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Preface

The Isabelle system essentially provides a generic infrastructure for building
deductive systems (programmed in Standard ML), with a special focus on
interactive theorem proving in higher-order logics. Many years ago, even end-
users would refer to certain ML functions (goal commands, tactics, tacticals
etc.) to pursue their everyday theorem proving tasks.

In contrast Isar provides an interpreted language environment of its own,
which has been specifically tailored for the needs of theory and proof devel-
opment. Compared to raw ML, the Isabelle/Isar top-level provides a more
robust and comfortable development platform, with proper support for the-
ory development graphs, managed transactions with unlimited undo etc. The
Isabelle/Isar version of the Proof General user interface [2, 3] provides a de-
cent front-end for interactive theory and proof development in this advanced
theorem proving environment, even though it is somewhat biased towards
old-style proof scripts.

Apart from the technical advances over bare-bones ML programming, the
main purpose of the Isar language is to provide a conceptually different
view on machine-checked proofs [45, 46]. Isar stands for Intelligible semi-
automated reasoning. Drawing from both the traditions of informal mathe-
matical proof texts and high-level programming languages, Isar offers a ver-
satile environment for structured formal proof documents. Thus properly
written Isar proofs become accessible to a broader audience than unstruc-
tured tactic scripts (which typically only provide operational information for
the machine). Writing human-readable proof texts certainly requires some
additional efforts by the writer to achieve a good presentation, both of formal
and informal parts of the text. On the other hand, human-readable formal
texts gain some value in their own right, independently of the mechanic
proof-checking process.

Despite its grand design of structured proof texts, Isar is able to assimilate
the old tactical style as an “improper” sub-language. This provides an easy
upgrade path for existing tactic scripts, as well as some means for interactive
experimentation and debugging of structured proofs. Isabelle/Isar supports
a broad range of proof styles, both readable and unreadable ones.

The generic Isabelle/Isar framework (see chapter 2) works reasonably well
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for any Isabelle object-logic that conforms to the natural deduction view of
the Isabelle/Pure framework. Specific language elements introduced by the
major object-logics are described in chapter 10 (Isabelle/HOL), chapter 11
(Isabelle/HOLCF), and chapter 12 (Isabelle/ZF). The main language ele-
ments are already provided by the Isabelle/Pure framework. Nevertheless,
examples given in the generic parts will usually refer to Isabelle/HOL as well.

Isar commands may be either proper document constructors, or improper
commands. Some proof methods and attributes introduced later are classified
as improper as well. Improper Isar language elements, which are marked
by “∗” in the subsequent chapters; they are often helpful when developing
proof documents, but their use is discouraged for the final human-readable
outcome. Typical examples are diagnostic commands that print terms or
theorems according to the current context; other commands emulate old-
style tactical theorem proving.
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Chapter 1

Synopsis

1.1 Notepad

An Isar proof body serves as mathematical notepad to compose logical con-
tent, consisting of types, terms, facts.

1.1.1 Types and terms

notepad
begin

Locally fixed entities:

fix x — local constant, without any type information yet
fix x :: ′a — variant with explicit type-constraint for subsequent use

fix a b
assume a = b — type assignment at first occurrence in concrete term

Definitions (non-polymorphic):

def x ≡ t :: ′a

Abbreviations (polymorphic):

let ?f = λx . x
term ?f ?f

Notation:

write x (∗∗∗)
end

1.1.2 Facts

A fact is a simultaneous list of theorems.

2
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Producing facts

notepad
begin

Via assumption (“lambda”):

assume a: A

Via proof (“let”):

have b: B sorry

Via abbreviation (“let”):

note c = a b

end

Referencing facts

notepad
begin

Via explicit name:

assume a: A
note a

Via implicit name:

assume A
note this

Via literal proposition (unification with results from the proof text):

assume A
note ‘A‘

assume
∧

x . B x
note ‘B a‘
note ‘B b‘

end

Manipulating facts

notepad
begin

Instantiation:
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assume a:
∧

x . B x
note a
note a [of b]
note a [where x = b]

Backchaining:

assume 1: A
assume 2: A =⇒ C
note 2 [OF 1]
note 1 [THEN 2]

Symmetric results:

assume x = y
note this [symmetric]

assume x 6= y
note this [symmetric]

Adhoc-simplification (take care!):

assume P ([] @ xs)
note this [simplified ]

end

Projections

Isar facts consist of multiple theorems. There is notation to project interval
ranges.

notepad
begin

assume stuff : A B C D
note stuff (1)
note stuff (2−3)
note stuff (2−)

end

Naming conventions

• Lower-case identifiers are usually preferred.

• Facts can be named after the main term within the proposition.

• Facts should not be named after the command that introduced them
(assume, have). This is misleading and hard to maintain.



CHAPTER 1. SYNOPSIS 5

• Natural numbers can be used as “meaningless” names (more appropri-
ate than a1, a2 etc.)

• Symbolic identifiers are supported (e.g. ∗, ∗∗, ∗∗∗).

1.1.3 Block structure

The formal notepad is block structured. The fact produced by the last entry
of a block is exported into the outer context.

notepad
begin
{

have a: A sorry
have b: B sorry
note a b
}
note this
note ‘A‘
note ‘B‘

end

Explicit blocks as well as implicit blocks of nested goal statements (e.g. have)
automatically introduce one extra pair of parentheses in reserve. The next
command allows to “jump” between these sub-blocks.

notepad
begin

{
have a: A sorry

next
have b: B
proof −

show B sorry
next

have c: C sorry
next

have d : D sorry
qed
}

Alternative version with explicit parentheses everywhere:
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{
{

have a: A sorry
}
{

have b: B
proof −
{

show B sorry
}
{

have c: C sorry
}
{

have d : D sorry
}

qed
}
}

end

1.2 Calculational reasoning

For example, see ~~/src/HOL/Isar_Examples/Group.thy.

1.2.1 Special names in Isar proofs

• term ?thesis — the main conclusion of the innermost pending claim

• term . . . — the argument of the last explicitly stated result (for infix
application this is the right-hand side)

• fact this — the last result produced in the text

notepad
begin

have x = y
proof −

term ?thesis
show ?thesis sorry
term ?thesis — static!
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qed
term . . .
thm this

end

Calculational reasoning maintains the special fact called “calculation” in the
background. Certain language elements combine primary this with secondary
calculation.

1.2.2 Transitive chains

The Idea is to combine this and calculation via typical trans rules (see also
print trans rules):

thm trans
thm less trans
thm less le trans

notepad
begin

Plain bottom-up calculation:

have a = b sorry
also
have b = c sorry
also
have c = d sorry
finally
have a = d .

Variant using the . . . abbreviation:

have a = b sorry
also
have . . . = c sorry
also
have . . . = d sorry
finally
have a = d .

Top-down version with explicit claim at the head:

have a = d
proof −

have a = b sorry
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also
have . . . = c sorry
also
have . . . = d sorry
finally
show ?thesis .

qed
next

Mixed inequalities (require suitable base type):

fix a b c d :: nat

have a < b sorry
also
have b ≤ c sorry
also
have c = d sorry
finally
have a < d .

end

Notes

• The notion of trans rule is very general due to the flexibility of
Isabelle/Pure rule composition.

• User applications may declare their own rules, with some care about
the operational details of higher-order unification.

1.2.3 Degenerate calculations and bigstep reasoning

The Idea is to append this to calculation, without rule composition.

notepad
begin

A vacuous proof:

have A sorry
moreover
have B sorry
moreover
have C sorry
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ultimately
have A and B and C .

next

Slightly more content (trivial bigstep reasoning):

have A sorry
moreover
have B sorry
moreover
have C sorry
ultimately
have A ∧ B ∧ C by blast

next

More ambitious bigstep reasoning involving structured results:

have A ∨ B ∨ C sorry
moreover
{ assume A have R sorry }
moreover
{ assume B have R sorry }
moreover
{ assume C have R sorry }
ultimately
have R by blast — “big-bang integration” of proof blocks (occasionally fragile)

end

1.3 Induction

1.3.1 Induction as Natural Deduction

In principle, induction is just a special case of Natural Deduction (see also
§1.4). For example:

thm nat .induct
print statement nat .induct

notepad
begin

fix n :: nat
have P n
proof (rule nat .induct) — fragile rule application!

show P 0 sorry
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next
fix n :: nat
assume P n
show P (Suc n) sorry

qed
end

In practice, much more proof infrastructure is required.

The proof method induct provides:

• implicit rule selection and robust instantiation

• context elements via symbolic case names

• support for rule-structured induction statements, with local parame-
ters, premises, etc.

notepad
begin

fix n :: nat
have P n
proof (induct n)

case 0
show ?case sorry

next
case (Suc n)
from Suc.hyps show ?case sorry

qed
end

Example

The subsequent example combines the following proof patterns:

• outermost induction (over the datatype structure of natural numbers),
to decompose the proof problem in top-down manner

• calculational reasoning (§1.2) to compose the result in each case

• solving local claims within the calculation by simplification

lemma
fixes n :: nat
shows (

∑
i=0..n. i) = n ∗ (n + 1) div 2
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proof (induct n)
case 0
have (

∑
i=0..0. i) = (0::nat) by simp

also have . . . = 0 ∗ (0 + 1) div 2 by simp
finally show ?case .

next
case (Suc n)
have (

∑
i=0..Suc n. i) = (

∑
i=0..n. i) + (n + 1) by simp

also have . . . = n ∗ (n + 1) div 2 + (n + 1) by (simp add : Suc.hyps)
also have . . . = (n ∗ (n + 1) + 2 ∗ (n + 1)) div 2 by simp
also have . . . = (Suc n ∗ (Suc n + 1)) div 2 by simp
finally show ?case .

qed

This demonstrates how induction proofs can be done without having to con-
sider the raw Natural Deduction structure.

1.3.2 Induction with local parameters and premises

Idea: Pure rule statements are passed through the induction rule. This
achieves convenient proof patterns, thanks to some internal trickery in the
induct method.

Important: Using compact HOL formulae with ∀ /−→ is a well-known anti-
pattern! It would produce useless formal noise.

notepad
begin

fix n :: nat
fix P :: nat ⇒ bool
fix Q :: ′a ⇒ nat ⇒ bool

have P n
proof (induct n)

case 0
show P 0 sorry

next
case (Suc n)
from ‘P n‘ show P (Suc n) sorry

qed

have A n =⇒ P n
proof (induct n)

case 0
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from ‘A 0‘ show P 0 sorry
next

case (Suc n)
from ‘A n =⇒ P n‘

and ‘A (Suc n)‘ show P (Suc n) sorry
qed

have
∧

x . Q x n
proof (induct n)

case 0
show Q x 0 sorry

next
case (Suc n)
from ‘

∧
x . Q x n‘ show Q x (Suc n) sorry

Local quantification admits arbitrary instances:

note ‘Q a n‘ and ‘Q b n‘
qed

end

1.3.3 Implicit induction context

The induct method can isolate local parameters and premises directly from
the given statement. This is convenient in practical applications, but requires
some understanding of what is going on internally (as explained above).

notepad
begin

fix n :: nat
fix Q :: ′a ⇒ nat ⇒ bool

fix x :: ′a
assume A x n
then have Q x n
proof (induct n arbitrary : x )

case 0
from ‘A x 0‘ show Q x 0 sorry

next
case (Suc n)
from ‘

∧
x . A x n =⇒ Q x n‘ — arbitrary instances can be produced here

and ‘A x (Suc n)‘ show Q x (Suc n) sorry
qed

end
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1.3.4 Advanced induction with term definitions

Induction over subexpressions of a certain shape are delicate to formalize.
The Isar induct method provides infrastructure for this.

Idea: sub-expressions of the problem are turned into a defined induction
variable; often accompanied with fixing of auxiliary parameters in the original
expression.

notepad
begin

fix a :: ′a ⇒ nat
fix A :: nat ⇒ bool

assume A (a x )
then have P (a x )
proof (induct a x arbitrary : x )

case 0
note prem = ‘A (a x )‘

and defn = ‘0 = a x‘
show P (a x ) sorry

next
case (Suc n)
note hyp = ‘

∧
x . n = a x =⇒ A (a x ) =⇒ P (a x )‘

and prem = ‘A (a x )‘
and defn = ‘Suc n = a x‘

show P (a x ) sorry
qed

end

1.4 Natural Deduction

1.4.1 Rule statements

Isabelle/Pure “theorems” are always natural deduction rules, which some-
times happen to consist of a conclusion only.

The framework connectives
∧

and =⇒ indicate the rule structure declara-
tively. For example:

thm conjI
thm impI
thm nat .induct

The object-logic is embedded into the Pure framework via an implicit deriv-
ability judgment Trueprop :: bool ⇒ prop.
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Thus any HOL formulae appears atomic to the Pure framework, while the
rule structure outlines the corresponding proof pattern.

This can be made explicit as follows:

notepad
begin

write Trueprop (Tr)

thm conjI
thm impI
thm nat .induct

end

Isar provides first-class notation for rule statements as follows.

print statement conjI
print statement impI
print statement nat .induct

Examples

Introductions and eliminations of some standard connectives of the object-
logic can be written as rule statements as follows. (The proof “by blast”
serves as sanity check.)

lemma (P =⇒ False) =⇒ ¬ P by blast
lemma ¬ P =⇒ P =⇒ Q by blast

lemma P =⇒ Q =⇒ P ∧ Q by blast
lemma P ∧ Q =⇒ (P =⇒ Q =⇒ R) =⇒ R by blast

lemma P =⇒ P ∨ Q by blast
lemma Q =⇒ P ∨ Q by blast
lemma P ∨ Q =⇒ (P =⇒ R) =⇒ (Q =⇒ R) =⇒ R by blast

lemma (
∧

x . P x ) =⇒ (∀ x . P x ) by blast
lemma (∀ x . P x ) =⇒ P x by blast

lemma P x =⇒ (∃ x . P x ) by blast
lemma (∃ x . P x ) =⇒ (

∧
x . P x =⇒ R) =⇒ R by blast

lemma x ∈ A =⇒ x ∈ B =⇒ x ∈ A ∩ B by blast
lemma x ∈ A ∩ B =⇒ (x ∈ A =⇒ x ∈ B =⇒ R) =⇒ R by blast

lemma x ∈ A =⇒ x ∈ A ∪ B by blast
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lemma x ∈ B =⇒ x ∈ A ∪ B by blast
lemma x ∈ A ∪ B =⇒ (x ∈ A =⇒ R) =⇒ (x ∈ B =⇒ R) =⇒ R by blast

1.4.2 Isar context elements

We derive some results out of the blue, using Isar context elements and some
explicit blocks. This illustrates their meaning wrt. Pure connectives, without
goal states getting in the way.

notepad
begin
{

fix x
have B x sorry
}
have

∧
x . B x by fact

next

{
assume A
have B sorry
}
have A =⇒ B by fact

next

{
def x ≡ t
have B x sorry
}
have B t by fact

next

{
obtain x :: ′a where B x sorry
have C sorry
}
have C by fact

end
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1.4.3 Pure rule composition

The Pure framework provides means for:

• backward-chaining of rules by resolution

• closing of branches by assumption

Both principles involve higher-order unification of λ-terms modulo αβη-
equivalence (cf. Huet and Miller).

notepad
begin

assume a: A and b: B
thm conjI
thm conjI [of A B ] — instantiation
thm conjI [of A B , OF a b] — instantiation and composition
thm conjI [OF a b] — composition via unification (trivial)
thm conjI [OF ‘A‘ ‘B‘ ]

thm conjI [OF disjI 1]
end

Note: Low-level rule composition is tedious and leads to unreadable / un-
maintainable expressions in the text.

1.4.4 Structured backward reasoning

Idea: Canonical proof decomposition via fix / assume / show, where the
body produces a natural deduction rule to refine some goal.

notepad
begin

fix A B :: ′a ⇒ bool

have
∧

x . A x =⇒ B x
proof −

fix x
assume A x
show B x sorry

qed

have
∧

x . A x =⇒ B x
proof −
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{
fix x
assume A x
show B x sorry
} — implicit block structure made explicit
note ‘

∧
x . A x =⇒ B x‘

— side exit for the resulting rule
qed

end

1.4.5 Structured rule application

Idea: Previous facts and new claims are composed with a rule from the con-
text (or background library).

notepad
begin

assume r1: A =⇒ B =⇒ C — simple rule (Horn clause)

have A sorry — prefix of facts via outer sub-proof
then have C
proof (rule r1)

show B sorry — remaining rule premises via inner sub-proof
qed

have C
proof (rule r1)

show A sorry
show B sorry

qed

have A and B sorry
then have C
proof (rule r1)
qed

have A and B sorry
then have C by (rule r1)

next

assume r2: A =⇒ (
∧

x . B1 x =⇒ B2 x ) =⇒ C — nested rule

have A sorry
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then have C
proof (rule r2)

fix x
assume B1 x
show B2 x sorry

qed

The compound rule premise
∧

x . B1 x =⇒ B2 x is better addressed via fix /
assume / show in the nested proof body.

end

1.4.6 Example: predicate logic

Using the above principles, standard introduction and elimination proofs of
predicate logic connectives of HOL work as follows.

notepad
begin

have A −→ B and A sorry
then have B ..

have A sorry
then have A ∨ B ..

have B sorry
then have A ∨ B ..

have A ∨ B sorry
then have C
proof

assume A
then show C sorry

next
assume B
then show C sorry

qed

have A and B sorry
then have A ∧ B ..

have A ∧ B sorry
then have A ..

have A ∧ B sorry
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then have B ..

have False sorry
then have A ..

have True ..

have ¬ A
proof

assume A
then show False sorry

qed

have ¬ A and A sorry
then have B ..

have ∀ x . P x
proof

fix x
show P x sorry

qed

have ∀ x . P x sorry
then have P a ..

have ∃ x . P x
proof

show P a sorry
qed

have ∃ x . P x sorry
then have C
proof

fix a
assume P a
show C sorry

qed

Less awkward version using obtain:

have ∃ x . P x sorry
then obtain a where P a ..

end

Further variations to illustrate Isar sub-proofs involving show:
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notepad
begin

have A ∧ B
proof — two strictly isolated subproofs

show A sorry
next

show B sorry
qed

have A ∧ B
proof — one simultaneous sub-proof

show A and B sorry
qed

have A ∧ B
proof — two subproofs in the same context

show A sorry
show B sorry

qed

have A ∧ B
proof — swapped order

show B sorry
show A sorry

qed

have A ∧ B
proof — sequential subproofs

show A sorry
show B using ‘A‘ sorry

qed
end

Example: set-theoretic operators

There is nothing special about logical connectives (∧, ∨, ∀ , ∃ etc.). Opera-
tors from set-theory or lattice-theory work analogously. It is only a matter
of rule declarations in the library; rules can be also specified explicitly.

notepad
begin

have x ∈ A and x ∈ B sorry
then have x ∈ A ∩ B ..
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have x ∈ A sorry
then have x ∈ A ∪ B ..

have x ∈ B sorry
then have x ∈ A ∪ B ..

have x ∈ A ∪ B sorry
then have C
proof

assume x ∈ A
then show C sorry

next
assume x ∈ B
then show C sorry

qed

next
have x ∈

⋂
A

proof
fix a
assume a ∈ A
show x ∈ a sorry

qed

have x ∈
⋂

A sorry
then have x ∈ a
proof

show a ∈ A sorry
qed

have a ∈ A and x ∈ a sorry
then have x ∈

⋃
A ..

have x ∈
⋃

A sorry
then obtain a where a ∈ A and x ∈ a ..

end
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1.5 Generalized elimination and cases

1.5.1 General elimination rules

The general format of elimination rules is illustrated by the following typical
representatives:

thm exE — local parameter
thm conjE — local premises
thm disjE — split into cases

Combining these characteristics leads to the following general scheme for
elimination rules with cases:

• prefix of assumptions (or “major premises”)

• one or more cases that enable to establish the main conclusion in an
augmented context

notepad
begin

assume r :
A1 =⇒ A2 =⇒ (∗ assumptions ∗)

(
∧

x y . B1 x y =⇒ C 1 x y =⇒ R) =⇒ (∗ case 1 ∗)
(
∧

x y . B2 x y =⇒ C 2 x y =⇒ R) =⇒ (∗ case 2 ∗)
R (∗ main conclusion ∗)

have A1 and A2 sorry
then have R
proof (rule r)

fix x y
assume B1 x y and C 1 x y
show ?thesis sorry

next
fix x y
assume B2 x y and C 2 x y
show ?thesis sorry

qed
end

Here ?thesis is used to refer to the unchanged goal statement.
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1.5.2 Rules with cases

Applying an elimination rule to some goal, leaves that unchanged but allows
to augment the context in the sub-proof of each case.

Isar provides some infrastructure to support this:

• native language elements to state eliminations

• symbolic case names

• method cases to recover this structure in a sub-proof

print statement exE
print statement conjE
print statement disjE

lemma
assumes A1 and A2 — assumptions
obtains

(case1) x y where B1 x y and C 1 x y
| (case2) x y where B2 x y and C 2 x y
sorry

Example

lemma tertium non datur :
obtains

(T ) A
| (F ) ¬ A
by blast

notepad
begin

fix x y :: ′a
have C
proof (cases x = y rule: tertium non datur)

case T
from ‘x = y‘ show ?thesis sorry

next
case F
from ‘x 6= y‘ show ?thesis sorry

qed
end
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Example

Isabelle/HOL specification mechanisms (datatype, inductive, etc.) provide
suitable derived cases rules.

datatype foo = Foo | Bar foo

notepad
begin

fix x :: foo
have C
proof (cases x )

case Foo
from ‘x = Foo‘ show ?thesis sorry

next
case (Bar a)
from ‘x = Bar a‘ show ?thesis sorry

qed
end

1.5.3 Obtaining local contexts

A single “case” branch may be inlined into Isar proof text via obtain. This
proves (

∧
x . B x =⇒ thesis) =⇒ thesis on the spot, and augments the context

afterwards.

notepad
begin

fix B :: ′a ⇒ bool

obtain x where B x sorry
note ‘B x‘

Conclusions from this context may not mention x again!

{
obtain x where B x sorry
from ‘B x‘ have C sorry
}
note ‘C‘

end



Chapter 2

The Isabelle/Isar Framework

Isabelle/Isar [45, 46, 23, 49, 47] is intended as a generic framework for devel-
oping formal mathematical documents with full proof checking. Definitions
and proofs are organized as theories. An assembly of theory sources may be
presented as a printed document; see also chapter 4.

The main objective of Isar is the design of a human-readable structured
proof language, which is called the “primary proof format” in Isar terminol-
ogy. Such a primary proof language is somewhere in the middle between
the extremes of primitive proof objects and actual natural language. In this
respect, Isar is a bit more formalistic than Mizar [42, 39, 50], using logi-
cal symbols for certain reasoning schemes where Mizar would prefer English
words; see [51] for further comparisons of these systems.

So Isar challenges the traditional way of recording informal proofs in math-
ematical prose, as well as the common tendency to see fully formal proofs
directly as objects of some logical calculus (e.g. λ-terms in a version of type
theory). In fact, Isar is better understood as an interpreter of a simple block-
structured language for describing the data flow of local facts and goals,
interspersed with occasional invocations of proof methods. Everything is re-
duced to logical inferences internally, but these steps are somewhat marginal
compared to the overall bookkeeping of the interpretation process. Thanks
to careful design of the syntax and semantics of Isar language elements, a
formal record of Isar instructions may later appear as an intelligible text to
the attentive reader.

The Isar proof language has emerged from careful analysis of some inherent
virtues of the existing logical framework of Isabelle/Pure [33, 34], notably
composition of higher-order natural deduction rules, which is a generalization
of Gentzen’s original calculus [11]. The approach of generic inference systems
in Pure is continued by Isar towards actual proof texts.

Concrete applications require another intermediate layer: an object-logic.
Isabelle/HOL [26] (simply-typed set-theory) is being used most of the time;
Isabelle/ZF [30] is less extensively developed, although it would probably fit
better for classical mathematics.

25
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In order to illustrate natural deduction in Isar, we shall refer to the back-
ground theory and library of Isabelle/HOL. This includes common notions
of predicate logic, naive set-theory etc. using fairly standard mathematical
notation. From the perspective of generic natural deduction there is nothing
special about the logical connectives of HOL (∧, ∨, ∀ , ∃ , etc.), only the re-
sulting reasoning principles are relevant to the user. There are similar rules
available for set-theory operators (∩, ∪,

⋂
,
⋃

, etc.), or any other theory
developed in the library (lattice theory, topology etc.).

Subsequently we briefly review fragments of Isar proof texts corresponding
directly to such general deduction schemes. The examples shall refer to set-
theory, to minimize the danger of understanding connectives of predicate
logic as something special.

The following deduction performs ∩-introduction, working forwards from as-
sumptions towards the conclusion. We give both the Isar text, and depict the
primitive rule involved, as determined by unification of the problem against
rules that are declared in the library context.

assume x ∈ A and x ∈ B
then have x ∈ A ∩ B ..

x ∈ A x ∈ B
x ∈ A ∩ B

Note that assume augments the proof context, then indicates that the cur-
rent fact shall be used in the next step, and have states an intermediate
goal. The two dots “..” refer to a complete proof of this claim, using the
indicated facts and a canonical rule from the context. We could have been
more explicit here by spelling out the final proof step via the by command:

assume x ∈ A and x ∈ B
then have x ∈ A ∩ B by (rule IntI )

The format of the ∩-introduction rule represents the most basic inference,
which proceeds from given premises to a conclusion, without any nested proof
context involved.

The next example performs backwards introduction on
⋂
A, the intersection

of all sets within a given set. This requires a nested proof of set membership
within a local context, where A is an arbitrary-but-fixed member of the
collection:

have x ∈
⋂
A

proof
fix A
assume A ∈ A
show x ∈ A 〈proof 〉

qed

[A][A ∈ A]
....

x ∈ A
x ∈

⋂
A
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This Isar reasoning pattern again refers to the primitive rule depicted above.
The system determines it in the “proof” step, which could have been spelt
out more explicitly as “proof (rule InterI )”. Note that the rule involves
both a local parameter A and an assumption A ∈ A in the nested reasoning.
This kind of compound rule typically demands a genuine sub-proof in Isar,
working backwards rather than forwards as seen before. In the proof body we
encounter the fix-assume-show outline of nested sub-proofs that is typical
for Isar. The final show is like have followed by an additional refinement of
the enclosing claim, using the rule derived from the proof body.

The next example involves
⋃
A, which can be characterized as the set of all

x such that ∃A. x ∈ A ∧ A ∈ A. The elimination rule for x ∈
⋃
A does not

mention ∃ and ∧ at all, but admits to obtain directly a local A such that
x ∈ A and A ∈ A hold. This corresponds to the following Isar proof and
inference rule, respectively:

assume x ∈
⋃
A

then have C
proof

fix A
assume x ∈ A and A ∈ A
show C 〈proof 〉

qed

x ∈
⋃
A

[A][x ∈ A, A ∈ A]
....

C

C

Although the Isar proof follows the natural deduction rule closely, the text
reads not as natural as anticipated. There is a double occurrence of an
arbitrary conclusion C, which represents the final result, but is irrelevant for
now. This issue arises for any elimination rule involving local parameters.
Isar provides the derived language element obtain, which is able to perform
the same elimination proof more conveniently:

assume x ∈
⋃
A

then obtain A where x ∈ A and A ∈ A ..

Here we avoid to mention the final conclusion C and return to plain forward
reasoning. The rule involved in the “..” proof is the same as before.

2.1 The Pure framework

The Pure logic [33, 34] is an intuitionistic fragment of higher-order logic [9].
In type-theoretic parlance, there are three levels of λ-calculus with corre-
sponding arrows ⇒/

∧
/=⇒:
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α ⇒ β syntactic function space (terms depending on terms)∧
x . B(x ) universal quantification (proofs depending on terms)

A =⇒ B implication (proofs depending on proofs)

Here only the types of syntactic terms, and the propositions of proof terms
have been shown. The λ-structure of proofs can be recorded as an optional
feature of the Pure inference kernel [5], but the formal system can never
depend on them due to proof irrelevance.

On top of this most primitive layer of proofs, Pure implements a generic
calculus for nested natural deduction rules, similar to [40]. Here object-logic
inferences are internalized as formulae over

∧
and =⇒. Combining such rule

statements may involve higher-order unification [32].

2.1.1 Primitive inferences

Term syntax provides explicit notation for abstraction λx :: α. b(x ) and
application b a, while types are usually implicit thanks to type-inference;
terms of type prop are called propositions. Logical statements are composed
via

∧
x :: α. B(x ) and A =⇒ B. Primitive reasoning operates on judgments

of the form Γ ` ϕ, with standard introduction and elimination rules for
∧

and =⇒ that refer to fixed parameters x 1, . . ., xm and hypotheses A1, . . .,
An from the context Γ; the corresponding proof terms are left implicit. The
subsequent inference rules define Γ ` ϕ inductively, relative to a collection
of axioms:

(A axiom)

` A A ` A

Γ ` B(x ) x /∈ Γ

Γ `
∧

x . B(x )

Γ `
∧

x . B(x )

Γ ` B(a)

Γ ` B
Γ − A ` A =⇒ B

Γ1 ` A =⇒ B Γ2 ` A
Γ1 ∪ Γ2 ` B

Furthermore, Pure provides a built-in equality ≡ :: α ⇒ α ⇒ prop with
axioms for reflexivity, substitution, extensionality, and αβη-conversion on
λ-terms.

An object-logic introduces another layer on top of Pure, e.g. with types i
for individuals and o for propositions, term constants Trueprop :: o ⇒ prop
as (implicit) derivability judgment and connectives like ∧ :: o ⇒ o ⇒ o or
∀ :: (i ⇒ o) ⇒ o, and axioms for object-level rules such as conjI : A =⇒
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B =⇒ A ∧ B or allI : (
∧

x . B x ) =⇒ ∀ x . B x. Derived object rules are
represented as theorems of Pure. After the initial object-logic setup, further
axiomatizations are usually avoided; plain definitions and derived principles
are used exclusively.

2.1.2 Reasoning with rules

Primitive inferences mostly serve foundational purposes. The main reason-
ing mechanisms of Pure operate on nested natural deduction rules expressed
as formulae, using

∧
to bind local parameters and =⇒ to express entail-

ment. Multiple parameters and premises are represented by repeating these
connectives in a right-associative manner.

Since
∧

and =⇒ commute thanks to the theorem (A =⇒ (
∧

x . B x )) ≡ (
∧

x .
A =⇒ B x ), we may assume w.l.o.g. that rule statements always observe the
normal form where quantifiers are pulled in front of implications at each
level of nesting. This means that any Pure proposition may be presented as
a Hereditary Harrop Formula [19] which is of the form

∧
x 1 . . . xm . H 1 =⇒

. . . H n =⇒ A for m, n ≥ 0, and A atomic, and H 1, . . ., H n being recursively
of the same format. Following the convention that outermost quantifiers are
implicit, Horn clauses A1 =⇒ . . . An =⇒ A are a special case of this.

For example, ∩-introduction rule encountered before is represented as a Pure
theorem as follows:

IntI : x ∈ A =⇒ x ∈ B =⇒ x ∈ A ∩ B

This is a plain Horn clause, since no further nesting on the left is involved.
The general

⋂
-introduction corresponds to a Hereditary Harrop Formula

with one additional level of nesting:

InterI : (
∧

A. A ∈ A =⇒ x ∈ A) =⇒ x ∈
⋂
A

Goals are also represented as rules: A1 =⇒ . . . An =⇒ C states that the
sub-goals A1, . . ., An entail the result C ; for n = 0 the goal is finished. To
allow C being a rule statement itself, we introduce the protective marker #
:: prop ⇒ prop, which is defined as identity and hidden from the user. We
initialize and finish goal states as follows:

C =⇒ #C
(init)

#C
C

(finish)
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Goal states are refined in intermediate proof steps until a finished form is
achieved. Here the two main reasoning principles are resolution, for back-
chaining a rule against a sub-goal (replacing it by zero or more sub-goals),
and assumption, for solving a sub-goal (finding a short-circuit with local
assumptions). Below x stands for x 1, . . ., xn (n ≥ 0).

rule: A a =⇒ B a
goal : (

∧
x . H x =⇒ B ′ x ) =⇒ C

goal unifier : (λx . B (a x )) θ = B ′θ

(
∧

x . H x =⇒ A (a x )) θ =⇒ C θ
(resolution)

goal : (
∧

x . H x =⇒ A x ) =⇒ C
assm unifier : A θ = H i θ (for some H i)

C θ
(assumption)

The following trace illustrates goal-oriented reasoning in Isabelle/Pure:

(A ∧ B =⇒ B ∧ A) =⇒ #(A ∧ B =⇒ B ∧ A) (init)
(A ∧ B =⇒ B) =⇒ (A ∧ B =⇒ A) =⇒ #. . . (resolution B =⇒ A =⇒ B ∧ A)

(A ∧ B =⇒ A ∧ B) =⇒ (A ∧ B =⇒ A) =⇒ #. . . (resolution A ∧ B =⇒ B)
(A ∧ B =⇒ A) =⇒ #. . . (assumption)

(A ∧ B =⇒ B ∧ A) =⇒ #. . . (resolution A ∧ B =⇒ A)
#. . . (assumption)

A ∧ B =⇒ B ∧ A (finish)

Compositions of assumption after resolution occurs quite often, typically in
elimination steps. Traditional Isabelle tactics accommodate this by a com-
bined elim resolution principle. In contrast, Isar uses a slightly more refined
combination, where the assumptions to be closed are marked explicitly, using
again the protective marker #:

sub-proof : G a =⇒ B a
goal : (

∧
x . H x =⇒ B ′ x ) =⇒ C

goal unifier : (λx . B (a x )) θ = B ′θ
assm unifiers : (λx . G j (a x )) θ = #H i θ

(for each marked G j some #H i)

(
∧

x . H x =⇒ G ′ (a x )) θ =⇒ C θ
(refinement)

Here the sub-proof rule stems from the main fix-assume-show outline of
Isar (cf. §2.2.3): each assumption indicated in the text results in a marked
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premise G above. The marking enforces resolution against one of the sub-
goal’s premises. Consequently, fix-assume-show enables to fit the result of
a sub-proof quite robustly into a pending sub-goal, while maintaining a good
measure of flexibility.

2.2 The Isar proof language

Structured proofs are presented as high-level expressions for composing enti-
ties of Pure (propositions, facts, and goals). The Isar proof language allows
to organize reasoning within the underlying rule calculus of Pure, but Isar is
not another logical calculus!

Isar is an exercise in sound minimalism. Approximately half of the language
is introduced as primitive, the rest defined as derived concepts. The following
grammar describes the core language (category proof ), which is embedded
into theory specification elements such as theorem; see also §2.2.2 for the
separate category statement.

theory-stmt = theorem statement proof | definition . . . | . . .
proof = prfx ∗ proof method ? stmt∗ qed method ?

prfx = using facts
| unfolding facts

stmt = { stmt∗ }
| next
| note name = facts
| let term = term
| fix var+

| assume �inference� name: props
| then? goal

goal = have name: props proof
| show name: props proof

Simultaneous propositions or facts may be separated by the and keyword.

The syntax for terms and propositions is inherited from Pure (and the object-
logic). A pattern is a term with schematic variables, to be bound by higher-
order matching.

Facts may be referenced by name or proposition. For example, the result of
“have a: A 〈proof 〉” becomes available both as a and ‘A‘. Moreover, fact
expressions may involve attributes that modify either the theorem or the
background context. For example, the expression “a [OF b]” refers to the
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composition of two facts according to the resolution inference of §2.1.2, while
“a [intro]” declares a fact as introduction rule in the context.

The special fact called “this” always refers to the last result, as produced by
note, assume, have, or show. Since note occurs frequently together with
then we provide some abbreviations:

from a ≡ note a then
with a ≡ from a and this

The method category is essentially a parameter and may be populated later.
Methods use the facts indicated by then or using, and then operate on
the goal state. Some basic methods are predefined: “−” leaves the goal
unchanged, “this” applies the facts as rules to the goal, “rule” applies the
facts to another rule and the result to the goal (both “this” and “rule” refer
to resolution of §2.1.2). The secondary arguments to “rule” may be specified
explicitly as in “(rule a)”, or picked from the context. In the latter case, the
system first tries rules declared as elim or dest , followed by those declared
as intro.

The default method for proof is “rule” (arguments picked from the con-
text), for qed it is “−”. Further abbreviations for terminal proof steps
are “by method1 method2” for “proof method1 qed method2”, and “..” for
“by rule, and “.” for “by this”. The unfolding element operates directly
on the current facts and goal by applying equalities.

Block structure can be indicated explicitly by “{ . . . }”, although the body
of a sub-proof already involves implicit nesting. In any case, next jumps into
the next section of a block, i.e. it acts like closing an implicit block scope and
opening another one; there is no direct correspondence to subgoals here.

The remaining elements fix and assume build up a local context (see §2.2.1),
while show refines a pending sub-goal by the rule resulting from a nested
sub-proof (see §2.2.3). Further derived concepts will support calculational
reasoning (see §2.2.4).

2.2.1 Context elements

In judgments Γ ` ϕ of the primitive framework, Γ essentially acts like a
proof context. Isar elaborates this idea towards a higher-level notion, with
additional information for type-inference, term abbreviations, local facts, hy-
potheses etc.

The element fix x :: α declares a local parameter, i.e. an arbitrary-but-fixed
entity of a given type; in results exported from the context, x may become
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anything. The assume �inference� element provides a general interface
to hypotheses: “assume �inference� A” produces A ` A locally, while the
included inference tells how to discharge A from results A ` B later on.
There is no user-syntax for �inference�, i.e. it may only occur internally
when derived commands are defined in ML.

At the user-level, the default inference for assume is discharge as given
below. The additional variants presume and def are defined as follows:

presume A ≡ assume �weak -discharge� A
def x ≡ a ≡ fix x assume �expansion� x ≡ a

Γ ` B

Γ − A ` #A =⇒ B
(discharge)

Γ ` B

Γ − A ` A =⇒ B
(weak -discharge)

Γ ` B x

Γ − (x ≡ a) ` B a
(expansion)

Note that discharge and weak -discharge differ in the marker for A, which is
relevant when the result of a fix-assume-show outline is composed with a
pending goal, cf. §2.2.3.

The most interesting derived context element in Isar is obtain [46, §5.3],
which supports generalized elimination steps in a purely forward manner.
The obtain command takes a specification of parameters x and assumptions
A to be added to the context, together with a proof of a case rule stating
that this extension is conservative (i.e. may be removed from closed results
later on):

〈facts〉 obtain x where A x 〈proof 〉 ≡
have case:

∧
thesis . (

∧
x . A x =⇒ thesis) =⇒ thesis〉

proof −
fix thesis
assume [intro]:

∧
x . A x =⇒ thesis

show thesis using 〈facts〉 〈proof 〉
qed
fix x assume �elimination case� A x

case: Γ `
∧

thesis . (
∧

x . A x =⇒ thesis) =⇒ thesis

result : Γ ∪ A y ` B

Γ ` B
(elimination)
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Here the name “thesis” is a specific convention for an arbitrary-but-fixed
proposition; in the primitive natural deduction rules shown before we have
occasionally used C. The whole statement of “obtain x where A x” may
be read as a claim that A x may be assumed for some arbitrary-but-fixed x.
Also note that “obtain A and B” without parameters is similar to “have A
and B”, but the latter involves multiple sub-goals.

The subsequent Isar proof texts explain all context elements introduced above
using the formal proof language itself. After finishing a local proof within a
block, we indicate the exported result via note.

{
fix x
have B x 〈proof 〉
}
note ‘

∧
x . B x‘

{
assume A
have B 〈proof 〉
}
note ‘A =⇒ B‘

{
def x ≡ a
have B x 〈proof 〉
}
note ‘B a‘

{
obtain x where A x 〈proof 〉
have B 〈proof 〉
}
note ‘B‘

This illustrates the meaning of Isar context elements without goals getting
in between.

2.2.2 Structured statements

The category statement of top-level theorem specifications is defined as fol-
lows:

statement ≡ name: props and . . .
| context∗ conclusion

context ≡ fixes vars and . . .
| assumes name: props and . . .

conclusion ≡ shows name: props and . . .
| obtains vars and . . . where name: props and . . .

. . .

A simple statement consists of named propositions. The full form ad-
mits local context elements followed by the actual conclusions, such as
“fixes x assumes A x shows B x”. The final result emerges as a Pure
rule after discharging the context:

∧
x . A x =⇒ B x.
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The obtains variant is another abbreviation defined below; unlike obtain
(cf. §2.2.1) there may be several “cases” separated by “ ”, each consisting
of several parameters (vars) and several premises (props). This specifies
multi-branch elimination rules.

obtains x where A x . . . ≡
fixes thesis
assumes [intro]:

∧
x . A x =⇒ thesis and . . .

shows thesis

Presenting structured statements in such an “open” format usually simplifies
the subsequent proof, because the outer structure of the problem is already
laid out directly. E.g. consider the following canonical patterns for shows
and obtains, respectively:

theorem
fixes x and y
assumes A x and B y
shows C x y

proof −
from ‘A x‘ and ‘B y‘
show C x y 〈proof 〉

qed

theorem
obtains x and y
where A x and B y

proof −
have A a and B b 〈proof 〉
then show thesis ..

qed

Here local facts ‘A x ‘ and ‘B y ‘ are referenced immediately; there is no need
to decompose the logical rule structure again. In the second proof the final
“then show thesis ..” involves the local rule case

∧
x y . A x =⇒ B y =⇒

thesis for the particular instance of terms a and b produced in the body.

2.2.3 Structured proof refinement

By breaking up the grammar for the Isar proof language, we may understand
a proof text as a linear sequence of individual proof commands. These are
interpreted as transitions of the Isar virtual machine (Isar/VM), which oper-
ates on a block-structured configuration in single steps. This allows users to
write proof texts in an incremental manner, and inspect intermediate config-
urations for debugging.

The basic idea is analogous to evaluating algebraic expressions on a stack
machine: (a + b) · c then corresponds to a sequence of single transitions for
each symbol (, a, +, b, ), ·, c. In Isar the algebraic values are facts or goals,
and the operations are inferences.

The Isar/VM state maintains a stack of nodes, each node contains the local
proof context, the linguistic mode, and a pending goal (optional). The mode
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determines the type of transition that may be performed next, it essentially
alternates between forward and backward reasoning, with an intermediate
stage for chained facts (see figure 2.1).

Figure 2.1: Isar/VM modes

For example, in state mode Isar acts like a mathematical scratch-pad, ac-
cepting declarations like fix, assume, and claims like have, show. A goal
statement changes the mode to prove, which means that we may now refine
the problem via unfolding or proof . Then we are again in state mode of
a proof body, which may issue show statements to solve pending sub-goals.
A concluding qed will return to the original state mode one level upwards.
The subsequent Isar/VM trace indicates block structure, linguistic mode,
goal state, and inferences:

have A −→ B
proof

assume A
show B
〈proof 〉

qed

begin

begin
end
end

prove
state
state
prove
state
state

(A −→ B) =⇒ #(A −→ B)
(A =⇒ B) =⇒ #(A −→ B)

#(A −→ B)
A −→ B

(init)
(resolution impI )

(refinement #A =⇒ B)
(finish)

Here the refinement inference from §2.1.2 mediates composition of Isar sub-
proofs nicely. Observe that this principle incorporates some degree of freedom
in proof composition. In particular, the proof body allows parameters and
assumptions to be re-ordered, or commuted according to Hereditary Harrop
Form. Moreover, context elements that are not used in a sub-proof may be
omitted altogether. For example:
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have
∧

x y . A x =⇒ B y =⇒ C x y
proof −

fix x and y
assume A x and B y
show C x y 〈proof 〉

qed

have
∧

x y . A x =⇒ B y =⇒ C x y
proof −

fix x assume A x
fix y assume B y
show C x y 〈proof 〉

qed

have
∧

x y . A x =⇒ B y =⇒ C x y
proof −

fix y assume B y
fix x assume A x
show C x y sorry

qed

have
∧

x y . A x =⇒ B y =⇒ C x y
proof −

fix y assume B y
fix x
show C x y sorry

qed

Such “peephole optimizations” of Isar texts are practically important to im-
prove readability, by rearranging contexts elements according to the natural
flow of reasoning in the body, while still observing the overall scoping rules.

This illustrates the basic idea of structured proof processing in Isar. The main
mechanisms are based on natural deduction rule composition within the Pure
framework. In particular, there are no direct operations on goal states within
the proof body. Moreover, there is no hidden automated reasoning involved,
just plain unification.

2.2.4 Calculational reasoning

The existing Isar infrastructure is sufficiently flexible to support calculational
reasoning (chains of transitivity steps) as derived concept. The generic proof
elements introduced below depend on rules declared as trans in the context.
It is left to the object-logic to provide a suitable rule collection for mixed
relations of =, <, ≤, ⊂, ⊆ etc. Due to the flexibility of rule composition
(§2.1.2), substitution of equals by equals is covered as well, even substitution
of inequalities involving monotonicity conditions; see also [46, §6] and [4].

The generic calculational mechanism is based on the observation that rules
such as trans : x = y =⇒ y = z =⇒ x = z proceed from the premises
towards the conclusion in a deterministic fashion. Thus we may reason in
forward mode, feeding intermediate results into rules selected from the con-
text. The course of reasoning is organized by maintaining a secondary fact
called “calculation”, apart from the primary “this” already provided by the
Isar primitives. In the definitions below, OF refers to resolution (§2.1.2)
with multiple rule arguments, and trans represents to a suitable rule from
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the context:

also0 ≡ note calculation = this
alson+1 ≡ note calculation = trans [OF calculation this ]

finally ≡ also from calculation

The start of a calculation is determined implicitly in the text: here also
sets calculation to the current result; any subsequent occurrence will up-
date calculation by combination with the next result and a transitivity rule.
The calculational sequence is concluded via finally, where the final result is
exposed for use in a concluding claim.

Here is a canonical proof pattern, using have to establish the intermediate
results:

have a = b sorry
also have . . . = c sorry
also have . . . = d sorry
finally have a = d .

The term “. . .” above is a special abbreviation provided by the Isabelle/Isar
syntax layer: it statically refers to the right-hand side argument of the pre-
vious statement given in the text. Thus it happens to coincide with relevant
sub-expressions in the calculational chain, but the exact correspondence is
dependent on the transitivity rules being involved.

Symmetry rules such as x = y =⇒ y = x are like transitivities with only
one premise. Isar maintains a separate rule collection declared via the sym
attribute, to be used in fact expressions “a [symmetric]”, or single-step proofs
“assume x = y then have y = x ..”.

2.3 Example: First-Order Logic

theory First Order Logic
imports Base
begin

In order to commence a new object-logic within Isabelle/Pure we introduce
abstract syntactic categories i for individuals and o for object-propositions.
The latter is embedded into the language of Pure propositions by means of
a separate judgment.

typedecl i
typedecl o
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judgment
Trueprop :: o ⇒ prop ( 5)

Note that the object-logic judgement is implicit in the syntax: writing A
produces Trueprop A internally. From the Pure perspective this means “A
is derivable in the object-logic”.

2.3.1 Equational reasoning

Equality is axiomatized as a binary predicate on individuals, with reflexivity
as introduction, and substitution as elimination principle. Note that the lat-
ter is particularly convenient in a framework like Isabelle, because syntactic
congruences are implicitly produced by unification of B x against expressions
containing occurrences of x.

axiomatization
equal :: i ⇒ i ⇒ o (infix = 50)

where
refl [intro]: x = x and
subst [elim]: x = y =⇒ B x =⇒ B y

Substitution is very powerful, but also hard to control in full generality. We
derive some common symmetry / transitivity schemes of equal as particular
consequences.

theorem sym [sym]:
assumes x = y
shows y = x

proof −
have x = x ..
with ‘x = y‘ show y = x ..

qed

theorem forw subst [trans]:
assumes y = x and B x
shows B y

proof −
from ‘y = x‘ have x = y ..
from this and ‘B x‘ show B y ..

qed

theorem back subst [trans]:
assumes B x and x = y
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shows B y
proof −

from ‘x = y‘ and ‘B x‘
show B y ..

qed

theorem trans [trans]:
assumes x = y and y = z
shows x = z

proof −
from ‘y = z‘ and ‘x = y‘
show x = z ..

qed

2.3.2 Basic group theory

As an example for equational reasoning we consider some bits of group theory.
The subsequent locale definition postulates group operations and axioms; we
also derive some consequences of this specification.

locale group =
fixes prod :: i ⇒ i ⇒ i (infix ◦ 70)

and inv :: i ⇒ i (( −1) [1000] 999)
and unit :: i (1)

assumes assoc: (x ◦ y) ◦ z = x ◦ (y ◦ z )
and left unit : 1 ◦ x = x
and left inv : x−1 ◦ x = 1

begin

theorem right inv : x ◦ x−1 = 1
proof −

have x ◦ x−1 = 1 ◦ (x ◦ x−1) by (rule left unit [symmetric])
also have . . . = (1 ◦ x ) ◦ x−1 by (rule assoc [symmetric])
also have 1 = (x−1)−1 ◦ x−1 by (rule left inv [symmetric])
also have . . . ◦ x = (x−1)−1 ◦ (x−1 ◦ x ) by (rule assoc)
also have x−1 ◦ x = 1 by (rule left inv)
also have ((x−1)−1 ◦ . . .) ◦ x−1 = (x−1)−1 ◦ (1 ◦ x−1) by (rule assoc)
also have 1 ◦ x−1 = x−1 by (rule left unit)
also have (x−1)−1 ◦ . . . = 1 by (rule left inv)
finally show x ◦ x−1 = 1 .

qed

theorem right unit : x ◦ 1 = x
proof −
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have 1 = x−1 ◦ x by (rule left inv [symmetric])
also have x ◦ . . . = (x ◦ x−1) ◦ x by (rule assoc [symmetric])
also have x ◦ x−1 = 1 by (rule right inv)
also have . . . ◦ x = x by (rule left unit)
finally show x ◦ 1 = x .

qed

Reasoning from basic axioms is often tedious. Our proofs work by producing
various instances of the given rules (potentially the symmetric form) using
the pattern “have eq by (rule r)” and composing the chain of results via
also/finally. These steps may involve any of the transitivity rules declared
in §2.3.1, namely trans in combining the first two results in right inv and in
the final steps of both proofs, forw subst in the first combination of right unit,
and back subst in all other calculational steps.

Occasional substitutions in calculations are adequate, but should not be over-
emphasized. The other extreme is to compose a chain by plain transitivity
only, with replacements occurring always in topmost position. For example:

have x ◦ 1 = x ◦ (x−1 ◦ x ) unfolding left inv ..
also have . . . = (x ◦ x−1) ◦ x unfolding assoc ..
also have . . . = 1 ◦ x unfolding right inv ..
also have . . . = x unfolding left unit ..
finally have x ◦ 1 = x .

Here we have re-used the built-in mechanism for unfolding definitions in order
to normalize each equational problem. A more realistic object-logic would
include proper setup for the Simplifier (§9.3), the main automated tool for
equational reasoning in Isabelle. Then “unfolding left inv ..” would become
“by (simp only : left inv)” etc.

end

2.3.3 Propositional logic

We axiomatize basic connectives of propositional logic: implication, disjunc-
tion, and conjunction. The associated rules are modeled after Gentzen’s
system of Natural Deduction [11].

axiomatization
imp :: o ⇒ o ⇒ o (infixr −→ 25) where
impI [intro]: (A =⇒ B) =⇒ A −→ B and
impD [dest ]: (A −→ B) =⇒ A =⇒ B

axiomatization
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disj :: o ⇒ o ⇒ o (infixr ∨ 30) where
disjI 1 [intro]: A =⇒ A ∨ B and
disjI 2 [intro]: B =⇒ A ∨ B and
disjE [elim]: A ∨ B =⇒ (A =⇒ C ) =⇒ (B =⇒ C ) =⇒ C

axiomatization
conj :: o ⇒ o ⇒ o (infixr ∧ 35) where
conjI [intro]: A =⇒ B =⇒ A ∧ B and
conjD1: A ∧ B =⇒ A and
conjD2: A ∧ B =⇒ B

The conjunctive destructions have the disadvantage that decomposing A ∧ B
involves an immediate decision which component should be projected. The
more convenient simultaneous elimination A ∧ B =⇒ (A =⇒ B =⇒ C ) =⇒
C can be derived as follows:

theorem conjE [elim]:
assumes A ∧ B
obtains A and B

proof
from ‘A ∧ B‘ show A by (rule conjD1)
from ‘A ∧ B‘ show B by (rule conjD2)

qed

Here is an example of swapping conjuncts with a single intermediate elimi-
nation step:

assume A ∧ B
then obtain B and A ..
then have B ∧ A ..

Note that the analogous elimination rule for disjunction “assumes A ∨ B
obtains A B” coincides with the original axiomatization of disjE.

We continue propositional logic by introducing absurdity with its character-
istic elimination. Plain truth may then be defined as a proposition that is
trivially true.

axiomatization
false :: o (⊥) where
falseE [elim]: ⊥ =⇒ A

definition
true :: o (>) where
> ≡ ⊥ −→ ⊥
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theorem trueI [intro]: >
unfolding true def ..

Now negation represents an implication towards absurdity:

definition
not :: o ⇒ o (¬ [40] 40) where
¬ A ≡ A −→ ⊥

theorem notI [intro]:
assumes A =⇒ ⊥
shows ¬ A

unfolding not def
proof

assume A
then show ⊥ by (rule ‘A =⇒ ⊥‘ )

qed

theorem notE [elim]:
assumes ¬ A and A
shows B

proof −
from ‘¬ A‘ have A −→ ⊥ unfolding not def .
from ‘A −→ ⊥‘ and ‘A‘ have ⊥ ..
then show B ..

qed

2.3.4 Classical logic

Subsequently we state the principle of classical contradiction as a local as-
sumption. Thus we refrain from forcing the object-logic into the classical
perspective. Within that context, we may derive well-known consequences
of the classical principle.

locale classical =
assumes classical : (¬ C =⇒ C ) =⇒ C

begin

theorem double negation:
assumes ¬ ¬ C
shows C

proof (rule classical)
assume ¬ C
with ‘¬ ¬ C‘ show C ..
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qed

theorem tertium non datur : C ∨ ¬ C
proof (rule double negation)

show ¬ ¬ (C ∨ ¬ C )
proof

assume ¬ (C ∨ ¬ C )
have ¬ C
proof

assume C then have C ∨ ¬ C ..
with ‘¬ (C ∨ ¬ C )‘ show ⊥ ..

qed
then have C ∨ ¬ C ..
with ‘¬ (C ∨ ¬ C )‘ show ⊥ ..

qed
qed

These examples illustrate both classical reasoning and non-trivial proposi-
tional proofs in general. All three rules characterize classical logic indepen-
dently, but the original rule is already the most convenient to use, because it
leaves the conclusion unchanged. Note that (¬ C =⇒ C ) =⇒ C fits again
into our format for eliminations, despite the additional twist that the context
refers to the main conclusion. So we may write classical as the Isar state-
ment “obtains ¬ thesis”. This also explains nicely how classical reasoning
really works: whatever the main thesis might be, we may always assume its
negation!

end

2.3.5 Quantifiers

Representing quantifiers is easy, thanks to the higher-order nature of the
underlying framework. According to the well-known technique introduced by
Church [9], quantifiers are operators on predicates, which are syntactically
represented as λ-terms of type i ⇒ o. Binder notation turns All (λx . B x )
into ∀ x . B x etc.

axiomatization
All :: (i ⇒ o) ⇒ o (binder ∀ 10) where
allI [intro]: (

∧
x . B x ) =⇒ ∀ x . B x and

allD [dest ]: (∀ x . B x ) =⇒ B a

axiomatization
Ex :: (i ⇒ o) ⇒ o (binder ∃ 10) where
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exI [intro]: B a =⇒ (∃ x . B x ) and
exE [elim]: (∃ x . B x ) =⇒ (

∧
x . B x =⇒ C ) =⇒ C

The statement of exE corresponds to “assumes ∃ x . B x obtains x where
B x” in Isar. In the subsequent example we illustrate quantifier reasoning
involving all four rules:

theorem
assumes ∃ x . ∀ y . R x y
shows ∀ y . ∃ x . R x y

proof — ∀ introduction
obtain x where ∀ y . R x y using ‘∃ x . ∀ y . R x y‘ .. — ∃ elimination
fix y have R x y using ‘∀ y . R x y‘ .. — ∀ destruction
then show ∃ x . R x y .. — ∃ introduction

qed

2.3.6 Canonical reasoning patterns

The main rules of first-order predicate logic from §2.3.3 and §2.3.5 can now
be summarized as follows, using the native Isar statement format of §2.2.2.

impI : assumes A =⇒ B shows A −→ B
impD : assumes A −→ B and A shows B

disjI 1: assumes A shows A ∨ B
disjI 2: assumes B shows A ∨ B
disjE : assumes A ∨ B obtains A B

conjI : assumes A and B shows A ∧ B
conjE : assumes A ∧ B obtains A and B

falseE : assumes ⊥ shows A
trueI : shows >
notI : assumes A =⇒ ⊥ shows ¬ A
notE : assumes ¬ A and A shows B

allI : assumes
∧

x . B x shows ∀ x . B x
allE : assumes ∀ x . B x shows B a

exI : assumes B a shows ∃ x . B x
exE : assumes ∃ x . B x obtains a where B a

This essentially provides a declarative reading of Pure rules as Isar reasoning
patterns: the rule statements tells how a canonical proof outline shall look
like. Since the above rules have already been declared as intro, elim, dest
— each according to its particular shape — we can immediately write Isar
proof texts as follows:
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have A −→ B
proof

assume A
show B 〈proof 〉

qed

have A −→ B and A 〈proof 〉
then have B ..

have A 〈proof 〉
then have A ∨ B ..

have B 〈proof 〉
then have A ∨ B ..

have A ∨ B 〈proof 〉
then have C
proof

assume A
then show C 〈proof 〉

next
assume B
then show C 〈proof 〉

qed

have A and B 〈proof 〉
then have A ∧ B ..

have A ∧ B 〈proof 〉
then obtain A and B ..

have ⊥ 〈proof 〉
then have A ..

have > ..

have ¬ A
proof

assume A
then show ⊥ 〈proof 〉

qed

have ¬ A and A 〈proof 〉
then have B ..

have ∀ x . B x
proof

fix x
show B x 〈proof 〉

qed

have ∀ x . B x 〈proof 〉
then have B a ..

have ∃ x . B x
proof

show B a 〈proof 〉
qed

have ∃ x . B x 〈proof 〉
then obtain a where B a ..

Of course, these proofs are merely examples. As sketched in §2.2.3, there is
a fair amount of flexibility in expressing Pure deductions in Isar. Here the
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user is asked to express himself adequately, aiming at proof texts of literary
quality.

end



Part II

General Language Elements
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Chapter 3

Outer syntax — the theory
language

The rather generic framework of Isabelle/Isar syntax emerges from three
main syntactic categories: commands of the top-level Isar engine (covering
theory and proof elements), methods for general goal refinements (analogous
to traditional “tactics”), and attributes for operations on facts (within a
certain context). Subsequently we give a reference of basic syntactic entities
underlying Isabelle/Isar syntax in a bottom-up manner. Concrete theory and
proof language elements will be introduced later on.

In order to get started with writing well-formed Isabelle/Isar documents, the
most important aspect to be noted is the difference of inner versus outer
syntax. Inner syntax is that of Isabelle types and terms of the logic, while
outer syntax is that of Isabelle/Isar theory sources (specifications and proofs).
As a general rule, inner syntax entities may occur only as atomic entities
within outer syntax. For example, the string "x + y" and identifier z are
legal term specifications within a theory, while x + y without quotes is not.

Printed theory documents usually omit quotes to gain readability (this is a
matter of LATEX macro setup, say via \isabellestyle, see also [48]). Expe-
rienced users of Isabelle/Isar may easily reconstruct the lost technical infor-
mation, while mere readers need not care about quotes at all.

Isabelle/Isar input may contain any number of input termination characters
“;” (semicolon) to separate commands explicitly. This is particularly useful
in interactive shell sessions to make clear where the current command is
intended to end. Otherwise, the interpreter loop will continue to issue a
secondary prompt “#” until an end-of-command is clearly recognized from
the input syntax, e.g. encounter of the next command keyword.

More advanced interfaces such as Proof General [2] do not require explicit
semicolons, the amount of input text is determined automatically by inspect-
ing the present content of the Emacs text buffer. In the printed presentation
of Isabelle/Isar documents semicolons are omitted altogether for readability.

49



CHAPTER 3. OUTER SYNTAX — THE THEORY LANGUAGE 50

! Proof General requires certain syntax classification tables in order to achieve
properly synchronized interaction with the Isabelle/Isar process. These tables

need to be consistent with the Isabelle version and particular logic image to be used
in a running session (common object-logics may well change the outer syntax). The
standard setup should work correctly with any of the “official” logic images derived
from Isabelle/HOL (including HOLCF etc.). Users of alternative logics may need
to tell Proof General explicitly, e.g. by giving an option -k ZF (in conjunction with
-l ZF, to specify the default logic image). Note that option -L does both of this
at the same time.

3.1 Lexical matters

The outer lexical syntax consists of three main categories of syntax tokens:

1. major keywords — the command names that are available in the present
logic session;

2. minor keywords — additional literal tokens required by the syntax of
commands;

3. named tokens — various categories of identifiers etc.

Major keywords and minor keywords are guaranteed to be disjoint. This
helps user-interfaces to determine the overall structure of a theory text, with-
out knowing the full details of command syntax. Internally, there is some
additional information about the kind of major keywords, which approxi-
mates the command type (theory command, proof command etc.).

Keywords override named tokens. For example, the presence of a command
called term inhibits the identifier term, but the string "term" can be used
instead. By convention, the outer syntax always allows quoted strings in
addition to identifiers, wherever a named entity is expected.

When tokenizing a given input sequence, the lexer repeatedly takes the
longest prefix of the input that forms a valid token. Spaces, tabs, newlines
and formfeeds between tokens serve as explicit separators.

The categories for named tokens are defined once and for all as follows.

ident = letter quasiletter ∗

longident = ident(.ident)+

symident = sym+ | \<ident>
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nat = digit+

float = nat.nat | -nat.nat
var = ?ident | ?ident.nat

typefree = ’ident
typevar = ?typefree | ?typefree.nat

string = " . . . "
altstring = ‘ . . . ‘
verbatim = {* . . . *}

letter = latin | \<latin> | \<latin latin> | greek |
\<^isub> | \<^isup>

quasiletter = letter | digit | _ | ’

latin = a | . . . | z | A | . . . | Z

digit = 0 | . . . | 9

sym = ! | # | $ | % | & | * | + | - | / |
< | = | > | ? | @ | ^ | _ | | | ~

greek = \<alpha> | \<beta> | \<gamma> | \<delta> |
\<epsilon> | \<zeta> | \<eta> | \<theta> |
\<iota> | \<kappa> | \<mu> | \<nu> |
\<xi> | \<pi> | \<rho> | \<sigma> | \<tau> |
\<upsilon> | \<phi> | \<chi> | \<psi> |
\<omega> | \<Gamma> | \<Delta> | \<Theta> |
\<Lambda> | \<Xi> | \<Pi> | \<Sigma> |
\<Upsilon> | \<Phi> | \<Psi> | \<Omega>

A var or typevar describes an unknown, which is internally a pair of base
name and index (ML type indexname). These components are either sepa-
rated by a dot as in ?x .1 or ?x7.3 or run together as in ?x1. The latter form
is possible if the base name does not end with digits. If the index is 0, it may
be dropped altogether: ?x and ?x0 and ?x .0 all refer to the same unknown,
with basename x and index 0.

The syntax of string admits any characters, including newlines; “"” (double-
quote) and “\” (backslash) need to be escaped by a backslash; arbitrary
character codes may be specified as “\ddd”, with three decimal digits. Alter-
native strings according to altstring are analogous, using single back-quotes
instead.

The body of verbatim may consist of any text not containing “*}”; this allows
convenient inclusion of quotes without further escapes. There is no way to
escape “*}”. If the quoted text is LATEX source, one may usually add some
blank or comment to avoid the critical character sequence.
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Source comments take the form (* . . . *) and may be nested, although the
user-interface might prevent this. Note that this form indicates source com-
ments only, which are stripped after lexical analysis of the input. The Isar
syntax also provides proper document comments that are considered as part
of the text (see §3.2.3).

Common mathematical symbols such as ∀ are represented in Isabelle as
\<forall>. There are infinitely many Isabelle symbols like this, although
proper presentation is left to front-end tools such as LATEX, Proof General,
or Isabelle/jEdit. A list of predefined Isabelle symbols that work well with
these tools is given in appendix B. Note that \<lambda> does not belong
to the letter category, since it is already used differently in the Pure term
language.

3.2 Common syntax entities

We now introduce several basic syntactic entities, such as names, terms, and
theorem specifications, which are factored out of the actual Isar language
elements to be described later.

3.2.1 Names

Entity name usually refers to any name of types, constants, theorems etc.
that are to be declared or defined (so qualified identifiers are excluded here).
Quoted strings provide an escape for non-identifier names or those ruled out
by outer syntax keywords (e.g. quoted "let"). Already existing objects are
usually referenced by nameref .

name

ident�
�symident

�string

�nat

�
�
�
�

parname

(
����name )

����
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nameref

name�
�longident

�
�

3.2.2 Numbers

The outer lexical syntax (§3.1) admits natural numbers and floating point
numbers. These are combined as int and real as follows.

int

nat�
� -

����nat

�
�

real

float�
�int

�
�

Note that there is an overlap with the category name, which also includes
nat .

3.2.3 Comments

Large chunks of plain text are usually given verbatim, i.e. enclosed in
{* . . . *}. For convenience, any of the smaller text units conforming to
nameref are admitted as well. A marginal comment is of the form -- text .
Any number of these may occur within Isabelle/Isar commands.

text

verbatim�
�nameref

�
�
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comment

--
����text

3.2.4 Type classes, sorts and arities

Classes are specified by plain names. Sorts have a very simple inner syntax,
which is either a single class name c or a list {c1, . . ., cn} referring to the
intersection of these classes. The syntax of type arities is given directly at
the outer level.

classdecl

name �
� <

�����
�⊆

����
�
�

nameref�
� ,

����
�
�

�
�

sort

nameref

arity

�
� (

���� sort�
� ,

����
�
�

)
����

�
�

sort

3.2.5 Types and terms

The actual inner Isabelle syntax, that of types and terms of the logic, is far
too sophisticated in order to be modelled explicitly at the outer theory level.
Basically, any such entity has to be quoted to turn it into a single token (the
parsing and type-checking is performed internally later). For convenience, a
slightly more liberal convention is adopted: quotes may be omitted for any



CHAPTER 3. OUTER SYNTAX — THE THEORY LANGUAGE 55

type or term that is already atomic at the outer level. For example, one
may just write x instead of quoted "x". Note that symbolic identifiers (e.g.
++ or ∀ are available as well, provided these have not been superseded by
commands or other keywords already (such as = or +).

type

nameref�
�typefree

�typevar

�
�
�

term

nameref�
�var

�
�

prop

term

Positional instantiations are indicated by giving a sequence of terms, or the
placeholder “ ” (underscore), which means to skip a position.

inst

_
�����

�term

�
�

insts

�
�inst

�
�

Type declarations and definitions usually refer to typespec on the left-hand
side. This models basic type constructor application at the outer syntax
level. Note that only plain postfix notation is available here, but no infixes.
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typespec

�
�typefree

� (
���� typefree�

� ,
����

�
�

)
����

�
�
�

name

typespec sorts

�
�typefree �

�::
����sort

�
�

� (
���� typefree �

�::
����sort

�
�

�

� ,
����

�

�

)
����

�
�

�

name

3.2.6 Term patterns and declarations

Wherever explicit propositions (or term fragments) occur in a proof text,
casual binding of schematic term variables may be given specified via patterns
of the form “(is p1 . . . pn)”. This works both for term and prop.

term pat

(
���� is

����term�
�

�
�

)
����

prop pat

(
���� is

����prop�
�

�
�

)
����
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Declarations of local variables x :: τ and logical propositions a : ϕ represent
different views on the same principle of introducing a local scope. In practice,
one may usually omit the typing of vars (due to type-inference), and the
naming of propositions (due to implicit references of current facts). In any
case, Isar proof elements usually admit to introduce multiple such items
simultaneously.

vars

name�
�

�
�

�
�::

����type

�
�

props

�
�thmdecl

�
�

prop �
�prop pat

�
�

�

�

�

�
The treatment of multiple declarations corresponds to the complementary
focus of vars versus props . In “x 1 . . . xn :: τ” the typing refers to all variables,
while in a: ϕ1 . . . ϕn the naming refers to all propositions collectively. Isar
language elements that refer to vars or props typically admit separate typings
or namings via another level of iteration, with explicit and separators; e.g.
see fix and assume in §6.2.1.

3.2.7 Attributes and theorems

Attributes have their own “semi-inner” syntax, in the sense that input con-
forming to args below is parsed by the attribute a second time. The attribute
argument specifications may be any sequence of atomic entities (identifiers,
strings etc.), or properly bracketed argument lists. Below atom refers to any
atomic entity, including any keyword conforming to symident .
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atom

nameref�
�typefree

�typevar

�var

�nat

�float

�keyword

�
�
�
�
�
�
�

arg

atom�
� (

����args )
����� [

����args ]
����

�
�
�

args

�
�arg

�
�

attributes

[
�����

� nameref args�
� ,

����
�
�

�
�

]
����

Theorem specifications come in several flavors: axmdecl and thmdecl usually
refer to axioms, assumptions or results of goal statements, while thmdef
collects lists of existing theorems. Existing theorems are given by thmref
and thmrefs , the former requires an actual singleton result.
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There are three forms of theorem references:

1. named facts a,

2. selections from named facts a(i) or a(j − k),

3. literal fact propositions using altstring syntax ‘ϕ‘ (see also method
fact).

Any kind of theorem specification may include lists of attributes both on the
left and right hand sides; attributes are applied to any immediately preceding
fact. If names are omitted, the theorems are not stored within the theorem
database of the theory or proof context, but any given attributes are applied
nonetheless.

An extra pair of brackets around attributes (like “[[simproc a]]”) abbreviates
a theorem reference involving an internal dummy fact, which will be ignored
later on. So only the effect of the attribute on the background context
will persist. This form of in-place declarations is particularly useful with
commands like declare and using.

axmdecl

name �
�attributes

�
�

:
����

thmdecl

thmbind :
����

thmdef

thmbind =
����

thmref

nameref �
�selection

�
�

�

�altstring

�

�

�
�attributes

�
�

�

� [
����attributes ]

����

�

�
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thmrefs

thmref�
�

�
�

thmbind

name attributes�
�name

�attributes

�
�
�

selection

(
���� nat�

�nat -
�����

�nat

�
�

�
�

�

� ,
����

�

�

)
����



Chapter 4

Document preparation

Isabelle/Isar provides a simple document preparation system based on regu-
lar PDF-LATEX technology, with full support for hyper-links and bookmarks.
Thus the results are well suited for WWW browsing and as printed copies.

Isabelle generates LATEX output while running a logic session (see also [48]).
Getting started with a working configuration for common situations is quite
easy by using the Isabelle mkdir and make tools. First invoke

isabelle mkdir Foo

to initialize a separate directory for session Foo (it is safe to experiment, since
isabelle mkdir never overwrites existing files). Ensure that Foo/ROOT.ML

holds ML commands to load all theories required for this session; furthermore
Foo/document/root.tex should include any special LATEX macro packages
required for your document (the default is usually sufficient as a start).

The session is controlled by a separate IsaMakefile (with crude source de-
pendencies by default). This file is located one level up from the Foo directory
location. Now invoke

isabelle make Foo

to run the Foo session, with browser information and document preparation
enabled. Unless any errors are reported by Isabelle or LATEX, the output will
appear inside the directory defined by the ISABELLE_BROWSER_INFO setting
(as reported by the batch job in verbose mode).

You may also consider to tune the usedir options in IsaMakefile, for ex-
ample to switch the output format between pdf and dvi, or activate the -D

option to retain a second copy of the generated LATEX sources (for manual
inspection or separate runs of latex).

See The Isabelle System Manual [48] for further details on Isabelle logic
sessions and theory presentation. The Isabelle/HOL tutorial [25] also covers
theory presentation to some extent.
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4.1 Markup commands

header : toplevel → toplevel

chapter : local theory → local theory
section : local theory → local theory

subsection : local theory → local theory
subsubsection : local theory → local theory

text : local theory → local theory
text raw : local theory → local theory

sect : proof → proof
subsect : proof → proof

subsubsect : proof → proof
txt : proof → proof

txt raw : proof → proof

Markup commands provide a structured way to insert text into the docu-
ment generated from a theory. Each markup command takes a single text
argument, which is passed as argument to a corresponding LATEX macro. The
default macros provided by ~~/lib/texinputs/isabelle.sty can be rede-
fined according to the needs of the underlying document and LATEX styles.

Note that formal comments (§3.2.3) are similar to markup commands, but
have a different status within Isabelle/Isar syntax.

chapter
�� ���

�section
�� ���subsection
�� ���subsubsection
�� ���text
�� ��

�
�
�
�
�

�
�target

�
�

text
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header
�� ���

�text raw
�� ���sect
�� ���subsect
�� ���subsubsect
�� ���txt
�� ���txt raw
�� ��

�
�
�
�
�
�
�

text

header provides plain text markup just preceding the formal beginning of
a theory. The corresponding LATEX macro is \isamarkupheader, which
acts like section by default.

chapter, section, subsection, and subsubsection mark chapter and
section headings within the main theory body or local theory tar-
gets. The corresponding LATEX macros are \isamarkupchapter,
\isamarkupsection, \isamarkupsubsection etc.

sect, subsect, and subsubsect mark section headings within
proofs. The corresponding LATEX macros are \isamarkupsect,
\isamarkupsubsect etc.

text and txt specify paragraphs of plain text. This corresponds to a LATEX
environment \begin{isamarkuptext} . . . \end{isamarkuptext} etc.

text raw and txt raw insert LATEX source into the output, without addi-
tional markup. Thus the full range of document manipulations becomes
available, at the risk of messing up document output.

Except for text raw and txt raw, the text passed to any of the above
markup commands may refer to formal entities via document antiquotations,
see also §4.2. These are interpreted in the present theory or proof context,
or the named target.

The proof markup commands closely resemble those for theory specifications,
but have a different formal status and produce different LATEX macros. The
default definitions coincide for analogous commands such as section and
sect.
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4.2 Document Antiquotations

theory : antiquotation
thm : antiquotation

lemma : antiquotation
prop : antiquotation
term : antiquotation

term type : antiquotation
typeof : antiquotation
const : antiquotation

abbrev : antiquotation
typ : antiquotation

type : antiquotation
class : antiquotation
text : antiquotation

goals : antiquotation
subgoals : antiquotation

prf : antiquotation
full prf : antiquotation

ML : antiquotation
ML op : antiquotation

ML type : antiquotation
ML struct : antiquotation

file : antiquotation

The overall content of an Isabelle/Isar theory may alternate between formal
and informal text. The main body consists of formal specification and proof
commands, interspersed with markup commands (§4.1) or document com-
ments (§3.2.3). The argument of markup commands quotes informal text to
be printed in the resulting document, but may again refer to formal entities
via document antiquotations.

For example, embedding of “@{term [show types ] f x = a + x}” within a
text block makes (f :: ′a ⇒ ′a) (x :: ′a) = (a:: ′a) + x appear in the final LATEX
document.

Antiquotations usually spare the author tedious typing of logical entities in
full detail. Even more importantly, some degree of consistency-checking be-
tween the main body of formal text and its informal explanation is achieved,
since terms and types appearing in antiquotations are checked within the
current theory or proof context.
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@{
����antiquotation }

����
antiquotation

theory
�� ��options name�

�thm
�� ��options styles thmrefs

�lemma
�� ��options prop by

�� ��method �
�method

�
�

�prop
�� ��options styles prop

�term
�� ��options styles term

�value
�� ��options styles term

�term_type
�� ��options styles term

�typeof
�� ��options styles term

�const
�� ��options term

�abbrev
�� ��options term

�typ
�� ��options type

�type
�� ��options name

�class
�� ��options name

�text
�� ��options name

�
�
�

�
�
�
�
�
�
�
�
�
�
�
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antiquotation

goals
�� ��options�

�subgoals
�� ��options

�prf
�� ��options thmrefs

�full_prf
�� ��options thmrefs

�ML
����options name

�ML_op
�� ��options name

�ML_type
�� ��options name

�ML_struct
�� ��options name

�file
�� ��options name

�
�
�
�
�
�
�
�
�

options

[
�����

� option�
� ,

����
�
�

�
�

]
����

option

name�
�name =

����name

�
�

styles

(
���� style�

� ,
����

�
�

)
����
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style

name�
�

�
�

Note that the syntax of antiquotations may not include source comments
(* . . . *) nor verbatim text {* . . . *}.

@{theory A} prints the name A, which is guaranteed to refer to a valid
ancestor theory in the current context.

@{thm a1 . . . an} prints theorems a1 . . . an . Full fact expressions are
allowed here, including attributes (§3.2.7).

@{prop ϕ} prints a well-typed proposition ϕ.

@{lemma ϕ by m} proves a well-typed proposition ϕ by method m and
prints the original ϕ.

@{term t} prints a well-typed term t.

@{value t} evaluates a term t and prints its result, see also value.

@{term type t} prints a well-typed term t annotated with its type.

@{typeof t} prints the type of a well-typed term t.

@{const c} prints a logical or syntactic constant c.

@{abbrev c x 1 . . . xn} prints a constant abbreviation c x 1 . . . xn ≡ rhs as
defined in the current context.

@{typ τ} prints a well-formed type τ .

@{type κ} prints a (logical or syntactic) type constructor κ.

@{class c} prints a class c.

@{text s} prints uninterpreted source text s. This is particularly useful to
print portions of text according to the Isabelle document style, without
demanding well-formedness, e.g. small pieces of terms that should not
be parsed or type-checked yet.
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@{goals} prints the current dynamic goal state. This is mainly for support
of tactic-emulation scripts within Isar. Presentation of goal states does
not conform to the idea of human-readable proof documents!

When explaining proofs in detail it is usually better to spell out the
reasoning via proper Isar proof commands, instead of peeking at the
internal machine configuration.

@{subgoals} is similar to @{goals}, but does not print the main goal.

@{prf a1 . . . an} prints the (compact) proof terms corresponding to the
theorems a1 . . . an . Note that this requires proof terms to be switched
on for the current logic session.

@{full prf a1 . . . an} is like @{prf a1 . . . an}, but prints the full proof terms,
i.e. also displays information omitted in the compact proof term, which
is denoted by “ ” placeholders there.

@{ML s}, @{ML op s}, @{ML type s}, and @{ML struct s} check text
s as ML value, infix operator, type, and structure, respectively. The
source is printed verbatim.

@{file path} checks that path refers to a file (or directory) and prints it
verbatim.

4.2.1 Styled antiquotations

The antiquotations thm, prop and term admit an extra style specification
to modify the printed result. A style is specified by a name with a possibly
empty number of arguments; multiple styles can be sequenced with commas.
The following standard styles are available:

lhs extracts the first argument of any application form with at least two
arguments — typically meta-level or object-level equality, or any other
binary relation.

rhs is like lhs, but extracts the second argument.

concl extracts the conclusion C from a rule in Horn-clause normal form A1

=⇒ . . . An =⇒ C.

prem n extract premise number n from from a rule in Horn-clause normal
form A1 =⇒ . . . An =⇒ C
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4.2.2 General options

The following options are available to tune the printed output of antiquota-
tions. Note that many of these coincide with global ML flags of the same
names.

show types = bool and show sorts = bool control printing of explicit type
and sort constraints.

show structs = bool controls printing of implicit structures.

show abbrevs = bool controls folding of abbreviations.

names long = bool forces names of types and constants etc. to be printed
in their fully qualified internal form.

names short = bool forces names of types and constants etc. to be printed
unqualified. Note that internalizing the output again in the current
context may well yield a different result.

names unique = bool determines whether the printed version of qualified
names should be made sufficiently long to avoid overlap with names
declared further back. Set to false for more concise output.

eta contract = bool prints terms in η-contracted form.

display = bool indicates if the text is to be output as multi-line “display
material”, rather than a small piece of text without line breaks (which
is the default).

In this mode the embedded entities are printed in the same style as the
main theory text.

break = bool controls line breaks in non-display material.

quotes = bool indicates if the output should be enclosed in double quotes.

mode = name adds name to the print mode to be used for presentation.
Note that the standard setup for LATEX output is already present by
default, including the modes latex and xsymbols.

margin = nat and indent = nat change the margin or indentation for pretty
printing of display material.

goals limit = nat determines the maximum number of goals to be printed
(for goal-based antiquotation).
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source = bool prints the original source text of the antiquotation arguments,
rather than its internal representation. Note that formal checking of
thm, term, etc. is still enabled; use the text antiquotation for unchecked
output.

Regular term and typ antiquotations with source = false involve a full
round-trip from the original source to an internalized logical entity back
to a source form, according to the syntax of the current context. Thus
the printed output is not under direct control of the author, it may
even fluctuate a bit as the underlying theory is changed later on.

In contrast, source = true admits direct printing of the given source
text, with the desirable well-formedness check in the background, but
without modification of the printed text.

For boolean flags, “name = true” may be abbreviated as “name”. All of
the above flags are disabled by default, unless changed from ML, say in the
ROOT.ML of the logic session.

4.3 Markup via command tags

Each Isabelle/Isar command may be decorated by additional presentation
tags, to indicate some modification in the way it is printed in the document.

tags

�
�tag

�
�

tag

%
���� ident�

�string

�
�

Some tags are pre-declared for certain classes of commands, serving as default
markup if no tags are given in the text:

theory theory begin/end
proof all proof commands
ML all commands involving ML code
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The Isabelle document preparation system [48] allows tagged command re-
gions to be presented specifically, e.g. to fold proof texts, or drop parts of the
text completely.

For example “by %invisible auto” causes that piece of proof to be treated
as invisible instead of proof (the default), which may be shown or hidden
depending on the document setup. In contrast, “by %visible auto” forces
this text to be shown invariably.

Explicit tag specifications within a proof apply to all subsequent commands
of the same level of nesting. For example, “proof %visible . . . qed” forces
the whole sub-proof to be typeset as visible (unless some of its parts are
tagged differently).

Command tags merely produce certain markup environments for type-
setting. The meaning of these is determined by LATEX macros, as defined in
~~/lib/texinputs/isabelle.sty or by the document author. The Isabelle
document preparation tools also provide some high-level options to specify
the meaning of arbitrary tags to “keep”, “drop”, or “fold” the corresponding
parts of the text. Logic sessions may also specify “document versions”, where
given tags are interpreted in some particular way. Again see [48] for further
details.

4.4 Railroad diagrams

rail : antiquotation

rail
�� ��string

The rail antiquotation allows to include syntax diagrams into Isabelle doc-
uments. LATEX requires the style file ~~/lib/texinputs/pdfsetup.sty,
which can be used via \usepackage{pdfsetup} in root.tex, for example.

The rail specification language is quoted here as Isabelle string ; it has its
own grammar given below.

�
�rule

�
�

�

� ;
����

�

�
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rule

�
� identifier�

�antiquotation

�
�

:
����

�
�

body

body

concatenation�
� |

����
�
�

concatenation

atom �
� ?

����
�
�

�

�

�

�

�
� *

�����
� +

����
�
�

�
�atom

�
�

�
�

atom

(
�����

�body

�
�

)
�����

�identifier

��
� @

����
�
�

string�
�antiquotation

�
�

�\\
����

�

�
�

�
The lexical syntax of identifier coincides with that of ident in regular Isabelle
syntax, but string uses single quotes instead of double quotes of the standard
string category, to avoid extra escapes.

Each rule defines a formal language (with optional name), using a notation
that is similar to EBNF or regular expressions with recursion. The meaning
and visual appearance of these rail language elements is illustrated by the
following representative examples.
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• Empty ()

• Nonterminal A

A

• Nonterminal via Isabelle antiquotation @{syntax method}

method

• Terminal ’xyz’

xyz
�� ��

• Terminal in keyword style @’xyz’

xyz
�� ��

• Terminal via Isabelle antiquotation @@{method rule}

rule
�� ��

• Concatenation A B C

A B C

• Linebreak \\ inside concatenation1 A B C \\ D E F

1Strictly speaking, this is only a single backslash, but the enclosing string syntax re-
quires a second one for escaping.
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A B C �
��

�D E F

• Variants A | B | C

A�
�B

�C

�
�
�

• Option A ?

�
�A

�
�

• Repetition A *

�
�A

�
�

• Repetition with separator A * sep

�
� A�

�sep

�
�

�
�

• Strict repetition A +
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A�
�

�
�

• Strict repetition with separator A + sep

A�
�sep

�
�

4.5 Draft presentation

display drafts∗ : any →
print drafts∗ : any →

display drafts
�� ���

�print drafts
�� ��

�
�

name�
�

�
�

display drafts paths and print drafts paths perform simple output of a
given list of raw source files. Only those symbols that do not require
additional LATEX packages are displayed properly, everything else is left
verbatim.
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Specifications

The Isabelle/Isar theory format integrates specifications and proofs, support-
ing interactive development with unlimited undo operation. There is an inte-
grated document preparation system (see chapter 4), for typesetting formal
developments together with informal text. The resulting hyper-linked PDF
documents can be used both for WWW presentation and printed copies.

The Isar proof language (see chapter 6) is embedded into the theory language
as a proper sub-language. Proof mode is entered by stating some theorem
or lemma at the theory level, and left again with the final conclusion (e.g.
via qed). Some theory specification mechanisms also require a proof, such
as typedef in HOL, which demands non-emptiness of the representing sets.

5.1 Defining theories

theory : toplevel → theory
end : theory → toplevel

Isabelle/Isar theories are defined via theory files, which may contain both
specifications and proofs; occasionally definitional mechanisms also require
some explicit proof. The theory body may be sub-structured by means of
local theory targets, such as locale and class.

The first proper command of a theory is theory, which indicates imports of
previous theories and optional dependencies on other source files (usually in
ML). Just preceding the initial theory command there may be an optional
header declaration, which is only relevant to document preparation: see also
the other section markup commands in §4.1.

A theory is concluded by a final end command, one that does not belong to
a local theory target. No further commands may follow such a global end,
although some user-interfaces might pretend that trailing input is admissible.

76
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theory
�� ��name imports �

��
��

�keywords

�
�

�
�uses

�
�

begin
�� ��

imports

imports
�� �� name�

�
�
�

keywords

keywords
�� �� string�

�
�
�

�
�::

����name tags

�
�

�

� and
�� ��

�

�
uses

uses
�� �� name�

�parname

�
�

�

�

�

�
theory A imports B1 . . . Bn begin starts a new theory A based on the

merge of existing theories B1 . . . Bn . Due to the possibility to import
more than one ancestor, the resulting theory structure of an Isabelle
session forms a directed acyclic graph (DAG). Isabelle takes care that
sources contributing to the development graph are always up-to-date:
changed files are automatically rechecked whenever a theory header
specification is processed.

The optional keywords specification declares outer syntax (chapter 3)
that is introduced in this theory later on (rare in end-user applications).
Both minor keywords and major keywords of the Isar command lan-
guage need to be specified, in order to make parsing of proof documents
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work properly. Command keywords need to be classified according to
their structural role in the formal text. Examples may be seen in
Isabelle/HOL sources itself, such as keywords "typedef" :: thy goal
or keywords "datatype" :: thy decl for theory-level declarations with
and without proof, respectively. Additional tags provide defaults for
document preparation (§4.3).

The optional uses specification declares additional dependencies on
external files (notably ML sources). Files will be loaded immediately
(as ML), unless the name is parenthesized. The latter case records a
dependency that needs to be resolved later in the text, usually via ex-
plicit use for ML files; other file formats require specific load commands
defined by the corresponding tools or packages.

end concludes the current theory definition. Note that some other com-
mands, e.g. local theory targets locale or class may involve a begin
that needs to be matched by end, according to the usual rules for
nested blocks.

5.2 Local theory targets

context : theory → local theory
end : local theory → theory

A local theory target is a context managed separately within the enclosing
theory. Contexts may introduce parameters (fixed variables) and assump-
tions (hypotheses). Definitions and theorems depending on the context may
be added incrementally later on.

Named contexts refer to locales (cf. §5.6) or type classes (cf. §5.7); the name
“−” signifies the global theory context.

Unnamed contexts may introduce additional parameters and assumptions,
and results produced in the context are generalized accordingly. Such
auxiliary contexts may be nested within other targets, like locale, class,
instantiation, overloading.

context
�� ��nameref begin

�� ��
context

�� ���
�includes

�
�

�
�context elem

�
�

begin
�� ��



CHAPTER 5. SPECIFICATIONS 79

target

(
����in

����nameref )
����

context c begin opens a named context, by recommencing an existing
locale or class c. Note that locale and class definitions allow to in-
clude the begin keyword as well, in order to continue the local theory
immediately after the initial specification.

context bundles elements begin opens an unnamed context, by extend-
ing the enclosing global or local theory target by the given declaration
bundles (§5.3) and context elements (fixes, assumes etc.). This means
any results stemming from definitions and proofs in the extended con-
text will be exported into the enclosing target by lifting over extra
parameters and premises.

end concludes the current local theory, according to the nesting of contexts.
Note that a global end has a different meaning: it concludes the theory
itself (§5.1).

(in c) given after any local theory command specifies an immediate target,
e.g. “definition (in c) . . .” or “theorem (in c) . . .”. This works both
in a local or global theory context; the current target context will be
suspended for this command only. Note that “(in −)” will always
produce a global result independently of the current target context.

The exact meaning of results produced within a local theory context de-
pends on the underlying target infrastructure (locale, type class etc.). The
general idea is as follows, considering a context named c with parameter x
and assumption A[x ].

Definitions are exported by introducing a global version with additional argu-
ments; a syntactic abbreviation links the long form with the abstract version
of the target context. For example, a ≡ t [x ] becomes c.a ?x ≡ t [?x ] at the
theory level (for arbitrary ?x ), together with a local abbreviation c ≡ c.a x
in the target context (for the fixed parameter x ).

Theorems are exported by discharging the assumptions and generalizing the
parameters of the context. For example, a: B [x ] becomes c.a: A[?x ] =⇒
B [?x ], again for arbitrary ?x.

The Isabelle/HOL library contains numerous applications of locales and
classes, e.g. see ~~/src/HOL/Algebra. An example for an unnamed auxiliary
contexts is given in ~~/src/HOL/Isar_Examples/Group_Context.thy.



CHAPTER 5. SPECIFICATIONS 80

5.3 Bundled declarations

bundle : local theory → local theory
print bundles∗ : context →

include : proof (state) → proof (state)
including : proof (prove) → proof (prove)
includes : syntax

The outer syntax of fact expressions (§3.2.7) involves theorems and at-
tributes, which are evaluated in the context and applied to it. Attributes
may declare theorems to the context, as in this rule [intro] that rule [elim]
for example. Configuration options (§9.1) are special declaration attributes
that operate on the context without a theorem, as in [[show types = false]]
for example.

Expressions of this form may be defined as bundled declarations in the con-
text, and included in other situations later on. Including declaration bundles
augments a local context casually without logical dependencies, which is in
contrast to locales and locale interpretation (§5.6).

bundle
�� ���

�target

�
�

�

��
�name =

����thmrefs �
�for

�� �� vars�
�and

�� ��
�
�

�
�

include
�� ���

�including
�� ��

�
�

nameref�
�

�
�

includes

includes
�� �� nameref�

�
�
�
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bundle b = decls defines a bundle of declarations in the current context.
The RHS is similar to the one of the declare command. Bundles de-
fined in local theory targets are subject to transformations via mor-
phisms, when moved into different application contexts; this works
analogously to any other local theory specification.

print bundles prints the named bundles that are available in the current
context.

include b1 . . . bn includes the declarations from the given bundles into the
current proof body context. This is analogous to note (§6.2.3) with
the expanded bundles.

including is similar to include, but works in proof refinement (backward
mode). This is analogous to using (§6.2.3) with the expanded bundles.

includes b1 . . . bn is similar to include, but works in situations where
a specification context is constructed, notably for context and long
statements of theorem etc.

Here is an artificial example of bundling various configuration options:

bundle trace = [[simp trace, blast trace, linarith trace, metis trace, smt trace]]

lemma x = x
including trace by metis

5.4 Basic specification elements

axiomatization : theory → theory (axiomatic!)
definition : local theory → local theory

defn : attribute
abbreviation : local theory → local theory

print abbrevs∗ : context →

These specification mechanisms provide a slightly more abstract view than
the underlying primitives of consts, defs (see §5.10.3), and axioms (see
§5.11). In particular, type-inference is commonly available, and result names
need not be given.

axiomatization
�� ���

�fixes

�
�

�
�where

�� ��specs

�
�
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definition
�� ���

�target

�
�

�

��
��

�decl where
�� ��

�
�

�
�thmdecl

�
�

prop

abbreviation
�� ���

�target

�
�

�
�mode

�
�

�

��
��

�decl where
�� ��

�
�

prop

fixes

name �
�::

����type

�
�

�
�mixfix

�
�

�

�vars

�

�

�

� and
�� ��

�

�
specs

�
�thmdecl

�
�

props�

� and
�� ��

�

�
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decl

name �
�::

����type

�
�

�
�mixfix

�
�

axiomatization c1 . . . cm where ϕ1 . . . ϕn introduces several constants
simultaneously and states axiomatic properties for these. The constants
are marked as being specified once and for all, which prevents additional
specifications being issued later on.

Note that axiomatic specifications are only appropriate when declar-
ing a new logical system; axiomatic specifications are restricted to
global theory contexts. Normal applications should only use defini-
tional mechanisms!

definition c where eq produces an internal definition c ≡ t according to
the specification given as eq, which is then turned into a proven fact.
The given proposition may deviate from internal meta-level equality
according to the rewrite rules declared as defn by the object-logic.
This usually covers object-level equality x = y and equivalence A ↔
B. End-users normally need not change the defn setup.

Definitions may be presented with explicit arguments on the LHS, as
well as additional conditions, e.g. f x y = t instead of f ≡ λx y . t and
y 6= 0 =⇒ g x y = u instead of an unrestricted g ≡ λx y . u.

abbreviation c where eq introduces a syntactic constant which is associ-
ated with a certain term according to the meta-level equality eq.

Abbreviations participate in the usual type-inference process, but are
expanded before the logic ever sees them. Pretty printing of terms in-
volves higher-order rewriting with rules stemming from reverted abbre-
viations. This needs some care to avoid overlapping or looping syntactic
replacements!

The optional mode specification restricts output to a particular print
mode; using “input” here achieves the effect of one-way abbreviations.
The mode may also include an “output” qualifier that affects the con-
crete syntax declared for abbreviations, cf. syntax in §7.5.

print abbrevs prints all constant abbreviations of the current context.
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5.5 Generic declarations

declaration : local theory → local theory
syntax declaration : local theory → local theory

declare : local theory → local theory

Arbitrary operations on the background context may be wrapped-up as
generic declaration elements. Since the underlying concept of local theories
may be subject to later re-interpretation, there is an additional dependency
on a morphism that tells the difference of the original declaration context
wrt. the application context encountered later on. A fact declaration is an
important special case: it consists of a theorem which is applied to the context
by means of an attribute.

declaration
�� ���

�syntax declaration
�� ��

�
�

�
� (

����pervasive
�� ��)

����
�
�

�

��
��

�target

�
�

text

declare
�� ���

�target

�
�

thmrefs�
� and

�� ��
�
�

declaration d adds the declaration function d of ML type declaration,
to the current local theory under construction. In later application
contexts, the function is transformed according to the morphisms being
involved in the interpretation hierarchy.

If the (pervasive) option is given, the corresponding declaration is ap-
plied to all possible contexts involved, including the global background
theory.

syntax declaration is similar to declaration, but is meant to affect only
“syntactic” tools by convention (such as notation and type-checking
information).
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declare thms declares theorems to the current local theory context. No
theorem binding is involved here, unlike theorems or lemmas (cf.
§5.11), so declare only has the effect of applying attributes as included
in the theorem specification.

5.6 Locales

Locales are parametric named local contexts, consisting of a list of declaration
elements that are modeled after the Isar proof context commands (cf. §6.2.1).

5.6.1 Locale expressions

A locale expression denotes a structured context composed of instances of
existing locales. The context consists of a list of instances of declaration
elements from the locales. Two locale instances are equal if they are of
the same locale and the parameters are instantiated with equivalent terms.
Declaration elements from equal instances are never repeated, thus avoiding
duplicate declarations.

locale expr

instance�
� +

����
�
�

�
�for

�� �� fixes�
� and

�� ��
�
�

�
�

instance

�
�qualifier :

����
�
�

nameref pos insts�
�named insts

�
�

qualifier

name �
� ?

�����
� !

����
�
�

�
�
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pos insts

�
� _

�����
�term

�
�

�
�

named insts

where
�� �� name =

����term�
� and

�� ��
�
�

A locale instance consists of a reference to a locale and either positional or
named parameter instantiations. Identical instantiations (that is, those that
instante a parameter by itself) may be omitted. The notation ‘ ’ enables to
omit the instantiation for a parameter inside a positional instantiation.

Terms in instantiations are from the context the locale expressions is declared
in. Local names may be added to this context with the optional for clause.
In addition, syntax declarations from one instance are effective when parsing
subsequent instances of the same expression.

Instances have an optional qualifier which applies to names in declarations.
Names include local definitions and theorem names. If present, the qualifier
itself is either optional (“?”), which means that it may be omitted on input
of the qualified name, or mandatory (“!”). If neither “?” nor “!” are present,
the command’s default is used. For interpretation and interpret the de-
fault is “mandatory”, for locale and sublocale the default is “optional”.

5.6.2 Locale declarations

locale : theory → local theory
print locale∗ : context →

print locales∗ : context →
intro locales : method

unfold locales : method

locale
�� ��name �

� =
����locale

�
�

�
�begin

�� ��
�
�
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print locale
�� ���

� !
����

�
�

nameref

locale

context elem�
�

�
�

�

�locale expr �
� +

���� context elem�
�

�
�

�
�

�

�

context elem

fixes
�� �� fixes�

� and
�� ��

�
�

�

�constrains
�� �� name ::

����type�
� and

�� ��
�
�

�assumes
�� �� props�

� and
�� ��

�
�

�defines
�� �� �

�thmdecl

�
�

prop �
�prop pat

�
�

�

� and
�� ��

�

�
�notes

�� �� �
�thmdef

�
�

thmrefs�

� and
�� ��

�

�

�

�

�

�

�
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locale loc = import + body defines a new locale loc as a context consisting
of a certain view of existing locales (import) plus some additional ele-
ments (body). Both import and body are optional; the degenerate form
locale loc defines an empty locale, which may still be useful to collect
declarations of facts later on. Type-inference on locale expressions au-
tomatically takes care of the most general typing that the combined
context elements may acquire.

The import consists of a structured locale expression; see §6.2.1 above.
Its for clause defines the local parameters of the import. In addition,
locale parameters whose instantance is omitted automatically extend
the (possibly empty) for clause: they are inserted at its beginning. This
means that these parameters may be referred to from within the ex-
pression and also in the subsequent context elements and provides a
notational convenience for the inheritance of parameters in locale dec-
larations.

The body consists of context elements.

fixes x :: τ (mx ) declares a local parameter of type τ and mixfix
annotation mx (both are optional). The special syntax declaration
“(structure)” means that x may be referenced implicitly in this
context.

constrains x :: τ introduces a type constraint τ on the local param-
eter x. This element is deprecated. The type constraint should be
introduced in the for clause or the relevant fixes element.

assumes a: ϕ1 . . . ϕn introduces local premises, similar to assume
within a proof (cf. §6.2.1).

defines a: x ≡ t defines a previously declared parameter. This is
similar to def within a proof (cf. §6.2.1), but defines takes an
equational proposition instead of variable-term pair. The left-
hand side of the equation may have additional arguments, e.g.
“defines f x 1 . . . xn ≡ t”.

notes a = b1 . . . bn reconsiders facts within a local context. Most
notably, this may include arbitrary declarations in any attribute
specifications included here, e.g. a local simp rule.

The initial import specification of a locale expression maintains a
dynamic relation to the locales being referenced (benefiting from
any later fact declarations in the obvious manner).

Note that “(is p1 . . . pn)” patterns given in the syntax of assumes and



CHAPTER 5. SPECIFICATIONS 89

defines above are illegal in locale definitions. In the long goal format
of §6.2.4, term bindings may be included as expected, though.

Locale specifications are “closed up” by turning the given text into a
predicate definition loc axioms and deriving the original assumptions
as local lemmas (modulo local definitions). The predicate statement
covers only the newly specified assumptions, omitting the content of
included locale expressions. The full cumulative view is only provided
on export, involving another predicate loc that refers to the complete
specification text.

In any case, the predicate arguments are those locale parameters that
actually occur in the respective piece of text. Also note that these
predicates operate at the meta-level in theory, but the locale packages
attempts to internalize statements according to the object-logic setup
(e.g. replacing

∧
by ∀ , and =⇒ by −→ in HOL; see also §9.5). Separate

introduction rules loc axioms .intro and loc.intro are provided as well.

print locale locale prints the contents of the named locale. The command
omits notes elements by default. Use print locale! to have them
included.

print locales prints the names of all locales of the current theory.

intro locales and unfold locales repeatedly expand all introduction rules of
locale predicates of the theory. While intro locales only applies the
loc.intro introduction rules and therefore does not decend to assump-
tions, unfold locales is more aggressive and applies loc axioms .intro as
well. Both methods are aware of locale specifications entailed by the
context, both from target statements, and from interpretations (see be-
low). New goals that are entailed by the current context are discharged
automatically.

5.6.3 Locale interpretations

interpretation : theory → proof (prove)
interpret : proof (state) | proof (chain) → proof (prove)
sublocale : theory → proof (prove)

print dependencies∗ : context →
print interps∗ : context →
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Locale expressions may be instantiated, and the instantiated facts added to
the current context. This requires a proof of the instantiated specification and
is called locale interpretation. Interpretation is possible in locales sublocale,
theories (command interpretation) and also within a proof body (command
interpret).

interpretation
�� ��locale expr �

�equations

�
�

interpret
�� ��locale expr �

�equations

�
�

sublocale
�� ��nameref <

�����
�⊆

����
�
�

locale expr �

��
��

�equations

�
�

print dependencies
�� ���

� !
����

�
�

locale expr

print interps
�� ��nameref

equations

where
�� �� �

�thmdecl

�
�

prop�

� and
�� ��

�

�
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interpretation expr where eqns interprets expr in the theory. The com-
mand generates proof obligations for the instantiated specifications (as-
sumes and defines elements). Once these are discharged by the user,
instantiated facts are added to the theory in a post-processing phase.

Additional equations, which are unfolded during post-processing, may
be given after the keyword where. This is useful for interpreting con-
cepts introduced through definitions. The equations must be proved.

The command is aware of interpretations already active in the the-
ory, but does not simplify the goal automatically. In order to simplify
the proof obligations use methods intro locales or unfold locales . Post-
processing is not applied to facts of interpretations that are already
active. This avoids duplication of interpreted facts, in particular. Note
that, in the case of a locale with import, parts of the interpretation
may already be active. The command will only process facts for new
parts.

Adding facts to locales has the effect of adding interpreted facts to the
theory for all interpretations as well. That is, interpretations dynam-
ically participate in any facts added to locales. Note that if a theory
inherits additional facts for a locale through one parent and an inter-
pretation of that locale through another parent, the additional facts
will not be interpreted.

interpret expr where eqns interprets expr in the proof context and is
otherwise similar to interpretation in theories. Note that rewrite rules
given to interpret after the where keyword should be explicitly uni-
versally quantified.

sublocale name ⊆ expr where eqns interprets expr in the locale name.
A proof that the specification of name implies the specification of expr
is required. As in the localized version of the theorem command, the
proof is in the context of name. After the proof obligation has been
discharged, the facts of expr become part of locale name as derived
context elements and are available when the context name is subse-
quently entered. Note that, like import, this is dynamic: facts added
to a locale part of expr after interpretation become also available in
name.

Only specification fragments of expr that are not already part of name
(be it imported, derived or a derived fragment of the import) are con-
sidered in this process. This enables circular interpretations provided
that no infinite chains are generated in the locale hierarchy.
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If interpretations of name exist in the current theory, the command
adds interpretations for expr as well, with the same qualifier, although
only for fragments of expr that are not interpreted in the theory already.

Equations given after where amend the morphism through which expr
is interpreted. This enables to map definitions from the interpreted
locales to entities of name. This feature is experimental.

print dependencies expr is useful for understanding the effect of an inter-
pretation of expr. It lists all locale instances for which interpretations
would be added to the current context. Variant print dependencies!
prints all locale instances that would be considered for interpretation,
and would be interpreted in an empty context (that is, without inter-
pretations).

print interps locale lists all interpretations of locale in the current the-
ory or proof context, including those due to a combination of a
interpretation or interpret and one or several sublocale declara-
tions.

! Since attributes are applied to interpreted theorems, interpretation may modify
the context of common proof tools, e.g. the Simplifier or Classical Reasoner. As

the behavior of such tools is not stable under interpretation morphisms, manual
declarations might have to be added to the target context of the interpretation to
revert such declarations.

! An interpretation in a theory or proof context may subsume previous interpre-
tations. This happens if the same specification fragment is interpreted twice

and the instantiation of the second interpretation is more general than the inter-
pretation of the first. The locale package does not attempt to remove subsumed
interpretations.

5.7 Classes

class : theory → local theory
instantiation : theory → local theory

instance : local theory → local theory
instance : theory → proof (prove)
subclass : local theory → local theory

print classes∗ : context →
class deps∗ : context →
intro classes : method
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A class is a particular locale with exactly one type variable α. Beyond the
underlying locale, a corresponding type class is established which is inter-
preted logically as axiomatic type class [44] whose logical content are the
assumptions of the locale. Thus, classes provide the full generality of locales
combined with the commodity of type classes (notably type-inference). See
[14] for a short tutorial.

class
�� ��class spec �

�begin
�� ��

�
�

class spec

name =
���� nameref +

���� context elem�
�

�
�

�

�nameref

� context elem�
�

�
�

�

�
�

instantiation
�� �� nameref�

� and
�� ��

�
�

::
����arity begin

�� ��

instance
�� ���

� nameref�
� and

�� ��
�
�

::
����arity

�nameref <
�����

�⊆
����

�
�

nameref

�
�

�
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subclass
�� ���

�target

�
�

nameref

class c = superclasses + body defines a new class c, inheriting from su-
perclasses. This introduces a locale c with import of all locales super-
classes.

Any fixes in body are lifted to the global theory level (class opera-
tions f 1, . . ., f n of class c), mapping the local type parameter α to a
schematic type variable ?α :: c.

Likewise, assumes in body are also lifted, mapping each local parame-
ter f :: τ [α] to its corresponding global constant f :: τ [?α :: c]. The cor-
responding introduction rule is provided as c class axioms .intro. This
rule should be rarely needed directly — the intro classes method takes
care of the details of class membership proofs.

instantiation t :: (s1, . . ., sn)s begin opens a theory target (cf. §5.2)
which allows to specify class operations f 1, . . ., f n corresponding to
sort s at the particular type instance (α1 :: s1, . . ., αn :: sn) t. A plain
instance command in the target body poses a goal stating these type
arities. The target is concluded by an end command.

Note that a list of simultaneous type constructors may be given;
this corresponds nicely to mutually recursive type definitions, e.g. in
Isabelle/HOL.

instance in an instantiation target body sets up a goal stating the type
arities claimed at the opening instantiation. The proof would usually
proceed by intro classes , and then establish the characteristic theorems
of the type classes involved. After finishing the proof, the background
theory will be augmented by the proven type arities.

On the theory level, instance t :: (s1, . . ., sn)s provides a convenient
way to instantiate a type class with no need to specify operations: one
can continue with the instantiation proof immediately.

subclass c in a class context for class d sets up a goal stating that class c is
logically contained in class d. After finishing the proof, class d is proven
to be subclass c and the locale c is interpreted into d simultaneously.

A weakend form of this is available through a further variant of
instance: instance c1 ⊆ c2 opens a proof that class c2 implies c1
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without reference to the underlying locales; this is useful if the proper-
ties to prove the logical connection are not sufficent on the locale level
but on the theory level.

print classes prints all classes in the current theory.

class deps visualizes all classes and their subclass relations as a Hasse
diagram.

intro classes repeatedly expands all class introduction rules of this theory.
Note that this method usually needs not be named explicitly, as it is
already included in the default proof step (e.g. of proof). In particular,
instantiation of trivial (syntactic) classes may be performed by a single
“..” proof step.

5.7.1 The class target

A named context may refer to a locale (cf. §5.2). If this locale is also a class
c, apart from the common locale target behaviour the following happens.

• Local constant declarations g [α] referring to the local type parameter
α and local parameters f [α] are accompanied by theory-level constants
g [?α :: c] referring to theory-level class operations f [?α :: c].

• Local theorem bindings are lifted as are assumptions.

• Local syntax refers to local operations g [α] and global operations g [?α
:: c] uniformly. Type inference resolves ambiguities. In rare cases,
manual type annotations are needed.

5.7.2 Co-regularity of type classes and arities

The class relation together with the collection of type-constructor arities
must obey the principle of co-regularity as defined below.

For the subsequent formulation of co-regularity we assume that the class
relation is closed by transitivity and reflexivity. Moreover the collection of
arities t :: (s)c is completed such that t :: (s)c and c ⊆ c ′ implies t :: (s)c ′

for all such declarations.
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Treating sorts as finite sets of classes (meaning the intersection), the class
relation c1 ⊆ c2 is extended to sorts as follows:

s1 ⊆ s2 ≡ ∀ c2 ∈ s2. ∃ c1 ∈ s1. c1 ⊆ c2

This relation on sorts is further extended to tuples of sorts (of the same
length) in the component-wise way.

Co-regularity of the class relation together with the arities relation means:

t :: (s1)c1 =⇒ t :: (s2)c2 =⇒ c1 ⊆ c2 =⇒ s1 ⊆ s2

for all such arities. In other words, whenever the result classes of some type-
constructor arities are related, then the argument sorts need to be related in
the same way.

Co-regularity is a very fundamental property of the order-sorted algebra of
types. For example, it entails principle types and most general unifiers, e.g.
see [27].

5.8 Unrestricted overloading

overloading : theory → local theory

Isabelle/Pure’s definitional schemes support certain forms of overloading (see
§5.10.3). Overloading means that a constant being declared as c :: α decl
may be defined separately on type instances c :: (β1, . . ., βn) t decl for
each type constructor t. At most occassions overloading will be used in a
Haskell-like fashion together with type classes by means of instantiation
(see §5.7). Sometimes low-level overloading is desirable. The overloading
target provides a convenient view for end-users.

overloading
�� �� spec�

�
�
�

begin
�� ��

spec

name ==
�����

�≡
����

�
�

term �
� (

����unchecked
�� ��)

����
�
�
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overloading x 1 ≡ c1 :: τ 1 and . . . xn ≡ cn :: τn begin opens a theory tar-
get (cf. §5.2) which allows to specify constants with overloaded defini-
tions. These are identified by an explicitly given mapping from variable
names x i to constants ci at particular type instances. The definitions
themselves are established using common specification tools, using the
names x i as reference to the corresponding constants. The target is
concluded by end.

A (unchecked) option disables global dependency checks for the corre-
sponding definition, which is occasionally useful for exotic overloading
(see §5.10.3 for a precise description). It is at the discretion of the user
to avoid malformed theory specifications!

5.9 Incorporating ML code

use : local theory → local theory
ML : local theory → local theory

ML prf : proof → proof
ML val : any →

ML command : any →
setup : theory → theory

local setup : local theory → local theory
attribute setup : theory → theory

use
�� ��name

ML
�� ���

�ML prf
�� ���ML val
�� ���ML command
�� ���setup
�� ���local setup
�� ��

�
�
�
�
�
�

text
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attribute setup
�� ��name =

����text �
�text

�
�

use file reads and executes ML commands from file. The current theory
context is passed down to the ML toplevel and may be modified, using
Context.>> or derived ML commands. The file name is checked with
the uses dependency declaration given in the theory header (see also
§5.1).

Top-level ML bindings are stored within the (global or local) theory
context.

ML text is similar to use, but executes ML commands directly from the
given text. Top-level ML bindings are stored within the (global or local)
theory context.

ML prf is analogous to ML but works within a proof context.

Top-level ML bindings are stored within the proof context in a purely
sequential fashion, disregarding the nested proof structure. ML bind-
ings introduced by ML prf are discarded at the end of the proof.

ML val and ML command are diagnostic versions of ML, which means
that the context may not be updated. ML val echos the bindings
produced at the ML toplevel, but ML command is silent.

setup text changes the current theory context by applying text, which refers
to an ML expression of type theory -> theory. This enables to ini-
tialize any object-logic specific tools and packages written in ML, for
example.

local setup is similar to setup for a local theory context, and an ML
expression of type local_theory -> local_theory. This allows to
invoke local theory specification packages without going through con-
crete outer syntax, for example.

attribute setup name = text description defines an attribute in the cur-
rent theory. The given text has to be an ML expression of type
attribute context_parser, cf. basic parsers defined in structure
Args and Attrib.

In principle, attributes can operate both on a given theorem and the
implicit context, although in practice only one is modified and the other
serves as parameter. Here are examples for these two cases:
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attribute setup my_rule = {*

Attrib.thms >> (fn ths =>

Thm.rule_attribute

(fn context: Context.generic => fn th: thm =>

let val th’ = th OF ths

in th’ end)) *}

attribute setup my_declaration = {*

Attrib.thms >> (fn ths =>

Thm.declaration_attribute

(fn th: thm => fn context: Context.generic =>

let val context’ = context

in context’ end)) *}

5.10 Primitive specification elements

5.10.1 Type classes and sorts

classes : theory → theory
classrel : theory → theory (axiomatic!)

default sort : local theory → local theory

classes
�� �� classdecl�

�
�
�

classrel
�� �� nameref <

�����
�⊆

����
�
�

nameref�

� and
�� ��

�

�
default sort

�� ��sort

classes c ⊆ c1, . . ., cn declares class c to be a subclass of existing classes
c1, . . ., cn . Isabelle implicitly maintains the transitive closure of the
class hierarchy. Cyclic class structures are not permitted.
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classrel c1 ⊆ c2 states subclass relations between existing classes c1 and
c2. This is done axiomatically! The subclass and instance commands
(see §5.7) provide a way to introduce proven class relations.

default sort s makes sort s the new default sort for any type variable
that is given explicitly in the text, but lacks a sort constraint (wrt. the
current context). Type variables generated by type inference are not
affected.

Usually the default sort is only changed when defining a new object-
logic. For example, the default sort in Isabelle/HOL is type, the class
of all HOL types.

When merging theories, the default sorts of the parents are logically
intersected, i.e. the representations as lists of classes are joined.

5.10.2 Types and type abbreviations

type synonym : local theory → local theory
typedecl : local theory → local theory

arities : theory → theory (axiomatic!)

type synonym
�� ��typespec =

����type �
�mixfix

�
�

typedecl
�� ��typespec �

�mixfix

�
�

arities
�� �� nameref ::

����arity�
�

�
�

type synonym (α1, . . ., αn) t = τ introduces a type synonym (α1, . . ., αn)
t for the existing type τ . Unlike actual type definitions, as are available
in Isabelle/HOL for example, type synonyms are merely syntactic ab-
breviations without any logical significance. Internally, type synonyms
are fully expanded.
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typedecl (α1, . . ., αn) t declares a new type constructor t. If the object-
logic defines a base sort s, then the constructor is declared to operate
on that, via the axiomatic specification arities t :: (s , . . ., s)s.

arities t :: (s1, . . ., sn)s augments Isabelle’s order-sorted signature of
types by new type constructor arities. This is done axiomatically! The
instantiation target (see §5.7) provides a way to introduce proven
type arities.

5.10.3 Constants and definitions

consts : theory → theory
defs : theory → theory

Definitions essentially express abbreviations within the logic. The simplest
form of a definition is c :: σ ≡ t, where c is a newly declared constant.
Isabelle also allows derived forms where the arguments of c appear on the
left, abbreviating a prefix of λ-abstractions, e.g. c ≡ λx y . t may be written
more conveniently as c x y ≡ t. Moreover, definitions may be weakened by
adding arbitrary pre-conditions: A =⇒ c x y ≡ t.

The built-in well-formedness conditions for definitional specifications are:

• Arguments (on the left-hand side) must be distinct variables.

• All variables on the right-hand side must also appear on the left-hand
side.

• All type variables on the right-hand side must also appear on the left-
hand side; this prohibits 0 :: nat ≡ length ([] :: α list) for example.

• The definition must not be recursive. Most object-logics provide defi-
nitional principles that can be used to express recursion safely.

The right-hand side of overloaded definitions may mention overloaded con-
stants recursively at type instances corresponding to the immediate argument
types β1, . . ., βn . Incomplete specification patterns impose global constraints
on all occurrences, e.g. d :: α × α on the left-hand side means that all corre-
sponding occurrences on some right-hand side need to be an instance of this,
general d :: α × β will be disallowed.
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consts
�� �� name ::

����type �
�mixfix

�
�

�

�

�

�
defs

�� ���
�opt

�
�

axmdecl prop�
�

�
�

opt

(
�����

�unchecked
�� ��

�
�

�
�overloaded

�� ��
�
�

)
����

consts c :: σ declares constant c to have any instance of type scheme σ.
The optional mixfix annotations may attach concrete syntax to the
constants declared.

defs name: eqn introduces eqn as a definitional axiom for some existing
constant.

The (unchecked) option disables global dependency checks for this def-
inition, which is occasionally useful for exotic overloading. It is at the
discretion of the user to avoid malformed theory specifications!

The (overloaded) option declares definitions to be potentially over-
loaded. Unless this option is given, a warning message would be issued
for any definitional equation with a more special type than that of the
corresponding constant declaration.

5.11 Axioms and theorems

axioms : theory → theory (axiomatic!)
lemmas : local theory → local theory

theorems : local theory → local theory
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axioms
�� �� axmdecl prop�

�
�
�

lemmas
�� ���

�theorems
�� ��

�
�

�
�target

�
�

�

��
� �

�thmdef

�
�

thmrefs�

� and
�� ��

�

�

�
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�� ��
�
�

�
�

axioms a: ϕ introduces arbitrary statements as axioms of the meta-logic.
In fact, axioms are “axiomatic theorems”, and may be referred later
just as any other theorem.

Axioms are usually only introduced when declaring new logical systems.
Everyday work is typically done the hard way, with proper definitions
and proven theorems.

lemmas a = b1 . . . bn for x 1 . . . xm evaluates given facts (with attributes)
in the current context, which may be augmented by local variables.
Results are standardized before being stored, i.e. schematic variables
are renamed to enforce index 0 uniformly.

theorems is the same as lemmas, but marks the result as a different kind
of facts.

5.12 Oracles

oracle : theory → theory (axiomatic!)

Oracles allow Isabelle to take advantage of external reasoners such as arith-
metic decision procedures, model checkers, fast tautology checkers or com-
puter algebra systems. Invoked as an oracle, an external reasoner can create
arbitrary Isabelle theorems.
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It is the responsibility of the user to ensure that the external reasoner is as
trustworthy as the application requires. Another typical source of errors is
the linkup between Isabelle and the external tool, not just its concrete im-
plementation, but also the required translation between two different logical
environments.

Isabelle merely guarantees well-formedness of the propositions being asserted,
and records within the internal derivation object how presumed theorems
depend on unproven suppositions.

oracle
�� ��name =

����text

oracle name = text turns the given ML expression text of type
’a -> cterm into an ML function of type ’a -> thm, which is bound
to the global identifier name. This acts like an infinitary specification of
axioms! Invoking the oracle only works within the scope of the resulting
theory.

See ~~/src/HOL/ex/Iff_Oracle.thy for a worked example of defining a new
primitive rule as oracle, and turning it into a proof method.

5.13 Name spaces

hide class : theory → theory
hide type : theory → theory

hide const : theory → theory
hide fact : theory → theory

hide class�
�hide type

�hide const

�hide fact

�
�
�
�

�
� (

����open
�� ��)

����
�
�

nameref�
�

�
�

Isabelle organizes any kind of name declarations (of types, constants, theo-
rems etc.) by separate hierarchically structured name spaces. Normally the
user does not have to control the behavior of name spaces by hand, yet the
following commands provide some way to do so.
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hide class names fully removes class declarations from a given name space;
with the (open) option, only the base name is hidden.

Note that hiding name space accesses has no impact on logical dec-
larations — they remain valid internally. Entities that are no longer
accessible to the user are printed with the special qualifier “??” prefixed
to the full internal name.

hide type, hide const, and hide fact are similar to hide class, but hide
types, constants, and facts, respectively.



Chapter 6

Proofs

Proof commands perform transitions of Isar/VM machine configurations,
which are block-structured, consisting of a stack of nodes with three main
components: logical proof context, current facts, and open goals. Isar/VM
transitions are typed according to the following three different modes of op-
eration:

proof (prove) means that a new goal has just been stated that is now to be
proven; the next command may refine it by some proof method, and
enter a sub-proof to establish the actual result.

proof (state) is like a nested theory mode: the context may be augmented
by stating additional assumptions, intermediate results etc.

proof (chain) is intermediate between proof (state) and proof (prove): exist-
ing facts (i.e. the contents of the special “this” register) have been just
picked up in order to be used when refining the goal claimed next.

The proof mode indicator may be understood as an instruction to the writer,
telling what kind of operation may be performed next. The corresponding
typings of proof commands restricts the shape of well-formed proof texts
to particular command sequences. So dynamic arrangements of commands
eventually turn out as static texts of a certain structure.

Appendix A gives a simplified grammar of the (extensible) language emerging
that way from the different types of proof commands. The main ideas of the
overall Isar framework are explained in chapter 2.

6.1 Proof structure

6.1.1 Formal notepad

notepad : local theory → proof (state)

106
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notepad
�� ��begin

�� ��
end

�� ��
notepad begin opens a proof state without any goal statement. This allows

to experiment with Isar, without producing any persistent result.

The notepad can be closed by end or discontinued by oops.

6.1.2 Blocks

next : proof (state) → proof (state)
{ : proof (state) → proof (state)
} : proof (state) → proof (state)

While Isar is inherently block-structured, opening and closing blocks is
mostly handled rather casually, with little explicit user-intervention. Any lo-
cal goal statement automatically opens two internal blocks, which are closed
again when concluding the sub-proof (by qed etc.). Sections of different
context within a sub-proof may be switched via next, which is just a single
block-close followed by block-open again. The effect of next is to reset the
local proof context; there is no goal focus involved here!

For slightly more advanced applications, there are explicit block parentheses
as well. These typically achieve a stronger forward style of reasoning.

next switches to a fresh block within a sub-proof, resetting the local context
to the initial one.

{ and } explicitly open and close blocks. Any current facts pass through “{”
unchanged, while “}” causes any result to be exported into the enclosing
context. Thus fixed variables are generalized, assumptions discharged,
and local definitions unfolded (cf. §6.2.1). There is no difference of
assume and presume in this mode of forward reasoning — in contrast
to plain backward reasoning with the result exported at show time.
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6.1.3 Omitting proofs

oops : proof → local theory | theory

The oops command discontinues the current proof attempt, while consider-
ing the partial proof text as properly processed. This is conceptually quite
different from “faking” actual proofs via sorry (see §6.3.2): oops does not
observe the proof structure at all, but goes back right to the theory level. Fur-
thermore, oops does not produce any result theorem — there is no intended
claim to be able to complete the proof in any way.

A typical application of oops is to explain Isar proofs within the system itself,
in conjunction with the document preparation tools of Isabelle described in
chapter 4. Thus partial or even wrong proof attempts can be discussed in a
logically sound manner. Note that the Isabelle LATEX macros can be easily
adapted to print something like “. . .” instead of the keyword “oops”.

6.2 Statements

6.2.1 Context elements

fix : proof (state) → proof (state)
assume : proof (state) → proof (state)

presume : proof (state) → proof (state)
def : proof (state) → proof (state)

The logical proof context consists of fixed variables and assumptions. The
former closely correspond to Skolem constants, or meta-level universal quan-
tification as provided by the Isabelle/Pure logical framework. Introducing
some arbitrary, but fixed variable via “fix x” results in a local value that may
be used in the subsequent proof as any other variable or constant. Further-
more, any result ` ϕ[x ] exported from the context will be universally closed
wrt. x at the outermost level: `

∧
x . ϕ[x ] (this is expressed in normal form

using Isabelle’s meta-variables).

Similarly, introducing some assumption χ has two effects. On the one hand, a
local theorem is created that may be used as a fact in subsequent proof steps.
On the other hand, any result χ ` ϕ exported from the context becomes
conditional wrt. the assumption: ` χ =⇒ ϕ. Thus, solving an enclosing
goal using such a result would basically introduce a new subgoal stemming
from the assumption. How this situation is handled depends on the version
of assumption command used: while assume insists on solving the subgoal
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by unification with some premise of the goal, presume leaves the subgoal
unchanged in order to be proved later by the user.

Local definitions, introduced by “def x ≡ t”, are achieved by combining
“fix x” with another version of assumption that causes any hypothetical
equation x ≡ t to be eliminated by the reflexivity rule. Thus, exporting
some result x ≡ t ` ϕ[x ] yields ` ϕ[t ].

fix
�� �� vars�

�and
�� ��

�
�

assume
�� ���

�presume
�� ��

�
�

props�
� and

�� ��
�
�

def
�� �� def�

�and
�� ��

�
�

def

�
�thmdecl

�
�

�

��
�name ==

�����
�≡

����
�
�

term �
�term pat

�
�

fix x introduces a local variable x that is arbitrary, but fixed.

assume a: ϕ and presume a: ϕ introduce a local fact ϕ ` ϕ by assumption.
Subsequent results applied to an enclosing goal (e.g. by show) are
handled as follows: assume expects to be able to unify with existing
premises in the goal, while presume leaves ϕ as new subgoals.

Several lists of assumptions may be given (separated by and; the re-
sulting list of current facts consists of all of these concatenated.



CHAPTER 6. PROOFS 110

def x ≡ t introduces a local (non-polymorphic) definition. In results ex-
ported from the context, x is replaced by t. Basically, “def x ≡ t”
abbreviates “fix x assume x ≡ t”, with the resulting hypothetical
equation solved by reflexivity.

The default name for the definitional equation is x def. Several simul-
taneous definitions may be given at the same time.

The special name prems refers to all assumptions of the current context as
a list of theorems. This feature should be used with great care! It is better
avoided in final proof texts.

6.2.2 Term abbreviations

let : proof (state) → proof (state)
is : syntax

Abbreviations may be either bound by explicit let p ≡ t statements, or by
annotating assumptions or goal statements with a list of patterns “(is p1 . . .
pn)”. In both cases, higher-order matching is invoked to bind extra-logical
term variables, which may be either named schematic variables of the form
?x, or nameless dummies “ ” (underscore). Note that in the let form the
patterns occur on the left-hand side, while the is patterns are in postfix
position.

Polymorphism of term bindings is handled in Hindley-Milner style, similar to
ML. Type variables referring to local assumptions or open goal statements are
fixed, while those of finished results or bound by let may occur in arbitrary
instances later. Even though actual polymorphism should be rarely used
in practice, this mechanism is essential to achieve proper incremental type-
inference, as the user proceeds to build up the Isar proof text from left to
right.

Term abbreviations are quite different from local definitions as introduced
via def (see §6.2.1). The latter are visible within the logic as actual equa-
tions, while abbreviations disappear during the input process just after type
checking. Also note that def does not support polymorphism.

let
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� and
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The syntax of is patterns follows term pat or prop pat (see §3.2.6).

let p1 = t1 and . . . pn = tn binds any text variables in patterns p1, . . ., pn

by simultaneous higher-order matching against terms t1, . . ., tn .

(is p1 . . . pn) resembles let, but matches p1, . . ., pn against the preceding
statement. Also note that is is not a separate command, but part of
others (such as assume, have etc.).

Some implicit term abbreviations for goals and facts are available as well. For
any open goal, thesis refers to its object-level statement, abstracted over any
meta-level parameters (if present). Likewise, this is bound for fact statements
resulting from assumptions or finished goals. In case this refers to an object-
logic statement that is an application f t, then t is bound to the special text
variable “. . .” (three dots). The canonical application of this convenience are
calculational proofs (see §6.5).

6.2.3 Facts and forward chaining

note : proof (state) → proof (state)
then : proof (state) → proof (chain)
from : proof (state) → proof (chain)
with : proof (state) → proof (chain)

using : proof (prove) → proof (prove)
unfolding : proof (prove) → proof (prove)

New facts are established either by assumption or proof of local statements.
Any fact will usually be involved in further proofs, either as explicit argu-
ments of proof methods, or when forward chaining towards the next goal via
then (and variants); from and with are composite forms involving note.
The using elements augments the collection of used facts after a goal has
been stated. Note that the special theorem name this refers to the most
recently established facts, but only before issuing a follow-up claim.

note
�� �� �

�thmdef

�
�

thmrefs�

� and
�� ��

�

�



CHAPTER 6. PROOFS 112

from
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�with
�� ���using
�� ���unfolding
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note a = b1 . . . bn recalls existing facts b1, . . ., bn , binding the result as
a. Note that attributes may be involved as well, both on the left and
right hand sides.

then indicates forward chaining by the current facts in order to establish
the goal to be claimed next. The initial proof method invoked to refine
that will be offered the facts to do “anything appropriate” (see also
§6.3.2). For example, method rule (see §6.3.3) would typically do an
elimination rather than an introduction. Automatic methods usually
insert the facts into the goal state before operation. This provides a
simple scheme to control relevance of facts in automated proof search.

from b abbreviates “note b then”; thus then is equivalent to “from this”.

with b1 . . . bn abbreviates “from b1 . . . bn and this”; thus the forward
chaining is from earlier facts together with the current ones.

using b1 . . . bn augments the facts being currently indicated for use by a
subsequent refinement step (such as apply or proof).

unfolding b1 . . . bn is structurally similar to using, but unfolds definitional
equations b1, . . . bn throughout the goal state and facts.

Forward chaining with an empty list of theorems is the same as not chaining
at all. Thus “from nothing” has no effect apart from entering prove(chain)
mode, since nothing is bound to the empty list of theorems.

Basic proof methods (such as rule) expect multiple facts to be given in their
proper order, corresponding to a prefix of the premises of the rule involved.
Note that positions may be easily skipped using something like from and
a and b, for example. This involves the trivial rule PROP ψ =⇒ PROP ψ,
which is bound in Isabelle/Pure as “ ” (underscore).

Automated methods (such as simp or auto) just insert any given facts before
their usual operation. Depending on the kind of procedure involved, the
order of facts is less significant here.
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6.2.4 Goals

lemma : local theory → proof (prove)
theorem : local theory → proof (prove)
corollary : local theory → proof (prove)

schematic lemma : local theory → proof (prove)
schematic theorem : local theory → proof (prove)
schematic corollary : local theory → proof (prove)

have : proof (state) | proof (chain) → proof (prove)
show : proof (state) | proof (chain) → proof (prove)

hence : proof (state) → proof (prove)
thus : proof (state) → proof (prove)

print statement∗ : context →

From a theory context, proof mode is entered by an initial goal command
such as lemma, theorem, or corollary. Within a proof, new claims may
be introduced locally as well; four variants are available here to indicate
whether forward chaining of facts should be performed initially (via then),
and whether the final result is meant to solve some pending goal.

Goals may consist of multiple statements, resulting in a list of facts eventu-
ally. A pending multi-goal is internally represented as a meta-level conjunc-
tion (&&&), which is usually split into the corresponding number of sub-goals
prior to an initial method application, via proof (§6.3.2) or apply (§6.3.4).
The induct method covered in §6.6 acts on multiple claims simultaneously.

Claims at the theory level may be either in short or long form. A short goal
merely consists of several simultaneous propositions (often just one). A long
goal includes an explicit context specification for the subsequent conclusion,
involving local parameters and assumptions. Here the role of each part of
the statement is explicitly marked by separate keywords (see also §5.6); the
local assumptions being introduced here are available as assms in the proof.
Moreover, there are two kinds of conclusions: shows states several simul-
taneous propositions (essentially a big conjunction), while obtains claims
several simultaneous simultaneous contexts of (essentially a big disjunction
of eliminated parameters and assumptions, cf. §6.4).
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conclusion
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lemma a: ϕ enters proof mode with ϕ as main goal, eventually resulting
in some fact ` ϕ to be put back into the target context. An additional
context specification may build up an initial proof context for the sub-
sequent claim; this includes local definitions and syntax as well, see also
includes in §5.3 and context elem in §5.6.

theorem a: ϕ and corollary a: ϕ are essentially the same as lemma a: ϕ,
but the facts are internally marked as being of a different kind. This
discrimination acts like a formal comment.

schematic lemma, schematic theorem, schematic corollary are sim-
ilar to lemma, theorem, corollary, respectively but allow the state-
ment to contain unbound schematic variables.

Under normal circumstances, an Isar proof text needs to specify claims
explicitly. Schematic goals are more like goals in Prolog, where certain
results are synthesized in the course of reasoning. With schematic state-
ments, the inherent compositionality of Isar proofs is lost, which also
impacts performance, because proof checking is forced into sequential
mode.

have a: ϕ claims a local goal, eventually resulting in a fact within the
current logical context. This operation is completely independent of
any pending sub-goals of an enclosing goal statements, so have may
be freely used for experimental exploration of potential results within
a proof body.
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show a: ϕ is like have a: ϕ plus a second stage to refine some pending
sub-goal for each one of the finished result, after having been exported
into the corresponding context (at the head of the sub-proof of this
show command).

To accommodate interactive debugging, resulting rules are printed be-
fore being applied internally. Even more, interactive execution of show
predicts potential failure and displays the resulting error as a warning
beforehand. Watch out for the following message:

Problem! Local statement will fail to solve any pending goal

hence abbreviates “then have”, i.e. claims a local goal to be proven by
forward chaining the current facts. Note that hence is also equivalent
to “from this have”.

thus abbreviates “then show”. Note that thus is also equivalent to
“from this show”.

print statement a prints facts from the current theory or proof context in
long statement form, according to the syntax for lemma given above.

Any goal statement causes some term abbreviations (such as ?thesis) to be
bound automatically, see also §6.2.2.

The optional case names of obtains have a twofold meaning: (1) during the
of this claim they refer to the the local context introductions, (2) the resulting
rule is annotated accordingly to support symbolic case splits when used with
the cases method (cf. §6.6).

6.3 Refinement steps

6.3.1 Proof method expressions

Proof methods are either basic ones, or expressions composed of methods
via “,” (sequential composition), “|” (alternative choices), “?” (try), “+”
(repeat at least once), “[n]” (restriction to first n sub-goals, with default
n = 1). In practice, proof methods are usually just a comma separated list
of nameref args specifications. Note that parentheses may be dropped for
single method specifications (with no arguments).
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Proper Isar proof methods do not admit arbitrary goal addressing, but refer
either to the first sub-goal or all sub-goals uniformly. The goal restriction
operator “[n]” evaluates a method expression within a sandbox consisting
of the first n sub-goals (which need to exist). For example, the method
“simp all [3]” simplifies the first three sub-goals, while “(rule foo, simp all)[]”
simplifies all new goals that emerge from applying rule foo to the originally
first one.

Improper methods, notably tactic emulations, offer a separate low-level goal
addressing scheme as explicit argument to the individual tactic being in-
volved. Here “[!]” refers to all goals, and “[n−]” to all goals starting from
n.
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6.3.2 Initial and terminal proof steps

proof : proof (prove) → proof (state)
qed : proof (state) → proof (state) | local theory | theory
by : proof (prove) → proof (state) | local theory | theory
.. : proof (prove) → proof (state) | local theory | theory
. : proof (prove) → proof (state) | local theory | theory

sorry : proof (prove) → proof (state) | local theory | theory

Arbitrary goal refinement via tactics is considered harmful. Structured proof
composition in Isar admits proof methods to be invoked in two places only.

1. An initial refinement step proof m1 reduces a newly stated goal to a
number of sub-goals that are to be solved later. Facts are passed to m1

for forward chaining, if so indicated by proof (chain) mode.

2. A terminal conclusion step qed m2 is intended to solve remaining goals.
No facts are passed to m2.

The only other (proper) way to affect pending goals in a proof body is by
show, which involves an explicit statement of what is to be solved eventually.
Thus we avoid the fundamental problem of unstructured tactic scripts that
consist of numerous consecutive goal transformations, with invisible effects.

As a general rule of thumb for good proof style, initial proof methods should
either solve the goal completely, or constitute some well-understood reduction
to new sub-goals. Arbitrary automatic proof tools that are prone leave a
large number of badly structured sub-goals are no help in continuing the
proof document in an intelligible manner.
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Unless given explicitly by the user, the default initial method is rule (or its
classical variant rule), which applies a single standard elimination or intro-
duction rule according to the topmost symbol involved. There is no separate
default terminal method. Any remaining goals are always solved by assump-
tion in the very last step.
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proof m1 refines the goal by proof method m1; facts for forward chaining
are passed if so indicated by proof (chain) mode.

qed m2 refines any remaining goals by proof method m2 and concludes
the sub-proof by assumption. If the goal had been show (or thus),
some pending sub-goal is solved as well by the rule resulting from the
result exported into the enclosing goal context. Thus qed may fail for
two reasons: either m2 fails, or the resulting rule does not fit to any
pending goal1 of the enclosing context. Debugging such a situation
might involve temporarily changing show into have, or weakening the
local context by replacing occurrences of assume by presume.

1This includes any additional “strong” assumptions as introduced by assume.
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by m1 m2 is a terminal proof ; it abbreviates proof m1 qed m2, but with
backtracking across both methods. Debugging an unsuccessful by m1

m2 command can be done by expanding its definition; in many cases
proof m1 (or even apply m1) is already sufficient to see the problem.

“..” is a default proof ; it abbreviates by rule.

“.” is a trivial proof ; it abbreviates by this.

sorry is a fake proof pretending to solve the pending claim without
further ado. This only works in interactive development, or if the
quick_and_dirty flag is enabled (in ML). Facts emerging from fake
proofs are not the real thing. Internally, each theorem container is
tainted by an oracle invocation, which is indicated as “[!]” in the printed
result.

The most important application of sorry is to support experimentation
and top-down proof development.

6.3.3 Fundamental methods and attributes

The following proof methods and attributes refer to basic logical operations
of Isar. Further methods and attributes are provided by several generic and
object-logic specific tools and packages (see chapter 9 and chapter 10).

− : method
fact : method

assumption : method
this : method
rule : method

intro : attribute
elim : attribute
dest : attribute
rule : attribute

OF : attribute
of : attribute

where : attribute

fact
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“−” (minus) does nothing but insert the forward chaining facts as premises
into the goal. Note that command proof without any method actually
performs a single reduction step using the rule method; thus a plain
do-nothing proof step would be “proof −” rather than proof alone.

fact a1 . . . an composes some fact from a1, . . ., an (or implicitly from the
current proof context) modulo unification of schematic type and term
variables. The rule structure is not taken into account, i.e. meta-level
implication is considered atomic. This is the same principle underlying
literal facts (cf. §3.2.7): “have ϕ by fact” is equivalent to “note ‘ϕ‘”
provided that ` ϕ is an instance of some known ` ϕ in the proof
context.

assumption solves some goal by a single assumption step. All given facts
are guaranteed to participate in the refinement; this means there may
be only 0 or 1 in the first place. Recall that qed (§6.3.2) already
concludes any remaining sub-goals by assumption, so structured proofs
usually need not quote the assumption method at all.

this applies all of the current facts directly as rules. Recall that “.” (dot)
abbreviates “by this”.

rule a1 . . . an applies some rule given as argument in backward manner;
facts are used to reduce the rule before applying it to the goal. Thus
rule without facts is plain introduction, while with facts it becomes
elimination.

When no arguments are given, the rule method tries to pick appropriate
rules automatically, as declared in the current context using the intro,
elim, dest attributes (see below). This is the default behavior of proof
and “..” (double-dot) steps (see §6.3.2).
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intro, elim, and dest declare introduction, elimination, and destruct rules,
to be used with method rule, and similar tools. Note that the latter will
ignore rules declared with “?”, while “!” are used most aggressively.

The classical reasoner (see §9.4) introduces its own variants of these
attributes; use qualified names to access the present versions of
Isabelle/Pure, i.e. Pure.intro.

rule del undeclares introduction, elimination, or destruct rules.

OF a1 . . . an applies some theorem to all of the given rules a1, . . ., an

in canonical right-to-left order, which means that premises stemming
from the a i emerge in parallel in the result, without interfering with
each other. In many practical situations, the a i do not have premises
themselves, so rule [OF a1 . . . an ] can be actually read as functional
application (modulo unification).

Argument positions may be effectively skipped by using “ ” (under-
score), which refers to the propositional identity rule in the Pure the-
ory.

of t1 . . . tn performs positional instantiation of term variables. The terms
t1, . . ., tn are substituted for any schematic variables occurring in a
theorem from left to right; “ ” (underscore) indicates to skip a position.
Arguments following a “concl :” specification refer to positions of the
conclusion of a rule.

where x 1 = t1 and . . . xn = tn performs named instantiation of schematic
type and term variables occurring in a theorem. Schematic variables
have to be specified on the left-hand side (e.g. ?x1.3). The question
mark may be omitted if the variable name is a plain identifier without
index. As type instantiations are inferred from term instantiations,
explicit type instantiations are seldom necessary.

6.3.4 Emulating tactic scripts

The Isar provides separate commands to accommodate tactic-style proof
scripts within the same system. While being outside the orthodox Isar proof
language, these might come in handy for interactive exploration and debug-
ging, or even actual tactical proof within new-style theories (to benefit from
document preparation, for example). See also §9.2.3 for actual tactics, that
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have been encapsulated as proof methods. Proper proof methods may be
used in scripts, too.

apply∗ : proof (prove) → proof (prove)
apply end∗ : proof (state) → proof (state)

done∗ : proof (prove) → proof (state) | local theory | theory
defer∗ : proof → proof

prefer∗ : proof → proof
back∗ : proof → proof

apply
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apply m applies proof method m in initial position, but unlike proof it
retains “proof (prove)” mode. Thus consecutive method applications
may be given just as in tactic scripts.

Facts are passed to m as indicated by the goal’s forward-chain mode,
and are consumed afterwards. Thus any further apply command would
always work in a purely backward manner.

apply end m applies proof method m as if in terminal position. Basically,
this simulates a multi-step tactic script for qed, but may be given
anywhere within the proof body.

No facts are passed to m here. Furthermore, the static context is that of
the enclosing goal (as for actual qed). Thus the proof method may not
refer to any assumptions introduced in the current body, for example.

done completes a proof script, provided that the current goal state is solved
completely. Note that actual structured proof commands (e.g. “.” or
sorry) may be used to conclude proof scripts as well.
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defer n and prefer n shuffle the list of pending goals: defer puts off sub-
goal n to the end of the list (n = 1 by default), while prefer brings
sub-goal n to the front.

back does back-tracking over the result sequence of the latest proof com-
mand. Basically, any proof command may return multiple results.

Any proper Isar proof method may be used with tactic script commands such
as apply. A few additional emulations of actual tactics are provided as well;
these would be never used in actual structured proofs, of course.

6.3.5 Defining proof methods

method setup : theory → theory

method setup
�� ��name =

����text �
�text

�
�

method setup name = text description defines a proof method in the
current theory. The given text has to be an ML expression of
type (Proof.context -> Proof.method) context_parser, cf. basic
parsers defined in structure Args and Attrib. There are also combina-
tors like METHOD and SIMPLE_METHOD to turn certain tactic forms into
official proof methods; the primed versions refer to tactics with explicit
goal addressing.

Here are some example method definitions:

method setup my_method1 = {*

Scan.succeed (K (SIMPLE_METHOD’ (fn i: int => no_tac)))

*} "my first method (without any arguments)"

method setup my_method2 = {*

Scan.succeed (fn ctxt: Proof.context =>

SIMPLE_METHOD’ (fn i: int => no_tac))

*} "my second method (with context)"

method setup my_method3 = {*

Attrib.thms >> (fn thms: thm list => fn ctxt: Proof.context =>

SIMPLE_METHOD’ (fn i: int => no_tac))

*} "my third method (with theorem arguments and context)"
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6.4 Generalized elimination

obtain : proof (state) | proof (chain) → proof (prove)
guess∗ : proof (state) | proof (chain) → proof (prove)

Generalized elimination means that additional elements with certain proper-
ties may be introduced in the current context, by virtue of a locally proven
“soundness statement”. Technically speaking, the obtain language element
is like a declaration of fix and assume (see also see §6.2.1), together with
a soundness proof of its additional claim. According to the nature of exis-
tential reasoning, assumptions get eliminated from any result exported from
the context later, provided that the corresponding parameters do not occur
in the conclusion.
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The derived Isar command obtain is defined as follows (where b1, . . ., bk

shall refer to (optional) facts indicated for forward chaining).

〈using b1 . . . bk〉 obtain x 1 . . . xm where a: ϕ1 . . . ϕn 〈proof 〉 ≡
have

∧
thesis . (

∧
x 1 . . . xm . ϕ1 =⇒ . . . ϕn =⇒ thesis) =⇒ thesis

proof succeed
fix thesis
assume that [Pure.intro? ]:

∧
x 1 . . . xm . ϕ1 =⇒ . . . ϕn =⇒ thesis

then show thesis
apply −
using b1 . . . bk 〈proof 〉

qed
fix x 1 . . . xm assume∗ a: ϕ1 . . . ϕn

Typically, the soundness proof is relatively straight-forward, often just by
canonical automated tools such as “by simp” or “by blast”. Accordingly,
the “that” reduction above is declared as simplification and introduction rule.
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In a sense, obtain represents at the level of Isar proofs what would be meta-
logical existential quantifiers and conjunctions. This concept has a broad
range of useful applications, ranging from plain elimination (or introduction)
of object-level existential and conjunctions, to elimination over results of
symbolic evaluation of recursive definitions, for example. Also note that
obtain without parameters acts much like have, where the result is treated
as a genuine assumption.

An alternative name to be used instead of “that” above may be given in
parentheses.

The improper variant guess is similar to obtain, but derives the obtained
statement from the course of reasoning! The proof starts with a fixed goal
thesis. The subsequent proof may refine this to anything of the form like∧

x 1 . . . xm . ϕ1 =⇒ . . . ϕn =⇒ thesis, but must not introduce new subgoals.
The final goal state is then used as reduction rule for the obtain scheme
described above. Obtained parameters x 1, . . ., xm are marked as internal
by default, which prevents the proof context from being polluted by ad-hoc
variables. The variable names and type constraints given as arguments for
guess specify a prefix of obtained parameters explicitly in the text.

It is important to note that the facts introduced by obtain and guess may
not be polymorphic: any type-variables occurring here are fixed in the present
context!

6.5 Calculational reasoning

also : proof (state) → proof (state)
finally : proof (state) → proof (chain)

moreover : proof (state) → proof (state)
ultimately : proof (state) → proof (chain)

print trans rules∗ : context →
trans : attribute
sym : attribute

symmetric : attribute

Calculational proof is forward reasoning with implicit application of transi-
tivity rules (such those of =, ≤, <). Isabelle/Isar maintains an auxiliary fact
register calculation for accumulating results obtained by transitivity com-
posed with the current result. Command also updates calculation involving
this , while finally exhibits the final calculation by forward chaining towards
the next goal statement. Both commands require valid current facts, i.e. may
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occur only after commands that produce theorems such as assume, note,
or some finished proof of have, show etc. The moreover and ultimately
commands are similar to also and finally, but only collect further results in
calculation without applying any rules yet.

Also note that the implicit term abbreviation “. . .” has its canonical appli-
cation with calculational proofs. It refers to the argument of the preceding
statement. (The argument of a curried infix expression happens to be its
right-hand side.)

Isabelle/Isar calculations are implicitly subject to block structure in the sense
that new threads of calculational reasoning are commenced for any new block
(as opened by a local goal, for example). This means that, apart from being
able to nest calculations, there is no separate begin-calculation command
required.

The Isar calculation proof commands may be defined as follows:2

also0 ≡ note calculation = this
alson+1 ≡ note calculation = trans [OF calculation this ]

finally ≡ also from calculation

moreover ≡ note calculation = calculation this
ultimately ≡ moreover from calculation

also
�� ���

�finally
�� ��

�
�

�
� (

����thmrefs )
����

�
�

trans
�� ���

�add
�� ���del
�� ��

�
�
�

also (a1 . . . an) maintains the auxiliary calculation register as follows.
The first occurrence of also in some calculational thread initializes
calculation by this . Any subsequent also on the same level of block-
structure updates calculation by some transitivity rule applied to
calculation and this (in that order). Transitivity rules are picked from

2We suppress internal bookkeeping such as proper handling of block-structure.
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the current context, unless alternative rules are given as explicit argu-
ments.

finally (a1 . . . an) maintaining calculation in the same way as also, and con-
cludes the current calculational thread. The final result is exhibited as
fact for forward chaining towards the next goal. Basically, finally just
abbreviates also from calculation. Typical idioms for concluding cal-
culational proofs are “finally show ?thesis .” and “finally have ϕ .”.

moreover and ultimately are analogous to also and finally, but collect
results only, without applying rules.

print trans rules prints the list of transitivity rules (for calculational com-
mands also and finally) and symmetry rules (for the symmetric oper-
ation and single step elimination patters) of the current context.

trans declares theorems as transitivity rules.

sym declares symmetry rules, as well as Pure.elim? rules.

symmetric resolves a theorem with some rule declared as sym in the cur-
rent context. For example, “assume [symmetric]: x = y” produces a
swapped fact derived from that assumption.

In structured proof texts it is often more appropriate to use an explicit
single-step elimination proof, such as “assume x = y then have y =
x ..”.

6.6 Proof by cases and induction

6.6.1 Rule contexts

case : proof (state) → proof (state)
print cases∗ : context →

case names : attribute
case conclusion : attribute

params : attribute
consumes : attribute

The puristic way to build up Isar proof contexts is by explicit language
elements like fix, assume, let (see §6.2.1). This is adequate for plain natural
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deduction, but easily becomes unwieldy in concrete verification tasks, which
typically involve big induction rules with several cases.

The case command provides a shorthand to refer to a local context symbol-
ically: certain proof methods provide an environment of named “cases” of
the form c: x 1, . . ., xm , ϕ1, . . ., ϕn ; the effect of “case c” is then equivalent
to “fix x 1 . . . xm assume c: ϕ1 . . . ϕn”. Term bindings may be covered as
well, notably ?case for the main conclusion.

By default, the “terminology” x 1, . . ., xm of a case value is marked as hidden,
i.e. there is no way to refer to such parameters in the subsequent proof text.
After all, original rule parameters stem from somewhere outside of the current
proof text. By using the explicit form “case (c y1 . . . ym)” instead, the proof
author is able to chose local names that fit nicely into the current context.

It is important to note that proper use of case does not provide means to peek
at the current goal state, which is not directly observable in Isar! Nonetheless,
goal refinement commands do provide named cases goal i for each subgoal i
= 1, . . ., n of the resulting goal state. Using this extra feature requires
great care, because some bits of the internal tactical machinery intrude the
proof text. In particular, parameter names stemming from the left-over of
automated reasoning tools are usually quite unpredictable.

Under normal circumstances, the text of cases emerge from standard elim-
ination or induction rules, which in turn are derived from previous theory
specifications in a canonical way (say from inductive definitions).

Proper cases are only available if both the proof method and the rules in-
volved support this. By using appropriate attributes, case names, conclu-
sions, and parameters may be also declared by hand. Thus variant versions
of rules that have been derived manually become ready to use in advanced
case analysis later.

case
�� �� caseref�

� (
����caseref _

�����
�name

�
�

�

�

�

�

)
����

�
�
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caseref
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�
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case_conclusion

�� ��name �
�name

�
�

params
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�

�
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case (c x 1 . . . xm) invokes a named local context c: x 1, . . ., xm , ϕ1, . . .,
ϕm , as provided by an appropriate proof method (such as cases and
induct). The command “case (c x 1 . . . xm)” abbreviates “fix x 1 . . .
xm assume c: ϕ1 . . . ϕn”.

print cases prints all local contexts of the current state, using Isar proof
language notation.
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case names c1 . . . ck declares names for the local contexts of premises of a
theorem; c1, . . ., ck refers to the prefix of the list of premises. Each of
the cases ci can be of the form c[h1 . . . hn ] where the h1 . . . hn are the
names of the hypotheses in case ci from left to right.

case conclusion c d1 . . . d k declares names for the conclusions of a named
premise c; here d1, . . ., d k refers to the prefix of arguments of a logical
formula built by nesting a binary connective (e.g. ∨).

Note that proof methods such as induct and coinduct already provide
a default name for the conclusion as a whole. The need to name sub-
formulas only arises with cases that split into several sub-cases, as in
common co-induction rules.

params p1 . . . pm and . . . q1 . . . qn renames the innermost parameters of
premises 1, . . ., n of some theorem. An empty list of names may be
given to skip positions, leaving the present parameters unchanged.

Note that the default usage of case rules does not directly expose pa-
rameters to the proof context.

consumes n declares the number of “major premises” of a rule, i.e. the num-
ber of facts to be consumed when it is applied by an appropriate proof
method. The default value of consumes is n = 1, which is appropriate
for the usual kind of cases and induction rules for inductive sets (cf.
§10.2). Rules without any consumes declaration given are treated as if
consumes 0 had been specified.

Note that explicit consumes declarations are only rarely needed; this is
already taken care of automatically by the higher-level cases , induct ,
and coinduct declarations.

6.6.2 Proof methods

cases : method
induct : method

induction : method
coinduct : method

The cases , induct , induction, and coinduct methods provide a uniform in-
terface to common proof techniques over datatypes, inductive predicates (or
sets), recursive functions etc. The corresponding rules may be specified and
instantiated in a casual manner. Furthermore, these methods provide named
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local contexts that may be invoked via the case proof command within the
subsequent proof text. This accommodates compact proof texts even when
reasoning about large specifications.

The induct method also provides some additional infrastructure in order to
be applicable to structure statements (either using explicit meta-level connec-
tives, or including facts and parameters separately). This avoids cumbersome
encoding of “strengthened” inductive statements within the object-logic.

Method induction differs from induct only in the names of the facts in the
local context invoked by the case command.
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rule
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cases insts R applies method rule with an appropriate case distinction theo-
rem, instantiated to the subjects insts. Symbolic case names are bound
according to the rule’s local contexts.
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The rule is determined as follows, according to the facts and arguments
passed to the cases method:

facts arguments rule
cases classical case split
cases t datatype exhaustion (type of t)

` A t cases . . . inductive predicate/set elimination (of A)
. . . cases . . . rule: R explicit rule R

Several instantiations may be given, referring to the suffix of premises of
the case rule; within each premise, the prefix of variables is instantiated.
In most situations, only a single term needs to be specified; this refers
to the first variable of the last premise (it is usually the same for all
cases). The (no simp) option can be used to disable pre-simplification
of cases (see the description of induct below for details).

induct insts R and induction insts R are analogous to the cases method,
but refer to induction rules, which are determined as follows:

facts arguments rule
induct P x datatype induction (type of x )

` A x induct . . . predicate/set induction (of A)
. . . induct . . . rule: R explicit rule R

Several instantiations may be given, each referring to some part of a
mutual inductive definition or datatype — only related partial induc-
tion rules may be used together, though. Any of the lists of terms
P , x , . . . refers to the suffix of variables present in the induction rule.
This enables the writer to specify only induction variables, or both
predicates and variables, for example.

Instantiations may be definitional: equations x ≡ t introduce local defi-
nitions, which are inserted into the claim and discharged after applying
the induction rule. Equalities reappear in the inductive cases, but have
been transformed according to the induction principle being involved
here. In order to achieve practically useful induction hypotheses, some
variables occurring in t need to be fixed (see below). Instantiations of
the form t, where t is not a variable, are taken as a shorthand for x ≡ t ,
where x is a fresh variable. If this is not intended, t has to be enclosed
in parentheses. By default, the equalities generated by definitional
instantiations are pre-simplified using a specific set of rules, usually
consisting of distinctness and injectivity theorems for datatypes. This
pre-simplification may cause some of the parameters of an inductive
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case to disappear, or may even completely delete some of the induc-
tive cases, if one of the equalities occurring in their premises can be
simplified to False. The (no simp) option can be used to disable pre-
simplification. Additional rules to be used in pre-simplification can be
declared using the induct simp attribute.

The optional “arbitrary : x 1 . . . xm” specification generalizes variables
x 1, . . ., xm of the original goal before applying induction. One can
separate variables by “and” to generalize them in other goals then the
first. Thus induction hypotheses may become sufficiently general to get
the proof through. Together with definitional instantiations, one may
effectively perform induction over expressions of a certain structure.

The optional “taking : t1 . . . tn” specification provides additional in-
stantiations of a prefix of pending variables in the rule. Such schematic
induction rules rarely occur in practice, though.

coinduct inst R is analogous to the induct method, but refers to coinduction
rules, which are determined as follows:

goal arguments rule
coinduct x type coinduction (type of x )

A x coinduct . . . predicate/set coinduction (of A)
. . . coinduct . . . rule: R explicit rule R

Coinduction is the dual of induction. Induction essentially eliminates A
x towards a generic result P x, while coinduction introduces A x starting
with B x, for a suitable “bisimulation” B. The cases of a coinduct rule
are typically named after the predicates or sets being covered, while
the conclusions consist of several alternatives being named after the
individual destructor patterns.

The given instantiation refers to the suffix of variables occurring in
the rule’s major premise, or conclusion if unavailable. An additional
“taking : t1 . . . tn” specification may be required in order to specify the
bisimulation to be used in the coinduction step.

Above methods produce named local contexts, as determined by the instanti-
ated rule as given in the text. Beyond that, the induct and coinduct methods
guess further instantiations from the goal specification itself. Any persisting
unresolved schematic variables of the resulting rule will render the the cor-
responding case invalid. The term binding ?case for the conclusion will be
provided with each case, provided that term is fully specified.
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The print cases command prints all named cases present in the current
proof state.

Despite the additional infrastructure, both cases and coinduct merely apply
a certain rule, after instantiation, while conforming due to the usual way of
monotonic natural deduction: the context of a structured statement

∧
x 1 . . .

xm . ϕ1 =⇒ . . . ϕn =⇒ . . . reappears unchanged after the case split.

The induct method is fundamentally different in this respect: the meta-level
structure is passed through the “recursive” course involved in the induc-
tion. Thus the original statement is basically replaced by separate copies,
corresponding to the induction hypotheses and conclusion; the original goal
context is no longer available. Thus local assumptions, fixed parameters and
definitions effectively participate in the inductive rephrasing of the original
statement.

In induct proofs, local assumptions introduced by cases are split into two dif-
ferent kinds: hyps stemming from the rule and prems from the goal statement.
This is reflected in the extracted cases accordingly, so invoking “case c” will
provide separate facts c.hyps and c.prems, as well as fact c to hold the all-
inclusive list.

In induction proofs, local assumptions introduced by cases are split into three
different kinds: IH, the induction hypotheses, hyps, the remaining hypotheses
stemming from the rule, and prems, the assumptions from the goal statement.
The names are c.IH, c.hyps and c.prems, as above.

Facts presented to either method are consumed according to the number of
“major premises” of the rule involved, which is usually 0 for plain cases and
induction rules of datatypes etc. and 1 for rules of inductive predicates or
sets and the like. The remaining facts are inserted into the goal verbatim
before the actual cases, induct, or coinduct rule is applied.

6.6.3 Declaring rules

print induct rules∗ : context →
cases : attribute

induct : attribute
coinduct : attribute

cases
�� ��spec

induct
�� ��spec
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coinduct
�� ��spec

spec

type
�� ���
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:
����nameref�

�del
�� ��

�

�
print induct rules prints cases and induct rules for predicates (or sets)

and types of the current context.

cases , induct , and coinduct (as attributes) declare rules for reasoning about
(co)inductive predicates (or sets) and types, using the corresponding
methods of the same name. Certain definitional packages of object-
logics usually declare emerging cases and induction rules as expected,
so users rarely need to intervene.

Rules may be deleted via the del specification, which covers all of the
type/pred/set sub-categories simultaneously. For example, cases del
removes any cases rules declared for some type, predicate, or set.

Manual rule declarations usually refer to the case names and params
attributes to adjust names of cases and parameters of a rule; the
consumes declaration is taken care of automatically: consumes 0 is
specified for “type” rules and consumes 1 for “predicate” / “set” rules.



Chapter 7

Inner syntax — the term
language

The inner syntax of Isabelle provides concrete notation for the main enti-
ties of the logical framework, notably λ-terms with types and type classes.
Applications may either extend existing syntactic categories by additional
notation, or define new sub-languages that are linked to the standard term
language via some explicit markers. For example FOO foo could embed the
syntax corresponding for some user-defined nonterminal foo — within the
bounds of the given lexical syntax of Isabelle/Pure.

The most basic way to specify concrete syntax for logical entities works via
mixfix annotations (§7.2), which may be usually given as part of the original
declaration or via explicit notation commands later on (§7.3). This already
covers many needs of concrete syntax without having to understand the full
complexity of inner syntax layers.

Further details of the syntax engine involves the classical distinction of lexical
language versus context-free grammar (see §7.4), and various mechanisms for
syntax translations — either as rewrite systems on first-order ASTs (§7.5) or
ML functions on ASTs or λ-terms that represent parse trees (§7.6).

7.1 Printing logical entities

7.1.1 Diagnostic commands

typ∗ : context →
term∗ : context →
prop∗ : context →
thm∗ : context →
prf∗ : context →

full prf∗ : context →
pr∗ : any →

139
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These diagnostic commands assist interactive development by printing inter-
nal logical entities in a human-readable fashion.
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typ τ reads and prints types of the meta-logic according to the current
theory or proof context.
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term t and prop ϕ read, type-check and print terms or propositions ac-
cording to the current theory or proof context; the inferred type of t is
output as well. Note that these commands are also useful in inspecting
the current environment of term abbreviations.

thm a1 . . . an retrieves theorems from the current theory or proof context.
Note that any attributes included in the theorem specifications are
applied to a temporary context derived from the current theory or
proof; the result is discarded, i.e. attributes involved in a1, . . ., an do
not have any permanent effect.

prf displays the (compact) proof term of the current proof state (if present),
or of the given theorems. Note that this requires proof terms to be
switched on for the current object logic (see the “Proof terms” section
of the Isabelle reference manual for information on how to do this).

full prf is like prf , but displays the full proof term, i.e. also displays in-
formation omitted in the compact proof term, which is denoted by “ ”
placeholders there.

pr goals prints the current proof state (if present), including current facts
and goals. The optional limit arguments affect the number of goals
to be displayed, which is initially 10. Omitting limit value leaves the
current setting unchanged.

All of the diagnostic commands above admit a list of modes to be specified,
which is appended to the current print mode; see also §7.1.3. Thus the
output behavior may be modified according particular print mode features.
For example, pr (latex xsymbols) would print the current proof state with
mathematical symbols and special characters represented in LATEX source,
according to the Isabelle style [48].

Note that antiquotations (cf. §4.2) provide a more systematic way to include
formal items into the printed text document.
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7.1.2 Details of printed content

show types : attribute default false
show sorts : attribute default false

show consts : attribute default false
show abbrevs : attribute default true

show brackets : attribute default false
names long : attribute default false

names short : attribute default false
names unique : attribute default true

eta contract : attribute default true
goals limit : attribute default 10

show main goal : attribute default false
show hyps : attribute default false
show tags : attribute default false

show question marks : attribute default true

These configuration options control the detail of information that is displayed
for types, terms, theorems, goals etc. See also §9.1.

show types and show sorts control printing of type constraints for term vari-
ables, and sort constraints for type variables. By default, neither of
these are shown in output. If show sorts is enabled, types are always
shown as well.

Note that displaying types and sorts may explain why a polymorphic
inference rule fails to resolve with some goal, or why a rewrite rule does
not apply as expected.

show consts controls printing of types of constants when displaying a goal
state.

Note that the output can be enormous, because polymorphic constants
often occur at several different type instances.

show abbrevs controls folding of constant abbreviations.

show brackets controls bracketing in pretty printed output. If enabled, all
sub-expressions of the pretty printing tree will be parenthesized, even
if this produces malformed term syntax! This crude way of showing the
internal structure of pretty printed entities may occasionally help to
diagnose problems with operator priorities, for example.
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names long , names short , and names unique control the way of printing
fully qualified internal names in external form. See also §4.2 for the
document antiquotation options of the same names.

eta contract controls η-contracted printing of terms.

The η-contraction law asserts (λx . f x ) ≡ f, provided x is not free in
f. It asserts extensionality of functions: f ≡ g if f x ≡ g x for all x.
Higher-order unification frequently puts terms into a fully η-expanded
form. For example, if F has type (τ ⇒ τ) ⇒ τ then its expanded form
is λh. F (λx . h x ).

Enabling eta contract makes Isabelle perform η-contractions before
printing, so that λh. F (λx . h x ) appears simply as F.

Note that the distinction between a term and its η-expanded form occa-
sionally matters. While higher-order resolution and rewriting operate
modulo αβη-conversion, some other tools might look at terms more
discretely.

goals limit controls the maximum number of subgoals to be shown in goal
output.

show main goal controls whether the main result to be proven should be
displayed. This information might be relevant for schematic goals, to
inspect the current claim that has been synthesized so far.

show hyps controls printing of implicit hypotheses of local facts. Normally,
only those hypotheses are displayed that are not covered by the as-
sumptions of the current context: this situation indicates a fault in
some tool being used.

By enabling show hyps , output of all hypotheses can be enforced, which
is occasionally useful for diagnostic purposes.

show tags controls printing of extra annotations within theorems, such as
internal position information, or the case names being attached by the
attribute case names .

Note that the tagged and untagged attributes provide low-level access
to the collection of tags associated with a theorem.

show question marks controls printing of question marks for schematic vari-
ables, such as ?x. Only the leading question mark is affected, the
remaining text is unchanged (including proper markup for schematic
variables that might be relevant for user interfaces).
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7.1.3 Alternative print modes

print_mode_value: unit -> string list

Print_Mode.with_modes: string list -> (’a -> ’b) -> ’a -> ’b

The print mode facility allows to modify various operations for printing.
Commands like typ, term, thm (see §7.1.1) take additional print modes as
optional argument. The underlying ML operations are as follows.

print_mode_value () yields the list of currently active print mode names.
This should be understood as symbolic representation of certain indi-
vidual features for printing (with precedence from left to right).

Print_Mode.with_modes modes f x evaluates f x in an execution context
where the print mode is prepended by the given modes. This provides
a thread-safe way to augment print modes. It is also monotonic in
the set of mode names: it retains the default print mode that certain
user-interfaces might have installed for their proper functioning!

! The old global reference print_mode should never be used directly in appli-
cations. Its main reason for being publicly accessible is to support historic

versions of Proof General.

The pretty printer for inner syntax maintains alternative mixfix productions
for any print mode name invented by the user, say in commands like notation
or abbreviation. Mode names can be arbitrary, but the following ones have
a specific meaning by convention:

• "" (the empty string): default mode; implicitly active as last element
in the list of modes.

• input: dummy print mode that is never active; may be used to specify
notation that is only available for input.

• internal dummy print mode that is never active; used internally in
Isabelle/Pure.

• xsymbols: enable proper mathematical symbols instead of ASCII art.1

1This traditional mode name stems from the “X-Symbol” package for old versions
Proof General with XEmacs, although that package has been superseded by Unicode in
recent years.



CHAPTER 7. INNER SYNTAX — THE TERM LANGUAGE 145

• HTML: additional mode that is active in HTML presentation of Isabelle
theory sources; allows to provide alternative output notation.

• latex: additional mode that is active in LATEX document preparation of
Isabelle theory sources; allows to provide alternative output notation.

7.1.4 Printing limits

Pretty.margin_default: int Unsynchronized.ref

print_depth: int -> unit

These ML functions set limits for pretty printed text.

Pretty.margin_default indicates the global default for the right margin
of the built-in pretty printer, with initial value 76. Note that user-
interfaces typically control margins automatically when resizing win-
dows, or even bypass the formatting engine of Isabelle/ML altogether
and do it within the front end via Isabelle/Scala.

print_depth n limits the printing depth of the ML toplevel pretty printer;
the precise effect depends on the ML compiler and run-time system.
Typically n should be less than 10. Bigger values such as 100–1000 are
useful for debugging.

7.2 Mixfix annotations

Mixfix annotations specify concrete inner syntax of Isabelle types and terms.
Locally fixed parameters in toplevel theorem statements, locale and class
specifications also admit mixfix annotations in a fairly uniform manner. A
mixfix annotation describes describes the concrete syntax, the translation to
abstract syntax, and the pretty printing. Special case annotations provide a
simple means of specifying infix operators and binders.

Isabelle mixfix syntax is inspired by obj [10]. It allows to specify any context-
free priority grammar, which is more general than the fixity declarations of
ML and Prolog.

mixfix

(
����mfix )

����
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The string given as template may include literal text, spacing, blocks, and
arguments (denoted by “ ”); the special symbol “\<index>” (printed as “ı”)
represents an index argument that specifies an implicit structure reference
(see also §5.6). Infix and binder declarations provide common abbreviations
for particular mixfix declarations. So in practice, mixfix templates mostly
degenerate to literal text for concrete syntax, such as “++” for an infix symbol.
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7.2.1 The general mixfix form

In full generality, mixfix declarations work as follows. Suppose a constant c
:: τ 1 ⇒ . . . τn ⇒ τ is annotated by (mixfix [p1, . . ., pn ] p), where mixfix is
a string d0 d1 . . . dn consisting of delimiters that surround argument
positions as indicated by underscores.

Altogether this determines a production for a context-free priority grammar,
where for each argument i the syntactic category is determined by τ i (with
priority pi), and the result category is determined from τ (with priority p).
Priority specifications are optional, with default 0 for arguments and 1000
for the result.2

Since τ may be again a function type, the constant type scheme may have
more argument positions than the mixfix pattern. Printing a nested appli-
cation c t1 . . . tm for m > n works by attaching concrete notation only to
the innermost part, essentially by printing (c t1 . . . tn) . . . tm instead. If a
term has fewer arguments than specified in the mixfix template, the concrete
syntax is ignored.

A mixfix template may also contain additional directives for pretty printing,
notably spaces, blocks, and breaks. The general template format is a sequence
over any of the following entities.

d is a delimiter, namely a non-empty sequence of characters other than the
following special characters:

’ single quote
_ underscore
ı index symbol
( open parenthesis
) close parenthesis
/ slash

’ escapes the special meaning of these meta-characters, producing a literal
version of the following character, unless that is a blank.

A single quote followed by a blank separates delimiters, without affect-
ing printing, but input tokens may have additional white space here.

_ is an argument position, which stands for a certain syntactic category in
the underlying grammar.

2Omitting priorities is prone to syntactic ambiguities unless the delimiter tokens deter-
mine fully bracketed notation, as in if then else fi.
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ı is an indexed argument position; this is the place where implicit structure
arguments can be attached.

s is a non-empty sequence of spaces for printing. This and the following
specifications do not affect parsing at all.

(n opens a pretty printing block. The optional number specifies how much
indentation to add when a line break occurs within the block. If the
parenthesis is not followed by digits, the indentation defaults to 0. A
block specified via (00 is unbreakable.

) closes a pretty printing block.

// forces a line break.

/s allows a line break. Here s stands for the string of spaces (zero or more)
right after the slash. These spaces are printed if the break is not taken.

The general idea of pretty printing with blocks and breaks is also described
in [35]; it goes back to [29].

7.2.2 Infixes

Infix operators are specified by convenient short forms that abbreviate general
mixfix annotations as follows:

(infix "sy" p) 7→ ("(_ sy/ _)" [p + 1, p + 1] p)
(infixl "sy" p) 7→ ("(_ sy/ _)" [p, p + 1] p)
(infixr "sy" p) 7→ ("(_ sy/ _)" [p + 1, p] p)

The mixfix template "(_ sy/ _)" specifies two argument positions; the de-
limiter is preceded by a space and followed by a space or line break; the entire
phrase is a pretty printing block.

The alternative notation op sy is introduced in addition. Thus any infix
operator may be written in prefix form (as in ML), independently of the
number of arguments in the term.

7.2.3 Binders

A binder is a variable-binding construct such as a quantifier. The idea to
formalize ∀ x . b as All (λx . b) for All :: ( ′a ⇒ bool) ⇒ bool already goes
back to [9]. Isabelle declarations of certain higher-order operators may be
annotated with binder annotations as follows:
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c :: "(τ 1 ⇒ τ 2) ⇒ τ 3" (binder "sy" [p] q)

This introduces concrete binder syntax sy x . b, where x is a bound variable
of type τ 1, the body b has type τ 2 and the whole term has type τ 3. The
optional integer p specifies the syntactic priority of the body; the default is
q, which is also the priority of the whole construct.

Internally, the binder syntax is expanded to something like this:

c binder :: "idts ⇒ τ 2 ⇒ τ 3" ("(3sy_./ _)" [0, p] q)

Here idts is the nonterminal symbol for a list of identifiers with optional
type constraints (see also §7.4.3). The mixfix template "(3sy_./ _)" defines
argument positions for the bound identifiers and the body, separated by a
dot with optional line break; the entire phrase is a pretty printing block of
indentation level 3. Note that there is no extra space after sy, so it needs
to be included user specification if the binder syntax ends with a token that
may be continued by an identifier token at the start of idts .

Furthermore, a syntax translation to transforms c binder x 1 . . . xn b into
iterated application c (λx 1. . . . c (λxn . b). . .). This works in both directions,
for parsing and printing.

7.3 Explicit notation

type notation : local theory → local theory
no type notation : local theory → local theory

notation : local theory → local theory
no notation : local theory → local theory

write : proof (state) → proof (state)

Commands that introduce new logical entities (terms or types) usually allow
to provide mixfix annotations on the spot, which is convenient for default
notation. Nonetheless, the syntax may be modified later on by declarations
for explicit notation. This allows to add or delete mixfix annotations for of
existing logical entities within the current context.
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type notation c (mx ) associates mixfix syntax with an existing type con-
structor. The arity of the constructor is retrieved from the context.

no type notation is similar to type notation, but removes the specified
syntax annotation from the present context.

notation c (mx ) associates mixfix syntax with an existing constant or fixed
variable. The type declaration of the given entity is retrieved from the
context.

no notation is similar to notation, but removes the specified syntax an-
notation from the present context.

write is similar to notation, but works within an Isar proof body.
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7.4 The Pure syntax

7.4.1 Lexical matters

The inner lexical syntax vaguely resembles the outer one (§3.1), but some
details are different. There are two main categories of inner syntax tokens:

1. delimiters — the literal tokens occurring in productions of the given
priority grammar (cf. §7.4.2);

2. named tokens — various categories of identifiers etc.

Delimiters override named tokens and may thus render certain identifiers
inaccessible. Sometimes the logical context admits alternative ways to refer
to the same entity, potentially via qualified names.

The categories for named tokens are defined once and for all as follows,
reusing some categories of the outer token syntax (§3.1).

id = ident
longid = longident

var = var
tid = typefree

tvar = typevar
num token = nat | -nat
float token = nat.nat | -nat.nat

xnum token = #nat | #-nat
str token = ’’ . . . ’’

The token categories num token, float token, xnum token, and str token are
not used in Pure. Object-logics may implement numerals and string con-
stants by adding appropriate syntax declarations, together with some trans-
lation functions (e.g. see Isabelle/HOL).

The derived categories num const , float const , and num const provide robust
access to the respective tokens: the syntax tree holds a syntactic constant
instead of a free variable.

7.4.2 Priority grammars

A context-free grammar consists of a set of terminal symbols, a set of non-
terminal symbols and a set of productions. Productions have the form A =
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γ, where A is a nonterminal and γ is a string of terminals and nonterminals.
One designated nonterminal is called the root symbol. The language defined
by the grammar consists of all strings of terminals that can be derived from
the root symbol by applying productions as rewrite rules.

The standard Isabelle parser for inner syntax uses a priority grammar. Each
nonterminal is decorated by an integer priority: A(p). In a derivation, A(p)

may be rewritten using a production A(q ) = γ only if p ≤ q. Any priority
grammar can be translated into a normal context-free grammar by introduc-
ing new nonterminals and productions.

Formally, a set of context free productions G induces a derivation relation
−→G as follows. Let α and β denote strings of terminal or nonterminal
symbols. Then α A(p) β −→G α γ β holds if and only if G contains some
production A(q ) = γ for p ≤ q.

The following grammar for arithmetic expressions demonstrates how binding
power and associativity of operators can be enforced by priorities.

A(1000) = ( A(0) )

A(1000) = 0

A(0) = A(0) + A(1)

A(2) = A(3) * A(2)

A(3) = - A(3)

The choice of priorities determines that - binds tighter than *, which binds
tighter than +. Furthermore + associates to the left and * to the right.

For clarity, grammars obey these conventions:

• All priorities must lie between 0 and 1000.

• Priority 0 on the right-hand side and priority 1000 on the left-hand side
may be omitted.

• The production A(p) = α is written as A = α (p), i.e. the priority of
the left-hand side actually appears in a column on the far right.

• Alternatives are separated by |.

• Repetition is indicated by dots (. . .) in an informal but obvious way.

Using these conventions, the example grammar specification above takes the
form:
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A = ( A )

| 0

| A + A(1) (0)
| A(3) * A(2) (2)
| - A(3) (3)

7.4.3 The Pure grammar

The priority grammar of the Pure theory is defined approximately like this:

any = prop | logic

prop = ( prop )

| prop(4) :: type (3)
| any (3) == any (2) (2)
| any (3) ≡ any (2) (2)
| prop(3) &&& prop(2) (2)
| prop(2) ==> prop(1) (1)
| prop(2) =⇒ prop(1) (1)
| [| prop ; . . . ; prop |] ==> prop(1) (1)
| [[ prop ; . . . ; prop ]] =⇒ prop(1) (1)
| !! idts . prop (0)
|

∧
idts . prop (0)

| OFCLASS ( type , logic )

| SORT_CONSTRAINT ( type )

| TERM logic
| PROP aprop

aprop = ( aprop )

| id | longid | var | _ | ...

| CONST id | CONST longid
| XCONST id | XCONST longid
| logic(1000) any (1000) . . . any (1000) (999)

logic = ( logic )

| logic(4) :: type (3)
| id | longid | var | _ | ...
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| CONST id | CONST longid
| XCONST id | XCONST longid
| logic(1000) any (1000) . . . any (1000) (999)
| � index (1000)

| % pttrns . any (3) (3)
| λ pttrns . any (3) (3)
| op == | op ≡ | op &&&

| op ==> | op =⇒
| TYPE ( type )

idt = ( idt ) | id | _

| id :: type (0)
| _ :: type (0)

index = \<^bsub> logic(0) \<^esub> | | ı

idts = idt | idt (1) idts (0)

pttrn = idt

pttrns = pttrn | pttrn(1) pttrns (0)

type = ( type )

| tid | tvar | _

| tid :: sort | tvar :: sort | _ :: sort
| type name | type(1000) type name
| ( type , . . . , type ) type name
| type(1) => type (0)
| type(1) ⇒ type (0)
| [ type , . . . , type ] => type (0)
| [ type , . . . , type ] ⇒ type (0)

type name = id | longid

sort = class name | {}

| { class name , . . . , class name }

class name = id | longid

Here literal terminals are printed verbatim; see also §7.4.1 for further token
categories of the inner syntax. The meaning of the nonterminals defined by
the above grammar is as follows:
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any denotes any term.

prop denotes meta-level propositions, which are terms of type prop. The
syntax of such formulae of the meta-logic is carefully distinguished
from usual conventions for object-logics. In particular, plain λ-term
notation is not recognized as prop.

aprop denotes atomic propositions, which are embedded into regular prop
by means of an explicit PROP token.

Terms of type prop with non-constant head, e.g. a plain variable, are
printed in this form. Constants that yield type prop are expected to
provide their own concrete syntax; otherwise the printed version will
appear like logic and cannot be parsed again as prop.

logic denotes arbitrary terms of a logical type, excluding type prop. This
is the main syntactic category of object-logic entities, covering plain
λ-term notation (variables, abstraction, application), plus anything de-
fined by the user.

When specifying notation for logical entities, all logical types (excluding
prop) are collapsed to this single category of logic.

index denotes an optional index term for indexed syntax. If omitted, it refers
to the first structure variable in the context. The special dummy “ı”
serves as pattern variable in mixfix annotations that introduce indexed
notation.

idt denotes identifiers, possibly constrained by types.

idts denotes a sequence of idt . This is the most basic category for variables
in iterated binders, such as λ or

∧
.

pttrn and pttrns denote patterns for abstraction, cases bindings etc. In Pure,
these categories start as a merely copy of idt and idts , respectively.
Object-logics may add additional productions for binding forms.

type denotes types of the meta-logic.

sort denotes meta-level sorts.

Here are some further explanations of certain syntax features.

• In idts , note that x :: nat y is parsed as x :: (nat y), treating y like a
type constructor applied to nat. To avoid this interpretation, write (x
:: nat) y with explicit parentheses.
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• Similarly, x :: nat y :: nat is parsed as x :: (nat y :: nat). The correct
form is (x :: nat) (y :: nat), or (x :: nat) y :: nat if y is last in the
sequence of identifiers.

• Type constraints for terms bind very weakly. For example, x < y :: nat
is normally parsed as (x < y) :: nat, unless < has a very low priority,
in which case the input is likely to be ambiguous. The correct form is
x < (y :: nat).

• Constraints may be either written with two literal colons “::” or the
double-colon symbol \<Colon>, which actually looks exactly the same
in some LATEX styles.

• Dummy variables (written as underscore) may occur in different roles.

A type “ ” or “ :: sort” acts like an anonymous inference parameter,
which is filled-in according to the most general type produced by
the type-checking phase.

A bound “ ” refers to a vacuous abstraction, where the body does not
refer to the binding introduced here. As in the term λx . x, which
is α-equivalent to λx y . x.

A free “ ” refers to an implicit outer binding. Higher definitional
packages usually allow forms like f x = x.

A schematic “ ” (within a term pattern, see §3.2.6) refers to an anony-
mous variable that is implicitly abstracted over its context of lo-
cally bound variables. For example, this allows pattern matching
of {x . f x = g x} against {x . = }, or even { . = } by using
both bound and schematic dummies.

• The three literal dots “...” may be also written as ellipsis symbol
\<dots>. In both cases this refers to a special schematic variable,
which is bound in the context. This special term abbreviation works
nicely with calculational reasoning (§6.5).

• CONST ensures that the given identifier is treated as constant term,
and passed through the parse tree in fully internalized form. This is
particularly relevant for translation rules (§7.5), notably on the RHS.

• XCONST is similar to CONST, but retains the constant name as given.
This is only relevant to translation rules (§7.5), notably on the LHS.
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7.4.4 Inspecting the syntax

print syntax∗ : context →

print syntax prints the inner syntax of the current context. The output
can be quite large; the most important sections are explained below.

lexicon lists the delimiters of the inner token language; see §7.4.1.

prods lists the productions of the underlying priority grammar; see
§7.4.2.

The nonterminal A(p) is rendered in plain text as A[p]; delimiters
are quoted. Many productions have an extra . . . => name. These
names later become the heads of parse trees; they also guide the
pretty printer.

Productions without such parse tree names are called copy produc-
tions. Their right-hand side must have exactly one nonterminal
symbol (or named token). The parser does not create a new parse
tree node for copy productions, but simply returns the parse tree
of the right-hand symbol.

If the right-hand side of a copy production consists of a single
nonterminal without any delimiters, then it is called a chain pro-
duction. Chain productions act as abbreviations: conceptually,
they are removed from the grammar by adding new productions.
Priority information attached to chain productions is ignored; only
the dummy value −1 is displayed.

print modes lists the alternative print modes provided by this gram-
mar; see §7.1.3.

parse rules and print rules relate to syntax translations (macros); see
§7.5.

parse ast translation and print ast translation list sets of constants
that invoke translation functions for abstract syntax trees, which
are only required in very special situations; see §7.6.

parse translation and print translation list the sets of constants that
invoke regular translation functions; see §7.6.

7.4.5 Ambiguity of parsed expressions

syntax ambiguity warning : attribute default true
syntax ambiguity limit : attribute default 10
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Depending on the grammar and the given input, parsing may be ambiguous.
Isabelle lets the Earley parser enumerate all possible parse trees, and then
tries to make the best out of the situation. Terms that cannot be type-
checked are filtered out, which often leads to a unique result in the end.
Unlike regular type reconstruction, which is applied to the whole collection
of input terms simultaneously, the filtering stage only treats each given term
in isolation. Filtering is also not attempted for individual types or raw ASTs
(as required for translations).

Certain warning or error messages are printed, depending on the situation
and the given configuration options. Parsing ultimately fails, if multiple
results remain after the filtering phase.

syntax ambiguity warning controls output of explicit warning messages
about syntax ambiguity.

syntax ambiguity limit determines the number of resulting parse trees that
are shown as part of the printed message in case of an ambiguity.

7.5 Raw syntax and translations

nonterminal : theory → theory
syntax : theory → theory

no syntax : theory → theory
translations : theory → theory

no translations : theory → theory

Unlike mixfix notation for existing formal entities (§7.3), raw syntax dec-
larations provide full access to the priority grammar of the inner syntax.
This includes additional syntactic categories (via nonterminal) and free-
form grammar productions (via syntax). Additional syntax translations (or
macros, via translations) are required to turn resulting parse trees into
proper representations of formal entities again.

nonterminal
�� �� name�

� and
�� ��

�
�
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nonterminal c declares a type constructor c (without arguments) to act
as purely syntactic type: a nonterminal symbol of the inner syntax.



CHAPTER 7. INNER SYNTAX — THE TERM LANGUAGE 160

syntax (mode) c :: σ (mx ) augments the priority grammar and the pretty
printer table for the given print mode (default ""). An optional key-
word output means that only the pretty printer table is affected.

Following §7.2, the mixfix annotation mx = template ps q together with
type σ = τ 1 ⇒ . . . τn ⇒ τ and specify a grammar production. The
template contains delimiter tokens that surround n argument positions
(_). The latter correspond to nonterminal symbols Ai derived from the
argument types τ i as follows:

• prop if τ i = prop

• logic if τ i = (. . .)κ for logical type constructor κ 6= prop

• any if τ i = α for type variables

• κ if τ i = κ for nonterminal κ (syntactic type constructor)

Each Ai is decorated by priority pi from the given list ps ; misssing
priorities default to 0.

The resulting nonterminal of the production is determined similarly
from type τ , with priority q and default 1000.

Parsing via this production produces parse trees t1, . . ., tn for the
argument slots. The resulting parse tree is composed as c t1 . . . tn , by
using the syntax constant c of the syntax declaration.

Such syntactic constants are invented on the spot, without formal check
wrt. existing declarations. It is conventional to use plain identifiers
prefixed by a single underscore (e.g. foobar). Names should be chosen
with care, to avoid clashes with unrelated syntax declarations.

The special case of copy production is specified by c = "" (empty
string). It means that the resulting parse tree t is copied directly,
without any further decoration.

no syntax (mode) decls removes grammar declarations (and translations)
resulting from decls, which are interpreted in the same manner as for
syntax above.

translations rules specifies syntactic translation rules (i.e. macros): parse /
print rules (
), parse rules (⇀), or print rules (↽). Translation pat-
terns may be prefixed by the syntactic category to be used for parsing;
the default is logic.
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no translations rules removes syntactic translation rules, which are inter-
preted in the same manner as for translations above.

Raw syntax and translations provides a slightly more low-level access to
the grammar and the form of resulting parse trees. It is often possible
to avoid this untyped macro mechanism, and use type-safe abbreviation
or notation instead. Some important situations where syntax and
translations are really need are as follows:

• Iterated replacement via recursive translations. For example, consider
list enumeration [a, b, c, d ] as defined in theory List in Isabelle/HOL.

• Change of binding status of variables: anything beyond the built-in
binder mixfix annotation requires explicit syntax translations. For
example, consider list filter comprehension [x ← xs . P ] as defined in
theory List in Isabelle/HOL.

7.6 Syntax translation functions

parse ast translation : theory → theory
parse translation : theory → theory
print translation : theory → theory

typed print translation : theory → theory
print ast translation : theory → theory

parse ast translation
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Syntax translation functions written in ML admit almost arbitrary manipu-
lations of Isabelle’s inner syntax. Any of the above commands have a single
text argument that refers to an ML expression of appropriate type, which
are as follows by default:
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val parse_ast_translation : (string * (ast list -> ast)) list

val parse_translation : (string * (term list -> term)) list

val print_translation : (string * (term list -> term)) list

val typed_print_translation : (string * (typ -> term list -> term)) list

val print_ast_translation : (string * (ast list -> ast)) list

If the (advanced) option is given, the corresponding translation functions may
depend on the current theory or proof context. This allows to implement
advanced syntax mechanisms, as translations functions may refer to specific
theory declarations or auxiliary proof data.

val parse_ast_translation:

(string * (Proof.context -> ast list -> ast)) list

val parse_translation:

(string * (Proof.context -> term list -> term)) list

val print_translation:

(string * (Proof.context -> term list -> term)) list

val typed_print_translation:

(string * (Proof.context -> typ -> term list -> term)) list

val print_ast_translation:

(string * (Proof.context -> ast list -> ast)) list

See also the chapter on “Syntax Transformations” in old [31] for further
details on translations on parse trees.
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Other commands

8.1 Inspecting the context

print commands∗ : any →
print theory∗ : context →

print methods∗ : context →
print attributes∗ : context →
print theorems∗ : context →
find theorems∗ : context →

find consts∗ : context →
thm deps∗ : context →

unused thms∗ : context →
print facts∗ : context →

print binds∗ : context →
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These commands print certain parts of the theory and proof context. Note
that there are some further ones available, such as for the set of rules declared
for simplifications.
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print commands prints Isabelle’s outer theory syntax, including keywords
and command.

print theory prints the main logical content of the theory context; the “!”
option indicates extra verbosity.

print methods prints all proof methods available in the current theory
context.

print attributes prints all attributes available in the current theory con-
text.

print theorems prints theorems resulting from the last command; the “!”
option indicates extra verbosity.

find theorems criteria retrieves facts from the theory or proof context
matching all of given search criteria. The criterion name: p selects
all theorems whose fully qualified name matches pattern p, which may
contain “∗” wildcards. The criteria intro, elim, and dest select theorems
that match the current goal as introduction, elimination or destruction
rules, respectively. The criterion solves returns all rules that would
directly solve the current goal. The criterion simp: t selects all rewrite
rules whose left-hand side matches the given term. The criterion term
t selects all theorems that contain the pattern t – as usual, patterns
may contain occurrences of the dummy “ ”, schematic variables, and
type constraints.

Criteria can be preceded by “−” to select theorems that do not match.
Note that giving the empty list of criteria yields all currently known
facts. An optional limit for the number of printed facts may be given;
the default is 40. By default, duplicates are removed from the search
result. Use with dups to display duplicates.

find consts criteria prints all constants whose type meets all of the given
criteria. The criterion strict : ty is met by any type that matches the
type pattern ty. Patterns may contain both the dummy type “ ” and
sort constraints. The criterion ty is similar, but it also matches against
subtypes. The criterion name: p and the prefix “−” function as de-
scribed for find theorems.

thm deps a1 . . . an visualizes dependencies of facts, using Isabelle’s graph
browser tool (see also [48]).
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unused thms A1 . . . Am − B1 . . . Bn displays all unused theorems in
theories B1 . . . Bn or their parents, but not in A1 . . . Am or their
parents. If n is 0, the end of the range of theories defaults to the
current theory. If no range is specified, only the unused theorems in
the current theory are displayed.

print facts prints all local facts of the current context, both named and
unnamed ones.

print binds prints all term abbreviations present in the context.

8.2 System commands

cd∗ : any →
pwd∗ : any →

use thy∗ : any →

cd
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name

cd path changes the current directory of the Isabelle process.

pwd prints the current working directory.

use thy A preload theory A. These system commands are scarcely used
when working interactively, since loading of theories is done automati-
cally as required.

Isabelle file specification may contain path variables (e.g. $ISABELLE_HOME)
that are expanded accordingly. Note that ~ abbreviates $USER_HOME, and
~~ abbreviates $ISABELLE_HOME. The general syntax for path specifications
follows POSIX conventions.
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Generic tools and packages

9.1 Configuration options

Isabelle/Pure maintains a record of named configuration options within the
theory or proof context, with values of type bool, int, real, or string. Tools
may declare options in ML, and then refer to these values (relative to the
context). Thus global reference variables are easily avoided. The user may
change the value of a configuration option by means of an associated attribute
of the same name. This form of context declaration works particularly well
with commands such as declare or using like this:

declare [[show main goal = false]]

notepad
begin

note [[show main goal = true]]
end

For historical reasons, some tools cannot take the full proof context into
account and merely refer to the background theory. This is accommodated by
configuration options being declared as “global”, which may not be changed
within a local context.

print configs : context →

167
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print configs prints the available configuration options, with names, types,
and current values.

name = value as an attribute expression modifies the named option, with
the syntax of the value depending on the option’s type. For bool the
default value is true. Any attempt to change a global option in a local
context is ignored.

9.2 Basic proof tools

9.2.1 Miscellaneous methods and attributes

unfold : method
fold : method

insert : method

erule∗ : method
drule∗ : method
frule∗ : method
intro : method
elim : method

succeed : method
fail : method
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unfold a1 . . . an and fold a1 . . . an expand (or fold back) the given defini-
tions throughout all goals; any chained facts provided are inserted into
the goal and subject to rewriting as well.

insert a1 . . . an inserts theorems as facts into all goals of the proof state.
Note that current facts indicated for forward chaining are ignored.

erule a1 . . . an , drule a1 . . . an , and frule a1 . . . an are similar to the basic
rule method (see §6.3.3), but apply rules by elim-resolution, destruct-
resolution, and forward-resolution, respectively [43]. The optional nat-
ural number argument (default 0) specifies additional assumption steps
to be performed here.

Note that these methods are improper ones, mainly serving for ex-
perimentation and tactic script emulation. Different modes of basic
rule application are usually expressed in Isar at the proof language
level, rather than via implicit proof state manipulations. For example,
a proper single-step elimination would be done using the plain rule
method, with forward chaining of current facts.

intro and elim repeatedly refine some goal by intro- or elim-resolution, after
having inserted any chained facts. Exactly the rules given as arguments
are taken into account; this allows fine-tuned decomposition of a proof
problem, in contrast to common automated tools.
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succeed yields a single (unchanged) result; it is the identity of the “,” method
combinator (cf. §6.3.1).

fail yields an empty result sequence; it is the identity of the “|” method
combinator (cf. §6.3.1).

tagged : attribute
untagged : attribute

THEN : attribute
COMP : attribute

unfolded : attribute
folded : attribute

abs def : attribute

rotated : attribute
elim format : attribute

standard∗ : attribute
no vars∗ : attribute
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tagged name value and untagged name add and remove tags of some theo-
rem. Tags may be any list of string pairs that serve as formal comment.
The first string is considered the tag name, the second its value. Note
that untagged removes any tags of the same name.
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THEN a and COMP a compose rules by resolution. THEN resolves with
the first premise of a (an alternative position may be also specified);
the COMP version skips the automatic lifting process that is normally
intended (cf. RS and COMP in [43]).

unfolded a1 . . . an and folded a1 . . . an expand and fold back again the
given definitions throughout a rule.

abs def turns an equation of the form f x y ≡ t into f ≡ λx y . t, which
ensures that simp or unfold steps always expand it. This also works
for object-logic equality.

rotated n rotate the premises of a theorem by n (default 1).

elim format turns a destruction rule into elimination rule format, by resolv-
ing with the rule PROP A =⇒ (PROP A =⇒ PROP B) =⇒ PROP
B.

Note that the Classical Reasoner (§9.4) provides its own version of this
operation.

standard puts a theorem into the standard form of object-rules at the out-
ermost theory level. Note that this operation violates the local proof
context (including active locales).

no vars replaces schematic variables by free ones; this is mainly for tuning
output of pretty printed theorems.

9.2.2 Low-level equational reasoning

subst : method
hypsubst : method

split : method
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These methods provide low-level facilities for equational reasoning that are
intended for specialized applications only. Normally, single step calculations
would be performed in a structured text (see also §6.5), while the Simplifier
methods provide the canonical way for automated normalization (see §9.3).

subst eq performs a single substitution step using rule eq, which may be
either a meta or object equality.

subst (asm) eq substitutes in an assumption.

subst (i . . . j ) eq performs several substitutions in the conclusion. The
numbers i to j indicate the positions to substitute at. Positions are
ordered from the top of the term tree moving down from left to right.
For example, in (a + b) + (c + d) there are three positions where
commutativity of + is applicable: 1 refers to a + b, 2 to the whole
term, and 3 to c + d.

If the positions in the list (i . . . j ) are non-overlapping (e.g. (2 3) in
(a + b) + (c + d)) you may assume all substitutions are performed
simultaneously. Otherwise the behaviour of subst is not specified.

subst (asm) (i . . . j ) eq performs the substitutions in the assumptions.
The positions refer to the assumptions in order from left to right. For
example, given in a goal of the form P (a + b) =⇒ P (c + d) =⇒ . . .,
position 1 of commutativity of + is the subterm a + b and position 2
is the subterm c + d.
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hypsubst performs substitution using some assumption; this only works for
equations of the form x = t where x is a free or bound variable.

split a1 . . . an performs single-step case splitting using the given rules.
Splitting is performed in the conclusion or some assumption of the
subgoal, depending of the structure of the rule.

Note that the simp method already involves repeated application of
split rules as declared in the current context, using split , for example.

9.2.3 Further tactic emulations

The following improper proof methods emulate traditional tactics. These
admit direct access to the goal state, which is normally considered harmful!
In particular, this may involve both numbered goal addressing (default 1),
and dynamic instantiation within the scope of some subgoal.

! Dynamic instantiations refer to universally quantified parameters of a subgoal
(the dynamic context) rather than fixed variables and term abbreviations of a

(static) Isar context.

Tactic emulation methods, unlike their ML counterparts, admit simultaneous
instantiation from both dynamic and static contexts. If names occur in both
contexts goal parameters hide locally fixed variables. Likewise, schematic
variables refer to term abbreviations, if present in the static context. Other-
wise the schematic variable is interpreted as a schematic variable and left to
be solved by unification with certain parts of the subgoal.

Note that the tactic emulation proof methods in Isabelle/Isar are consistently
named foo tac. Note also that variable names occurring on left hand sides
of instantiations must be preceded by a question mark if they coincide with
a keyword or contain dots. This is consistent with the attribute where (see
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§6.3.3).

rule tac∗ : method
erule tac∗ : method
drule tac∗ : method
frule tac∗ : method

cut tac∗ : method
thin tac∗ : method

subgoal tac∗ : method
rename tac∗ : method

rotate tac∗ : method
tactic∗ : method

raw tactic∗ : method
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rule tac etc. do resolution of rules with explicit instantiation. This works
the same way as the ML tactics res_inst_tac etc. (see [43])

Multiple rules may be only given if there is no instantiation; then
rule tac is the same as resolve_tac in ML (see [43]).

cut tac inserts facts into the proof state as assumption of a subgoal; in-
stantiations may be given as well. Note that the scope of schematic
variables is spread over the main goal statement and rule premises are
turned into new subgoals. This is in contrast to the regular method
insert which inserts closed rule statements.

thin tac ϕ deletes the specified premise from a subgoal. Note that ϕ may
contain schematic variables, to abbreviate the intended proposition;
the first matching subgoal premise will be deleted. Removing useless
premises from a subgoal increases its readability and can make search
tactics run faster.

subgoal tac ϕ1 . . . ϕn adds the propositions ϕ1 . . . ϕn as local premises to a
subgoal, and poses the same as new subgoals (in the original context).

rename tac x 1 . . . xn renames parameters of a goal according to the list x 1,
. . ., xn , which refers to the suffix of variables.

rotate tac n rotates the premises of a subgoal by n positions: from right to
left if n is positive, and from left to right if n is negative; the default
value is 1.
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tactic text produces a proof method from any ML text of type tactic.
Apart from the usual ML environment and the current proof context,
the ML code may refer to the locally bound values facts, which indi-
cates any current facts used for forward-chaining.

raw tactic is similar to tactic, but presents the goal state in its raw internal
form, where simultaneous subgoals appear as conjunction of the logical
framework instead of the usual split into several subgoals. While feature
this is useful for debugging of complex method definitions, it should not
never appear in production theories.

9.3 The Simplifier

9.3.1 Simplification methods

simp : method
simp all : method
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simp invokes the Simplifier, after declaring additional rules according to the
arguments given. Note that the only modifier first removes all other
rewrite rules, congruences, and looper tactics (including splits), and
then behaves like add.

The cong modifiers add or delete Simplifier congruence rules (see also
§9.3.3), the default is to add.

The split modifiers add or delete rules for the Splitter (see also [31]),
the default is to add. This works only if the Simplifier method has been
properly setup to include the Splitter (all major object logics such HOL,
HOLCF, FOL, ZF do this already).

simp all is similar to simp, but acts on all goals (backwards from the last
to the first one).

By default the Simplifier methods take local assumptions fully into account,
using equational assumptions in the subsequent normalization process, or
simplifying assumptions themselves (cf. asm_full_simp_tac in [31]). In
structured proofs this is usually quite well behaved in practice: just the local
premises of the actual goal are involved, additional facts may be inserted via
explicit forward-chaining (via then, from, using etc.).
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Additional Simplifier options may be specified to tune the behavior further
(mostly for unstructured scripts with many accidental local facts): “(no
asm)” means assumptions are ignored completely (cf. simp_tac), “(no asm
simp)” means assumptions are used in the simplification of the conclusion but
are not themselves simplified (cf. asm_simp_tac), and “(no asm use)” means
assumptions are simplified but are not used in the simplification of each other
or the conclusion (cf. full_simp_tac). For compatibility reasons, there is
also an option “(asm lr)”, which means that an assumption is only used for
simplifying assumptions which are to the right of it (cf. asm_lr_simp_tac).

The configuration option depth limit limits the number of recursive invoca-
tions of the simplifier during conditional rewriting.

The Splitter package is usually configured to work as part of the Simplifier.
The effect of repeatedly applying split_tac can be simulated by “(simp
only : split : a1 . . . an)”. There is also a separate split method available for
single-step case splitting.

9.3.2 Declaring rules

print simpset∗ : context →
simp : attribute
split : attribute
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print simpset prints the collection of rules declared to the Simplifier, which
is also known as “simpset” internally [31].

simp declares simplification rules.

split declares case split rules.

9.3.3 Congruence rules

cong : attribute
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cong declares congruence rules to the Simplifier context.

Congruence rules are equalities of the form

. . . =⇒ f ?x 1 . . . ?xn = f ?y1 . . . ?yn

This controls the simplification of the arguments of f. For example, some
arguments can be simplified under additional assumptions:

?P1 ←→ ?Q1 =⇒ (?Q1 =⇒ ?P2 ←→ ?Q2) =⇒
(?P1 −→ ?P2) ←→ (?Q1 −→ ?Q2)

Given this rule, the simplifier assumes ?Q1 and extracts rewrite rules from
it when simplifying ?P2. Such local assumptions are effective for rewriting
formulae such as x = 0 −→ y + x = y.

The following congruence rule for bounded quantifiers also supplies contex-
tual information — about the bound variable:

(?A = ?B) =⇒ (
∧

x . x ∈ ?B =⇒ ?P x ←→ ?Q x ) =⇒
(∀ x ∈ ?A. ?P x ) ←→ (∀ x ∈ ?B . ?Q x )

This congruence rule for conditional expressions can supply contextual infor-
mation for simplifying the arms:

?p = ?q =⇒ (?q =⇒ ?a = ?c) =⇒ (¬ ?q =⇒ ?b = ?d) =⇒
(if ?p then ?a else ?b) = (if ?q then ?c else ?d)

A congruence rule can also prevent simplification of some arguments. Here
is an alternative congruence rule for conditional expressions that conforms
to non-strict functional evaluation:

?p = ?q =⇒ (if ?p then ?a else ?b) = (if ?q then ?a else ?b)

Only the first argument is simplified; the others remain unchanged. This can
make simplification much faster, but may require an extra case split over the
condition ?q to prove the goal.
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9.3.4 Simplification procedures

Simplification procedures are ML functions that produce proven rewrite rules
on demand. They are associated with higher-order patterns that approximate
the left-hand sides of equations. The Simplifier first matches the current
redex against one of the LHS patterns; if this succeeds, the corresponding
ML function is invoked, passing the Simplifier context and redex term. Thus
rules may be specifically fashioned for particular situations, resulting in a
more powerful mechanism than term rewriting by a fixed set of rules.

Any successful result needs to be a (possibly conditional) rewrite rule t ≡ u
that is applicable to the current redex. The rule will be applied just as any
ordinary rewrite rule. It is expected to be already in internal form, bypassing
the automatic preprocessing of object-level equivalences.

simproc setup : local theory → local theory
simproc : attribute
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simproc setup defines a named simplification procedure that is invoked by
the Simplifier whenever any of the given term patterns match the cur-
rent redex. The implementation, which is provided as ML source text,
needs to be of type morphism -> simpset -> cterm -> thm option,
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where the cterm represents the current redex r and the result is sup-
posed to be some proven rewrite rule r ≡ r ′ (or a generalized ver-
sion), or NONE to indicate failure. The simpset argument holds the full
context of the current Simplifier invocation, including the actual Isar
proof context. The morphism informs about the difference of the origi-
nal compilation context wrt. the one of the actual application later on.
The optional identifier specifies theorems that represent the logical
content of the abstract theory of this simproc.

Morphisms and identifiers are only relevant for simprocs that are de-
fined within a local target context, e.g. in a locale.

simproc add : name and simproc del : name add or delete named simprocs to
the current Simplifier context. The default is to add a simproc. Note
that simproc setup already adds the new simproc to the subsequent
context.

Example

The following simplification procedure for (?u::unit) = () in HOL per-
forms fine-grained control over rule application, beyond higher-order pat-
tern matching. Declaring unit eq as simp directly would make the simplifier
loop! Note that a version of this simplification procedure is already active in
Isabelle/HOL.

simproc setup unit ("x::unit") = {*

fn _ => fn _ => fn ct =>

if HOLogic.is_unit (term_of ct) then NONE

else SOME (mk_meta_eq @{thm unit_eq})

*}

Since the Simplifier applies simplification procedures frequently, it is impor-
tant to make the failure check in ML reasonably fast.

9.3.5 Forward simplification

simplified : attribute
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simplified a1 . . . an causes a theorem to be simplified, either by exactly
the specified rules a1, . . ., an , or the implicit Simplifier context if no
arguments are given. The result is fully simplified by default, including
assumptions and conclusion; the options no asm etc. tune the Simplifier
in the same way as the for the simp method.

Note that forward simplification restricts the simplifier to its most ba-
sic operation of term rewriting; solver and looper tactics [31] are not
involved here. The simplified attribute should be only rarely required
under normal circumstances.

9.4 The Classical Reasoner

9.4.1 Basic concepts

Although Isabelle is generic, many users will be working in some extension
of classical first-order logic. Isabelle/ZF is built upon theory FOL, while
Isabelle/HOL conceptually contains first-order logic as a fragment. Theorem-
proving in predicate logic is undecidable, but many automated strategies have
been developed to assist in this task.

Isabelle’s classical reasoner is a generic package that accepts certain infor-
mation about a logic and delivers a suite of automatic proof tools, based on
rules that are classified and declared in the context. These proof procedures
are slow and simplistic compared with high-end automated theorem provers,
but they can save considerable time and effort in practice. They can prove
theorems such as Pelletier’s [36] problems 40 and 41 in a few milliseconds
(including full proof reconstruction):

lemma (∃ y . ∀ x . F x y ←→ F x x ) −→ ¬ (∀ x . ∃ y . ∀ z . F z y ←→ ¬ F z x )
by blast

lemma (∀ z . ∃ y . ∀ x . f x y ←→ f x z ∧ ¬ f x x ) −→ ¬ (∃ z . ∀ x . f x z )
by blast
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The proof tools are generic. They are not restricted to first-order logic, and
have been heavily used in the development of the Isabelle/HOL library and
applications. The tactics can be traced, and their components can be called
directly; in this manner, any proof can be viewed interactively.

The sequent calculus

Isabelle supports natural deduction, which is easy to use for interactive proof.
But natural deduction does not easily lend itself to automation, and has a
bias towards intuitionism. For certain proofs in classical logic, it can not be
called natural. The sequent calculus, a generalization of natural deduction,
is easier to automate.

A sequent has the form Γ ` ∆, where Γ and ∆ are sets of formulae.1 The
sequent P1, . . ., Pm ` Q1, . . ., Qn is valid if P1 ∧ . . . ∧ Pm implies Q1 ∨
. . . ∨ Qn . Thus P1, . . ., Pm represent assumptions, each of which is true,
while Q1, . . ., Qn represent alternative goals. A sequent is basic if its left
and right sides have a common formula, as in P , Q ` Q , R; basic sequents
are trivially valid.

Sequent rules are classified as right or left, indicating which side of the `
symbol they operate on. Rules that operate on the right side are analogous
to natural deduction’s introduction rules, and left rules are analogous to
elimination rules. The sequent calculus analogue of (−→I ) is the rule

P , Γ ` ∆, Q

Γ ` ∆, P −→ Q
(−→R)

Applying the rule backwards, this breaks down some implication on the right
side of a sequent; Γ and ∆ stand for the sets of formulae that are unaffected
by the inference. The analogue of the pair (∨I 1) and (∨I 2) is the single rule

Γ ` ∆, P , Q

Γ ` ∆, P ∨ Q
(∨R)

This breaks down some disjunction on the right side, replacing it by both
disjuncts. Thus, the sequent calculus is a kind of multiple-conclusion logic.

To illustrate the use of multiple formulae on the right, let us prove the clas-
sical theorem (P −→ Q) ∨ (Q −→ P). Working backwards, we reduce this

1For first-order logic, sequents can equivalently be made from lists or multisets of
formulae.
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formula to a basic sequent:

P , Q ` Q , P

P ` Q , (Q −→ P)
(−→R)

` (P −→ Q), (Q −→ P)
(−→R)

` (P −→ Q) ∨ (Q −→ P)
(∨R)

This example is typical of the sequent calculus: start with the desired the-
orem and apply rules backwards in a fairly arbitrary manner. This yields
a surprisingly effective proof procedure. Quantifiers add only few compli-
cations, since Isabelle handles parameters and schematic variables. See [35,
Chapter 10] for further discussion.

Simulating sequents by natural deduction

Isabelle can represent sequents directly, as in the object-logic LK. But natural
deduction is easier to work with, and most object-logics employ it. Fortu-
nately, we can simulate the sequent P1, . . ., Pm ` Q1, . . ., Qn by the Isabelle
formula P1 =⇒ . . . =⇒ Pm =⇒ ¬ Q2 =⇒ ... =⇒ ¬ Qn =⇒ Q1 where the
order of the assumptions and the choice of Q1 are arbitrary. Elim-resolution
plays a key role in simulating sequent proofs.

We can easily handle reasoning on the left. Elim-resolution with the rules
(∨E ), (⊥E ) and (∃E ) achieves a similar effect as the corresponding sequent
rules. For the other connectives, we use sequent-style elimination rules in-
stead of destruction rules such as (∧E1, 2) and (∀E ). But note that the rule
(¬L) has no effect under our representation of sequents!

Γ ` ∆, P

¬ P , Γ ` ∆
(¬L)

What about reasoning on the right? Introduction rules can only affect the
formula in the conclusion, namely Q1. The other right-side formulae are
represented as negated assumptions, ¬ Q2, . . ., ¬ Qn . In order to operate
on one of these, it must first be exchanged with Q1. Elim-resolution with
the swap rule has this effect: ¬ P =⇒ (¬ R =⇒ P) =⇒ R

To ensure that swaps occur only when necessary, each introduction rule is
converted into a swapped form: it is resolved with the second premise of
(swap). The swapped form of (∧I ), which might be called (¬∧E ), is

¬ (P ∧ Q) =⇒ (¬ R =⇒ P) =⇒ (¬ R =⇒ Q) =⇒ R

Similarly, the swapped form of (−→I ) is
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¬ (P −→ Q) =⇒ (¬ R =⇒ P =⇒ Q) =⇒ R

Swapped introduction rules are applied using elim-resolution, which deletes
the negated formula. Our representation of sequents also requires the use of
ordinary introduction rules. If we had no regard for readability of intermedi-
ate goal states, we could treat the right side more uniformly by representing
sequents as

P1 =⇒ . . . =⇒ Pm =⇒ ¬ Q1 =⇒ . . . =⇒ ¬ Qn =⇒ ⊥

Extra rules for the sequent calculus

As mentioned, destruction rules such as (∧E1, 2) and (∀E ) must be replaced
by sequent-style elimination rules. In addition, we need rules to embody the
classical equivalence between P −→ Q and ¬ P ∨ Q. The introduction rules
(∨I 1, 2) are replaced by a rule that simulates (∨R):

(¬ Q =⇒ P) =⇒ P ∨ Q

The destruction rule (−→E ) is replaced by

(P −→ Q) =⇒ (¬ P =⇒ R) =⇒ (Q =⇒ R) =⇒ R

Quantifier replication also requires special rules. In classical logic, ∃ x . P x
is equivalent to ¬ (∀ x . ¬ P x ); the rules (∃R) and (∀L) are dual:

Γ ` ∆, ∃ x . P x , P t

Γ ` ∆, ∃ x . P x
(∃R)

P t , ∀ x . P x , Γ ` ∆

∀ x . P x , Γ ` ∆
(∀L)

Thus both kinds of quantifier may be replicated. Theorems requiring multiple
uses of a universal formula are easy to invent; consider

(∀ x . P x −→ P (f x )) ∧ P a −→ P (f n a)

for any n > 1. Natural examples of the multiple use of an existential formula
are rare; a standard one is ∃ x . ∀ y . P x −→ P y.

Forgoing quantifier replication loses completeness, but gains decidability,
since the search space becomes finite. Many useful theorems can be proved
without replication, and the search generally delivers its verdict in a rea-
sonable time. To adopt this approach, represent the sequent rules (∃R),
(∃L) and (∀R) by (∃ I ), (∃E ) and (∀ I ), respectively, and put (∀E ) into
elimination form:
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∀ x . P x =⇒ (P t =⇒ Q) =⇒ Q

Elim-resolution with this rule will delete the universal formula after a single
use. To replicate universal quantifiers, replace the rule by

∀ x . P x =⇒ (P t =⇒ ∀ x . P x =⇒ Q) =⇒ Q

To replicate existential quantifiers, replace (∃ I ) by

(¬ (∃ x . P x ) =⇒ P t) =⇒ ∃ x . P x

All introduction rules mentioned above are also useful in swapped form.

Replication makes the search space infinite; we must apply the rules with
care. The classical reasoner distinguishes between safe and unsafe rules,
applying the latter only when there is no alternative. Depth-first search may
well go down a blind alley; best-first search is better behaved in an infinite
search space. However, quantifier replication is too expensive to prove any
but the simplest theorems.

9.4.2 Rule declarations

The proof tools of the Classical Reasoner depend on collections of rules de-
clared in the context, which are classified as introduction, elimination or
destruction and as safe or unsafe. In general, safe rules can be attempted
blindly, while unsafe rules must be used with care. A safe rule must never
reduce a provable goal to an unprovable set of subgoals.

The rule P =⇒ P ∨ Q is unsafe because it reduces P ∨ Q to P, which might
turn out as premature choice of an unprovable subgoal. Any rule is unsafe
whose premises contain new unknowns. The elimination rule ∀ x . P x =⇒
(P t =⇒ Q) =⇒ Q is unsafe, since it is applied via elim-resolution, which
discards the assumption ∀ x . P x and replaces it by the weaker assumption
P t. The rule P t =⇒ ∃ x . P x is unsafe for similar reasons. The quantifier
duplication rule ∀ x . P x =⇒ (P t =⇒ ∀ x . P x =⇒ Q) =⇒ Q is unsafe in a
different sense: since it keeps the assumption ∀ x . P x, it is prone to looping.
In classical first-order logic, all rules are safe except those mentioned above.

The safe / unsafe distinction is vague, and may be regarded merely as a
way of giving some rules priority over others. One could argue that (∨E ) is
unsafe, because repeated application of it could generate exponentially many
subgoals. Induction rules are unsafe because inductive proofs are difficult to
set up automatically. Any inference is unsafe that instantiates an unknown
in the proof state — thus matching must be used, rather than unification.
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Even proof by assumption is unsafe if it instantiates unknowns shared with
other subgoals.

print claset∗ : context →
intro : attribute
elim : attribute
dest : attribute
rule : attribute

iff : attribute
swapped : attribute

intro
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�� ���dest
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�
�
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rule
�� ��del

�� ��
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�
�

�
� ?

����
�
�

�

�del
�� ��

�

�
print claset prints the collection of rules declared to the Classical Rea-

soner, i.e. the claset within the context.

intro, elim, and dest declare introduction, elimination, and destruction
rules, respectively. By default, rules are considered as unsafe (i.e. not
applied blindly without backtracking), while “!” classifies as safe. Rule
declarations marked by “?” coincide with those of Isabelle/Pure, cf.
§6.3.3 (i.e. are only applied in single steps of the rule method). The
optional natural number specifies an explicit weight argument, which
is ignored by the automated reasoning tools, but determines the search
order of single rule steps.

Introduction rules are those that can be applied using ordinary reso-
lution. Their swapped forms are generated internally, which will be
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applied using elim-resolution. Elimination rules are applied using elim-
resolution. Rules are sorted by the number of new subgoals they will
yield; rules that generate the fewest subgoals will be tried first. Other-
wise, later declarations take precedence over earlier ones.

Rules already present in the context with the same classification are
ignored. A warning is printed if the rule has already been added with
some other classification, but the rule is added anyway as requested.

rule del deletes all occurrences of a rule from the classical context, regardless
of its classification as introduction / elimination / destruction and safe /
unsafe.

iff declares logical equivalences to the Simplifier and the Classical rea-
soner at the same time. Non-conditional rules result in a safe intro-
duction and elimination pair; conditional ones are considered unsafe.
Rules with negative conclusion are automatically inverted (using ¬-
elimination internally).

The “?” version of iff declares rules to the Isabelle/Pure context only,
and omits the Simplifier declaration.

swapped turns an introduction rule into an elimination, by resolving with
the classical swap principle ¬ P =⇒ (¬ R =⇒ P) =⇒ R in the second
position. This is mainly for illustrative purposes: the Classical Reasoner
already swaps rules internally as explained above.

9.4.3 Structured methods

rule : method
contradiction : method

rule
�� ���

�thmrefs

�
�

rule as offered by the Classical Reasoner is a refinement over the Pure one
(see §6.3.3). Both versions work the same, but the classical version
observes the classical rule context in addition to that of Isabelle/Pure.

Common object logics (HOL, ZF, etc.) declare a rich collection of
classical rules (even if these would qualify as intuitionistic ones), but
only few declarations to the rule context of Isabelle/Pure (§6.3.3).
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contradiction solves some goal by contradiction, deriving any result from
both ¬ A and A. Chained facts, which are guaranteed to participate,
may appear in either order.

9.4.4 Automated methods

blast : method
auto : method
force : method
fast : method

slow : method
best : method

fastforce : method
slowsimp : method
bestsimp : method

deepen : method
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fastforce
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clasimpmod
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blast is a separate classical tableau prover that uses the same classical rule
declarations as explained before.

Proof search is coded directly in ML using special data structures. A
successful proof is then reconstructed using regular Isabelle inferences.
It is faster and more powerful than the other classical reasoning tools,
but has major limitations too.

• It does not use the classical wrapper tacticals, such as the inte-
gration with the Simplifier of fastforce.

• It does not perform higher-order unification, as needed by the
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rule ?f ?x ∈ range ?f in HOL. There are often alternatives to
such rules, for example ?b = ?f ?x =⇒ ?b ∈ range ?f.

• Function variables may only be applied to parameters of the
subgoal. (This restriction arises because the prover does not
use higher-order unification.) If other function variables are
present then the prover will fail with the message Function Var’s

argument not a bound variable.

• Its proof strategy is more general than fast but can be slower. If
blast fails or seems to be running forever, try fast and the other
proof tools described below.

The optional integer argument specifies a bound for the number of
unsafe steps used in a proof. By default, blast starts with a bound of
0 and increases it successively to 20. In contrast, (blast lim) tries to
prove the goal using a search bound of lim. Sometimes a slow proof
using blast can be made much faster by supplying the successful search
bound to this proof method instead.

auto combines classical reasoning with simplification. It is intended for sit-
uations where there are a lot of mostly trivial subgoals; it proves all the
easy ones, leaving the ones it cannot prove. Occasionally, attempting
to prove the hard ones may take a long time.

The optional depth arguments in (auto m n) refer to its builtin classical
reasoning procedures: m (default 4) is for blast , which is tried first, and
n (default 2) is for a slower but more general alternative that also takes
wrappers into account.

force is intended to prove the first subgoal completely, using many fancy
proof tools and performing a rather exhaustive search. As a result,
proof attempts may take rather long or diverge easily.

fast , best , slow attempt to prove the first subgoal using sequent-style rea-
soning as explained before. Unlike blast , they construct proofs directly
in Isabelle.

There is a difference in search strategy and back-tracking: fast uses
depth-first search and best uses best-first search (guided by a heuristic
function: normally the total size of the proof state).

Method slow is like fast , but conducts a broader search: it may, when
backtracking from a failed proof attempt, undo even the step of proving
a subgoal by assumption.
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fastforce, slowsimp, bestsimp are like fast , slow , best , respectively, but use
the Simplifier as additional wrapper. The name fastforce, as opposed to
fastsimp, reflects the behaviour of this popular method better without
requiring an understanding of its implementation.

deepen works by exhaustive search up to a certain depth. The start depth is
4 (unless specified explicitly), and the depth is increased iteratively up
to 10. Unsafe rules are modified to preserve the formula they act on,
so that it be used repeatedly. This method can prove more goals than
fast , but is much slower, for example if the assumptions have many
universal quantifiers.

Any of the above methods support additional modifiers of the context of
classical (and simplifier) rules, but the ones related to the Simplifier are
explicitly prefixed by simp here. The semantics of these ad-hoc rule declara-
tions is analogous to the attributes given before. Facts provided by forward
chaining are inserted into the goal before commencing proof search.

9.4.5 Semi-automated methods

These proof methods may help in situations when the fully-automated tools
fail. The result is a simpler subgoal that can be tackled by other means, such
as by manual instantiation of quantifiers.

safe : method
clarify : method

clarsimp : method

safe
�� ���

�clarify
�� ��

�
�

�
�clamod

�
�

clarsimp
�� ���

�clasimpmod

�
�

safe repeatedly performs safe steps on all subgoals. It is deterministic, with
at most one outcome.
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clarify performs a series of safe steps without splitting subgoals; see also
clarify_step_tac.

clarsimp acts like clarify , but also does simplification. Note that if the
Simplifier context includes a splitter for the premises, the subgoal may
still be split.

9.4.6 Single-step tactics

safe_step_tac: Proof.context -> int -> tactic

inst_step_tac: Proof.context -> int -> tactic

step_tac: Proof.context -> int -> tactic

slow_step_tac: Proof.context -> int -> tactic

clarify_step_tac: Proof.context -> int -> tactic

These are the primitive tactics behind the (semi)automated proof methods
of the Classical Reasoner. By calling them yourself, you can execute these
procedures one step at a time.

safe_step_tac ctxt i performs a safe step on subgoal i. The safe wrapper
tacticals are applied to a tactic that may include proof by assump-
tion or Modus Ponens (taking care not to instantiate unknowns), or
substitution.

inst_step_tac is like safe_step_tac, but allows unknowns to be instan-
tiated.

step_tac ctxt i is the basic step of the proof procedure. The unsafe wrapper
tacticals are applied to a tactic that tries safe_tac, inst_step_tac,
or applies an unsafe rule from the context.

slow_step_tac resembles step_tac, but allows backtracking between using
safe rules with instantiation (inst_step_tac) and using unsafe rules.
The resulting search space is larger.

clarify_step_tac ctxt i performs a safe step on subgoal i. No splitting
step is applied; for example, the subgoal A ∧ B is left as a conjunction.
Proof by assumption, Modus Ponens, etc., may be performed provided
they do not instantiate unknowns. Assumptions of the form x = t may
be eliminated. The safe wrapper tactical is applied.
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9.5 Object-logic setup

judgment : theory → theory
atomize : method
atomize : attribute

rule format : attribute
rulify : attribute

The very starting point for any Isabelle object-logic is a “truth judgment”
that links object-level statements to the meta-logic (with its minimal lan-
guage of prop that covers universal quantification

∧
and implication =⇒).

Common object-logics are sufficiently expressive to internalize rule state-
ments over

∧
and =⇒ within their own language. This is useful in certain

situations where a rule needs to be viewed as an atomic statement from the
meta-level perspective, e.g.

∧
x . x ∈ A =⇒ P x versus ∀ x ∈ A. P x.

From the following language elements, only the atomize method and
rule format attribute are occasionally required by end-users, the rest is for
those who need to setup their own object-logic. In the latter case exist-
ing formulations of Isabelle/FOL or Isabelle/HOL may be taken as realistic
examples.

Generic tools may refer to the information provided by object-logic declara-
tions internally.

judgment
�� ��name ::

����type �
�mixfix

�
�

atomize
�� ���

� (
����full

�� ��)
����

�
�

rule_format
�� ���

� (
����noasm

�� ��)
����

�
�

judgment c :: σ (mx ) declares constant c as the truth judgment of the
current object-logic. Its type σ should specify a coercion of the cat-
egory of object-level propositions to prop of the Pure meta-logic; the
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mixfix annotation (mx ) would typically just link the object language
(internally of syntactic category logic) with that of prop. Only one
judgment declaration may be given in any theory development.

atomize (as a method) rewrites any non-atomic premises of a sub-goal,
using the meta-level equations declared via atomize (as an attribute)
beforehand. As a result, heavily nested goals become amenable to
fundamental operations such as resolution (cf. the rule method). Giv-
ing the “(full)” option here means to turn the whole subgoal into an
object-statement (if possible), including the outermost parameters and
assumptions as well.

A typical collection of atomize rules for a particular object-logic would
provide an internalization for each of the connectives of

∧
, =⇒, and ≡.

Meta-level conjunction should be covered as well (this is particularly
important for locales, see §5.6).

rule format rewrites a theorem by the equalities declared as rulify rules
in the current object-logic. By default, the result is fully normalized,
including assumptions and conclusions at any depth. The (no asm)
option restricts the transformation to the conclusion of a rule.

In common object-logics (HOL, FOL, ZF), the effect of rule format
is to replace (bounded) universal quantification (∀ ) and implication
(−→) by the corresponding rule statements over

∧
and =⇒.



Part III

Object-Logics

197



Chapter 10

Isabelle/HOL

10.1 Higher-Order Logic

Isabelle/HOL is based on Higher-Order Logic, a polymorphic version of
Church’s Simple Theory of Types. HOL can be best understood as a simply-
typed version of classical set theory. The logic was first implemented in
Gordon’s HOL system [12]. It extends Church’s original logic [9] by explicit
type variables (naive polymorphism) and a sound axiomatization scheme for
new types based on subsets of existing types.

Andrews’s book [1] is a full description of the original Church-style higher-
order logic, with proofs of correctness and completeness wrt. certain set-
theoretic interpretations. The particular extensions of Gordon-style HOL
are explained semantically in two chapters of the 1993 HOL book [38].

Experience with HOL over decades has demonstrated that higher-order logic
is widely applicable in many areas of mathematics and computer science. In
a sense, Higher-Order Logic is simpler than First-Order Logic, because there
are fewer restrictions and special cases. Note that HOL is weaker than FOL
with axioms for ZF set theory, which is traditionally considered the standard
foundation of regular mathematics, but for most applications this does not
matter. If you prefer ML to Lisp, you will probably prefer HOL to ZF.

The syntax of HOL follows λ-calculus and functional programming. Function
application is curried. To apply the function f of type τ 1 ⇒ τ 2 ⇒ τ 3 to the
arguments a and b in HOL, you simply write f a b (as in ML or Haskell).
There is no “apply” operator; the existing application of the Pure λ-calculus
is re-used. Note that in HOL f (a, b) means “f applied to the pair (a, b)
(which is notation for Pair a b). The latter typically introduces extra formal
efforts that can be avoided by currying functions by default. Explicit tuples
are as infrequent in HOL formalizations as in good ML or Haskell programs.

Isabelle/HOL has a distinct feel, compared to other object-logics like
Isabelle/ZF. It identifies object-level types with meta-level types, taking ad-
vantage of the default type-inference mechanism of Isabelle/Pure. HOL fully
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identifies object-level functions with meta-level functions, with native ab-
straction and application.

These identifications allow Isabelle to support HOL particularly nicely, but
they also mean that HOL requires some sophistication from the user. In par-
ticular, an understanding of Hindley-Milner type-inference with type-classes,
which are both used extensively in the standard libraries and applications.
Beginners can set show types or even show sorts to get more explicit infor-
mation about the result of type-inference.

10.2 Inductive and coinductive definitions

inductive : local theory → local theory
inductive set : local theory → local theory

coinductive : local theory → local theory
coinductive set : local theory → local theory

mono : attribute

An inductive definition specifies the least predicate or set R closed under
given rules: applying a rule to elements of R yields a result within R. For
example, a structural operational semantics is an inductive definition of an
evaluation relation.

Dually, a coinductive definition specifies the greatest predicate or set R that
is consistent with given rules: every element of R can be seen as arising by
applying a rule to elements of R. An important example is using bisimulation
relations to formalise equivalence of processes and infinite data structures.

Both inductive and coinductive definitions are based on the Knaster-Tarski
fixed-point theorem for complete lattices. The collection of introduction rules
given by the user determines a functor on subsets of set-theoretic relations.
The required monotonicity of the recursion scheme is proven as a prerequisite
to the fixed-point definition and the resulting consequences. This works by
pushing inclusion through logical connectives and any other operator that
might be wrapped around recursive occurrences of the defined relation: there
must be a monotonicity theorem of the form A ≤ B =⇒ M A ≤ M B, for
each premise M R t in an introduction rule. The default rule declarations
of Isabelle/HOL already take care of most common situations.
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inductive
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inductive and coinductive define (co)inductive predicates from the intro-
duction rules.

The propositions given as clauses in the where part are either rules
of the usual

∧
/=⇒ format (with arbitrary nesting), or equalities us-

ing ≡. The latter specifies extra-logical abbreviations in the sense of
abbreviation. Introducing abstract syntax simultaneously with the
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actual introduction rules is occasionally useful for complex specifica-
tions.

The optional for part contains a list of parameters of the (co)inductive
predicates that remain fixed throughout the definition, in contrast to
arguments of the relation that may vary in each occurrence within the
given clauses.

The optional monos declaration contains additional monotonicity the-
orems, which are required for each operator applied to a recursive set
in the introduction rules.

inductive set and coinductive set are wrappers for to the previous com-
mands for native HOL predicates. This allows to define (co)inductive
sets, where multiple arguments are simulated via tuples.

mono declares monotonicity rules in the context. These rule are involved
in the automated monotonicity proof of the above inductive and coin-
ductive definitions.

10.2.1 Derived rules

A (co)inductive definition of R provides the following main theorems:

R.intros is the list of introduction rules as proven theorems, for the recursive
predicates (or sets). The rules are also available individually, using the
names given them in the theory file;

R.cases is the case analysis (or elimination) rule;

R.induct or R.coinduct is the (co)induction rule;

R.simps is the equation unrolling the fixpoint of the predicate one step.

When several predicates R1, . . ., Rn are defined simultaneously, the list of
introduction rules is called R1 . . . Rn .intros, the case analysis rules are called
R1.cases , . . ., Rn .cases, and the list of mutual induction rules is called R1

. . . Rn .inducts.
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10.2.2 Monotonicity theorems

The context maintains a default set of theorems that are used in mono-
tonicity proofs. New rules can be declared via the mono attribute. See the
main Isabelle/HOL sources for some examples. The general format of such
monotonicity theorems is as follows:

• Theorems of the form A ≤ B =⇒ M A ≤ M B, for proving mono-
tonicity of inductive definitions whose introduction rules have premises
involving terms such as M R t.

• Monotonicity theorems for logical operators, which are of the general
form (. . . −→ . . .) =⇒ . . . (. . . −→ . . .) =⇒ . . . −→ . . .. For example,
in the case of the operator ∨, the corresponding theorem is

P1 −→ Q1 P2 −→ Q2

P1 ∨ P2 −→ Q1 ∨ Q2

• De Morgan style equations for reasoning about the “polarity” of ex-
pressions, e.g.

¬ ¬ P ←→ P ¬ (P ∧ Q) ←→ ¬ P ∨ ¬ Q

• Equations for reducing complex operators to more primitive ones whose
monotonicity can easily be proved, e.g.

(P −→ Q) ←→ ¬ P ∨ Q Ball A P ≡ ∀ x . x ∈ A −→ P x

Examples

The finite powerset operator can be defined inductively like this:

inductive set Fin :: ′a set ⇒ ′a set set for A :: ′a set
where

empty : {} ∈ Fin A
| insert : a ∈ A =⇒ B ∈ Fin A =⇒ insert a B ∈ Fin A

The accessible part of a relation is defined as follows:

inductive acc :: ( ′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ bool
for r :: ′a ⇒ ′a ⇒ bool (infix ≺ 50)

where acc: (
∧

y . y ≺ x =⇒ acc r y) =⇒ acc r x
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Common logical connectives can be easily characterized as non-recursive in-
ductive definitions with parameters, but without arguments.

inductive AND for A B :: bool
where A =⇒ B =⇒ AND A B

inductive OR for A B :: bool
where A =⇒ OR A B
| B =⇒ OR A B

inductive EXISTS for B :: ′a ⇒ bool
where B a =⇒ EXISTS B

Here the cases or induct rules produced by the inductive package coincide
with the expected elimination rules for Natural Deduction. Already in the
original article by Gerhard Gentzen [11] there is a hint that each connec-
tive can be characterized by its introductions, and the elimination can be
constructed systematically.

10.3 Recursive functions

primrec : local theory → local theory
fun : local theory → local theory

function : local theory → proof (prove)
termination : local theory → proof (prove)
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primrec defines primitive recursive functions over datatypes (see also
datatype and rep datatype). The given equations specify reduc-
tion rules that are produced by instantiating the generic combinator
for primitive recursion that is available for each datatype.

Each equation needs to be of the form:

f x 1 . . . xm (C y1 . . . yk ) z 1 . . . zn = rhs

such that C is a datatype constructor, rhs contains only the free vari-
ables on the left-hand side (or from the context), and all recursive
occurrences of f in rhs are of the form f . . . y i . . . for some i. At most
one reduction rule for each constructor can be given. The order does
not matter. For missing constructors, the function is defined to return
a default value, but this equation is made difficult to access for users.

The reduction rules are declared as simp by default, which enables
standard proof methods like simp and auto to normalize expressions of f
applied to datatype constructions, by simulating symbolic computation
via rewriting.
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function defines functions by general wellfounded recursion. A detailed
description with examples can be found in [15]. The function is specified
by a set of (possibly conditional) recursive equations with arbitrary
pattern matching. The command generates proof obligations for the
completeness and the compatibility of patterns.

The defined function is considered partial, and the resulting simplifica-
tion rules (named f .psimps) and induction rule (named f .pinduct) are
guarded by a generated domain predicate f dom. The termination
command can then be used to establish that the function is total.

fun is a shorthand notation for “function (sequential), followed by au-
tomated proof attempts regarding pattern matching and termination.
See [15] for further details.

termination f commences a termination proof for the previously defined
function f. If this is omitted, the command refers to the most recent
function definition. After the proof is closed, the recursive equations
and the induction principle is established.

Recursive definitions introduced by the function command accommodate
reasoning by induction (cf. induct): rule f .induct refers to a specific induction
rule, with parameters named according to the user-specified equations. Cases
are numbered starting from 1. For primrec, the induction principle coincides
with structural recursion on the datatype where the recursion is carried out.

The equations provided by these packages may be referred later as theo-
rem list f .simps, where f is the (collective) name of the functions defined.
Individual equations may be named explicitly as well.

The function command accepts the following options.

sequential enables a preprocessor which disambiguates overlapping patterns
by making them mutually disjoint. Earlier equations take precedence
over later ones. This allows to give the specification in a format very
similar to functional programming. Note that the resulting simplifica-
tion and induction rules correspond to the transformed specification,
not the one given originally. This usually means that each equation
given by the user may result in several theorems. Also note that this
automatic transformation only works for ML-style datatype patterns.

domintros enables the automated generation of introduction rules for the
domain predicate. While mostly not needed, they can be helpful in
some proofs about partial functions.
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Example: evaluation of expressions

Subsequently, we define mutual datatypes for arithmetic and boolean ex-
pressions, and use primrec for evaluation functions that follow the same
recursive structure.

datatype ′a aexp =
IF ′a bexp ′a aexp ′a aexp
| Sum ′a aexp ′a aexp
| Diff ′a aexp ′a aexp
| Var ′a
| Num nat

and ′a bexp =
Less ′a aexp ′a aexp
| And ′a bexp ′a bexp
| Neg ′a bexp

Evaluation of arithmetic and boolean expressions

primrec evala :: ( ′a ⇒ nat) ⇒ ′a aexp ⇒ nat
and evalb :: ( ′a ⇒ nat) ⇒ ′a bexp ⇒ bool

where
evala env (IF b a1 a2) = (if evalb env b then evala env a1 else evala env a2)
| evala env (Sum a1 a2) = evala env a1 + evala env a2
| evala env (Diff a1 a2) = evala env a1 − evala env a2
| evala env (Var v) = env v
| evala env (Num n) = n
| evalb env (Less a1 a2) = (evala env a1 < evala env a2)
| evalb env (And b1 b2) = (evalb env b1 ∧ evalb env b2)
| evalb env (Neg b) = (¬ evalb env b)

Since the value of an expression depends on the value of its variables, the
functions evala and evalb take an additional parameter, an environment that
maps variables to their values.

Substitution on expressions can be defined similarly. The mapping f of type
′a ⇒ ′a aexp given as a parameter is lifted canonically on the types ′a aexp
and ′a bexp, respectively.

primrec substa :: ( ′a ⇒ ′b aexp) ⇒ ′a aexp ⇒ ′b aexp
and substb :: ( ′a ⇒ ′b aexp) ⇒ ′a bexp ⇒ ′b bexp

where
substa f (IF b a1 a2) = IF (substb f b) (substa f a1) (substa f a2)
| substa f (Sum a1 a2) = Sum (substa f a1) (substa f a2)
| substa f (Diff a1 a2) = Diff (substa f a1) (substa f a2)
| substa f (Var v) = f v
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| substa f (Num n) = Num n
| substb f (Less a1 a2) = Less (substa f a1) (substa f a2)
| substb f (And b1 b2) = And (substb f b1) (substb f b2)
| substb f (Neg b) = Neg (substb f b)

In textbooks about semantics one often finds substitution theorems, which
express the relationship between substitution and evaluation. For ′a aexp
and ′a bexp, we can prove such a theorem by mutual induction, followed by
simplification.

lemma subst one:
evala env (substa (Var (v := a ′)) a) = evala (env (v := evala env a ′)) a
evalb env (substb (Var (v := a ′)) b) = evalb (env (v := evala env a ′)) b
by (induct a and b) simp all

lemma subst all :
evala env (substa s a) = evala (λx . evala env (s x )) a
evalb env (substb s b) = evalb (λx . evala env (s x )) b
by (induct a and b) simp all

Example: a substitution function for terms

Functions on datatypes with nested recursion are also defined by mutual
primitive recursion.

datatype ( ′a, ′b) term = Var ′a | App ′b ( ′a, ′b) term list

A substitution function on type ( ′a, ′b) term can be defined as follows, by
working simultaneously on ( ′a, ′b) term list :

primrec subst term :: ( ′a ⇒ ( ′a, ′b) term) ⇒ ( ′a, ′b) term ⇒ ( ′a, ′b) term and
subst term list :: ( ′a ⇒ ( ′a, ′b) term) ⇒ ( ′a, ′b) term list ⇒ ( ′a, ′b) term list

where
subst term f (Var a) = f a
| subst term f (App b ts) = App b (subst term list f ts)
| subst term list f [] = []
| subst term list f (t # ts) = subst term f t # subst term list f ts

The recursion scheme follows the structure of the unfolded definition of type
( ′a, ′b) term. To prove properties of this substitution function, mutual in-
duction is needed:

lemma subst term (subst term f 1 ◦ f 2) t = subst term f 1 (subst term f 2 t) and
subst term list (subst term f 1 ◦ f 2) ts = subst term list f 1 (subst term list f 2

ts)
by (induct t and ts) simp all
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Example: a map function for infinitely branching trees

Defining functions on infinitely branching datatypes by primitive recursion
is just as easy.

datatype ′a tree = Atom ′a | Branch nat ⇒ ′a tree

primrec map tree :: ( ′a ⇒ ′b) ⇒ ′a tree ⇒ ′b tree
where

map tree f (Atom a) = Atom (f a)
| map tree f (Branch ts) = Branch (λx . map tree f (ts x ))

Note that all occurrences of functions such as ts above must be applied to
an argument. In particular, map tree f ◦ ts is not allowed here.

Here is a simple composition lemma for map tree:

lemma map tree g (map tree f t) = map tree (g ◦ f ) t
by (induct t) simp all

10.3.1 Proof methods related to recursive definitions

pat completeness : method
relation : method

lexicographic order : method
size change : method

induction schema : method

relation
�� ��term

lexicographic_order
�� ���

�clasimpmod

�
�

size_change
�� ��orders �

�clasimpmod

�
�

induction_schema
�� ��
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orders

�
� max

�� ���
�min

�� ���ms
����

�
�
�

�
�

pat completeness is a specialized method to solve goals regarding the com-
pleteness of pattern matching, as required by the function package (cf.
[15]).

relation R introduces a termination proof using the relation R. The resulting
proof state will contain goals expressing that R is wellfounded, and that
the arguments of recursive calls decrease with respect to R. Usually, this
method is used as the initial proof step of manual termination proofs.

lexicographic order attempts a fully automated termination proof by search-
ing for a lexicographic combination of size measures on the arguments
of the function. The method accepts the same arguments as the
auto method, which it uses internally to prove local descents. The
clasimpmod modifiers are accepted (as for auto).

In case of failure, extensive information is printed, which can help to
analyse the situation (cf. [15]).

size change also works on termination goals, using a variation of the size-
change principle, together with a graph decomposition technique (see
[16] for details). Three kinds of orders are used internally: max, min,
and ms (multiset), which is only available when the theory Multiset is
loaded. When no order kinds are given, they are tried in order. The
search for a termination proof uses SAT solving internally.

For local descent proofs, the clasimpmod modifiers are accepted (as for
auto).

induction schema derives user-specified induction rules from well-founded
induction and completeness of patterns. This factors out some opera-
tions that are done internally by the function package and makes them
available separately. See ~~/src/HOL/ex/Induction_Schema.thy for
examples.
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10.3.2 Functions with explicit partiality

partial function : local theory → local theory
partial function mono : attribute

partial function
�� ���

�target

�
�

(
����nameref )

����fixes �

��
�where

�� ���
�thmdecl

�
�

prop

partial function (mode) defines recursive functions based on fixpoints in
complete partial orders. No termination proof is required from the user
or constructed internally. Instead, the possibility of non-termination is
modelled explicitly in the result type, which contains an explicit bottom
element.

Pattern matching and mutual recursion are currently not supported.
Thus, the specification consists of a single function described by a single
recursive equation.

There are no fixed syntactic restrictions on the body of the function,
but the induced functional must be provably monotonic wrt. the un-
derlying order. The monotonicitity proof is performed internally, and
the definition is rejected when it fails. The proof can be influenced by
declaring hints using the partial function mono attribute.

The mandatory mode argument specifies the mode of operation of the
command, which directly corresponds to a complete partial order on
the result type. By default, the following modes are defined:

option defines functions that map into the option type. Here, the value
None is used to model a non-terminating computation. Mono-
tonicity requires that if None is returned by a recursive call, then
the overall result must also be None. This is best achieved through
the use of the monadic operator Option.bind.

tailrec defines functions with an arbitrary result type and uses the
slightly degenerated partial order where undefined is the bottom
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element. Now, monotonicity requires that if undefined is returned
by a recursive call, then the overall result must also be undefined.
In practice, this is only satisfied when each recursive call is a
tail call, whose result is directly returned. Thus, this mode of
operation allows the definition of arbitrary tail-recursive functions.

Experienced users may define new modes by instantiating the locale
partial function definitions appropriately.

partial function mono declares rules for use in the internal monononicity
proofs of partial function definitions.

10.3.3 Old-style recursive function definitions (TFL)

recdef : theory → theory)
recdef tc∗ : theory → proof (prove)

The old TFL commands recdef and recdef tc for defining recursive are
mostly obsolete; function or fun should be used instead.

recdef
�� ���

� (
����permissive

�� ��)
����

�
�

�

��
�name term prop�

�
�
�

�
�hints

�
�

recdeftc �
�thmdecl

�
�

tc

hints

(
����hints

�� ���
�recdefmod

�
�

)
����
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recdefmod

recdef_simp
�� ���

�recdef_cong
�� ���recdef_wf
�� ��

�
�
�

�
�add

�� ���del
�� ��

�
�
�

:
����thmrefs�

�clasimpmod

�

�
tc

nameref �
� (

����nat )
����

�
�

recdef defines general well-founded recursive functions (using the TFL
package), see also [24]. The “(permissive)” option tells TFL to re-
cover from failed proof attempts, returning unfinished results. The
recdef simp, recdef cong, and recdef wf hints refer to auxiliary rules to
be used in the internal automated proof process of TFL. Additional
clasimpmod declarations may be given to tune the context of the Sim-
plifier (cf. §9.3) and Classical reasoner (cf. §9.4).

recdef tc c (i) recommences the proof for leftover termination condition
number i (default 1) as generated by a recdef definition of constant c.

Note that in most cases, recdef is able to finish its internal proofs
without manual intervention.

Hints for recdef may be also declared globally, using the following attributes.

recdef simp : attribute
recdef cong : attribute

recdef wf : attribute

recdef_simp
�� ���

�recdef_cong
�� ���recdef_wf
�� ��

�
�
�

�
�add

�� ���del
�� ��

�
�
�
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10.4 Datatypes

datatype : theory → theory
rep datatype : theory → proof (prove)

datatype
�� �� spec�

�and
�� ��

�
�

rep datatype
�� ���

� (
���� name�

�
�
�

)
����

�
�

term�
�

�
�

spec

typespec sorts �
�mixfix

�
�

=
���� cons�

� |
����

�
�

cons

name �
�type

�
�

�
�mixfix

�
�

datatype defines inductive datatypes in HOL.

rep datatype represents existing types as datatypes.

For foundational reasons, some basic types such as nat, ′a × ′b, ′a + ′b,
bool and unit are introduced by more primitive means using typedef .
To recover the rich infrastructure of datatype (e.g. rules for cases and
induct and the primitive recursion combinators), such types may be
represented as actual datatypes later. This is done by specifying the
constructors of the desired type, and giving a proof of the induction
rule, distinctness and injectivity of constructors.

For example, see ~~/src/HOL/Sum_Type.thy for the representation of
the primitive sum type as fully-featured datatype.
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The generated rules for induct and cases provide case names according to
the given constructors, while parameters are named after the types (see also
§6.6).

See [24] for more details on datatypes, but beware of the old-style theory
syntax being used there! Apart from proper proof methods for case-analysis
and induction, there are also emulations of ML tactics case tac and induct tac
available, see §10.19; these admit to refer directly to the internal structure
of subgoals (including internally bound parameters).

Examples

We define a type of finite sequences, with slightly different names than the
existing ′a list that is already in Main:

datatype ′a seq = Empty | Seq ′a ′a seq

We can now prove some simple lemma by structural induction:

lemma Seq x xs 6= xs
proof (induct xs arbitrary : x )

case Empty

This case can be proved using the simplifier: the freeness properties of the datatype
are already declared as simp rules.

show Seq x Empty 6= Empty
by simp

next
case (Seq y ys)

The step case is proved similarly.

show Seq x (Seq y ys) 6= Seq y ys
using ‘Seq y ys 6= ys‘ by simp

qed

Here is a more succinct version of the same proof:

lemma Seq x xs 6= xs
by (induct xs arbitrary : x ) simp all

10.5 Records

In principle, records merely generalize the concept of tuples, where com-
ponents may be addressed by labels instead of just position. The logical
infrastructure of records in Isabelle/HOL is slightly more advanced, though,
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supporting truly extensible record schemes. This admits operations that are
polymorphic with respect to record extension, yielding “object-oriented” ef-
fects like (single) inheritance. See also [22] for more details on object-oriented
verification and record subtyping in HOL.

10.5.1 Basic concepts

Isabelle/HOL supports both fixed and schematic records at the level of terms
and types. The notation is as follows:

record terms record types
fixed (|x = a, y = b|) (|x :: A, y :: B |)
schematic (|x = a, y = b, . . . = m|) (|x :: A, y :: B , . . . :: M |)

The ASCII representation of (|x = a|) is (| x = a |).
A fixed record (|x = a, y = b|) has field x of value a and field y of value b.
The corresponding type is (|x :: A, y :: B |), assuming that a :: A and b :: B.

A record scheme like (|x = a, y = b, . . . = m|) contains fields x and y as
before, but also possibly further fields as indicated by the “. . .” notation
(which is actually part of the syntax). The improper field “. . .” of a record
scheme is called the more part. Logically it is just a free variable, which is
occasionally referred to as “row variable” in the literature. The more part
of a record scheme may be instantiated by zero or more further components.
For example, the previous scheme may get instantiated to (|x = a, y = b, z
= c, . . . = m ′|), where m ′ refers to a different more part. Fixed records are
special instances of record schemes, where “. . .” is properly terminated by
the () :: unit element. In fact, (|x = a, y = b|) is just an abbreviation for (|x
= a, y = b, . . . = ()|).

Two key observations make extensible records in a simply typed language
like HOL work out:

1. the more part is internalized, as a free term or type variable,

2. field names are externalized, they cannot be accessed within the logic
as first-class values.

In Isabelle/HOL record types have to be defined explicitly, fixing their field
names and types, and their (optional) parent record. Afterwards, records may
be formed using above syntax, while obeying the canonical order of fields as
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given by their declaration. The record package provides several standard
operations like selectors and updates. The common setup for various generic
proof tools enable succinct reasoning patterns. See also the Isabelle/HOL
tutorial [25] for further instructions on using records in practice.

10.5.2 Record specifications

record : theory → theory

record
�� ��typespec sorts =

�����
��

��
�type +

����
�
�

constdecl�
�

�
�

constdecl

name ::
����type �

�mixfix

�
�

record (α1, . . ., αm) t = τ + c1 :: σ1 . . . cn :: σn defines extensible record
type (α1, . . ., αm) t, derived from the optional parent record τ by adding
new field components ci :: σi etc.

The type variables of τ and σi need to be covered by the (distinct)
parameters α1, . . ., αm . Type constructor t has to be new, while τ
needs to specify an instance of an existing record type. At least one
new field ci has to be specified. Basically, field names need to belong
to a unique record. This is not a real restriction in practice, since fields
are qualified by the record name internally.

The parent record specification τ is optional; if omitted t becomes
a root record. The hierarchy of all records declared within a theory
context forms a forest structure, i.e. a set of trees starting with a root
record each. There is no way to merge multiple parent records!

For convenience, (α1, . . ., αm) t is made a type abbreviation for the
fixed record type (|c1 :: σ1, . . ., cn :: σn |), likewise is (α1, . . ., αm , ζ)
t scheme made an abbreviation for (|c1 :: σ1, . . ., cn :: σn , . . . :: ζ|).
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10.5.3 Record operations

Any record definition of the form presented above produces certain standard
operations. Selectors and updates are provided for any field, including the
improper one “more”. There are also cumulative record constructor func-
tions. To simplify the presentation below, we assume for now that (α1, . . .,
αm) t is a root record with fields c1 :: σ1, . . ., cn :: σn .

Selectors and updates are available for any field (including “more”):

ci :: (|c :: σ, . . . :: ζ|) ⇒ σi

ci update :: σi ⇒ (|c :: σ, . . . :: ζ|) ⇒ (|c :: σ, . . . :: ζ|)

There is special syntax for application of updates: r(|x := a|) abbreviates
term x update a r. Further notation for repeated updates is also available:
r(|x := a|)(|y := b|)(|z := c|) may be written r(|x := a, y := b, z := c|). Note
that because of postfix notation the order of fields shown here is reverse than
in the actual term. Since repeated updates are just function applications,
fields may be freely permuted in (|x := a, y := b, z := c|), as far as logical
equality is concerned. Thus commutativity of independent updates can be
proven within the logic for any two fields, but not as a general theorem.

The make operation provides a cumulative record constructor function:

t .make :: σ1 ⇒ . . . σn ⇒ (|c :: σ|)

We now reconsider the case of non-root records, which are derived of some
parent. In general, the latter may depend on another parent as well, resulting
in a list of ancestor records. Appending the lists of fields of all ancestors
results in a certain field prefix. The record package automatically takes care
of this by lifting operations over this context of ancestor fields. Assuming
that (α1, . . ., αm) t has ancestor fields b1 :: %1, . . ., bk :: %k , the above record
operations will get the following types:

ci :: (|b :: %, c :: σ, . . . :: ζ|) ⇒ σi

ci update :: σi ⇒ (|b :: %, c :: σ, . . . :: ζ|) ⇒ (|b :: %, c :: σ, . . . :: ζ|)
t .make :: %1 ⇒ . . . %k ⇒ σ1 ⇒ . . . σn ⇒ (|b :: %, c :: σ|)

Some further operations address the extension aspect of a derived record
scheme specifically: t .fields produces a record fragment consisting of exactly
the new fields introduced here (the result may serve as a more part elsewhere);
t .extend takes a fixed record and adds a given more part; t .truncate restricts
a record scheme to a fixed record.
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t .fields :: σ1 ⇒ . . . σn ⇒ (|c :: σ|)
t .extend :: (|b :: %, c :: σ|) ⇒ ζ ⇒ (|b :: %, c :: σ, . . . :: ζ|)
t .truncate :: (|b :: %, c :: σ, . . . :: ζ|) ⇒ (|b :: %, c :: σ|)

Note that t .make and t .fields coincide for root records.

10.5.4 Derived rules and proof tools

The record package proves several results internally, declaring these facts to
appropriate proof tools. This enables users to reason about record structures
quite conveniently. Assume that t is a record type as specified above.

1. Standard conversions for selectors or updates applied to record con-
structor terms are made part of the default Simplifier context; thus
proofs by reduction of basic operations merely require the simp method
without further arguments. These rules are available as t .simps, too.

2. Selectors applied to updated records are automatically reduced by an
internal simplification procedure, which is also part of the standard
Simplifier setup.

3. Inject equations of a form analogous to (x , y) = (x ′, y ′) ≡ x = x ′ ∧ y
= y ′ are declared to the Simplifier and Classical Reasoner as iff rules.
These rules are available as t .iffs.

4. The introduction rule for record equality analogous to x r = x r ′ =⇒
y r = y r ′ . . . =⇒ r = r ′ is declared to the Simplifier, and as the basic
rule context as “intro?”. The rule is called t .equality.

5. Representations of arbitrary record expressions as canonical construc-
tor terms are provided both in cases and induct format (cf. the generic
proof methods of the same name, §6.6). Several variations are available,
for fixed records, record schemes, more parts etc.

The generic proof methods are sufficiently smart to pick the most sen-
sible rule according to the type of the indicated record expression: users
just need to apply something like “(cases r)” to a certain proof prob-
lem.

6. The derived record operations t .make, t .fields, t .extend, t .truncate are
not treated automatically, but usually need to be expanded by hand,
using the collective fact t .defs.
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Examples

See ~~/src/HOL/ex/Records.thy, for example.

10.6 Adhoc tuples

split format∗ : attribute

split_format
�� ���

� (
����complete

�� ��)
����

�
�

split format (complete) causes arguments in function applications to be rep-
resented canonically according to their tuple type structure.

Note that this operation tends to invent funny names for new local
parameters introduced.

10.7 Typedef axiomatization

typedef : local theory → proof (prove)

A Gordon/HOL-style type definition is a certain axiom scheme that identi-
fies a new type with a subset of an existing type. More precisely, the new
type is defined by exhibiting an existing type τ , a set A :: τ set, and a the-
orem that proves ∃ x . x ∈ A. Thus A is a non-empty subset of τ , and the
new type denotes this subset. New functions are postulated that establish
an isomorphism between the new type and the subset. In general, the type
τ may involve type variables α1, . . ., αn which means that the type defini-
tion produces a type constructor (α1, . . ., αn) t depending on those type
arguments.

The axiomatization can be considered a “definition” in the sense of the
particular set-theoretic interpretation of HOL [38], where the universe of
types is required to be downwards-closed wrt. arbitrary non-empty subsets.
Thus genuinely new types introduced by typedef stay within the range of
HOL models by construction. Note that type synonym from Isabelle/Pure
merely introduces syntactic abbreviations, without any logical significance.
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typedef
�� ���

�alt name

�
�

abs type =
����rep set

alt name

(
���� name�

�open
�� ���open
�� ��name

�
�
�

)
����

abs type

typespec sorts �
�mixfix

�
�

rep set

term �
�morphisms

�� ��name name

�
�

typedef (α1, . . ., αn) t = A axiomatizes a type definition in the background
theory of the current context, depending on a non-emptiness result of
the set A that needs to be proven here. The set A may contain type
variables α1, . . ., αn as specified on the LHS, but no term variables.

Even though a local theory specification, the newly introduced type
constructor cannot depend on parameters or assumptions of the con-
text: this is structurally impossible in HOL. In contrast, the non-
emptiness proof may use local assumptions in unusual situations, which
could result in different interpretations in target contexts: the meaning
of the bijection between the representing set A and the new type t may
then change in different application contexts.

By default, typedef defines both a type constructor t for the new type,
and a term constant t for the representing set within the old type. Use
the “(open)” option to suppress a separate constant definition alto-
gether. The injection from type to set is called Rep t, its inverse Abs t,
unless explicit morphisms specification provides alternative names.
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The core axiomatization uses the locale predicate type definition as de-
fined in Isabelle/HOL. Various basic consequences of that are instanti-
ated accordingly, re-using the locale facts with names derived from the
new type constructor. Thus the generic type definition.Rep is turned
into the specific Rep t, for example.

Theorems type definition.Rep, type definition.Rep inverse, and type
definition.Abs inverse provide the most basic characterization as a cor-
responding injection/surjection pair (in both directions). The derived
rules type definition.Rep inject and type definition.Abs inject provide
a more convenient version of injectivity, suitable for automated proof
tools (e.g. in declarations involving simp or iff ). Furthermore, the rules
type definition.Rep cases / type definition.Rep induct, and type defini-
tion.Abs cases / type definition.Abs induct provide alternative views
on surjectivity. These rules are already declared as set or type rules for
the generic cases and induct methods, respectively.

An alternative name for the set definition (and other derived entities)
may be specified in parentheses; the default is to use t directly.

! If you introduce a new type axiomatically, i.e. via typedecl and
axiomatization, the minimum requirement is that it has a non-empty model,

to avoid immediate collapse of the HOL logic. Moreover, one needs to demonstrate
that the interpretation of such free-form axiomatizations can coexist with that
of the regular typedef scheme, and any extension that other people might have
introduced elsewhere (e.g. in HOLCF [21]).

Examples

Type definitions permit the introduction of abstract data types in a safe
way, namely by providing models based on already existing types. Given
some abstract axiomatic description P of a type, this involves two steps:

1. Find an appropriate type τ and subset A which has the desired prop-
erties P, and make a type definition based on this representation.

2. Prove that P holds for τ by lifting P from the representation.

You can later forget about the representation and work solely in terms of the
abstract properties P.

The following trivial example pulls a three-element type into existence within
the formal logical environment of HOL.
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typedef three = {(True, True), (True, False), (False, True)}
by blast

definition One = Abs three (True, True)
definition Two = Abs three (True, False)
definition Three = Abs three (False, True)

lemma three distinct : One 6= Two One 6= Three Two 6= Three
by (simp all add : One def Two def Three def Abs three inject three def )

lemma three cases:
fixes x :: three obtains x = One | x = Two | x = Three
by (cases x ) (auto simp: One def Two def Three def Abs three inject three def )

Note that such trivial constructions are better done with derived specification
mechanisms such as datatype:

datatype three ′ = One ′ | Two ′ | Three ′

This avoids re-doing basic definitions and proofs from the primitive typedef
above.

10.8 Functorial structure of types

enriched type : local theory → proof (prove)

enriched type
�� ���

�name :
����

�
�

term

enriched type prefix : m allows to prove and register properties about the
functorial structure of type constructors. These properties then can be
used by other packages to deal with those type constructors in certain
type constructions. Characteristic theorems are noted in the current
local theory. By default, they are prefixed with the base name of the
type constructor, an explicit prefix can be given alternatively.

The given term m is considered as mapper for the corresponding type
constructor and must conform to the following type pattern:

m :: σ1 ⇒ . . . σk ⇒ (αn) t ⇒ (βn) t
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where t is the type constructor, αn and βn are distinct type variables
free in the local theory and σ1, . . . , σk is a subsequence of α1 ⇒ β1,
β1 ⇒ α1, . . . , αn ⇒ βn , βn ⇒ αn .

10.9 Transfer package

transfer : method
transfer ′ : method

transfer prover : method
transfer rule : attribute

relator eq : attribute

transfer method replaces the current subgoal with a logically equivalent one
that uses different types and constants. The replacement of types and
constants is guided by the database of transfer rules. Goals are gener-
alized over all free variables by default; this is necessary for variables
whose types change, but can be overridden for specific variables with
e.g. transfer fixing : x y z.

transfer ′ is a variant of transfer that allows replacing a subgoal with one that
is logically stronger (rather than equivalent). For example, a subgoal
involving equality on a quotient type could be replaced with a subgoal
involving equality (instead of the corresponding equivalence relation)
on the underlying raw type.

transfer prover method assists with proving a transfer rule for a new con-
stant, provided the constant is defined in terms of other constants that
already have transfer rules. It should be applied after unfolding the
constant definitions.

transfer rule attribute maintains a collection of transfer rules, which relate
constants at two different types. Typical transfer rules may relate dif-
ferent type instances of the same polymorphic constant, or they may
relate an operation on a raw type to a corresponding operation on an
abstract type (quotient or subtype). For example:

((A ===> B) ===> list all2 A ===> list all2 B) map map
(cr int ===> cr int ===> cr int) (λ(x ,y) (u,v). (x+u, y+v)) plus

Lemmas involving predicates on relations can also be registered using
the same attribute. For example:
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bi unique A =⇒ (list all2 A ===> op =) distinct distinct
[[bi unique A; bi unique B ]] =⇒ bi unique (prod rel A B)

relator eq attribute collects identity laws for relators of various type con-
structors, e.g. list all2 (op =) = (op =). The transfer method uses
these lemmas to infer transfer rules for non-polymorphic constants on
the fly.

10.10 Lifting package

setup lifting : local theory → local theory
lift definition : local theory → proof (prove)

print quotmaps : context →
print quotients : context →

quot map : attribute
invariant commute : attribute

setup lifting
�� ���

� (
����no_abs_code

�� ��)
����

�
�

�

��
�thmref �

�thmref

�
�

lift definition
�� ��name ::

����type �
�mixfix

�
�

�

��
�is

����term

setup lifting Sets up the Lifting package to work with a user-defined type.
The user must provide either a quotient theorem Quotient R Abs Rep
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T or a type definition theorem type definition Rep Abs A. The package
configures transfer rules for equality and quantifiers on the type, and
sets up the lift definition command to work with the type. In the case
of a quotient theorem, an optional theorem reflp R can be provided as a
second argument. This allows the package to generate stronger transfer
rules.

setup lifting is called automatically if a quotient type is defined by
the command quotient type from the Quotient package.

If setup lifting is called with a type definition theorem, the abstract
type implicitly defined by the theorem is declared as an abstract type in
the code generator. This allows lift definition to register (generated)
code certificate theorems as abstract code equations in the code gener-
ator. The option no abs code of the command setup lifting can turn
off that behavior and causes that code certificate theorems generated
by lift definition are not registred as abstract code equations.

lift definition f :: τ is t Defines a new function f with an abstract type τ
in terms of a corresponding operation t on a representation type. The
term t doesn’t have to be necessarily a constant but it can be any term.

Users must discharge a respectfulness proof obligation when each con-
stant is defined. For a type copy, i.e. a typedef with UNIV, the proof is
discharged automatically. The obligation is presented in a user-friendly,
readable form. A respectfulness theorem in the standard format f .rsp
and a transfer rule f .tranfer for the Transfer package are generated by
the package.

Integration with code abstype: For typedefs (e.g. subtypes correspond-
ing to a datatype invariant, such as dlist), lift definition generates a
code certificate theorem f .rep eq and sets up code generation for each
constant.

print quotmaps prints stored quotient map theorems.

print quotients prints stored quotient theorems.

quot map registers a quotient map theorem. For examples see
~~/src/HOL/Library/Quotient_List.thy or other Quotient *.thy
files.

invariant commute registers a theorem which shows a relationship between
the constant Lifting .invariant (used for internal encoding of proper
subtypes) and a relator. Such theorems allows the package to hide
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Lifting .invariant from a user in a user-readable form of a respectfulness
theorem. For examples see ~~/src/HOL/Library/Quotient_List.thy
or other Quotient *.thy files.

10.11 Quotient types

quotient type : local theory → proof (prove)
quotient definition : local theory → proof (prove)
print quotmapsQ3 : context →
print quotientsQ3 : context →

print quotconsts : context →
lifting : method

lifting setup : method
descending : method

descending setup : method
partiality descending : method

partiality descending setup : method
regularize : method
injection : method
cleaning : method

quot thm : attribute
quot lifted : attribute

quot respect : attribute
quot preserve : attribute

The quotient package defines a new quotient type given a raw type and a
partial equivalence relation. It also includes automation for transporting def-
initions and theorems. It can automatically produce definitions and theorems
on the quotient type, given the corresponding constants and facts on the raw
type.

quotient type
�� �� spec�

�and
�� ��

�
�
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spec

typespec �
�mixfix

�
�

=
�����

��
�type /

�����
�partial

�� ��:
����

�
�

term �

��
��

�morphisms
�� ��name name

�
�

quotient definition
�� ���

�constdecl

�
�

�
�thmdecl

�
�

�

��
�term is

����term

constdecl

name �
�::

����type

�
�

�
�mixfix

�
�

lifting
�� ���

�thmrefs

�
�

lifting_setup
�� ���

�thmrefs

�
�
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quotient type defines quotient types. The injection from a quotient type
to a raw type is called rep t, its inverse abs t unless explicit morphisms
specification provides alternative names. quotient type requires the
user to prove that the relation is an equivalence relation (predicate
equivp), unless the user specifies explicitely partial in which case the
obligation is part equivp. A quotient defined with partial is weaker in
the sense that less things can be proved automatically.

quotient definition defines a constant on the quotient type.

print quotmapsQ3 prints quotient map functions.

print quotientsQ3 prints quotients.

print quotconsts prints quotient constants.

lifting and lifting setup methods match the current goal with the given
raw theorem to be lifted producing three new subgoals: regularization,
injection and cleaning subgoals. lifting tries to apply the heuristics for
automatically solving these three subgoals and leaves only the subgoals
unsolved by the heuristics to the user as opposed to lifting setup which
leaves the three subgoals unsolved.

descending and descending setup try to guess a raw statement that would
lift to the current subgoal. Such statement is assumed as a new subgoal
and descending continues in the same way as lifting does. descending
tries to solve the arising regularization, injection and cleaning subgoals
with the analoguous method descending setup which leaves the four
unsolved subgoals.

partiality descending finds the regularized theorem that would lift to the
current subgoal, lifts it and leaves as a subgoal. This method can
be used with partial equivalence quotients where the non regularized
statements would not be true. partiality descending setup leaves the
injection and cleaning subgoals unchanged.

regularize applies the regularization heuristics to the current subgoal.

injection applies the injection heuristics to the current goal using the stored
quotient respectfulness theorems.

cleaning applies the injection cleaning heuristics to the current subgoal using
the stored quotient preservation theorems.
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quot lifted attribute tries to automatically transport the theorem to the
quotient type. The attribute uses all the defined quotients types and
quotient constants often producing undesired results or theorems that
cannot be lifted.

quot respect and quot preserve attributes declare a theorem as a respect-
fulness and preservation theorem respectively. These are stored in the
local theory store and used by the injection and cleaning methods re-
spectively.

quot thm declares that a certain theorem is a quotient extension theo-
rem. Quotient extension theorems allow for quotienting inside con-
tainer types. Given a polymorphic type that serves as a container, a
map function defined for this container using enriched type and a
relation map defined for for the container type, the quotient extension
theorem should be Quotient3 R Abs Rep =⇒ Quotient3 (rel map R)
(map Abs) (map Rep). Quotient extension theorems are stored in a
database and are used all the steps of lifting theorems.

10.12 Coercive subtyping

coercion : attribute
coercion enabled : attribute

coercion map : attribute

Coercive subtyping allows the user to omit explicit type conversions, also
called coercions. Type inference will add them as necessary when parsing a
term. See [41] for details.

coercion
�� ���

�term

�
�

coercion_map
�� ���

�term

�
�
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coercion f registers a new coercion function f :: σ1 ⇒ σ2 where σ1 and σ2 are
type constructors without arguments. Coercions are composed by the
inference algorithm if needed. Note that the type inference algorithm
is complete only if the registered coercions form a lattice.

coercion map map registers a new map function to lift coercions through
type constructors. The function map must conform to the following
type pattern

map :: f 1 ⇒ . . . ⇒ f n ⇒ (α1, . . ., αn) t ⇒ (β1, . . ., βn) t

where t is a type constructor and f i is of type αi ⇒ βi or βi ⇒ αi .
Registering a map function overwrites any existing map function for
this particular type constructor.

coercion enabled enables the coercion inference algorithm.

10.13 Arithmetic proof support

arith : method
arith : attribute

arith split : attribute

arith decides linear arithmetic problems (on types nat, int, real). Any cur-
rent facts are inserted into the goal before running the procedure.

arith declares facts that are supplied to the arithmetic provers implicitly.

arith split attribute declares case split rules to be expanded before arith is
invoked.

Note that a simpler (but faster) arithmetic prover is already invoked by the
Simplifier.

10.14 Intuitionistic proof search

iprover : method
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iprover
�� ���

�rulemod

�
�

iprover performs intuitionistic proof search, depending on specifically de-
clared rules from the context, or given as explicit arguments. Chained
facts are inserted into the goal before commencing proof search.

Rules need to be classified as intro, elim, or dest ; here the “!” indica-
tor refers to “safe” rules, which may be applied aggressively (without
considering back-tracking later). Rules declared with “?” are ignored
in proof search (the single-step rule method still observes these). An
explicit weight annotation may be given as well; otherwise the number
of rule premises will be taken into account here.

10.15 Model Elimination and Resolution

meson : method
metis : method

meson
�� ���

�thmrefs

�
�

metis
�� ���

� (
���� partial_types

�� ���
�full_types

�� ���no_types
�� ���name

�
�
�
�

)
����

�
�

�
�thmrefs

�
�

meson implements Loveland’s model elimination procedure [18]. See
~~/src/HOL/ex/Meson_Test.thy for examples.
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metis combines ordered resolution and ordered paramodulation to find first-
order (or mildly higher-order) proofs. The first optional argument spec-
ifies a type encoding; see the Sledgehammer manual [7] for details. The
directory ~~/src/HOL/Metis_Examples contains several small theories
developed to a large extent using metis .

10.16 Coherent Logic

coherent : method

coherent
�� ���

�thmrefs

�
�

coherent solves problems of Coherent Logic [6], which covers applications
in confluence theory, lattice theory and projective geometry. See
~~/src/HOL/ex/Coherent.thy for some examples.

10.17 Proving propositions

In addition to the standard proof methods, a number of diagnosis tools search
for proofs and provide an Isar proof snippet on success. These tools are
available via the following commands.

solve direct∗ : proof →
try∗ : proof →

try0∗ : proof →
sledgehammer∗ : proof →

sledgehammer params : theory → theory

try
�� ��
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try0
�� ���

� simp
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�intro
�� ���elim
�� ���dest
�� ��
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�

�

�
�

�
�nat

�
�

sledgehammer
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����args ]

����
�
�

�
�facts

�
�

�
�nat

�
�

sledgehammer params
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����args ]
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�
�

args

name =
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����

�
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facts
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�del
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�
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�

�
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)
����

solve direct checks whether the current subgoals can be solved directly by
an existing theorem. Duplicate lemmas can be detected in this way.
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try0 attempts to prove a subgoal using a combination of standard proof
methods (auto, simp, blast , etc.). Additional facts supplied via simp:,
intro:, elim:, and dest : are passed to the appropriate proof methods.

try attempts to prove or disprove a subgoal using a combination of provers
and disprovers (solve direct, quickcheck, try0, sledgehammer,
nitpick).

sledgehammer attempts to prove a subgoal using external automatic
provers (resolution provers and SMT solvers). See the Sledgehammer
manual [7] for details.

sledgehammer params changes sledgehammer configuration options
persistently.

10.18 Checking and refuting propositions

Identifying incorrect propositions usually involves evaluation of particular
assignments and systematic counterexample search. This is supported by
the following commands.

value∗ : context →
values∗ : context →

quickcheck∗ : proof →
refute∗ : proof →

nitpick∗ : proof →
quickcheck params : theory → theory

refute params : theory → theory
nitpick params : theory → theory

quickcheck generator : theory → theory
find unused assms : context →

value
�� ���

� [
����name ]

����
�
�

�
�modes

�
�

term

values
�� ���

�modes

�
�

�
�nat

�
�

term
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quickcheck
�� ���

�refute
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�
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�

quickcheck params
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�� ��nameref �

��
�operations:

�� �� term�
�

�
�
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���� name�
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����value�
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����

�
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value t evaluates and prints a term; optionally modes can be specified,
which are appended to the current print mode; see §7.1.3. Internally,
the evaluation is performed by registered evaluators, which are invoked
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sequentially until a result is returned. Alternatively a specific evaluator
can be selected using square brackets; typical evaluators use the current
set of code equations to normalize and include simp for fully symbolic
evaluation using the simplifier, nbe for normalization by evaluation and
code for code generation in SML.

values t enumerates a set comprehension by evaluation and prints its values
up to the given number of solutions; optionally modes can be specified,
which are appended to the current print mode; see §7.1.3.

quickcheck tests the current goal for counterexamples using a series of as-
signments for its free variables; by default the first subgoal is tested,
an other can be selected explicitly using an optional goal index. As-
signments can be chosen exhausting the search space upto a given size,
or using a fixed number of random assignments in the search space, or
exploring the search space symbolically using narrowing. By default,
quickcheck uses exhaustive testing. A number of configuration options
are supported for quickcheck, notably:

tester specifies which testing approach to apply. There are three
testers, exhaustive, random, and narrowing. An unknown config-
uration option is treated as an argument to tester, making tester
= optional. When multiple testers are given, these are applied in
parallel. If no tester is specified, quickcheck uses the testers that
are set active, i.e., configurations quickcheck exhaustive active,
quickcheck random active, quickcheck narrowing active are set to
true.

size specifies the maximum size of the search space for assignment
values.

genuine only sets quickcheck only to return genuine counterexample,
but not potentially spurious counterexamples due to underspeci-
fied functions.

abort potential sets quickcheck to abort once it found a potentially spu-
rious counterexample and to not continue to search for a further
genuine counterexample. For this option to be effective, the gen-
uine only option must be set to false.

eval takes a term or a list of terms and evaluates these terms under
the variable assignment found by quickcheck.

iterations sets how many sets of assignments are generated for each
particular size.
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no assms specifies whether assumptions in structured proofs should be
ignored.

locale specifies how to process conjectures in a locale context, i.e., they
can be interpreted or expanded. The option is a whitespace-
separated list of the two words interpret and expand. The list
determines the order they are employed. The default setting is
to first use interpretations and then test the expanded conjecture.
The option is only provided as attribute declaration, but not as
parameter to the command.

timeout sets the time limit in seconds.

default type sets the type(s) generally used to instantiate type vari-
ables.

report if set quickcheck reports how many tests fulfilled the precondi-
tions.

use subtype if set quickcheck automatically lifts conjectures to regis-
tered subtypes if possible, and tests the lifted conjecture.

quiet if set quickcheck does not output anything while testing.

verbose if set quickcheck informs about the current size and cardinality
while testing.

expect can be used to check if the user’s expectation was met (no
expectation, no counterexample, or counterexample).

These option can be given within square brackets.

quickcheck params changes quickcheck configuration options persis-
tently.

quickcheck generator creates random and exhaustive value generators for
a given type and operations. It generates values by using the operations
as if they were constructors of that type.

refute tests the current goal for counterexamples using a reduction to SAT.
The following configuration options are supported:

minsize specifies the minimum size (cardinality) of the models to
search for.

maxsize specifies the maximum size (cardinality) of the models to
search for. Nonpositive values mean ∞.
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maxvars specifies the maximum number of Boolean variables to use
when transforming the term into a propositional formula. Non-
positive values mean ∞.

satsolver specifies the SAT solver to use.

no assms specifies whether assumptions in structured proofs should be
ignored.

maxtime sets the time limit in seconds.

expect can be used to check if the user’s expectation was met (genuine,
potential, none, or unknown).

These option can be given within square brackets.

refute params changes refute configuration options persistently.

nitpick tests the current goal for counterexamples using a reduction to
first-order relational logic. See the Nitpick manual [8] for details.

nitpick params changes nitpick configuration options persistently.

find unused assms finds potentially superfluous assumptions in theorems
using quickcheck. It takes the theory name to be checked for superflu-
ous assumptions as optional argument. If not provided, it checks the
current theory. Options to the internal quickcheck invocations can be
changed with common configuration declarations.

10.19 Unstructured case analysis and induc-

tion

The following tools of Isabelle/HOL support cases analysis and induction in
unstructured tactic scripts; see also §6.6 for proper Isar versions of similar
ideas.

case tac∗ : method
induct tac∗ : method
ind cases∗ : method

inductive cases∗ : local theory → local theory
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case_tac
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case tac and induct tac admit to reason about inductive types. Rules are se-
lected according to the declarations by the cases and induct attributes,
cf. §6.6. The datatype package already takes care of this.

These unstructured tactics feature both goal addressing and dynamic
instantiation. Note that named rule cases are not provided as would
be by the proper cases and induct proof methods (see §6.6). Unlike
the induct method, induct tac does not handle structured rule state-
ments, only the compact object-logic conclusion of the subgoal being
addressed.

ind cases and inductive cases provide an interface to the internal
mk_cases operation. Rules are simplified in an unrestricted forward
manner.
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While ind cases is a proof method to apply the result immediately as
elimination rules, inductive cases provides case split theorems at the
theory level for later use. The for argument of the ind cases method
allows to specify a list of variables that should be generalized before
applying the resulting rule.

10.20 Executable code

For validation purposes, it is often useful to execute specifications. In prin-
ciple, execution could be simulated by Isabelle’s inference kernel, i.e. by a
combination of resolution and simplification. Unfortunately, this approach
is rather inefficient. A more efficient way of executing specifications is to
translate them into a functional programming language such as ML.

Isabelle provides a generic framework to support code generation from exe-
cutable specifications. Isabelle/HOL instantiates these mechanisms in a way
that is amenable to end-user applications. Code can be generated for func-
tional programs (including overloading using type classes) targeting SML
[20], OCaml [17], Haskell [37] and Scala [28]. Conceptually, code genera-
tion is split up in three steps: selection of code theorems, translation into
an abstract executable view and serialization to a specific target language.
Inductive specifications can be executed using the predicate compiler which
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operates within HOL. See [13] for an introduction.

export code∗ : context →
code : attribute

code abort : theory → theory
code datatype : theory → theory

print codesetup∗ : context →
code unfold : attribute

code post : attribute
code abbrev : attribute

print codeproc∗ : context →
code thms∗ : context →
code deps∗ : context →
code const : theory → theory
code type : theory → theory
code class : theory → theory

code instance : theory → theory
code reserved : theory → theory

code monad : theory → theory
code include : theory → theory

code modulename : theory → theory
code reflect : theory → theory

code pred : theory → proof (prove)
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code include
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�� ��:
����modedecl )

����
�
�

�

��
�const

syntax

string�
� infix

�� ���
�infixl

�� ���infixr
�� ��

�
�
�

nat string

�
�

modedecl

modes�
�const :

����modes �
��

��
�and

�� �� const :
����modes and

�� ���
�

�
�

�
�

�

�

modes

mode as
����const

export code generates code for a given list of constants in the specified
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target language(s). If no serialization instruction is given, only abstract
code is generated internally.

Constants may be specified by giving them literally, referring to all exe-
cutable contants within a certain theory by giving name.∗, or referring
to all executable constants currently available by giving ∗.
By default, for each involved theory one corresponding name space
module is generated. Alternativly, a module name may be specified af-
ter the module name keyword; then all code is placed in this module.

For SML, OCaml and Scala the file specification refers to a single file;
for Haskell, it refers to a whole directory, where code is generated in
multiple files reflecting the module hierarchy. Omitting the file specifi-
cation denotes standard output.

Serializers take an optional list of arguments in parentheses. For SML
and OCaml, “no signatures“ omits explicit module signatures.

For Haskell a module name prefix may be given using the “root :” ar-
gument; “string classes” adds a “deriving (Read, Show)” clause to
each appropriate datatype declaration.

code explicitly selects (or with option “del” deselects) a code equation for
code generation. Usually packages introducing code equations provide
a reasonable default setup for selection. Variants code abstype and
code abstract declare abstract datatype certificates or code equations
on abstract datatype representations respectively.

code abort declares constants which are not required to have a definition
by means of code equations; if needed these are implemented by pro-
gram abort instead.

code datatype specifies a constructor set for a logical type.

print codesetup gives an overview on selected code equations and code
generator datatypes.

code unfold declares (or with option “del” removes) theorems which dur-
ing preprocessing are applied as rewrite rules to any code equation or
evaluation input.

code post declares (or with option “del” removes) theorems which are ap-
plied as rewrite rules to any result of an evaluation.
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code abbrev declares equations which are applied as rewrite rules to any
result of an evaluation and symmetrically during preprocessing to any
code equation or evaluation input.

print codeproc prints the setup of the code generator preprocessor.

code thms prints a list of theorems representing the corresponding pro-
gram containing all given constants after preprocessing.

code deps visualizes dependencies of theorems representing the corre-
sponding program containing all given constants after preprocessing.

code const associates a list of constants with target-specific serializations;
omitting a serialization deletes an existing serialization.

code type associates a list of type constructors with target-specific serial-
izations; omitting a serialization deletes an existing serialization.

code class associates a list of classes with target-specific class names; omit-
ting a serialization deletes an existing serialization. This applies only
to Haskell.

code instance declares a list of type constructor / class instance relations
as “already present” for a given target. Omitting a “−” deletes an
existing “already present” declaration. This applies only to Haskell.

code reserved declares a list of names as reserved for a given target, pre-
venting it to be shadowed by any generated code.

code monad provides an auxiliary mechanism to generate monadic code
for Haskell.

code include adds arbitrary named content (“include”) to generated code.
A “−” as last argument will remove an already added “include”.

code modulename declares aliasings from one module name onto another.

code reflect without a “file” argument compiles code into the system
runtime environment and modifies the code generator setup that fu-
ture invocations of system runtime code generation referring to one of
the “datatypes” or “functions” entities use these precompiled entities.
With a “file” argument, the corresponding code is generated into that
specified file without modifying the code generator setup.
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code pred creates code equations for a predicate given a set of introduc-
tion rules. Optional mode annotations determine which arguments are
supposed to be input or output. If alternative introduction rules are
declared, one must prove a corresponding elimination rule.

10.21 Definition by specification

specification : theory → proof (prove)
ax specification : theory → proof (prove)

specification
�� ���

�ax specification
�� ��

�
�

(
���� decl�

�
�
�

)
�����

��
� �

�thmdecl

�
�

prop�

�

�

�
decl

�
�name :

����
�
�

term (
����overloaded

�� ���
� )

����
�
�

specification decls ϕ sets up a goal stating the existence of terms with
the properties specified to hold for the constants given in decls. After
finishing the proof, the theory will be augmented with definitions for
the given constants, as well as with theorems stating the properties for
these constants.

ax specification decls ϕ sets up a goal stating the existence of terms with
the properties specified to hold for the constants given in decls. After
finishing the proof, the theory will be augmented with axioms express-
ing the properties given in the first place.
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decl declares a constant to be defined by the specification given. The defi-
nition for the constant c is bound to the name c def unless a theorem
name is given in the declaration. Overloaded constants should be de-
clared as such.

Whether to use specification or ax specification is to some extent a mat-
ter of style. specification introduces no new axioms, and so by construc-
tion cannot introduce inconsistencies, whereas ax specification does intro-
duce axioms, but only after the user has explicitly proven it to be safe. A
practical issue must be considered, though: After introducing two constants
with the same properties using specification, one can prove that the two
constants are, in fact, equal. If this might be a problem, one should use
ax specification.



Chapter 11

Isabelle/HOLCF

11.1 Mixfix syntax for continuous operations

consts : theory → theory

HOLCF provides a separate type for continuous functions α → β, with an
explicit application operator f · x. Isabelle mixfix syntax normally refers
directly to the pure meta-level function type α ⇒ β, with application f x.

The HOLCF variant of consts modifies that of Pure Isabelle (cf. §5.10.3) such
that declarations involving continuous function types are treated specifically.
Any given syntax template is transformed internally, generating translation
rules for the abstract and concrete representation of continuous application.
Note that mixing of HOLCF and Pure application is not supported!

11.2 Recursive domains

domain : theory → theory

domain
�� ���

�parname

�
�

spec�
�and

�� ��
�
�

spec

typespec =
���� cons�

� |
����

�
�

cons

name �
�type

�
�

�
�mixfix

�
�
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dtrules

distinct
�� ��thmrefs inject

�� ��thmrefs induction
�� ��thmrefs

Recursive domains in HOLCF are analogous to datatypes in classical HOL
(cf. §10.4). Mutual recursion is supported, but no nesting nor arbitrary
branching. Domain constructors may be strict (default) or lazy, the latter
admits to introduce infinitary objects in the typical LCF manner (e.g. lazy
lists). See also [21] for a general discussion of HOLCF domains.
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Isabelle/ZF

12.1 Type checking

The ZF logic is essentially untyped, so the concept of “type checking” is
performed as logical reasoning about set-membership statements. A special
method assists users in this task; a version of this is already declared as a
“solver” in the standard Simplifier setup.

print tcset∗ : context →
typecheck : method

TC : attribute

TC
�����

�add
�� ���del
�� ��

�
�
�

print tcset prints the collection of typechecking rules of the current con-
text.

typecheck attempts to solve any pending type-checking problems in sub-
goals.

TC adds or deletes type-checking rules from the context.

12.2 (Co)Inductive sets and datatypes

12.2.1 Set definitions

In ZF everything is a set. The generic inductive package also provides a spe-
cific view for “datatype” specifications. Coinductive definitions are available

254
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in both cases, too.

inductive : theory → theory
coinductive : theory → theory

datatype : theory → theory
codatatype : theory → theory

inductive
�� ���

�coinductive
�� ��

�
�

domains intros hints

domains

domains
�� �� term�

� +
����

�
�

<=
�����

�⊆
����

�
�

term

intros

intros
�� �� �

�thmdecl

�
�

prop�

�

�

�
hints

�
�monos

�
�

�
�condefs

�
�

�

��
��

�typeintros

�
�

�
�typeelims

�
�

monos

monos
�� ��thmrefs
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condefs

con defs
�� ��thmrefs

typeintros

type intros
�� ��thmrefs

typeelims

type elims
�� ��thmrefs

In the following syntax specification monos, typeintros, and typeelims are the
same as above.

datatype
�� ���

�codatatype
�� ��

�
�

�
�domain

�
�

dtspec�
� and

�� ��
�
�

hints

domain

<=
�����

�⊆
����

�
�

term

dtspec

term =
���� con�

� |
����

�
�

con

name �
� (

���� term ,
�����

�
�
�

)
����

�
�
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hints

�
�monos

�
�

�
�typeintros

�
�

�
�typeelims

�
�

See [30] for further information on inductive definitions in ZF, but note that
this covers the old-style theory format.

12.2.2 Primitive recursive functions

primrec : theory → theory

primrec
�� �� �

�thmdecl

�
�

prop�

�

�

�

12.2.3 Cases and induction: emulating tactic scripts

The following important tactical tools of Isabelle/ZF have been ported to
Isar. These should not be used in proper proof texts.

case tac∗ : method
induct tac∗ : method
ind cases∗ : method

inductive cases : theory → theory

case_tac
�� ���

�induct_tac
�� ��

�
�

�
�goal spec

�
�

name

ind_cases
�� �� prop�

�
�
�
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inductive cases
�� �� �

�thmdecl

�
�

prop�
�

�
�

�

� and
�� ��

�

�
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Appendix A

Isabelle/Isar quick reference

A.1 Proof commands

A.1.1 Primitives and basic syntax

fix x augment context by
∧

x . 2
assume a: ϕ augment context by ϕ =⇒ 2

then indicate forward chaining of facts
have a: ϕ prove local result
show a: ϕ prove local result, refining some goal
using a indicate use of additional facts
unfolding a unfold definitional equations
proof m1 . . . qed m2 indicate proof structure and refinements
{ . . . } indicate explicit blocks
next switch blocks
note a = b reconsider facts
let p = t abbreviate terms by higher-order matching
write c (mx ) declare local mixfix syntax

proof = prfx ∗ proof method ? stmt∗ qed method ?

| prfx ∗ done
prfx = apply method

| using facts
| unfolding facts

stmt = { stmt∗ }
| next
| note name = facts
| let term = term
| write name (mixfix )
| fix var+

| assume name: props
| then? goal

goal = have name: props proof
| show name: props proof

260
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A.1.2 Abbreviations and synonyms

by m1 m2 ≡ proof m1 qed m2

.. ≡ by rule
. ≡ by this

hence ≡ then have
thus ≡ then show

from a ≡ note a then
with a ≡ from a and this

from this ≡ then
from this have ≡ hence
from this show ≡ thus

A.1.3 Derived elements

also0 ≈ note calculation = this
alson+1 ≈ note calculation = trans [OF calculation this ]
finally ≈ also from calculation

moreover ≈ note calculation = calculation this
ultimately ≈ moreover from calculation

presume a: ϕ ≈ assume a: ϕ
def a: x ≡ t ≈ fix x assume a: x ≡ t

obtain x where a: ϕ ≈ . . . fix x assume a: ϕ
case c ≈ fix x assume c: ϕ
sorry ≈ by cheating

A.1.4 Diagnostic commands

pr print current state
thm a print fact
prop ϕ print proposition
term t print term
typ τ print type
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A.2 Proof methods

Single steps (forward-chaining facts)

assumption apply some assumption
this apply current facts
rule a apply some rule
rule apply standard rule (default for proof)
contradiction apply ¬ elimination rule (any order)
cases t case analysis (provides cases)
induct x proof by induction (provides cases)

Repeated steps (inserting facts)

− no rules
intro a introduction rules
intro classes class introduction rules
elim a elimination rules
unfold a definitional rewrite rules

Automated proof tools (inserting facts)

iprover intuitionistic proof search
blast , fast Classical Reasoner
simp, simp all Simplifier (+ Splitter)
auto, force Simplifier + Classical Reasoner
arith Arithmetic procedures
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A.3 Attributes

Rules

OF a rule resolved with facts (skipping “ ”)
of t rule instantiated with terms (skipping “ ”)
where x = t rule instantiated with terms, by variable name
symmetric resolution with symmetry rule
THEN b resolution with another rule
rule format result put into standard rule format
elim format destruct rule turned into elimination rule format

Declarations

simp Simplifier rule
intro, elim, dest Pure or Classical Reasoner rule
iff Simplifier + Classical Reasoner rule
split case split rule
trans transitivity rule
sym symmetry rule

A.4 Rule declarations and methods

rule iprover blast simp auto
fast simp all force

Pure.elim! Pure.intro! × ×
Pure.elim Pure.intro × ×
elim! intro! × × ×
elim intro × × ×
iff × × × ×
iff ? ×
elim? intro? ×
simp × ×
cong × ×
split × ×
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A.5 Emulating tactic scripts

A.5.1 Commands

apply m apply proof method at initial position
apply end m apply proof method near terminal position
done complete proof
defer n move subgoal to end
prefer n move subgoal to beginning
back backtrack last command

A.5.2 Methods

rule tac insts resolution (with instantiation)
erule tac insts elim-resolution (with instantiation)
drule tac insts destruct-resolution (with instantiation)
frule tac insts forward-resolution (with instantiation)
cut tac insts insert facts (with instantiation)
thin tac ϕ delete assumptions
subgoal tac ϕ new claims
rename tac x rename innermost goal parameters
rotate tac n rotate assumptions of goal
tactic text arbitrary ML tactic
case tac t exhaustion (datatypes)
induct tac x induction (datatypes)
ind cases t exhaustion + simplification (inductive predicates)
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Predefined Isabelle symbols

Isabelle supports an infinite number of non-ASCII symbols, which are repre-
sented in source text as \<name> (where name may be any identifier). It is
left to front-end tools how to present these symbols to the user. The collec-
tion of predefined standard symbols given below is available by default for
Isabelle document output, due to appropriate definitions of \isasymname
for each \<name> in the isabellesym.sty file. Most of these symbols are
displayed properly in Proof General and Isabelle/jEdit.

Moreover, any single symbol (or ASCII character) may be prefixed
by \<^sup>, for superscript and \<^sub>, for subscript, such as
A\<^sup>\<star>, for A? the alternative versions \<^isub> and \<^isup>

are considered as quasi letters and may be used within identifiers.
Sub- and superscripts that span a region of text are marked up with
\<^bsub>. . .\<^esub>, and \<^bsup>. . .\<^esup> respectively. Further-
more, all ASCII characters and most other symbols may be printed in
bold by prefixing \<^bold> such as \<^bold>\<alpha> for α. Note that
\<^bold>, may not be combined with sub- or superscripts for single symbols.

Further details of Isabelle document preparation are covered in chapter 4.

\<zero> 0 \<one> 1
\<two> 2 \<three> 3
\<four> 4 \<five> 5
\<six> 6 \<seven> 7
\<eight> 8 \<nine> 9
\<A> A \<B> B
\<C> C \<D> D
\<E> E \<F> F
\<G> G \<H> H
\<I> I \<J> J
\<K> K \<L> L
\<M> M \<N> N
\<O> O \<P> P
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\<Q> Q \<R> R
\<S> S \<T> T
\<U> U \<V> V
\<W> W \<X> X
\<Y> Y \<Z> Z
\<a> a \<b> b
\<c> c \<d> d
\<e> e \<f> f
\<g> g \<h> h
\<i> i \<j> j
\<k> k \<l> l
\<m> m \<n> n
\<o> o \<p> p
\<q> q \<r> r
\<s> s \<t> t
\<u> u \<v> v
\<w> w \<x> x
\<y> y \<z> z
\<AA> A \<BB> B
\<CC> C \<DD> D
\<EE> E \<FF> F
\<GG> G \<HH> H
\<II> I \<JJ> J
\<KK> K \<LL> L
\<MM> M \<NN> N
\<OO> O \<PP> P
\<QQ> Q \<RR> R
\<SS> S \<TT> T
\<UU> U \<VV> V
\<WW> W \<XX> X
\<YY> Y \<ZZ> Z
\<aa> a \<bb> b
\<cc> c \<dd> d
\<ee> e \<ff> f
\<gg> g \<hh> h
\<ii> i \<jj> j
\<kk> k \<ll> l
\<mm> m \<nn> n
\<oo> o \<pp> p
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\<qq> q \<rr> r
\<ss> s \<tt> t
\<uu> u \<vv> v
\<ww> w \<xx> x
\<yy> y \<zz> z
\<alpha> α \<beta> β
\<gamma> γ \<delta> δ
\<epsilon> ε \<zeta> ζ
\<eta> η \<theta> ϑ
\<iota> ι \<kappa> κ
\<lambda> λ \<mu> µ
\<nu> ν \<xi> ξ
\<pi> π \<rho> %
\<sigma> σ \<tau> τ
\<upsilon> υ \<phi> ϕ
\<chi> χ \<psi> ψ
\<omega> ω \<Gamma> Γ
\<Delta> ∆ \<Theta> Θ
\<Lambda> Λ \<Xi> Ξ
\<Pi> Π \<Sigma> Σ
\<Upsilon> Υ \<Phi> Φ
\<Psi> Ψ \<Omega> Ω
\<bool> IB \<complex> C
\<nat> IN \<rat> Q
\<real> IR \<int> ZZ
\<leftarrow> ← \<longleftarrow> ←−
\<rightarrow> → \<longrightarrow> −→
\<Leftarrow> ⇐ \<Longleftarrow> ⇐=
\<Rightarrow> ⇒ \<Longrightarrow> =⇒
\<leftrightarrow> ↔ \<longleftrightarrow> ←→
\<Leftrightarrow> ⇔ \<Longleftrightarrow> ⇐⇒
\<mapsto> 7→ \<longmapsto> 7−→
\<midarrow> − \<Midarrow> =
\<hookleftarrow> ←↩ \<hookrightarrow> ↪→
\<leftharpoondown> ↽ \<rightharpoondown> ⇁
\<leftharpoonup> ↼ \<rightharpoonup> ⇀
\<rightleftharpoons> 
 \<leadsto> ;

\<downharpoonleft> � \<downharpoonright> �
\<upharpoonleft> � \<upharpoonright> �
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\<restriction> � \<Colon> ::
\<up> ↑ \<Up> ⇑
\<down> ↓ \<Down> ⇓
\<updown> l \<Updown> m
\<langle> 〈 \<rangle> 〉
\<lceil> d \<rceil> e
\<lfloor> b \<rfloor> c
\<lparr> (| \<rparr> |)
\<lbrakk> [[ \<rbrakk> ]]
\<lbrace> {| \<rbrace> |}
\<guillemotleft> � \<guillemotright> �

\<bottom> ⊥ \<top> >
\<and> ∧ \<And>

∧
\<or> ∨ \<Or>

∨
\<forall> ∀ \<exists> ∃
\<nexists> @ \<not> ¬
\<box> 2 \<diamond> 3

\<turnstile> ` \<Turnstile> |=
\<tturnstile> `̀ \<TTurnstile> ||=
\<stileturn> a \<surd>

√

\<le> ≤ \<ge> ≥
\<lless> � \<ggreater> �
\<lesssim> . \<greatersim> &
\<lessapprox> / \<greaterapprox> '
\<in> ∈ \<notin> /∈
\<subset> ⊂ \<supset> ⊃
\<subseteq> ⊆ \<supseteq> ⊇
\<sqsubset> < \<sqsupset> =

\<sqsubseteq> v \<sqsupseteq> w
\<inter> ∩ \<Inter>

⋂
\<union> ∪ \<Union>

⋃
\<squnion> t \<Squnion>

⊔
\<sqinter> u \<Sqinter>

d

\<setminus> \ \<propto> ∝
\<uplus> ] \<Uplus>

⊎
\<noteq> 6= \<sim> ∼
\<doteq>

.
= \<simeq> '

\<approx> ≈ \<asymp> �
\<cong> ∼= \<smile> ^
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\<equiv> ≡ \<frown> _
\<Join> 1 \<bowtie> ./
\<prec> ≺ \<succ> �
\<preceq> � \<succeq> �
\<parallel> ‖ \<bar> |
\<plusminus> ± \<minusplus> ∓
\<times> × \<div> ÷
\<cdot> · \<star> ?
\<bullet> · \<circ> ◦
\<dagger> † \<ddagger> ‡
\<lhd> � \<rhd> �

\<unlhd> � \<unrhd> �

\<triangleleft> / \<triangleright> .

\<triangle> 4 \<triangleq> ,
\<oplus> ⊕ \<Oplus>

⊕
\<otimes> ⊗ \<Otimes>

⊗
\<odot> � \<Odot>

⊙
\<ominus> 	 \<oslash> �
\<dots> . . . \<cdots> · · ·
\<Sum>

∑
\<Prod>

∏
\<Coprod>

∐
\<infinity> ∞

\<integral>
∫

\<ointegral>
∮

\<clubsuit> ♣ \<diamondsuit> ♦
\<heartsuit> ♥ \<spadesuit> ♠
\<aleph> ℵ \<emptyset> ∅
\<nabla> ∇ \<partial> ∂
\<Re> < \<Im> =
\<flat> [ \<natural> \
\<sharp> ] \<angle> ∠
\<copyright> © \<registered> ®
\<hyphen> - \<inverse> −1

\<onesuperior> 1 \<onequarter> ¼
\<twosuperior> 2 \<onehalf> ½
\<threesuperior> 3 \<threequarters> ¾
\<ordfeminine> ª \<ordmasculine> º
\<section> § \<paragraph> ¶
\<exclamdown> ¡ \<questiondown> ¿
\<euro> € \<pounds> £
\<yen> U \<cent> ¢
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\<currency> ¤ \<degree> °
\<amalg> q \<mho> 0

\<lozenge> ♦ \<wp> ℘
\<wrong> o \<struct> �
\<acute> ´ \<index> ı
\<dieresis> ¨ \<cedilla> ¸
\<hungarumlaut> ˝ \<module> 〈module〉
\<bind> >>= \<then> >>
\<some> ε
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ML tactic expressions

Isar Proof methods closely resemble traditional tactics, when used in un-
structured sequences of apply commands. Isabelle/Isar provides emulations
for all major ML tactics of classic Isabelle — mostly for the sake of easy
porting of existing developments, as actual Isar proof texts would demand
much less diversity of proof methods.

Unlike tactic expressions in ML, Isar proof methods provide proper con-
crete syntax for additional arguments, options, modifiers etc. Thus a typi-
cal method text is usually more concise than the corresponding ML tactic.
Furthermore, the Isar versions of classic Isabelle tactics often cover several
variant forms by a single method with separate options to tune the behav-
ior. For example, method simp replaces all of simp_tac / asm_simp_tac /
full_simp_tac / asm_full_simp_tac, there is also concrete syntax for aug-
menting the Simplifier context (the current “simpset”) in a convenient way.

C.1 Resolution tactics

Classic Isabelle provides several variant forms of tactics for single-step rule
applications (based on higher-order resolution). The space of resolution tac-
tics has the following main dimensions.

1. The “mode” of resolution: intro, elim, destruct, or forward (e.g.
resolve_tac, eresolve_tac, dresolve_tac, forward_tac).

2. Optional explicit instantiation (e.g. resolve_tac vs. res_inst_tac).

3. Abbreviations for singleton arguments (e.g. resolve_tac vs. rtac).

Basically, the set of Isar tactic emulations rule tac, erule tac, drule tac,
frule tac (see §9.2.3) would be sufficient to cover the four modes, either with
or without instantiation, and either with single or multiple arguments. Al-
though it is more convenient in most cases to use the plain rule method, or
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any of its “improper” variants erule, drule, frule. Note that explicit goal
addressing is only supported by the actual rule tac version.

With this in mind, plain resolution tactics correspond to Isar methods as
follows.

rtac a 1 rule a
resolve_tac [a1, . . .] 1 rule a1 . . .
res_inst_tac ctxt [(x 1, t1), . . .] a 1 rule tac x 1 = t1 and . . . in a

rtac a i rule tac [i ] a
resolve_tac [a1, . . .] i rule tac [i ] a1 . . .
res_inst_tac ctxt [(x 1, t1), . . .] a i rule tac [i ] x 1 = t1 and . . . in a

Note that explicit goal addressing may be usually avoided by changing the
order of subgoals with defer or prefer (see §6.3.4).

C.2 Simplifier tactics

The main Simplifier tactics simp_tac and variants (cf. [31]) are all covered
by the simp and simp all methods (see §9.3). Note that there is no individual
goal addressing available, simplification acts either on the first goal (simp)
or all goals (simp all).

asm_full_simp_tac @{simpset} 1 simp
ALLGOALS (asm_full_simp_tac @{simpset}) simp all

simp_tac @{simpset} 1 simp (no asm)
asm_simp_tac @{simpset} 1 simp (no asm simp)
full_simp_tac @{simpset} 1 simp (no asm use)
asm_lr_simp_tac @{simpset} 1 simp (asm lr)

C.3 Classical Reasoner tactics

The Classical Reasoner provides a rather large number of variations of auto-
mated tactics, such as blast_tac, fast_tac, clarify_tac etc. The corre-
sponding Isar methods usually share the same base name, such as blast , fast ,
clarify etc. (see §9.4).
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C.4 Miscellaneous tactics

There are a few additional tactics defined in various theories of Isabelle/HOL,
some of these also in Isabelle/FOL or Isabelle/ZF. The most common ones
of these may be ported to Isar as follows.

stac a 1 subst a
hyp_subst_tac 1 hypsubst
strip_tac 1 ≈ intro strip
split_all_tac 1 simp (no asm simp) only : split tupled all

≈ simp only : split tupled all
� clarify

C.5 Tacticals

Classic Isabelle provides a huge amount of tacticals for combination and mod-
ification of existing tactics. This has been greatly reduced in Isar, providing
the bare minimum of combinators only: “,” (sequential composition), “|” (al-
ternative choices), “?” (try), “+” (repeat at least once). These are usually
sufficient in practice; if all fails, arbitrary ML tactic code may be invoked via
the tactic method (see §9.2.3).

Common ML tacticals may be expressed directly in Isar as follows:

tac1 THEN tac2 meth1, meth2

tac1 ORELSE tac2 meth1 | meth2

TRY tac meth?
REPEAT1 tac meth+
REPEAT tac (meth+)?
EVERY [tac1, . . .] meth1, . . .
FIRST [tac1, . . .] meth1 | . . .

CHANGED (see [43]) is usually not required in Isar, since most basic proof
methods already fail unless there is an actual change in the goal state. Nev-
ertheless, “?” (try) may be used to accept unchanged results as well.

ALLGOALS, SOMEGOAL etc. (see [43]) are not available in Isar, since there is no
direct goal addressing. Nevertheless, some basic methods address all goals
internally, notably simp all (see §9.3). Also note that ALLGOALS can be often
replaced by “+” (repeat at least once), although this usually has a different
operational behavior: subgoals are solved in a different order.
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Iterated resolution, such as REPEAT (FIRSTGOAL (resolve_tac ...)), is
usually better expressed using the intro and elim methods of Isar (see §9.4).
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typedecl (command), 100, 221
typedef (command), 213, 221
typedef (HOL command), 219
typeelims (ZF syntax), 256
typefree (syntax), 51, 151
typeintros (ZF syntax), 256

typeof (antiquotation), 64
typespec (syntax), 56
typespec sorts (syntax), 56
typevar (syntax), 51, 51, 151

ultimately (command), 127
unfold (method), 168
unfold locales (method), 86
unfolded (attribute), 170
unfolding (command), 111
untagged (attribute), 170
unused thms (command), 163
use (command), 78, 97
use thy (command), 166
uses (keyword), 78, 98
using (command), 111

value (HOL command), 67, 234
values (HOL command), 234
var (inner syntax), 151
var (syntax), 51, 51, 151
vars (syntax), 57
verbatim (syntax), 51, 51

weak-discharge (inference), 33
where (attribute), 120
with (command), 111
write (command), 149

xnum token (inner syntax), 151


	I Basic Concepts
	Synopsis
	Notepad
	Types and terms
	Facts
	Block structure

	Calculational reasoning 
	Special names in Isar proofs
	Transitive chains
	Degenerate calculations and bigstep reasoning

	Induction
	Induction as Natural Deduction
	Induction with local parameters and premises
	Implicit induction context
	Advanced induction with term definitions

	Natural Deduction 
	Rule statements
	Isar context elements
	Pure rule composition
	Structured backward reasoning
	Structured rule application
	Example: predicate logic

	Generalized elimination and cases
	General elimination rules
	Rules with cases
	Obtaining local contexts


	The Isabelle/Isar Framework 
	The Pure framework 
	Primitive inferences
	Reasoning with rules 

	The Isar proof language 
	Context elements 
	Structured statements 
	Structured proof refinement 
	Calculational reasoning 

	Example: First-Order Logic
	Equational reasoning 
	Basic group theory
	Propositional logic 
	Classical logic
	Quantifiers 
	Canonical reasoning patterns



	II General Language Elements
	Outer syntax — the theory language 
	Lexical matters 
	Common syntax entities
	Names
	Numbers
	Comments 
	Type classes, sorts and arities
	Types and terms 
	Term patterns and declarations 
	Attributes and theorems 


	Document preparation 
	Markup commands 
	Document Antiquotations 
	Styled antiquotations
	General options

	Markup via command tags 
	Railroad diagrams
	Draft presentation

	Specifications
	Defining theories 
	Local theory targets 
	Bundled declarations 
	Basic specification elements
	Generic declarations
	Locales 
	Locale expressions 
	Locale declarations
	Locale interpretations

	Classes 
	The class target
	Co-regularity of type classes and arities

	Unrestricted overloading
	Incorporating ML code 
	Primitive specification elements
	Type classes and sorts 
	Types and type abbreviations 
	Constants and definitions 

	Axioms and theorems 
	Oracles
	Name spaces

	Proofs 
	Proof structure
	Formal notepad
	Blocks
	Omitting proofs

	Statements
	Context elements 
	Term abbreviations 
	Facts and forward chaining 
	Goals 

	Refinement steps
	Proof method expressions 
	Initial and terminal proof steps 
	Fundamental methods and attributes 
	Emulating tactic scripts 
	Defining proof methods

	Generalized elimination 
	Calculational reasoning 
	Proof by cases and induction 
	Rule contexts
	Proof methods
	Declaring rules


	Inner syntax — the term language 
	Printing logical entities
	Diagnostic commands 
	Details of printed content
	Alternative print modes 
	Printing limits

	Mixfix annotations 
	The general mixfix form
	Infixes
	Binders

	Explicit notation 
	The Pure syntax 
	Lexical matters 
	Priority grammars 
	The Pure grammar 
	Inspecting the syntax
	Ambiguity of parsed expressions

	Raw syntax and translations 
	Syntax translation functions 

	Other commands
	Inspecting the context
	System commands

	Generic tools and packages 
	Configuration options 
	Basic proof tools
	Miscellaneous methods and attributes 
	Low-level equational reasoning
	Further tactic emulations 

	The Simplifier 
	Simplification methods
	Declaring rules
	Congruence rules
	Simplification procedures
	Forward simplification

	The Classical Reasoner 
	Basic concepts
	Rule declarations
	Structured methods
	Automated methods
	Semi-automated methods
	Single-step tactics

	Object-logic setup 


	III Object-Logics
	Isabelle/HOL 
	Higher-Order Logic
	Inductive and coinductive definitions 
	Derived rules
	Monotonicity theorems

	Recursive functions 
	Proof methods related to recursive definitions
	Functions with explicit partiality
	Old-style recursive function definitions (TFL)

	Datatypes 
	Records 
	Basic concepts
	Record specifications
	Record operations
	Derived rules and proof tools

	Adhoc tuples
	Typedef axiomatization 
	Functorial structure of types
	Transfer package
	Lifting package
	Quotient types
	Coercive subtyping
	Arithmetic proof support
	Intuitionistic proof search
	Model Elimination and Resolution
	Coherent Logic
	Proving propositions
	Checking and refuting propositions
	Unstructured case analysis and induction 
	Executable code
	Definition by specification 

	Isabelle/HOLCF 
	Mixfix syntax for continuous operations
	Recursive domains

	Isabelle/ZF 
	Type checking
	(Co)Inductive sets and datatypes
	Set definitions
	Primitive recursive functions
	Cases and induction: emulating tactic scripts



	IV Appendix
	Isabelle/Isar quick reference 
	Proof commands
	Primitives and basic syntax
	Abbreviations and synonyms
	Derived elements
	Diagnostic commands

	Proof methods
	Attributes
	Rule declarations and methods
	Emulating tactic scripts
	Commands
	Methods


	Predefined Isabelle symbols 
	ML tactic expressions
	Resolution tactics
	Simplifier tactics
	Classical Reasoner tactics
	Miscellaneous tactics
	Tacticals



