node.

The “File” menu

Due to Java Applet security restrictions this menu is only available in the
full application version. The meaning of the menu items is as follows:

Open . . . Open a new graph file.

Export to PostScript Outputs the current graph in Postscript format, ap-
propriately scaled to fit on one single sheet of A4 paper. The resulting
file can be printed directly.

Export to EPS Outputs the current graph in Encapsulated Postscript for-
mat. The resulting file can be included in other documents.

Quit Quit the graph browser.

5.1.3 Syntax of graph definition files

A graph definition file has the following syntax:

graph = { vertex ; }+
vertex = vertex_name vertex_ID dir_name [+] path [< | >] { vertex_ID }∗

CHAPTER 5. MISCELLANEOUS TOOLS 32

The meaning of the items in a vertex description is as follows:

vertex_name The name of the vertex.

vertex_ID The vertex identifier. Note that there may be several vertices
with equal names, whereas identifiers must be unique.

dir_name The name of the “directory” the vertex should be placed in. A
“+” sign after dir_name indicates that the nodes in the directory are
initially visible. Directories are initially invisible by default.

path The path of the corresponding theory file. This is specified relatively
to the path of the graph definition file.

List of successor/predecessor nodes A “<” sign before the list means
that successor nodes are listed, a “>” sign means that predecessor nodes
are listed. If neither “<” nor “>” is found, the browser assumes that
successor nodes are listed.

5.2 Resolving Isabelle components

The isabelle components tool resolves Isabelle components:

Usage: isabelle components [OPTIONS] [COMPONENTS ...]

Options are:
-I init user settings
-R URL component repository

(default $ISABELLE_COMPONENT_REPOSITORY)
-a resolve all missing components
-l list status

Resolve Isabelle components via download and installation.
COMPONENTS are identified via base name.

ISABELLE_COMPONENT_REPOSITORY="http://isabelle.in.tum.de/components"

Components are initialized as described in §1.1.3 in a permissive manner,
which can mark components as “missing”. This state is amended by letting
isabelle components download and unpack components that are published
on the default component repository http://isabelle.in.tum.de/components/
in particular.

http://isabelle.in.tum.de/components/

CHAPTER 5. MISCELLANEOUS TOOLS 33

Option -R specifies an alternative component repository. Note that file:///
URLs can be used for local directories.
Option -a selects all missing components to be resolved. Explicit components
may be named as command line-arguments as well. Note that components
are uniquely identified by their base name, while the installation takes place
in the location that was specified in the attempt to initialize the component
before.
Option -l lists the current state of available and missing components with
their location (full name) within the file-system.
Option -I initializes the user settings file to subscribe to the standard com-
ponents specified in the Isabelle repository clone — this does not make any
sense for regular Isabelle releases. If the file already exists, it needs to be
edited manually according to the printed explanation.

5.3 Raw ML console

The isabelle console tool runs the Isabelle process with raw ML console:

Usage: isabelle console [OPTIONS]

Options are:
-d DIR include session directory
-l NAME logic session name (default ISABELLE_LOGIC)
-m MODE add print mode for output
-n no build of session image on startup
-o OPTION override Isabelle system OPTION (via NAME=VAL or NAME)
-s system build mode for session image

Run Isabelle process with raw ML console and line editor
(default ISABELLE_LINE_EDITOR).

The -l option specifies the logic session name. By default, its heap image is
checked and built on demand, but the option -n skips that.
Options -d, -o, -s are passed directly to isabelle build (§2.3).
Options -m, -o are passed directly to the underlying Isabelle process (§1.2).
The Isabelle process is run through the line editor that is specified via the
settings variable ISABELLE_LINE_EDITOR (e.g. rlwrap for GNU readline);
the fall-back is to use plain standard input/output.
Interaction works via the raw ML toplevel loop: this is neither Isabelle/Isar
nor Isabelle/ML within the usual formal context. Some useful ML commands
at this stage are cd, pwd, use, use_thy, use_thys.

CHAPTER 5. MISCELLANEOUS TOOLS 34

5.4 Displaying documents

The isabelle display tool displays documents in DVI or PDF format:

Usage: isabelle display DOCUMENT

Display DOCUMENT (in DVI or PDF format).

The settings DVI_VIEWER and PDF_VIEWER determine the programs for view-
ing the corresponding file formats. Normally this opens the document via
the desktop environment, potentially in an asynchronous manner with re-use
of previews views.

5.5 Viewing documentation

The isabelle doc tool displays Isabelle documentation:

Usage: isabelle doc [DOC ...]

View Isabelle documentation.

If called without arguments, it lists all available documents. Each line starts
with an identifier, followed by a short description. Any of these identifiers
may be specified as arguments, in order to display the corresponding docu-
ment (see also §5.4).

The ISABELLE_DOCS setting specifies the list of directories (separated by
colons) to be scanned for documentations.

5.6 Shell commands within the settings envi-
ronment

The isabelle env tool is a direct wrapper for the standard /usr/bin/env
command on POSIX systems, running within the Isabelle settings environ-
ment (§1.1).
The command-line arguments are that of the underlying version of env. For
example, the following invokes an instance of the GNU Bash shell within the
Isabelle environment:

isabelle env bash

CHAPTER 5. MISCELLANEOUS TOOLS 35

5.7 Inspecting the settings environment

The Isabelle settings environment — as provided by the site-default and
user-specific settings files — can be inspected with the isabelle getenv
tool:

Usage: isabelle getenv [OPTIONS] [VARNAMES ...]

Options are:
-a display complete environment
-b print values only (doesn’t work for -a)
-d FILE dump complete environment to FILE

(null terminated entries)

Get value of VARNAMES from the Isabelle settings.

With the -a option, one may inspect the full process environment that
Isabelle related programs are run in. This usually contains much more vari-
ables than are actually Isabelle settings. Normally, output is a list of lines of
the form name=value. The -b option causes only the values to be printed.
Option -d produces a dump of the complete environment to the specified
file. Entries are terminated by the ASCII null character, i.e. the C string
terminator.

Examples

Get the location of ISABELLE_HOME_USER where user-specific information is
stored:

isabelle getenv ISABELLE_HOME_USER

Get the value only of the same settings variable, which is particularly useful
in shell scripts:

isabelle getenv -b ISABELLE_OUTPUT

5.8 Installing standalone Isabelle executables

By default, the main Isabelle binaries (isabelle etc.) are just run from
their location within the distribution directory, probably indirectly by the
shell through its PATH. Other schemes of installation are supported by the
isabelle install tool:

CHAPTER 5. MISCELLANEOUS TOOLS 36

Usage: isabelle install [OPTIONS] BINDIR

Options are:
-d DISTDIR refer to DISTDIR as Isabelle distribution

(default ISABELLE_HOME)

Install Isabelle executables with absolute references to the
distribution directory.

The -d option overrides the current Isabelle distribution directory as deter-
mined by ISABELLE_HOME.
The BINDIR argument tells where executable wrapper scripts for
isabelle_process and isabelle should be placed, which is typically a
directory in the shell’s PATH, such as $HOME/bin.

It is also possible to make symbolic links of the main Isabelle executables
manually, but making separate copies outside the Isabelle distribution direc-
tory will not work!

5.9 Creating instances of the Isabelle logo

The isabelle logo tool creates instances of the generic Isabelle logo as EPS
and PDF, for inclusion in LATEX documents.

Usage: isabelle logo [OPTIONS] XYZ

Create instance XYZ of the Isabelle logo (as EPS and PDF).

Options are:
-n NAME alternative output base name (default "isabelle_xyx")
-q quiet mode

Option -n specifies an altenative (base) name for the generated files. The
default is isabelle_xyz in lower-case.
Option -q omits printing of the result file name.

Implementors of Isabelle tools and applications are encouraged to make de-
rived Isabelle logos for their own projects using this template.

5.10 Output the version identifier of the
Isabelle distribution

The isabelle version tool displays Isabelle version information:

CHAPTER 5. MISCELLANEOUS TOOLS 37

Usage: isabelle version [OPTIONS]

Options are:
-i short identification (derived from Mercurial id)

Display Isabelle version information.

The default is to output the full version string of the Isabelle distribution,
e.g. “Isabelle2012: May 2012.
The -i option produces a short identification derived from the Mercurial id
of the ISABELLE_HOME directory.

5.11 Convert XML to YXML

The isabelle yxml tool converts a standard XML document (stdin) to the
much simpler and more efficient YXML format of Isabelle (stdout). The
YXML format is defined as follows.

1. The encoding is always UTF-8.

2. Body text is represented verbatim (no escaping, no special treatment
of white space, no named entities, no CDATA chunks, no comments).

3. Markup elements are represented via ASCII control characters X = 5
and Y = 6 as follows:
XML YXML
<name attribute=value . . .> XYnameYattribute=value. . .X
</name> XYX

There is no special case for empty body text, i.e. <foo/> is treated like
<foo></foo>. Also note that X and Y may never occur in well-formed
XML documents.

Parsing YXML is pretty straight-forward: split the text into chunks sepa-
rated by X, then split each chunk into sub-chunks separated by Y. Markup
chunks start with an empty sub-chunk, and a second empty sub-chunk in-
dicates close of an element. Any other non-empty chunk consists of plain
text. For example, see ~~/src/Pure/PIDE/yxml.ML or ~~/src/Pure/PIDE/
yxml.scala.
YXML documents may be detected quickly by checking that the first two
characters are XY.

Bibliography

[1] M. Wenzel. The Isabelle/Isar Implementation.
http://isabelle.in.tum.de/doc/implementation.pdf.

[2] M. Wenzel. The Isabelle/Isar Reference Manual.
http://isabelle.in.tum.de/doc/isar-ref.pdf.

[3] M. Wenzel. Isabelle/jEdit. http://isabelle.in.tum.de/doc/jedit.pdf.

38

http://isabelle.in.tum.de/doc/implementation.pdf
http://isabelle.in.tum.de/doc/isar-ref.pdf
http://isabelle.in.tum.de/doc/jedit.pdf

Index

bash (executable), 2, 3
browser (tool), 29
browser_info (system option), 15
build (tool), 17, 21

components (tool), 32
condition (system option), 16
console (tool), 5, 33

display (tool), 34
doc (tool), 34
document (system option), 15
document (tool), 21, 23
document_output (system option),

15
document_variants (system option),

15
DVI_VIEWER (setting), 5

env (tool), 34

getenv (tool), 35

install (tool), 35
isabelle (executable), 1, 2
ISABELLE_BIBTEX (setting), 5
ISABELLE_BROWSER_INFO

(setting), 5, 22
ISABELLE_BUILD_OPTIONS

(setting), 18
ISABELLE_DOCS (setting), 5
ISABELLE_HOME (setting), 2, 3
ISABELLE_HOME_USER (set-

ting), 3
ISABELLE_IDENTIFIER (setting),

4

ISABELLE_JDK_HOME (setting),
5

ISABELLE_LATEX (setting), 5
ISABELLE_LINE_EDITOR (set-

ting), 5
ISABELLE_LOGIC (setting), 5
ISABELLE_OUTPUT (setting), 3,

5
ISABELLE_PATH (setting), 5
ISABELLE_PDFLATEX (setting),

5
ISABELLE_PLATFORM (setting),

4
ISABELLE_PLATFORM64 (set-

ting), 4
ISABELLE_PLATFORM_FAMILY

(setting), 4
isabelle_process (executable), 1, 7,

21
ISABELLE_PROCESS (setting), 3,

4
ISABELLE_TMP_PREFIX (set-

ting), 5
ISABELLE_TOOL (setting), 3
ISABELLE_TOOLS (setting), 5, 6

java (tool), 27

latex (tool), 21, 25
logo (tool), 36

mkroot (tool), 21, 22
ML_HOME (setting), 4
ML_IDENTIFIER (setting), 4
ML_OPTIONS (setting), 4
ML_PLATFORM (setting), 4

39

INDEX 40

ML_SYSTEM (setting), 4
ML_SYSTEM_POLYML (setting),

5

options (tool), 16

PDF_VIEWER (setting), 5

rlwrap (executable), 33

scala (tool), 27
scalac (tool), 28
session_chapter (syntax), 12
session_entry (syntax), 12
settings, 1

theory browsing information, 21
threads (system option), 16, 19
timeout (system option), 16

USER_HOME (setting), 3

version (tool), 36

yxml (tool), 37

	The Isabelle system environment
	Isabelle settings
	Bootstrapping the environment
	Common variables
	Additional components

	The raw Isabelle process
	The Isabelle tool wrapper

	Isabelle sessions and build management
	Session ROOT specifications
	System build options
	Invoking the build process

	Presenting theories
	Generating theory browser information
	Preparing session root directories
	Preparing Isabelle session documents
	Running LaTeX within the Isabelle environment

	Isabelle/Scala development tools
	Java Runtime Environment within Isabelle
	Scala toplevel
	Scala compiler
	Scala script wrapper

	Miscellaneous tools
	Theory graph browser
	Invoking the graph browser
	Using the graph browser
	Syntax of graph definition files

	Resolving Isabelle components
	Raw ML console
	Displaying documents
	Viewing documentation
	Shell commands within the settings environment
	Inspecting the settings environment
	Installing standalone Isabelle executables
	Creating instances of the Isabelle logo
	Output the version identifier of the Isabelle distribution
	Convert XML to YXML

	Bibliography
	Index

