
λ →

∀
=Isa

be
lle

β
α

Old Introduction to Isabelle

Lawrence C. Paulson
Computer Laboratory

University of Cambridge
lcp@cl.cam.ac.uk

With Contributions by Tobias Nipkow and Markus Wenzel

22 May 2012

Note: this document is part of the earlier Isabelle documentation, which
is largely superseded by the Isabelle/HOL Tutorial [9]. It describes the old-
style theory syntax and shows how to conduct proofs using the ML top level.
This style of interaction is largely obsolete: most Isabelle proofs are now
written using the Isar language and the Proof General interface. However,
this paper contains valuable information that is not available elsewhere. Its
examples are based on first-order logic rather than higher-order logic.

Copyright c© 2012 by Lawrence C. Paulson

i

Preface
Isabelle [12, 14, 15] is a generic theorem prover. It has been instantiated to
support reasoning in several object-logics:

• first-order logic, constructive and classical versions

• higher-order logic, similar to that of Gordon’s hol [3]

• Zermelo-Fraenkel set theory [20]

• an extensional version of Martin-Löf’s Type Theory [11]

• the classical first-order sequent calculus, lk

• the modal logics T , S4, and S43

• the Logic for Computable Functions [13]

A logic’s syntax and inference rules are specified declaratively; this allows
single-step proof construction. Isabelle provides control structures for ex-
pressing search procedures. Isabelle also provides several generic tools, such
as simplifiers and classical theorem provers, which can be applied to object-
logics.

Isabelle is a large system, but beginners can get by with a small repertoire
of commands and a basic knowledge of how Isabelle works. The Isabelle/HOL
Tutorial [9] describes how to get started. Advanced Isabelle users will benefit
from some knowledge of Standard ml, because Isabelle is written in ml;
if you are prepared to writing ml code, you can get Isabelle to do almost
anything. My book on ml [17] covers much material connected with Isabelle,
including a simple theorem prover. Users must be familiar with logic as used
in computer science; there are many good texts [2, 19].

lcf, developed by Robin Milner and colleagues [4], is an ancestor of
hol, Nuprl, and several other systems. Isabelle borrows ideas from lcf:
formulae are ml values; theorems belong to an abstract type; tactics and
tacticals support backward proof. But lcf represents object-level rules by
functions, while Isabelle represents them by terms. You may find my other
writings [13, 16] helpful in understanding the relationship between lcf and
Isabelle.

Isabelle was first distributed in 1986. The 1987 version introduced a
higher-order meta-logic with an improved treatment of quantifiers. The 1988
version added limited polymorphism and support for natural deduction. The
1989 version included a parser and pretty printer generator. The 1992 version

ii

introduced type classes, to support many-sorted and higher-order logics. The
1994 version introduced greater support for theories. The most important
recent change is the introduction of the Isar proof language, thanks to Markus
Wenzel. Isabelle is still under development and will continue to change.

Overview

This manual consists of three parts. Part I discusses the Isabelle’s founda-
tions. Part II, presents simple on-line sessions, starting with forward proof.
It also covers basic tactics and tacticals, and some commands for invoking
them. Part III contains further examples for users with a bit of experience. It
explains how to derive rules define theories, and concludes with an extended
example: a Prolog interpreter.

Isabelle’s Reference Manual and Object-Logics manual contain more de-
tails. They assume familiarity with the concepts presented here.

Acknowledgements

Tobias Nipkow contributed most of the section on defining theories. Stefan
Berghofer, Sara Kalvala and Viktor Kuncak suggested improvements.

Tobias Nipkow has made immense contributions to Isabelle, including
the parser generator, type classes, and the simplifier. Carsten Clasohm
and Markus Wenzel made major contributions; Sonia Mahjoub and Karin
Nimmermann also helped. Isabelle was developed using Dave Matthews’s
Standard ml compiler, Poly/ml. Many people have contributed to Isa-
belle’s standard object-logics, including Martin Coen, Philippe de Groote,
Philippe Noël. The research has been funded by the EPSRC (grants
GR/G53279, GR/H40570, GR/K57381, GR/K77051, GR/M75440) and by
ESPRIT (projects 3245: Logical Frameworks, and 6453: Types), and by the
DFG Schwerpunktprogramm Deduktion.

Contents

I Foundations 1

1 Formalizing logical syntax in Isabelle 1
1.1 Simple types and constants . 3
1.2 Polymorphic types and constants 3
1.3 Higher types and quantifiers 5

2 Formalizing logical rules in Isabelle 6
2.1 Expressing propositional rules 7
2.2 Quantifier rules and substitution 8
2.3 Signatures and theories . 9

3 Proof construction in Isabelle 10
3.1 Higher-order unification . 11
3.2 Joining rules by resolution . 13

4 Lifting a rule into a context 15
4.1 Lifting over assumptions . 15
4.2 Lifting over parameters . 16

5 Backward proof by resolution 17
5.1 Refinement by resolution . 17
5.2 Proof by assumption . 18
5.3 A propositional proof . 19
5.4 A quantifier proof . 19
5.5 Tactics and tacticals . 20

6 Variations on resolution 21
6.1 Elim-resolution . 21
6.2 Destruction rules . 23
6.3 Deriving rules by resolution 24

II Using Isabelle from the ML Top-Level 26

7 Forward proof 26
7.1 Lexical matters . 26
7.2 Syntax of types and terms . 27
7.3 Basic operations on theorems 29

iii

7.4 *Flex-flex constraints . 31

8 Backward proof 33
8.1 The basic tactics . 33
8.2 Commands for backward proof 34
8.3 A trivial example in propositional logic 34
8.4 Part of a distributive law . 36

9 Quantifier reasoning 37
9.1 Two quantifier proofs: a success and a failure 37
9.2 Nested quantifiers . 39
9.3 A realistic quantifier proof . 41
9.4 The classical reasoner . 42

III Advanced Methods 44

10 Deriving rules in Isabelle 44
10.1 Deriving a rule using tactics and meta-level assumptions . . . 44
10.2 Definitions and derived rules 46
10.3 Deriving the ¬ introduction rule 47
10.4 Deriving the ¬ elimination rule 48

11 Defining theories 49
11.1 Declaring constants, definitions and rules 50
11.2 Declaring type constructors 52
11.3 Type synonyms . 53
11.4 Infix and mixfix operators . 54
11.5 Overloading . 55

12 Theory example: the natural numbers 56
12.1 Extending first-order logic with the natural numbers 56
12.2 Declaring the theory to Isabelle 58
12.3 Proving some recursion equations 58

13 Refinement with explicit instantiation 59
13.1 A simple proof by induction 59
13.2 An example of ambiguity in resolve_tac 60
13.3 Proving that addition is associative 62

iv

14 A Prolog interpreter 63
14.1 Simple executions . 64
14.2 Backtracking . 64
14.3 Depth-first search . 65

v

You can only find truth with logic
if you have already found truth without it.

G.K. Chesterton, The Man who was Orthodox

vi

1

Part I

Foundations
The following sections discuss Isabelle’s logical foundations in detail: repre-
senting logical syntax in the typed λ-calculus; expressing inference rules in
Isabelle’s meta-logic; combining rules by resolution.

If you wish to use Isabelle immediately, please turn to page 26. You can
always read about foundations later, either by returning to this point or by
looking up particular items in the index.

1 Formalizing logical syntax in Isabelle

Figure 1 presents intuitionistic first-order logic, including equality. Let us
see how to formalize this logic in Isabelle, illustrating the main features of
Isabelle’s polymorphic meta-logic.

Isabelle represents syntax using the simply typed λ-calculus. We declare a
type for each syntactic category of the logic. We declare a constant for each
symbol of the logic, giving each n-place operation an n-argument curried
function type. Most importantly, λ-abstraction represents variable binding
in quantifiers.

Isabelle has ml-style polymorphic types such as (α)list , where list is a
type constructor and α is a type variable; for example, (bool)list is the type
of lists of booleans. Function types have the form (σ, τ)fun or σ ⇒ τ , where
σ and τ are types. Curried function types may be abbreviated:

σ1 ⇒ (· · ·σn ⇒ τ · · ·) as [σ1, . . . , σn]⇒ τ

The syntax for terms is summarised below. Note that there are two
versions of function application syntax available in Isabelle: either t u, which
is the usual form for higher-order languages, or t(u), trying to look more like
first-order. The latter syntax is used throughout the manual.

t :: τ type constraint, on a term or bound variable
λx . t abstraction
λx1 . . . xn . t curried abstraction, λx1 λxn . t
t(u) application
t(u1, . . . , un) curried application, t(u1) . . . (un)

1 FORMALIZING LOGICAL SYNTAX IN ISABELLE 2

¬P abbreviates P → ⊥
P ↔ Q abbreviates (P → Q) ∧ (Q → P)

P Q
P ∧Q

(∧I)
P ∧Q

P
(∧E1)

P ∧Q
Q

(∧E2)

P
P ∨Q

(∨I 1)
Q

P ∨Q
(∨I 2)

P ∨Q

[P]
....
R

[Q]
....
R

R
(∨E)

[P]
....

Q
P → Q

(→I)
P → Q P

Q
(→E)

⊥
P

(⊥E)

P
∀x . P

(∀I)∗ ∀x . P
P [t/x]

(∀E)

P [t/x]

∃x . P
(∃I)

∃x . P

[P]
....

Q
Q

(∃E)∗

t = t (refl)
t = u P [t/x]

P [u/x]
(subst)

*Eigenvariable conditions :
∀I : provided x is not free in the assumptions
∃E : provided x is not free in Q or any assumption except P

Figure 1: Intuitionistic first-order logic

1 FORMALIZING LOGICAL SYNTAX IN ISABELLE 3

1.1 Simple types and constants

The syntactic categories of our logic (Fig. 1) are formulae and terms. For-
mulae denote truth values, so (following tradition) let us call their type o.
To allow 0 and Suc(t) as terms, let us declare a type nat of natural numbers.
Later, we shall see how to admit terms of other types.

After declaring the types o and nat , we may declare constants for the
symbols of our logic. Since ⊥ denotes a truth value (falsity) and 0 denotes a
number, we put

⊥ :: o

0 :: nat .

If a symbol requires operands, the corresponding constant must have a func-
tion type. In our logic, the successor function (Suc) is from natural numbers
to natural numbers, negation (¬) is a function from truth values to truth
values, and the binary connectives are curried functions taking two truth
values as arguments:

Suc :: nat ⇒ nat

¬ :: o ⇒ o

∧,∨,→,↔ :: [o, o]⇒ o

The binary connectives can be declared as infixes, with appropriate prece-
dences, so that we write P ∧Q ∨ R instead of ∨(∧(P ,Q),R).

Section 11 below describes the syntax of Isabelle theory files and illus-
trates it by extending our logic with mathematical induction.

1.2 Polymorphic types and constants

Which type should we assign to the equality symbol? If we tried [nat , nat]⇒
o, then equality would be restricted to the natural numbers; we should have
to declare different equality symbols for each type. Isabelle’s type system is
polymorphic, so we could declare

= :: [α, α]⇒ o,

where the type variable α ranges over all types. But this is also wrong.
The declaration is too polymorphic; α includes types like o and nat ⇒ nat .
Thus, it admits ⊥ = ¬(⊥) and Suc = Suc as formulae, which is acceptable
in higher-order logic but not in first-order logic.

Isabelle’s type classes control polymorphism [10]. Each type variable
belongs to a class, which denotes a set of types. Classes are partially ordered

1 FORMALIZING LOGICAL SYNTAX IN ISABELLE 4

by the subclass relation, which is essentially the subset relation on the sets of
types. They closely resemble the classes of the functional language Haskell [5,
6].

Isabelle provides the built-in class logic, which consists of the logical
types: the ones we want to reason about. Let us declare a class term, to
consist of all legal types of terms in our logic. The subclass structure is now
term ≤ logic.

We put nat in class term by declaring nat ::term. We declare the equality
constant by

= :: [α::term, α]⇒ o

where α::term constrains the type variable α to class term. Such type vari-
ables resemble Standard ml’s equality type variables.

We give o and function types the class logic rather than term, since they
are not legal types for terms. We may introduce new types of class term —
for instance, type string or real — at any time. We can even declare type
constructors such as list , and state that type (τ)list belongs to class term
provided τ does; equality applies to lists of natural numbers but not to lists of
formulae. We may summarize this paragraph by a set of arity declarations
for type constructors:

o :: logic

fun :: (logic, logic)logic

nat , string , real :: term

list :: (term)term

(Recall that fun is the type constructor for function types.) In higher-order
logic, equality does apply to truth values and functions; this requires the
arity declarations o :: term and fun :: (term, term)term. The class system
can also handle overloading. We could declare arith to be the subclass of
term consisting of the ‘arithmetic’ types, such as nat . Then we could declare
the operators

+,−,×, / :: [α::arith, α]⇒ α

If we declare new types real and complex of class arith, then we in effect
have three sets of operators:

+,−,×, / :: [nat , nat]⇒ nat

+,−,×, / :: [real , real]⇒ real

+,−,×, / :: [complex , complex]⇒ complex

1 FORMALIZING LOGICAL SYNTAX IN ISABELLE 5

Isabelle will regard these as distinct constants, each of which can be defined
separately. We could even introduce the type (α)vector and declare its arity
as (arith)arith. Then we could declare the constant

+ :: [(α)vector , (α)vector]⇒ (α)vector

and specify it in terms of + :: [α, α]⇒ α.
A type variable may belong to any finite number of classes. Suppose that

we had declared yet another class ord ≤ term, the class of all ‘ordered’ types,
and a constant

≤ :: [α::ord , α]⇒ o.

In this context the variable x in x ≤ (x + x) will be assigned type
α::{arith, ord}, which means α belongs to both arith and ord . Semanti-
cally the set {arith, ord} should be understood as the intersection of the sets
of types represented by arith and ord . Such intersections of classes are called
sorts. The empty intersection of classes, {}, contains all types and is thus
the universal sort.

Even with overloading, each term has a unique, most general type. For
this to be possible, the class and type declarations must satisfy certain tech-
nical constraints; see Sect. Defining Theories in the Reference Manual.

1.3 Higher types and quantifiers

Quantifiers are regarded as operations upon functions. Ignoring polymor-
phism for the moment, consider the formula ∀x . P(x), where x ranges over
type nat . This is true if P(x) is true for all x . Abstracting P(x) into a func-
tion, this is the same as saying that λx .P(x) returns true for all arguments.
Thus, the universal quantifier can be represented by a constant

∀ :: (nat ⇒ o)⇒ o,

which is essentially an infinitary truth table. The representation of ∀x .P(x)
is ∀(λx . P(x)).

The existential quantifier is treated in the same way. Other binding oper-
ators are also easily handled; for instance, the summation operator Σj

k=i f (k)
can be represented as Σ(i , j , λk . f (k)), where

Σ :: [nat , nat , nat ⇒ nat]⇒ nat .

Quantifiers may be polymorphic. We may define ∀ and ∃ over all legal
types of terms, not just the natural numbers, and allow summations over all

2 FORMALIZING LOGICAL RULES IN ISABELLE 6

arithmetic types:

∀,∃ :: (α::term ⇒ o)⇒ o

Σ :: [nat , nat , nat ⇒ α::arith]⇒ α

Observe that the index variables still have type nat , while the values being
summed may belong to any arithmetic type.

2 Formalizing logical rules in Isabelle

Object-logics are formalized by extending Isabelle’s meta-logic [14], which
is intuitionistic higher-order logic. The meta-level connectives are implica-
tion, the universal quantifier, and equality.

• The implication φ =⇒ ψ means ‘φ implies ψ’, and expresses logical
entailment.

• The quantification
∧

x . φ means ‘φ is true for all x ’, and expresses
generality in rules and axiom schemes.

• The equality a ≡ b means ‘a equals b’, for expressing definitions
(see §10.2). Equalities left over from the unification process, so called

flex-flex constraints, are written a
?≡ b. The two equality symbols

have the same logical meaning.

The syntax of the meta-logic is formalized in the same manner as object-
logics, using the simply typed λ-calculus. Analogous to type o above, there
is a built-in type prop of meta-level truth values. Meta-level formulae will
have this type. Type prop belongs to class logic; also, σ ⇒ τ belongs to logic
provided σ and τ do. Here are the types of the built-in connectives:

=⇒ :: [prop, prop]⇒ prop∧
:: (α::logic ⇒ prop)⇒ prop

≡ :: [α::{}, α]⇒ prop
?≡ :: [α::{}, α]⇒ prop

The polymorphism in
∧

is restricted to class logic to exclude certain types,
those used just for parsing. The type variable α::{} ranges over the universal
sort.

In our formalization of first-order logic, we declared a type o of object-
level truth values, rather than using prop for this purpose. If we declared the

2 FORMALIZING LOGICAL RULES IN ISABELLE 7

object-level connectives to have types such as ¬ :: prop ⇒ prop, then these
connectives would be applicable to meta-level formulae. Keeping prop and o
as separate types maintains the distinction between the meta-level and the
object-level. To formalize the inference rules, we shall need to relate the two
levels; accordingly, we declare the constant

Trueprop :: o ⇒ prop.

We may regard Trueprop as a meta-level predicate, reading Trueprop(P) as
‘P is true at the object-level.’ Put another way, Trueprop is a coercion from
o to prop.

2.1 Expressing propositional rules

We shall illustrate the use of the meta-logic by formalizing the rules of Fig. 1.
Each object-level rule is expressed as a meta-level axiom.

One of the simplest rules is (∧E1). Making everything explicit, its for-
malization in the meta-logic is∧

P Q . Trueprop(P ∧Q) =⇒ Trueprop(P). (∧E1)

This may look formidable, but it has an obvious reading: for all object-level
truth values P and Q , if P ∧ Q is true then so is P . The reading is correct
because the meta-logic has simple models, where types denote sets and

∧
really means ‘for all.’

Isabelle adopts notational conventions to ease the writing of rules. We
may hide the occurrences of Trueprop by making it an implicit coercion.
Outer universal quantifiers may be dropped. Finally, the nested implication

φ1 =⇒ (· · ·φn =⇒ ψ · · ·)

may be abbreviated as [[φ1; . . . ;φn]] =⇒ ψ, which formalizes a rule of
n premises.

Using these conventions, the conjunction rules become the following ax-
ioms. These fully specify the properties of ∧:

[[P ; Q]] =⇒ P ∧Q (∧I)

P ∧Q =⇒ P P ∧Q =⇒ Q (∧E1, 2)

Next, consider the disjunction rules. The discharge of assumption in (∨E) is
expressed using =⇒:

P =⇒ P ∨Q Q =⇒ P ∨Q (∨I 1, 2)

2 FORMALIZING LOGICAL RULES IN ISABELLE 8

[[P ∨Q ; P =⇒ R; Q =⇒ R]] =⇒ R (∨E)

To understand this treatment of assumptions in natural deduction, look at
implication. The rule (→I) is the classic example of natural deduction: to
prove that P → Q is true, assume P is true and show that Q must then be
true. More concisely, if P implies Q (at the meta-level), then P → Q is true
(at the object-level). Showing the coercion explicitly, this is formalized as

(Trueprop(P) =⇒ Trueprop(Q)) =⇒ Trueprop(P → Q).

The rule (→E) is straightforward; hiding Trueprop, the axioms to specify→
are

(P =⇒ Q) =⇒ P → Q (→I)

[[P → Q ; P]] =⇒ Q . (→E)

Finally, the intuitionistic contradiction rule is formalized as the axiom

⊥ =⇒ P . (⊥E)

! Earlier versions of Isabelle, and certain papers [14, 15], use [[P]] to mean
Trueprop(P).

2.2 Quantifier rules and substitution

Isabelle expresses variable binding using λ-abstraction; for instance, ∀x .P is
formalized as ∀(λx .P). Recall that F (t) is Isabelle’s syntax for application of
the function F to the argument t ; it is not a meta-notation for substitution.
On the other hand, a substitution will take place if F has the form λx . P ;
Isabelle transforms (λx . P)(t) to P [t/x] by β-conversion. Thus, we can
express inference rules that involve substitution for bound variables.

A logic may attach provisos to certain of its rules, especially quantifier
rules. We cannot hope to formalize arbitrary provisos. Fortunately, those
typical of quantifier rules always have the same form, namely ‘x not free in
. . . (some set of formulae),’ where x is a variable (called a parameter or
eigenvariable) in some premise. Isabelle treats provisos using

∧
, its inbuilt

notion of ‘for all’.
The purpose of the proviso ‘x not free in . . . ’ is to ensure that the premise

may not make assumptions about the value of x , and therefore holds for all x .
We formalize (∀I) by(∧

x . Trueprop(P(x))
)

=⇒ Trueprop(∀x . P(x)).

2 FORMALIZING LOGICAL RULES IN ISABELLE 9

This means, ‘if P(x) is true for all x , then ∀x . P(x) is true.’ The ∀E rule
exploits β-conversion. Hiding Trueprop, the ∀ axioms are(∧

x . P(x)
)

=⇒ ∀x . P(x) (∀I)

(∀x . P(x)) =⇒ P(t). (∀E)

We have defined the object-level universal quantifier (∀) using
∧

. But we do
not require meta-level counterparts of all the connectives of the object-logic!
Consider the existential quantifier:

P(t) =⇒ ∃x . P(x) (∃I)

[[∃x . P(x);
∧

x . P(x) =⇒ Q]] =⇒ Q (∃E)

Let us verify (∃E) semantically. Suppose that the premises hold; since ∃x .
P(x) is true, we may choose an a such that P(a) is true. Instantiating∧

x . P(x) =⇒ Q with a yields P(a) =⇒ Q , and we obtain the desired
conclusion, Q .

The treatment of substitution deserves mention. The rule

t = u P
P [u/t]

would be hard to formalize in Isabelle. It calls for replacing t by u through-
out P , which cannot be expressed using β-conversion. Our rule (subst) uses P
as a template for substitution, inferring P [u/x] from P [t/x]. When we for-
malize this as an axiom, the template becomes a function variable:

[[t = u; P(t)]] =⇒ P(u). (subst)

2.3 Signatures and theories

A signature contains the information necessary for type-checking, parsing
and pretty printing a term. It specifies type classes and their relationships,
types and their arities, constants and their types, etc. It also contains gram-
mar rules, specified using mixfix declarations.

Two signatures can be merged provided their specifications are compat-
ible — they must not, for example, assign different types to the same con-
stant. Under similar conditions, a signature can be extended. Signatures are
managed internally by Isabelle; users seldom encounter them.

A theory consists of a signature plus a collection of axioms. The Pure
theory contains only the meta-logic. Theories can be combined provided their
signatures are compatible. A theory definition extends an existing theory

3 PROOF CONSTRUCTION IN ISABELLE 10

with further signature specifications — classes, types, constants and mixfix
declarations — plus lists of axioms and definitions etc., expressed as strings
to be parsed. A theory can formalize a small piece of mathematics, such as
lists and their operations, or an entire logic. A mathematical development
typically involves many theories in a hierarchy. For example, the Pure theory
could be extended to form a theory for Fig. 1; this could be extended in two
separate ways to form a theory for natural numbers and a theory for lists;
the union of these two could be extended into a theory defining the length
of a list:

Pure

↓
FOL

↙ ↘
Nat List

↘ ↙
Nat + List

↓
Length

Each Isabelle proof typically works within a single theory, which is associated
with the proof state. However, many different theories may coexist at the
same time, and you may work in each of these during a single session.

! Confusing problems arise if you work in the wrong theory. Each theory defines
its own syntax. An identifier may be regarded in one theory as a constant and

in another as a variable, for example.

3 Proof construction in Isabelle

I have elsewhere described the meta-logic and demonstrated it by formalizing
first-order logic [14]. There is a one-to-one correspondence between meta-
level proofs and object-level proofs. To each use of a meta-level axiom, such
as (∀I), there is a use of the corresponding object-level rule. Object-level
assumptions and parameters have meta-level counterparts. The meta-level
formalization is faithful, admitting no incorrect object-level inferences, and
adequate, admitting all correct object-level inferences. These properties
must be demonstrated separately for each object-logic.

The meta-logic is defined by a collection of inference rules, including
equational rules for the λ-calculus and logical rules. The rules for =⇒ and

∧
resemble those for → and ∀ in Fig. 1. Proofs performed using the primitive

3 PROOF CONSTRUCTION IN ISABELLE 11

meta-rules would be lengthy; Isabelle proofs normally use certain derived
rules. Resolution, in particular, is convenient for backward proof.

Unification is central to theorem proving. It supports quantifier reasoning
by allowing certain ‘unknown’ terms to be instantiated later, possibly in
stages. When proving that the time required to sort n integers is proportional
to n2, we need not state the constant of proportionality; when proving that
a hardware adder will deliver the sum of its inputs, we need not state how
many clock ticks will be required. Such quantities often emerge from the
proof.

Isabelle provides schematic variables, or unknowns, for unification.
Logically, unknowns are free variables. But while ordinary variables remain
fixed, unification may instantiate unknowns. Unknowns are written with a ?
prefix and are frequently subscripted: ?a, ?a1, ?a2, . . . , ?P , ?P1,

Recall that an inference rule of the form

φ1 . . . φn

φ

is formalized in Isabelle’s meta-logic as the axiom [[φ1; . . . ;φn]] =⇒ φ. Such
axioms resemble Prolog’s Horn clauses, and can be combined by resolution
— Isabelle’s principal proof method. Resolution yields both forward and
backward proof. Backward proof works by unifying a goal with the conclusion
of a rule, whose premises become new subgoals. Forward proof works by
unifying theorems with the premises of a rule, deriving a new theorem.

Isabelle formulae require an extended notion of resolution. They differ
from Horn clauses in two major respects:

• They are written in the typed λ-calculus, and therefore must be re-
solved using higher-order unification.

• The constituents of a clause need not be atomic formulae. Any formula
of the form Trueprop(· · ·) is atomic, but axioms such as →I and ∀I
contain non-atomic formulae.

Isabelle has little in common with classical resolution theorem provers such as
Otter [21]. At the meta-level, Isabelle proves theorems in their positive form,
not by refutation. However, an object-logic that includes a contradiction rule
may employ a refutation proof procedure.

3.1 Higher-order unification

Unification is equation solving. The solution of f (?x , c)
?≡ f (d , ?y) is ?x ≡ d

and ?y ≡ c. Higher-order unification is equation solving for typed λ-
terms. To handle β-conversion, it must reduce (λx . t)u to t [u/x]. That

3 PROOF CONSTRUCTION IN ISABELLE 12

is easy — in the typed λ-calculus, all reduction sequences terminate at a
normal form. But it must guess the unknown function ?f in order to solve
the equation

?f (t)
?≡ g(u1, . . . , uk) . (1)

Huet’s [7] search procedure solves equations by imitation and projection.
Imitation makes ?f apply the leading symbol (if a constant) of the right-
hand side. To solve equation (1), it guesses

?f ≡ λx . g(?h1(x), . . . , ?hk(x)),

where ?h1, . . . , ?hk are new unknowns. Assuming there are no other occur-
rences of ?f , equation (1) simplifies to the set of equations

?h1(t)
?≡ u1 . . . ?hk(t)

?≡ uk .

If the procedure solves these equations, instantiating ?h1, . . . , ?hk , then it
yields an instantiation for ?f .

Projection makes ?f apply one of its arguments. To solve equation (1),
if t expects m arguments and delivers a result of suitable type, it guesses

?f ≡ λx . x (?h1(x), . . . , ?hm(x)),

where ?h1, . . . , ?hm are new unknowns. Assuming there are no other occur-
rences of ?f , equation (1) simplifies to the equation

t(?h1(t), . . . , ?hm(t))
?≡ g(u1, . . . , uk).

! Huet’s unification procedure is complete. Isabelle’s polymorphic version, which
solves for type unknowns as well as for term unknowns, is incomplete. The

problem is that projection requires type information. In equation (1), if the type
of t is unknown, then projections are possible for all m ≥ 0, and the types of
the ?hi will be similarly unconstrained. Therefore, Isabelle never attempts such
projections, and may fail to find unifiers where a type unknown turns out to be a
function type.

Given ?f (t1, . . . , tn)
?≡ u, Huet’s procedure could make up to n +1 guesses.

The search tree and set of unifiers may be infinite. But higher-order unifica-
tion can work effectively, provided you are careful with function unknowns:

• Equations with no function unknowns are solved using first-order unifi-

cation, extended to treat bound variables. For example, λx .x
?≡ λx .?y

has no solution because ?y ≡ x would capture the free variable x .

3 PROOF CONSTRUCTION IN ISABELLE 13

• An occurrence of the term ?f (x , y , z), where the arguments are distinct
bound variables, causes no difficulties. Its projections can only match
the corresponding variables.

• Even an equation such as ?f (a)
?≡ a+a is all right. It has four solutions,

but Isabelle evaluates them lazily, trying projection before imitation.
The first solution is usually the one desired:

?f ≡ λx . x + x ?f ≡ λx . a + x ?f ≡ λx . x + a ?f ≡ λx . a + a

• Equations such as ?f (?x , ?y)
?≡ t and ?f (?g(x))

?≡ t admit vast numbers
of unifiers, and must be avoided.

In problematic cases, you may have to instantiate some unknowns before
invoking unification.

3.2 Joining rules by resolution

Let [[ψ1; . . . ;ψm]] =⇒ ψ and [[φ1; . . . ;φn]] =⇒ φ be two Isabelle theorems,
representing object-level rules. Choosing some i from 1 to n, suppose that
ψ and φi have a higher-order unifier. Writing Xs for the application of
substitution s to expression X , this means there is some s such that ψs ≡ φis .
By resolution, we may conclude

([[φ1; . . . ;φi−1;ψ1; . . . ;ψm ;φi+1; . . . ;φn]] =⇒ φ)s .

The substitution s may instantiate unknowns in both rules. In short, reso-
lution is the following rule:

[[ψ1; . . . ;ψm]] =⇒ ψ [[φ1; . . . ;φn]] =⇒ φ

([[φ1; . . . ;φi−1;ψ1; . . . ;ψm ;φi+1; . . . ;φn]] =⇒ φ)s
(ψs ≡ φis)

It operates at the meta-level, on Isabelle theorems, and is justified by the
properties of =⇒ and

∧
. It takes the number i (for 1 ≤ i ≤ n) as a parameter

and may yield infinitely many conclusions, one for each unifier of ψ with φi .
Isabelle returns these conclusions as a sequence (lazy list).

Resolution expects the rules to have no outer quantifiers (
∧

). It may
rename or instantiate any schematic variables, but leaves free variables un-
changed. When constructing a theory, Isabelle puts the rules into a standard
form with all free variables converted into schematic ones; for instance, (→E)
becomes

[[?P → ?Q ; ?P]] =⇒ ?Q .

3 PROOF CONSTRUCTION IN ISABELLE 14

When resolving two rules, the unknowns in the first rule are renamed, by
subscripting, to make them distinct from the unknowns in the second rule.
To resolve (→E) with itself, the first copy of the rule becomes

[[?P1 → ?Q1; ?P1]] =⇒ ?Q1.

Resolving this with (→E) in the first premise, unifying ?Q1 with ?P → ?Q ,
is the meta-level inference

[[?P1 → ?Q1; ?P1]] =⇒ ?Q1 [[?P → ?Q ; ?P]] =⇒ ?Q

[[?P1 → (?P → ?Q); ?P1; ?P]] =⇒ ?Q .

Renaming the unknowns in the resolvent, we have derived the object-level
rule

R → (P → Q) R P

Q .

Joining rules in this fashion is a simple way of proving theorems. The derived
rules are conservative extensions of the object-logic, and may permit simpler
proofs. Let us consider another example. Suppose we have the axiom

∀x y . Suc(x) = Suc(y)→ x = y . (inject)

The standard form of (∀E) is ∀x . ?P(x) =⇒ ?P(?t). Resolving (inject) with
(∀E) replaces ?P by λx . ∀y . Suc(x) = Suc(y) → x = y and leaves ?t
unchanged, yielding

∀y . Suc(?t) = Suc(y)→ ?t = y .

Resolving this with (∀E) puts a subscript on ?t and yields

Suc(?t1) = Suc(?t)→ ?t1 = ?t .

Resolving this with (→E) increases the subscripts and yields

Suc(?t2) = Suc(?t1) =⇒ ?t2 = ?t1.

We have derived the rule

Suc(m) = Suc(n)
m = n,

which goes directly from Suc(m) = Suc(n) to m = n. It is handy for
simplifying an equation like Suc(Suc(Suc(m))) = Suc(Suc(Suc(0))).

4 LIFTING A RULE INTO A CONTEXT 15

4 Lifting a rule into a context

The rules (→I) and (∀I) may seem unsuitable for resolution. They have
non-atomic premises, namely P =⇒ Q and

∧
x .P(x), while the conclusions

of all the rules are atomic (they have the form Trueprop(· · ·)). Isabelle gets
round the problem through a meta-inference called lifting. Let us consider
how to construct proofs such as

[P ,Q]
....
R

Q → R
(→I)

P → (Q → R)
(→I)

P(x , y)

∀y . P(x , y)
(∀I)

∀x y . P(x , y)
(∀I)

4.1 Lifting over assumptions

Lifting over θ =⇒ is the following meta-inference rule:

[[φ1; . . . ;φn]] =⇒ φ

[[θ =⇒ φ1; . . . ; θ =⇒ φn]] =⇒ (θ =⇒ φ)

This is clearly sound: if [[φ1; . . . ;φn]] =⇒ φ is true and θ =⇒ φ1, . . . , θ =⇒ φn

and θ are all true then φ must be true. Iterated lifting over a series of meta-
formulae θk , . . . , θ1 yields an object-rule whose conclusion is [[θ1; . . . ; θk]] =⇒
φ. Typically the θi are the assumptions in a natural deduction proof; lifting
copies them into a rule’s premises and conclusion.

When resolving two rules, Isabelle lifts the first one if necessary. The
standard form of (→I) is

(?P =⇒ ?Q) =⇒ ?P → ?Q .

To resolve this rule with itself, Isabelle modifies one copy as follows: it re-
names the unknowns to ?P1 and ?Q1, then lifts the rule over ?P =⇒ to
obtain

(?P =⇒ (?P1 =⇒ ?Q1)) =⇒ (?P =⇒ (?P1 → ?Q1)).

Using the [[· · ·]] abbreviation, this can be written as

[[[[?P ; ?P1]] =⇒ ?Q1; ?P]] =⇒ ?P1 → ?Q1.

Unifying ?P =⇒ ?P1 → ?Q1 with ?P =⇒ ?Q instantiates ?Q to ?P1 → ?Q1.
Resolution yields

([[?P ; ?P1]] =⇒ ?Q1) =⇒ ?P → (?P1 → ?Q1).

4 LIFTING A RULE INTO A CONTEXT 16

This represents the derived rule

[P ,Q]
....
R

P → (Q → R).

4.2 Lifting over parameters

An analogous form of lifting handles premises of the form
∧

x Here,
lifting prefixes an object-rule’s premises and conclusion with

∧
x . At the same

time, lifting introduces a dependence upon x . It replaces each unknown ?a in
the rule by ?a ′(x), where ?a ′ is a new unknown (by subscripting) of suitable
type — necessarily a function type. In short, lifting is the meta-inference

[[φ1; . . . ;φn]] =⇒ φ

[[
∧

x . φx
1 ; . . . ;

∧
x . φx

n]] =⇒ ∧
x . φx ,

where φx stands for the result of lifting unknowns over x in φ. It is not hard
to verify that this meta-inference is sound. If φ =⇒ ψ then φx =⇒ ψx for
all x ; so if φx is true for all x then so is ψx . Thus, from φ =⇒ ψ we conclude
(
∧

x . φx) =⇒ (
∧

x . ψx).
For example, (∨I) might be lifted to

(
∧

x . ?P1(x)) =⇒ (
∧

x . ?P1(x) ∨ ?Q1(x))

and (∀I) to
(
∧

x y . ?P1(x , y)) =⇒ (
∧

x . ∀y . ?P1(x , y)).

Isabelle has renamed a bound variable in (∀I) from x to y , avoiding a clash.
Resolving the above with (∀I) is the meta-inference

(
∧

x y . ?P1(x , y)) =⇒ (
∧

x . ∀y . ?P1(x , y)) (
∧

x . ?P(x)) =⇒ (∀x . ?P(x))∧
x y . ?P1(x , y)) =⇒ ∀x y . ?P1(x , y))

Here, ?P is replaced by λx . ∀y . ?P1(x , y); the resolvent expresses the derived
rule

Q(x , y)

∀x y . Q(x , y)
provided x , y not free in the assumptions

I discuss lifting and parameters at length elsewhere [14]. Miller goes into
even greater detail [8].

5 BACKWARD PROOF BY RESOLUTION 17

5 Backward proof by resolution

Resolution is convenient for deriving simple rules and for reasoning forward
from facts. It can also support backward proof, where we start with a goal
and refine it to progressively simpler subgoals until all have been solved.
lcf and its descendants hol and Nuprl provide tactics and tacticals, which
constitute a sophisticated language for expressing proof searches. Tactics
refine subgoals while tacticals combine tactics.

Isabelle’s tactics and tacticals work differently from lcf’s. An Isabelle
rule is bidirectional: there is no distinction between inputs and outputs. lcf
has a separate tactic for each rule; Isabelle performs refinement by any rule
in a uniform fashion, using resolution.

Isabelle works with meta-level theorems of the form [[φ1; . . . ;φn]] =⇒ φ.
We have viewed this as the rule with premises φ1, . . . , φn and conclusion φ.
It can also be viewed as the proof state with subgoals φ1, . . . , φn and main
goal φ.

To prove the formula φ, take φ =⇒ φ as the initial proof state. This
assertion is, trivially, a theorem. At a later stage in the backward proof,
a typical proof state is [[φ1; . . . ;φn]] =⇒ φ. This proof state is a theorem,
ensuring that the subgoals φ1, . . . , φn imply φ. If n = 0 then we have
proved φ outright. If φ contains unknowns, they may become instantiated
during the proof; a proof state may be [[φ1; . . . ;φn]] =⇒ φ′, where φ′ is an
instance of φ.

5.1 Refinement by resolution

To refine subgoal i of a proof state by a rule, perform the following resolution:

rule proof state

new proof state

Suppose the rule is [[ψ′1; . . . ;ψ
′
m]] =⇒ ψ′ after lifting over subgoal i ’s assump-

tions and parameters. If the proof state is [[φ1; . . . ;φn]] =⇒ φ, then the new
proof state is (for 1 ≤ i ≤ n)

([[φ1; . . . ;φi−1;ψ
′
1; . . . ;ψ

′
m ;φi+1; . . . ;φn]] =⇒ φ)s .

Substitution s unifies ψ′ with φi . In the proof state, subgoal i is replaced
by m new subgoals, the rule’s instantiated premises. If some of the rule’s
unknowns are left un-instantiated, they become new unknowns in the proof
state. Refinement by (∃I), namely

?P(?t) =⇒ ∃x . ?P(x),

5 BACKWARD PROOF BY RESOLUTION 18

inserts a new unknown derived from ?t by subscripting and lifting. We do
not have to specify an ‘existential witness’ when applying (∃I). Further
resolutions may instantiate unknowns in the proof state.

5.2 Proof by assumption

In the course of a natural deduction proof, parameters x1, . . . , xl and assump-
tions θ1, . . . , θk accumulate, forming a context for each subgoal. Repeated
lifting steps can lift a rule into any context. To aid readability, Isabelle puts
contexts into a normal form, gathering the parameters at the front:∧

x1 . . . xl . [[θ1; . . . ; θk]] =⇒ θ . (2)

Under the usual reading of the connectives, this expresses that θ follows
from θ1, . . . θk for arbitrary x1, . . . , xl . It is trivially true if θ equals any of
θ1, . . . θk , or is unifiable with any of them. This models proof by assumption
in natural deduction.

Isabelle automates the meta-inference for proof by assumption. Its ar-
guments are the meta-theorem [[φ1; . . . ;φn]] =⇒ φ, and some i from 1 to n,
where φi has the form (2). Its results are meta-theorems of the form

([[φ1; . . . ;φi−1;φi+1;φn]] =⇒ φ)s

for each s and j such that s unifies λx1 . . . xl . θj with λx1 . . . xl . θ. Isabelle
supplies the parameters x1, . . . , xl to higher-order unification as bound vari-
ables, which regards them as unique constants with a limited scope — this
enforces parameter provisos [14].

The premise represents a proof state with n subgoals, of which the ith
is to be solved by assumption. Isabelle searches the subgoal’s context for an
assumption θj that can solve it. For each unifier, the meta-inference returns
an instantiated proof state from which the ith subgoal has been removed.
Isabelle searches for a unifying assumption; for readability and robustness,
proofs do not refer to assumptions by number.

Consider the proof state

([[P(a); P(b)]] =⇒ P(?x)) =⇒ Q(?x).

Proof by assumption (with i = 1, the only possibility) yields two results:

• Q(a), instantiating ?x ≡ a

• Q(b), instantiating ?x ≡ b

Here, proof by assumption affects the main goal. It could also affect other
subgoals; if we also had the subgoal [[P(b); P(c)]] =⇒ P(?x), then ?x ≡ a
would transform it to [[P(b); P(c)]] =⇒ P(a), which might be unprovable.

5 BACKWARD PROOF BY RESOLUTION 19

5.3 A propositional proof

Our first example avoids quantifiers. Given the main goal P ∨ P → P ,
Isabelle creates the initial state

(P ∨ P → P) =⇒ (P ∨ P → P).

Bear in mind that every proof state we derive will be a meta-theorem, ex-
pressing that the subgoals imply the main goal. Our aim is to reach the state
P ∨ P → P ; this meta-theorem is the desired result.

The first step is to refine subgoal 1 by (→I), creating a new state where
P ∨ P is an assumption:

(P ∨ P =⇒ P) =⇒ (P ∨ P → P)

The next step is (∨E), which replaces subgoal 1 by three new subgoals. Be-
cause of lifting, each subgoal contains a copy of the context — the assumption
P ∨ P . (In fact, this assumption is now redundant; we shall shortly see how
to get rid of it!) The new proof state is the following meta-theorem, laid out
for clarity:

[[P ∨ P =⇒ ?P1 ∨ ?Q1; (subgoal 1)
[[P ∨ P ; ?P1]] =⇒ P ; (subgoal 2)
[[P ∨ P ; ?Q1]] =⇒ P (subgoal 3)

]] =⇒ (P ∨ P → P) (main goal)

Notice the unknowns in the proof state. Because we have applied (∨E), we
must prove some disjunction, ?P1 ∨ ?Q1. Of course, subgoal 1 is provable by
assumption. This instantiates both ?P1 and ?Q1 to P throughout the proof
state:

[[[[P ∨ P ; P]] =⇒ P ; (subgoal 1)
[[P ∨ P ; P]] =⇒ P (subgoal 2)

]] =⇒ (P ∨ P → P) (main goal)

Both of the remaining subgoals can be proved by assumption. After two such
steps, the proof state is P ∨ P → P .

5.4 A quantifier proof

To illustrate quantifiers and
∧

-lifting, let us prove (∃x . P(f (x))) → (∃x .
P(x)). The initial proof state is the trivial meta-theorem

(∃x . P(f (x)))→ (∃x . P(x)) =⇒ (∃x . P(f (x)))→ (∃x . P(x)).

As above, the first step is refinement by (→I):

(∃x . P(f (x)) =⇒ ∃x . P(x)) =⇒ (∃x . P(f (x)))→ (∃x . P(x))

5 BACKWARD PROOF BY RESOLUTION 20

The next step is (∃E), which replaces subgoal 1 by two new subgoals. Both
have the assumption ∃x . P(f (x)). The new proof state is the meta-theorem

[[∃x . P(f (x)) =⇒ ∃x . ?P1(x); (subgoal 1)∧
x . [[∃x . P(f (x)); ?P1(x)]] =⇒ ∃x . P(x) (subgoal 2)

]] =⇒ (∃x . P(f (x)))→ (∃x . P(x)) (main goal)

The unknown ?P1 appears in both subgoals. Because we have applied (∃E),
we must prove ∃x .?P1(x), where ?P1(x) may become any formula possibly con-
taining x . Proving subgoal 1 by assumption instantiates ?P1 to λx .P(f (x)):(∧

x . [[∃x . P(f (x)); P(f (x))]] =⇒ ∃x . P(x)
)

=⇒ (∃x .P(f (x)))→ (∃x .P(x))

The next step is refinement by (∃I). The rule is lifted into the context of
the parameter x and the assumption P(f (x)). This copies the context to the
subgoal and allows the existential witness to depend upon x :(∧

x . [[∃x . P(f (x)); P(f (x))]] =⇒ P(?x2(x))
)

=⇒ (∃x .P(f (x)))→ (∃x .P(x))

The existential witness, ?x2(x), consists of an unknown applied to a param-
eter. Proof by assumption unifies λx . P(f (x)) with λx . P(?x2(x)), instanti-
ating ?x2 to f . The final proof state contains no subgoals: (∃x . P(f (x)))→
(∃x . P(x)).

5.5 Tactics and tacticals

Tactics perform backward proof. Isabelle tactics differ from those of lcf,
hol and Nuprl by operating on entire proof states, rather than on individual
subgoals. An Isabelle tactic is a function that takes a proof state and returns
a sequence (lazy list) of possible successor states. Lazy lists are coded in ML
as functions, a standard technique [17]. Isabelle represents proof states by
theorems.

Basic tactics execute the meta-rules described above, operating on a given
subgoal. The resolution tactics take a list of rules and return next states
for each combination of rule and unifier. The assumption tactic examines
the subgoal’s assumptions and returns next states for each combination of
assumption and unifier. Lazy lists are essential because higher-order reso-
lution may return infinitely many unifiers. If there are no matching rules
or assumptions then no next states are generated; a tactic application that
returns an empty list is said to fail.

Sequences realize their full potential with tacticals — operators for com-
bining tactics. Depth-first search, breadth-first search and best-first search

6 VARIATIONS ON RESOLUTION 21

(where a heuristic function selects the best state to explore) return their
outcomes as a sequence. Isabelle provides such procedures in the form of
tacticals. Simpler procedures can be expressed directly using the basic tac-
ticals THEN, ORELSE and REPEAT:

tac1 THEN tac2 is a tactic for sequential composition. Applied to a proof
state, it returns all states reachable in two steps by applying tac1 fol-
lowed by tac2.

tac1 ORELSE tac2 is a choice tactic. Applied to a state, it tries tac1 and
returns the result if non-empty; otherwise, it uses tac2.

REPEAT tac is a repetition tactic. Applied to a state, it returns all states
reachable by applying tac as long as possible — until it would fail.

For instance, this tactic repeatedly applies tac1 and tac2, giving tac1 priority:

REPEAT(tac1 ORELSE tac2)

6 Variations on resolution

In principle, resolution and proof by assumption suffice to prove all theorems.
However, specialized forms of resolution are helpful for working with elimi-
nation rules. Elim-resolution applies an elimination rule to an assumption;
destruct-resolution is similar, but applies a rule in a forward style.

The last part of the section shows how the techniques for proving theorems
can also serve to derive rules.

6.1 Elim-resolution

Consider proving the theorem ((R∨R)∨R)∨R → R. By (→I), we prove R
from the assumption ((R ∨ R) ∨ R) ∨ R. Applying (∨E) to this assumption
yields two subgoals, one that assumes R (and is therefore trivial) and one
that assumes (R∨R)∨R. This subgoal admits another application of (∨E).
Since natural deduction never discards assumptions, we eventually generate
a subgoal containing much that is redundant:

[[((R ∨ R) ∨ R) ∨ R; (R ∨ R) ∨ R; R ∨ R; R]] =⇒ R.

In general, using (∨E) on the assumption P∨Q creates two new subgoals with
the additional assumption P or Q . In these subgoals, P ∨ Q is redundant.
Other elimination rules behave similarly. In first-order logic, only universally

6 VARIATIONS ON RESOLUTION 22

quantified assumptions are sometimes needed more than once — say, to prove
P(f (f (a))) from the assumptions ∀x . P(x)→ P(f (x)) and P(a).

Many logics can be formulated as sequent calculi that delete redundant
assumptions after use. The rule (∨E) might become

Γ,P ,∆ ` Θ Γ,Q ,∆ ` Θ

Γ,P ∨Q ,∆ ` Θ
∨-left

In backward proof, a goal containing P ∨ Q on the left of the ` (that is, as
an assumption) splits into two subgoals, replacing P ∨Q by P or Q . But the
sequent calculus, with its explicit handling of assumptions, can be tiresome
to use.

Elim-resolution is Isabelle’s way of getting sequent calculus behaviour
from natural deduction rules. It lets an elimination rule consume an as-
sumption. Elim-resolution combines two meta-theorems:

• a rule [[ψ1; . . . ;ψm]] =⇒ ψ

• a proof state [[φ1; . . . ;φn]] =⇒ φ

The rule must have at least one premise, thus m > 0. Write the rule’s lifted
form as [[ψ′1; . . . ;ψ

′
m]] =⇒ ψ′. Suppose we wish to change subgoal number i .

Ordinary resolution would attempt to reduce φi , replacing subgoal i by m
new ones. Elim-resolution tries simultaneously to reduce φi and to solve ψ′1
by assumption; it returns a sequence of next states. Each of these replaces
subgoal i by instances of ψ′2, . . . , ψ′m from which the selected assumption has
been deleted. Suppose φi has the parameter x and assumptions θ1, . . . , θk .
Then ψ′1, the rule’s first premise after lifting, will be

∧
x . [[θ1; . . . ; θk]] =⇒ ψx

1 .

Elim-resolution tries to unify ψ′
?≡ φi and λx . θj

?≡ λx . ψx
1 simultaneously,

for j = 1, . . . , k .
Let us redo the example from §5.3. The elimination rule is (∨E),

[[?P ∨ ?Q ; ?P =⇒ ?R; ?Q =⇒ ?R]] =⇒ ?R

and the proof state is (P ∨ P =⇒ P) =⇒ (P ∨ P → P). The lifted rule is

[[P ∨ P =⇒ ?P1 ∨ ?Q1;
[[P ∨ P ; ?P1]] =⇒ ?R1;
[[P ∨ P ; ?Q1]] =⇒ ?R1

]] =⇒ (P ∨ P =⇒ ?R1)

Unification takes the simultaneous equations P ∨P
?≡ ?P1∨?Q1 and ?R1

?≡ P ,
yielding ?P1 ≡ ?Q1 ≡ ?R1 ≡ P . The new proof state is simply

[[P =⇒ P ; P =⇒ P]] =⇒ (P ∨ P → P).

6 VARIATIONS ON RESOLUTION 23

Elim-resolution’s simultaneous unification gives better control than ordinary
resolution. Recall the substitution rule:

[[?t = ?u; ?P(?t)]] =⇒ ?P(?u) (subst)

Unsuitable for ordinary resolution because ?P(?u) admits many unifiers,
(subst) works well with elim-resolution. It deletes some assumption of the
form x = y and replaces every y by x in the subgoal formula. The simul-
taneous unification instantiates ?u to y ; if y is not an unknown, then ?P(y)
can easily be unified with another formula.

In logical parlance, the premise containing the connective to be eliminated
is called the major premise. Elim-resolution expects the major premise to
come first. The order of the premises is significant in Isabelle.

6.2 Destruction rules

Looking back to Fig. 1, notice that there are two kinds of elimination rule.
The rules (∧E1), (∧E2), (→E) and (∀E) extract the conclusion from the
major premise. In Isabelle parlance, such rules are called destruction rules;
they are readable and easy to use in forward proof. The rules (∨E), (⊥E)
and (∃E) work by discharging assumptions; they support backward proof in
a style reminiscent of the sequent calculus.

The latter style is the most general form of elimination rule. In natural
deduction, there is no way to recast (∨E), (⊥E) or (∃E) as destruction rules.
But we can write general elimination rules for ∧, → and ∀:

P ∧Q

[P ,Q]
....
R

R
P → Q P

[Q]
....
R

R
∀x . P

[P [t/x]]
....

Q
Q

Because they are concise, destruction rules are simpler to derive than the
corresponding elimination rules. To facilitate their use in backward proof,
Isabelle provides a means of transforming a destruction rule such as

P1 . . . Pm

Q
to the elimination rule

P1 . . . Pm

[Q]
....
R

R.

Destruct-resolution combines this transformation with elim-resolution. It
applies a destruction rule to some assumption of a subgoal. Given the rule
above, it replaces the assumption P1 by Q , with new subgoals of showing

6 VARIATIONS ON RESOLUTION 24

instances of P2, . . . , Pm . Destruct-resolution works forward from a subgoal’s
assumptions. Ordinary resolution performs forward reasoning from theorems,
as illustrated in §3.2.

6.3 Deriving rules by resolution

The meta-logic, itself a form of the predicate calculus, is defined by a sys-
tem of natural deduction rules. Each theorem may depend upon meta-
assumptions. The theorem that φ follows from the assumptions φ1, . . . ,
φn is written

φ [φ1, . . . , φn].

A more conventional notation might be φ1, . . . , φn ` φ, but Isabelle’s notation
is more readable with large formulae.

Meta-level natural deduction provides a convenient mechanism for deriv-
ing new object-level rules. To derive the rule

θ1 . . . θk
φ,

assume the premises θ1, . . . , θk at the meta-level. Then prove φ, possibly
using these assumptions. Starting with a proof state φ =⇒ φ, assumptions
may accumulate, reaching a final state such as

φ [θ1, . . . , θk].

The meta-rule for =⇒ introduction discharges an assumption. Discharging
them in the order θk , . . . , θ1 yields the meta-theorem [[θ1; . . . ; θk]] =⇒ φ, with
no assumptions. This represents the desired rule. Let us derive the general
∧ elimination rule:

P ∧Q

[P ,Q]
....
R

R (∧E)

We assume P ∧ Q and [[P ; Q]] =⇒ R, and commence backward proof in the
state R =⇒ R. Resolving this with the second assumption yields the state

[[P ; Q]] =⇒ R [[[P ; Q]] =⇒ R].

Resolving subgoals 1 and 2 with (∧E1) and (∧E2), respectively, yields the
state

[[P ∧ ?Q1; ?P2 ∧Q]] =⇒ R [[[P ; Q]] =⇒ R].

6 VARIATIONS ON RESOLUTION 25

The unknowns ?Q1 and ?P2 arise from unconstrained subformulae in the
premises of (∧E1) and (∧E2). Resolving both subgoals with the assumption
P ∧Q instantiates the unknowns to yield

R [[[P ; Q]] =⇒ R,P ∧Q].

The proof may use the meta-assumptions in any order, and as often as nec-
essary; when finished, we discharge them in the correct order to obtain the
desired form:

[[P ∧Q ; [[P ; Q]] =⇒ R]] =⇒ R

We have derived the rule using free variables, which prevents their prema-
ture instantiation during the proof; we may now replace them by schematic
variables.

! Schematic variables are not allowed in meta-assumptions, for a variety of rea-
sons. Meta-assumptions remain fixed throughout a proof.

26

Part II

Using Isabelle from the ML
Top-Level
Most Isabelle users write proof scripts using the Isar language, as described
in the Tutorial, and debug them through the Proof General user interface [1].
Isabelle’s original user interface — based on the ml top-level — is still avail-
able, however. Proofs are conducted by applying certain ml functions, which
update a stored proof state. All syntax can be expressed using plain ascii
characters, but Isabelle can support alternative syntaxes, for example using
mathematical symbols from a special screen font. The meta-logic and main
object-logics already provide such fancy output as an option.

Object-logics are built upon Pure Isabelle, which implements the meta-
logic and provides certain fundamental data structures: types, terms, sig-
natures, theorems and theories, tactics and tacticals. These data struc-
tures have the corresponding ml types typ, term, Sign.sg, thm, theory

and tactic; tacticals have function types such as tactic->tactic. Isabelle
users can operate on these data structures by writing ml programs.

7 Forward proof

This section describes the concrete syntax for types, terms and theorems,
and demonstrates forward proof. The examples are set in first-order logic.
The command to start Isabelle running first-order logic is

isabelle FOL

Note that just typing isabelle usually brings up higher-order logic (HOL)
by default.

7.1 Lexical matters

An identifier is a string of letters, digits, underscores (_) and single
quotes (’), beginning with a letter. Single quotes are regarded as primes;
for instance x’ is read as x ′. Identifiers are separated by white space and
special characters. Reserved words are identifiers that appear in Isabelle
syntax definitions.

An Isabelle theory can declare symbols composed of special characters,
such as =, ==, => and ==>. (The latter three are part of the syntax of the

7 FORWARD PROOF 27

meta-logic.) Such symbols may be run together; thus if } and { are used
for set brackets then {{a},{a,b}} is valid notation for a set of sets — but
only if }} and {{ have not been declared as symbols! The parser resolves
any ambiguity by taking the longest possible symbol that has been declared.
Thus the string ==> is read as a single symbol. But = => is read as two
symbols.

Identifiers that are not reserved words may serve as free variables or
constants. A type identifier consists of an identifier prefixed by a prime,
for example ’a and ’hello. Type identifiers stand for (free) type variables,
which remain fixed during a proof.

An unknown (or type unknown) consists of a question mark, an identifier
(or type identifier), and a subscript. The subscript, a non-negative integer,
allows the renaming of unknowns prior to unification.1

7.2 Syntax of types and terms

Classes are denoted by identifiers; the built-in class logic contains the ‘logi-
cal’ types. Sorts are lists of classes enclosed in braces } and {; singleton sorts
may be abbreviated by dropping the braces.

Types are written with a syntax like ml’s. The built-in type prop is the
type of propositions. Type variables can be constrained to particular classes
or sorts, for example ’a::term and ?’b::{ord, arith}.

ASCII Notation for Types
α::C class constraint
α::{C1, . . . ,Cn} sort constraint
σ => τ function type σ ⇒ τ
[σ1, . . . ,σn] => τ n-argument function type
(τ1, . . . ,τn)tycon type construction

1The subscript may appear after the identifier, separated by a dot; this prevents ambi-
guity when the identifier ends with a digit. Thus ?z6.0 has identifier "z6" and subscript 0,
while ?a0.5 has identifier "a0" and subscript 5. If the identifier does not end with a digit,
then no dot appears and a subscript of 0 is omitted; for example, ?hello has identi-
fier "hello" and subscript zero, while ?z6 has identifier "z" and subscript 6. The same
conventions apply to type unknowns. The question mark is not part of the identifier!

7 FORWARD PROOF 28

Terms are those of the typed λ-calculus.

ASCII Notation for Terms
t::σ type constraint
%x.t abstraction λx . t
%x1 . . . xn.t abstraction over several arguments
t(u1, . . . ,un) application to several arguments (FOL and ZF)
t u1 . . . un application to several arguments (HOL)

Note that HOL uses its traditional “higher-order” syntax for application,
which differs from that used in FOL.

The theorems and rules of an object-logic are represented by theorems
in the meta-logic, which are expressed using meta-formulae. Since the meta-
logic is higher-order, meta-formulae φ, ψ, θ, . . . are just terms of type prop.

ASCII Notation for Meta-Formulae
a == b a ≡ b meta-equality

a =?= b a
?≡ b flex-flex constraint

φ ==> ψ φ =⇒ ψ meta-implication
[|φ1; . . . ;φn|] ==> ψ [[φ1; . . . ;φn]] =⇒ ψ nested implication
!!x.φ

∧
x . φ meta-quantification

!!x1 . . . xn.φ
∧

x1 xn . φ nested quantification

Flex-flex constraints are meta-equalities arising from unification; they require
special treatment. See §7.4.

Most logics define the implicit coercion Trueprop from object-formulae to
propositions. This could cause an ambiguity: in P =⇒ Q , do the variables
P and Q stand for meta-formulae or object-formulae? If the latter, P =⇒ Q
really abbreviates Trueprop(P) =⇒ Trueprop(Q). To prevent such ambigui-
ties, Isabelle’s syntax does not allow a meta-formula to consist of a variable.
Variables of type prop are seldom useful, but you can make a variable stand
for a meta-formula by prefixing it with the symbol PROP:

7 FORWARD PROOF 29

PROP ?psi ==> PROP ?theta

Symbols of object-logics are typically rendered into ascii as follows:

True > true
False ⊥ false
P & Q P ∧Q conjunction
P | Q P ∨Q disjunction
~ P ¬P negation
P --> Q P → Q implication
P <-> Q P ↔ Q bi-implication
ALL x y z . P ∀x y z . P for all
EX x y z . P ∃x y z . P there exists

To illustrate the notation, consider two axioms for first-order logic:

[[P ; Q]] =⇒ P ∧Q (∧I)

[[∃x . P(x);
∧

x . P(x)→ Q]] =⇒ Q (∃E)

(∧I) translates into ascii characters as

[| ?P; ?Q |] ==> ?P & ?Q

The schematic variables let unification instantiate the rule. To avoid clutter-
ing logic definitions with question marks, Isabelle converts any free variables
in a rule to schematic variables; we normally declare (∧I) as

[| P; Q |] ==> P & Q

This variables convention agrees with the treatment of variables in goals.
Free variables in a goal remain fixed throughout the proof. After the proof
is finished, Isabelle converts them to scheme variables in the resulting theo-
rem. Scheme variables in a goal may be replaced by terms during the proof,
supporting answer extraction, program synthesis, and so forth.

For a final example, the rule (∃E) is rendered in ascii as

[| EX x. P(x); !!x. P(x) ==> Q |] ==> Q

7.3 Basic operations on theorems

Meta-level theorems have the ml type thm. They represent the theorems and
inference rules of object-logics. Isabelle’s meta-logic is implemented using
the lcf approach: each meta-level inference rule is represented by a function
from theorems to theorems. Object-level rules are taken as axioms.

The main theorem printing commands are prth, prths and prthq. Of
the other operations on theorems, most useful are RS and RSN, which perform
resolution.

7 FORWARD PROOF 30

prth thm; pretty-prints thm at the terminal.

prths thms; pretty-prints thms, a list of theorems.

prthq thmq; pretty-prints thmq, a sequence of theorems; this is useful for
inspecting the output of a tactic.

thm1 RS thm2 resolves the conclusion of thm1 with the first premise
of thm2.

thm1 RSN (i , thm2) resolves the conclusion of thm1 with the ith premise
of thm2.

standard thm puts thm into a standard format. It also renames schematic
variables to have subscript zero, improving readability and reducing
subscript growth.

The rules of a theory are normally bound to ml identifiers. Suppose we are
running an Isabelle session containing theory FOL, natural deduction first-
order logic.2 Let us try an example given in §3.2. We first print mp, which is
the rule (→E), then resolve it with itself.

prth mp;

[| ?P --> ?Q; ?P |] ==> ?Q

val it = "[| ?P --> ?Q; ?P |] ==> ?Q" : thm

prth (mp RS mp);

[| ?P1 --> ?P --> ?Q; ?P1; ?P |] ==> ?Q

val it = "[| ?P1 --> ?P --> ?Q; ?P1; ?P |] ==> ?Q" : thm

User input appears in typewriter characters, and output appears in slanted

typewriter characters. ml’s response val . . . is compiler-dependent
and will sometimes be suppressed. This session illustrates two formats for
the display of theorems. Isabelle’s top-level displays theorems as ml values,
enclosed in quotes. Printing commands like prth omit the quotes and the sur-
rounding val ...: thm. Ignoring their side-effects, the printing commands
are identity functions.

To contrast RS with RSN, we resolve conjunct1, which stands for (∧E1),
with mp.

2For a listing of the FOL rules and their ml names, turn to Isabelle’s Object-Logics.

7 FORWARD PROOF 31

conjunct1 RS mp;

val it = "[| (?P --> ?Q) & ?Q1; ?P |] ==> ?Q" : thm

conjunct1 RSN (2,mp);

val it = "[| ?P --> ?Q; ?P & ?Q1 |] ==> ?Q" : thm

These correspond to the following proofs:

(P → Q) ∧Q1

P → Q
(∧E1)

P
Q

(→E)
P → Q

P ∧Q1

P
(∧E1)

Q
(→E)

Rules can be derived by pasting other rules together. Let us join spec, which
stands for (∀E), with mp and conjunct1. In ml, the identifier it denotes
the value just printed.

spec;

val it = "ALL x. ?P(x) ==> ?P(?x)" : thm

it RS mp;

val it = "[| ALL x. ?P3(x) --> ?Q2(x); ?P3(?x1) |] ==>

?Q2(?x1)" : thm

it RS conjunct1;

val it = "[| ALL x. ?P4(x) --> ?P6(x) & ?Q5(x); ?P4(?x2) |] ==>

?P6(?x2)" : thm

standard it;

val it = "[| ALL x. ?P(x) --> ?Pa(x) & ?Q(x); ?P(?x) |] ==>

?Pa(?x)" : thm

By resolving (∀E) with (→E) and (∧E1), we have derived a destruction rule
for formulae of the form ∀x . P(x) → (Q(x) ∧ R(x)). Used with destruct-
resolution, such specialized rules provide a way of referring to particular
assumptions.

7.4 *Flex-flex constraints

In higher-order unification, flex-flex equations are those where both sides

begin with a function unknown, such as ?f (0)
?≡ ?g(0). They admit a trivial

unifier, here ?f ≡ λx . ?a and ?g ≡ λy . ?a, where ?a is a new unknown. They
admit many other unifiers, such as ?f ≡ λx .?g(0) and {?f ≡ λx .x , ?g ≡ λx .0}.
Huet’s procedure does not enumerate the unifiers; instead, it retains flex-
flex equations as constraints on future unifications. Flex-flex constraints
occasionally become attached to a proof state; more frequently, they appear
during use of RS and RSN:

7 FORWARD PROOF 32

refl;

val it = "?a = ?a" : thm

exI;

val it = "?P(?x) ==> EX x. ?P(x)" : thm

refl RS exI;

val it = "EX x. ?a3(x) = ?a2(x)" [.] : thm

The mysterious symbol [.] indicates that the result is subject to a meta-
level hypothesis. We can make all such hypotheses visible by setting the
show_hyps flag:

set show_hyps;

val it = true : bool

refl RS exI;

val it = "EX x. ?a3(x) = ?a2(x)" ["?a3(?x) =?= ?a2(?x)"] : thm

Renaming variables, this is ∃x . ?f (x) = ?g(x) with the constraint

?f (?u)
?≡ ?g(?u). Instances satisfying the constraint include ∃x . ?f (x) = ?f (x)

and ∃x . x = ?u. Calling flexflex_rule removes all constraints by applying
the trivial unifier:

prthq (flexflex_rule it);

EX x. ?a4 = ?a4

Isabelle simplifies flex-flex equations to eliminate redundant bound variables.

In λx y . ?f (k(y), x)
?≡ λx y . ?g(y), there is no bound occurrence of x on the

right side; thus, there will be none on the left in a common instance of
these terms. Choosing a new variable ?h, Isabelle assigns ?f ≡ λu v .?h(u),
simplifying the left side to λx y . ?h(k(y)). Dropping x from the equation

leaves λy . ?h(k(y))
?≡ λy . ?g(y). By η-conversion, this simplifies to the

assignment ?g ≡ λy .?h(k(y)).

! RS and RSN fail (by raising exception THM) unless the resolution delivers exactly
one resolvent. For multiple results, use RL and RLN, which operate on theorem

lists. The following example uses read_instantiate to create an instance of refl
containing no schematic variables.

val reflk = read_instantiate [("a","k")] refl;

val reflk = "k = k" : thm

A flex-flex constraint is no longer possible; resolution does not find a unique unifier:

reflk RS exI;

uncaught exception

THM ("RSN: multiple unifiers", 1,

["k = k", "?P(?x) ==> EX x. ?P(x)"])

Using RL this time, we discover that there are four unifiers, and four resolvents:

8 BACKWARD PROOF 33

[reflk] RL [exI];

val it = ["EX x. x = x", "EX x. k = x",

"EX x. x = k", "EX x. k = k"] : thm list

8 Backward proof

Although RS and RSN are fine for simple forward reasoning, large proofs
require tactics. Isabelle provides a suite of commands for conducting a back-
ward proof using tactics.

8.1 The basic tactics

The tactics assume_tac, resolve_tac, eresolve_tac, and dresolve_tac

suffice for most single-step proofs. Although eresolve_tac and
dresolve_tac are not strictly necessary, they simplify proofs involving
elimination and destruction rules. All the tactics act on a subgoal desig-
nated by a positive integer i , failing if i is out of range. The resolution
tactics try their list of theorems in left-to-right order.

assume_tac i is the tactic that attempts to solve subgoal i by assumption.
Proof by assumption is not a trivial step; it can falsify other subgoals
by instantiating shared variables. There may be several ways of solving
the subgoal by assumption.

resolve_tac thms i is the basic resolution tactic, used for most proof steps.
The thms represent object-rules, which are resolved against subgoal i of
the proof state. For each rule, resolution forms next states by unifying
the conclusion with the subgoal and inserting instantiated premises in
its place. A rule can admit many higher-order unifiers. The tactic fails
if none of the rules generates next states.

eresolve_tac thms i performs elim-resolution. Like resolve_tac thms i
followed by assume_tac i, it applies a rule then solves its first premise
by assumption. But eresolve_tac additionally deletes that assump-
tion from any subgoals arising from the resolution.

dresolve_tac thms i performs destruct-resolution with the thms , as de-
scribed in §6.2. It is useful for forward reasoning from the assumptions.

8 BACKWARD PROOF 34

8.2 Commands for backward proof

Tactics are normally applied using the subgoal module, which maintains a
proof state and manages the proof construction. It allows interactive back-
tracking through the proof space, going away to prove lemmas, etc.; of its
many commands, most important are the following:

Goal formula; begins a new proof, where the formula is written as an ml
string.

by tactic; applies the tactic to the current proof state, raising an exception
if the tactic fails.

undo(); reverts to the previous proof state. Undo can be repeated but can-
not be undone. Do not omit the parentheses; typing undo; merely
causes ml to echo the value of that function.

result(); returns the theorem just proved, in a standard format. It fails if
unproved subgoals are left, etc.

qed name; is the usual way of ending a proof. It gets the theorem using
result, stores it in Isabelle’s theorem database and binds it to an ml
identifier.

The commands and tactics given above are cumbersome for interactive use.
Although our examples will use the full commands, you may prefer Isabelle’s
shortcuts:

ba i; abbreviates by (assume_tac i);
br thm i; abbreviates by (resolve_tac [thm] i);
be thm i; abbreviates by (eresolve_tac [thm] i);
bd thm i; abbreviates by (dresolve_tac [thm] i);

8.3 A trivial example in propositional logic

Directory FOL of the Isabelle distribution defines the theory of first-order
logic. Let us try the example from §5.3, entering the goal P ∨P → P in that
theory.3

Goal "P|P --> P";

Level 0

P | P --> P

1. P | P --> P

3To run these examples, see the file FOL/ex/intro.ML.

8 BACKWARD PROOF 35

Isabelle responds by printing the initial proof state, which has P ∨P → P as
the main goal and the only subgoal. The level of the state is the number of
by commands that have been applied to reach it. We now use resolve_tac

to apply the rule impI, or (→I), to subgoal 1:

by (resolve_tac [impI] 1);

Level 1

P | P --> P

1. P | P ==> P

In the new proof state, subgoal 1 is P under the assumption P ∨ P . (The
meta-implication ==> indicates assumptions.) We apply disjE, or (∨E), to
that subgoal:

by (resolve_tac [disjE] 1);

Level 2

P | P --> P

1. P | P ==> ?P1 | ?Q1

2. [| P | P; ?P1 |] ==> P

3. [| P | P; ?Q1 |] ==> P

At Level 2 there are three subgoals, each provable by assumption. We de-
viate from §5.3 by tackling subgoal 3 first, using assume_tac. This affects
subgoal 1, updating ?Q1 to P.

by (assume_tac 3);

Level 3

P | P --> P

1. P | P ==> ?P1 | P

2. [| P | P; ?P1 |] ==> P

Next we tackle subgoal 2, instantiating ?P1 to P in subgoal 1.

by (assume_tac 2);

Level 4

P | P --> P

1. P | P ==> P | P

Lastly we prove the remaining subgoal by assumption:

by (assume_tac 1);

Level 5

P | P --> P

No subgoals!

Isabelle tells us that there are no longer any subgoals: the proof is complete.
Calling qed stores the theorem.

8 BACKWARD PROOF 36

qed "mythm";

val mythm = "?P | ?P --> ?P" : thm

Isabelle has replaced the free variable P by the scheme variable ?P. Free
variables in the proof state remain fixed throughout the proof. Isabelle fi-
nally converts them to scheme variables so that the resulting theorem can be
instantiated with any formula.

As an exercise, try doing the proof as in §5.3, observing how instantiations
affect the proof state.

8.4 Part of a distributive law

To demonstrate the tactics eresolve_tac, dresolve_tac and the tactical
REPEAT, let us prove part of the distributive law

(P ∧Q) ∨ R ↔ (P ∨ R) ∧ (Q ∨ R).

We begin by stating the goal to Isabelle and applying (→I) to it:

Goal "(P & Q) | R --> (P | R)";

Level 0

P & Q | R --> P | R

1. P & Q | R --> P | R

by (resolve_tac [impI] 1);

Level 1

P & Q | R --> P | R

1. P & Q | R ==> P | R

Previously we applied (∨E) using resolve_tac, but eresolve_tac deletes
the assumption after use. The resulting proof state is simpler.

by (eresolve_tac [disjE] 1);

Level 2

P & Q | R --> P | R

1. P & Q ==> P | R

2. R ==> P | R

Using dresolve_tac, we can apply (∧E1) to subgoal 1, replacing the as-
sumption P ∧ Q by P . Normally we should apply the rule (∧E), given
in §6.2. That is an elimination rule and requires eresolve_tac; it would re-
place P ∧Q by the two assumptions P and Q . Because the present example
does not need Q , we may try out dresolve_tac.

by (dresolve_tac [conjunct1] 1);

Level 3

P & Q | R --> P | R

1. P ==> P | R

2. R ==> P | R

The next two steps apply (∨I 1) and (∨I 2) in an obvious manner.

9 QUANTIFIER REASONING 37

by (resolve_tac [disjI1] 1);

Level 4

P & Q | R --> P | R

1. P ==> P

2. R ==> P | R

by (resolve_tac [disjI2] 2);

Level 5

P & Q | R --> P | R

1. P ==> P

2. R ==> R

Two calls of assume_tac can finish the proof. The tactical REPEAT here
expresses a tactic that calls assume_tac 1 as many times as possible. We
can restrict attention to subgoal 1 because the other subgoals move up after
subgoal 1 disappears.

by (REPEAT (assume_tac 1));

Level 6

P & Q | R --> P | R

No subgoals!

9 Quantifier reasoning

This section illustrates how Isabelle enforces quantifier provisos. Suppose
that x , y and z are parameters of a subgoal. Quantifier rules create terms
such as ?f (x , z), where ?f is a function unknown. Instantiating ?f to λx z .
t has the effect of replacing ?f (x , z) by t , where the term t may contain
free occurrences of x and z . On the other hand, no instantiation of ?f can
replace ?f (x , z) by a term containing free occurrences of y , since parameters
are bound variables.

9.1 Two quantifier proofs: a success and a failure

Let us contrast a proof of the theorem ∀x . ∃y . x = y with an attempted
proof of the non-theorem ∃y . ∀x . x = y . The former proof succeeds, and
the latter fails, because of the scope of quantified variables [14]. Unification
helps even in these trivial proofs. In ∀x . ∃y . x = y the y that ‘exists’ is
simply x , but we need never say so. This choice is forced by the reflexive law
for equality, and happens automatically.

The successful proof. The proof of ∀x . ∃y . x = y demonstrates the
introduction rules (∀I) and (∃I). We state the goal and apply (∀I):

9 QUANTIFIER REASONING 38

Goal "ALL x. EX y. x=y";

Level 0

ALL x. EX y. x = y

1. ALL x. EX y. x = y

by (resolve_tac [allI] 1);

Level 1

ALL x. EX y. x = y

1. !!x. EX y. x = y

The variable x is no longer universally quantified, but is a parameter in the
subgoal; thus, it is universally quantified at the meta-level. The subgoal must
be proved for all possible values of x.

To remove the existential quantifier, we apply the rule (∃I):

by (resolve_tac [exI] 1);

Level 2

ALL x. EX y. x = y

1. !!x. x = ?y1(x)

The bound variable y has become ?y1(x). This term consists of the function
unknown ?y1 applied to the parameter x. Instances of ?y1(x) may or may
not contain x. We resolve the subgoal with the reflexivity axiom.

by (resolve_tac [refl] 1);

Level 3

ALL x. EX y. x = y

No subgoals!

Let us consider what has happened in detail. The reflexivity axiom is lifted
over x to become

∧
x .?f (x) = ?f (x), which is unified with

∧
x .x = ?y1(x). The

function unknowns ?f and ?y1 are both instantiated to the identity function,
and x = ?y1(x) collapses to x = x by β-reduction.

The unsuccessful proof. We state the goal ∃y . ∀x . x = y , which is not
a theorem, and try (∃I):

Goal "EX y. ALL x. x=y";

Level 0

EX y. ALL x. x = y

1. EX y. ALL x. x = y

by (resolve_tac [exI] 1);

Level 1

EX y. ALL x. x = y

1. ALL x. x = ?y

The unknown ?y may be replaced by any term, but this can never introduce
another bound occurrence of x. We now apply (∀I):

9 QUANTIFIER REASONING 39

by (resolve_tac [allI] 1);

Level 2

EX y. ALL x. x = y

1. !!x. x = ?y

Compare our position with the previous Level 2. Instead of ?y1(x) we
have ?y, whose instances may not contain the bound variable x. The re-
flexivity axiom does not unify with subgoal 1.

by (resolve_tac [refl] 1);

by: tactic failed

There can be no proof of ∃y . ∀x . x = y by the soundness of first-order logic.
I have elsewhere proved the faithfulness of Isabelle’s encoding of first-order
logic [14]; there could, of course, be faults in the implementation.

9.2 Nested quantifiers

Multiple quantifiers create complex terms. Proving

(∀x y . P(x , y))→ (∀z w . P(w , z))

will demonstrate how parameters and unknowns develop. If they appear in
the wrong order, the proof will fail.

This section concludes with a demonstration of REPEAT and ORELSE.

Goal "(ALL x y.P(x,y)) --> (ALL z w.P(w,z))";

Level 0

(ALL x y. P(x,y)) --> (ALL z w. P(w,z))

1. (ALL x y. P(x,y)) --> (ALL z w. P(w,z))

by (resolve_tac [impI] 1);

Level 1

(ALL x y. P(x,y)) --> (ALL z w. P(w,z))

1. ALL x y. P(x,y) ==> ALL z w. P(w,z)

The wrong approach. Using dresolve_tac, we apply the rule (∀E),
bound to the ml identifier spec. Then we apply (∀I).

by (dresolve_tac [spec] 1);

Level 2

(ALL x y. P(x,y)) --> (ALL z w. P(w,z))

1. ALL y. P(?x1,y) ==> ALL z w. P(w,z)

by (resolve_tac [allI] 1);

Level 3

(ALL x y. P(x,y)) --> (ALL z w. P(w,z))

1. !!z. ALL y. P(?x1,y) ==> ALL w. P(w,z)

The unknown ?x1 and the parameter z have appeared. We again apply (∀E)
and (∀I).

9 QUANTIFIER REASONING 40

by (dresolve_tac [spec] 1);

Level 4

(ALL x y. P(x,y)) --> (ALL z w. P(w,z))

1. !!z. P(?x1,?y3(z)) ==> ALL w. P(w,z)

by (resolve_tac [allI] 1);

Level 5

(ALL x y. P(x,y)) --> (ALL z w. P(w,z))

1. !!z w. P(?x1,?y3(z)) ==> P(w,z)

The unknown ?y3 and the parameter w have appeared. Each unknown is
applied to the parameters existing at the time of its creation; instances of ?x1
cannot contain z or w, while instances of ?y3(z) can only contain z. Due to
the restriction on ?x1, proof by assumption will fail.

by (assume_tac 1);

by: tactic failed

uncaught exception ERROR

The right approach. To do this proof, the rules must be applied in the
correct order. Parameters should be created before unknowns. The choplev

command returns to an earlier stage of the proof; let us return to the result
of applying (→I):

choplev 1;

Level 1

(ALL x y. P(x,y)) --> (ALL z w. P(w,z))

1. ALL x y. P(x,y) ==> ALL z w. P(w,z)

Previously we made the mistake of applying (∀E) before (∀I).

by (resolve_tac [allI] 1);

Level 2

(ALL x y. P(x,y)) --> (ALL z w. P(w,z))

1. !!z. ALL x y. P(x,y) ==> ALL w. P(w,z)

by (resolve_tac [allI] 1);

Level 3

(ALL x y. P(x,y)) --> (ALL z w. P(w,z))

1. !!z w. ALL x y. P(x,y) ==> P(w,z)

The parameters z and w have appeared. We now create the unknowns:

by (dresolve_tac [spec] 1);

Level 4

(ALL x y. P(x,y)) --> (ALL z w. P(w,z))

1. !!z w. ALL y. P(?x3(z,w),y) ==> P(w,z)

by (dresolve_tac [spec] 1);

Level 5

(ALL x y. P(x,y)) --> (ALL z w. P(w,z))

1. !!z w. P(?x3(z,w),?y4(z,w)) ==> P(w,z)

Both ?x3(z,w) and ?y4(z,w) could become any terms containing z and w:

9 QUANTIFIER REASONING 41

by (assume_tac 1);

Level 6

(ALL x y. P(x,y)) --> (ALL z w. P(w,z))

No subgoals!

A one-step proof using tacticals. Repeated application of rules can be
effective, but the rules should be attempted in the correct order. Let us
return to the original goal using choplev:

choplev 0;

Level 0

(ALL x y. P(x,y)) --> (ALL z w. P(w,z))

1. (ALL x y. P(x,y)) --> (ALL z w. P(w,z))

As we have just seen, allI should be attempted before spec, while
assume_tac generally can be attempted first. Such priorities can easily be
expressed using ORELSE, and repeated using REPEAT.

by (REPEAT (assume_tac 1 ORELSE resolve_tac [impI,allI] 1

ORELSE dresolve_tac [spec] 1));

Level 1

(ALL x y. P(x,y)) --> (ALL z w. P(w,z))

No subgoals!

9.3 A realistic quantifier proof

To see the practical use of parameters and unknowns, let us prove half of the
equivalence

(∀x . P(x)→ Q) ↔ ((∃x . P(x))→ Q).

We state the left-to-right half to Isabelle in the normal way. Since → is
nested to the right, (→I) can be applied twice; we use REPEAT:

Goal "(ALL x. P(x) --> Q) --> (EX x. P(x)) --> Q";

Level 0

(ALL x. P(x) --> Q) --> (EX x. P(x)) --> Q

1. (ALL x. P(x) --> Q) --> (EX x. P(x)) --> Q

by (REPEAT (resolve_tac [impI] 1));

Level 1

(ALL x. P(x) --> Q) --> (EX x. P(x)) --> Q

1. [| ALL x. P(x) --> Q; EX x. P(x) |] ==> Q

We can eliminate the universal or the existential quantifier. The existential
quantifier should be eliminated first, since this creates a parameter. The
rule (∃E) is bound to the identifier exE.

9 QUANTIFIER REASONING 42

by (eresolve_tac [exE] 1);

Level 2

(ALL x. P(x) --> Q) --> (EX x. P(x)) --> Q

1. !!x. [| ALL x. P(x) --> Q; P(x) |] ==> Q

The only possibility now is (∀E), a destruction rule. We use dresolve_tac,
which discards the quantified assumption; it is only needed once.

by (dresolve_tac [spec] 1);

Level 3

(ALL x. P(x) --> Q) --> (EX x. P(x)) --> Q

1. !!x. [| P(x); P(?x3(x)) --> Q |] ==> Q

Because we applied (∃E) before (∀E), the unknown term ?x3(x) may depend
upon the parameter x.

Although (→E) is a destruction rule, it works with eresolve_tac to
perform backward chaining. This technique is frequently useful.

by (eresolve_tac [mp] 1);

Level 4

(ALL x. P(x) --> Q) --> (EX x. P(x)) --> Q

1. !!x. P(x) ==> P(?x3(x))

The tactic has reduced Q to P(?x3(x)), deleting the implication. The final
step is trivial, thanks to the occurrence of x.

by (assume_tac 1);

Level 5

(ALL x. P(x) --> Q) --> (EX x. P(x)) --> Q

No subgoals!

9.4 The classical reasoner

Isabelle provides enough automation to tackle substantial examples. The
classical reasoner can be set up for any classical natural deduction logic;
see the Reference Manual . It cannot compete with fully automatic theorem
provers, but it is competitive with tools found in other interactive provers.

Rules are packaged into classical sets. The classical reasoner provides
several tactics, which apply rules using naive algorithms. Unification handles
quantifiers as shown above. The most useful tactic is Blast_tac.

Let us solve problems 40 and 60 of Pelletier [18]. (The backslashes \. . . \
are an ml string escape sequence, to break the long string over two lines.)

9 QUANTIFIER REASONING 43

Goal "(EX y. ALL x. J(y,x) <-> ~J(x,x)) \

\ --> ~ (ALL x. EX y. ALL z. J(z,y) <-> ~ J(z,x))";

Level 0

(EX y. ALL x. J(y,x) <-> ~J(x,x)) -->

~(ALL x. EX y. ALL z. J(z,y) <-> ~J(z,x))

1. (EX y. ALL x. J(y,x) <-> ~J(x,x)) -->

~(ALL x. EX y. ALL z. J(z,y) <-> ~J(z,x))

Blast_tac proves subgoal 1 at a stroke.

by (Blast_tac 1);

Depth = 0

Depth = 1

Level 1

(EX y. ALL x. J(y,x) <-> ~J(x,x)) -->

~(ALL x. EX y. ALL z. J(z,y) <-> ~J(z,x))

No subgoals!

Sceptics may examine the proof by calling the package’s single-step tactics,
such as step_tac. This would take up much space, however, so let us proceed
to the next example:

Goal "ALL x. P(x,f(x)) <-> \

\ (EX y. (ALL z. P(z,y) --> P(z,f(x))) & P(x,y))";

Level 0

ALL x. P(x,f(x)) <-> (EX y. (ALL z. P(z,y) --> P(z,f(x))) & P(x,y))

1. ALL x. P(x,f(x)) <->

(EX y. (ALL z. P(z,y) --> P(z,f(x))) & P(x,y))

Again, subgoal 1 succumbs immediately.

by (Blast_tac 1);

Depth = 0

Depth = 1

Level 1

ALL x. P(x,f(x)) <-> (EX y. (ALL z. P(z,y) --> P(z,f(x))) & P(x,y))

No subgoals!

The classical reasoner is not restricted to the usual logical connectives. The
natural deduction rules for unions and intersections resemble those for dis-
junction and conjunction. The rules for infinite unions and intersections
resemble those for quantifiers. Given such rules, the classical reasoner is
effective for reasoning in set theory.

44

Part III

Advanced Methods
Before continuing, it might be wise to try some of your own examples in
Isabelle, reinforcing your knowledge of the basic functions.

Look through Isabelle’s Object-Logics and try proving some simple the-
orems. You probably should begin with first-order logic (FOL or LK). Try
working some of the examples provided, and others from the literature. Set
theory (ZF) and Constructive Type Theory (CTT) form a richer world for
mathematical reasoning and, again, many examples are in the literature.
Higher-order logic (HOL) is Isabelle’s most elaborate logic. Its types and
functions are identified with those of the meta-logic.

Choose a logic that you already understand. Isabelle is a proof tool, not
a teaching tool; if you do not know how to do a particular proof on paper,
then you certainly will not be able to do it on the machine. Even experienced
users plan large proofs on paper.

We have covered only the bare essentials of Isabelle, but enough to per-
form substantial proofs. By occasionally dipping into the Reference Manual,
you can learn additional tactics, subgoal commands and tacticals.

10 Deriving rules in Isabelle

A mathematical development goes through a progression of stages. Each
stage defines some concepts and derives rules about them. We shall see how
to derive rules, perhaps involving definitions, using Isabelle. The following
section will explain how to declare types, constants, rules and definitions.

10.1 Deriving a rule using tactics and meta-level as-
sumptions

The subgoal module supports the derivation of rules, as discussed in §6.3.
When the Goal command is supplied a formula of the form [[θ1; . . . ; θk]] =⇒ φ,
there are two possibilities:

• If all of the premises θ1, . . . , θk are simple formulae (they do not involve
the meta-connectives

∧
or =⇒) then the command sets the goal to be

[[θ1; . . . ; θk]] =⇒ φ and returns the empty list.

• If one or more premises involves the meta-connectives
∧

or =⇒, then
the command sets the goal to be φ and returns a list consisting of the

10 DERIVING RULES IN ISABELLE 45

theorems θi [θi], for i = 1, . . . , k . These meta-level assumptions are
also recorded internally, allowing result (which is called by qed) to
discharge them in the original order.

Rules that discharge assumptions or introduce eigenvariables have complex
premises, and the second case applies. In this section, many of the theorems
are subject to meta-level assumptions, so we make them visible by by setting
the show_hyps flag:

set show_hyps;

val it = true : bool

Now, we are ready to derive ∧ elimination. Until now, calling Goal has
returned an empty list, which we have ignored. In this example, the list
contains the two premises of the rule, since one of them involves the =⇒
connective. We bind them to the ml identifiers major and minor:4

val [major,minor] = Goal

"[| P&Q; [| P; Q |] ==> R |] ==> R";

Level 0

R

1. R

val major = "P & Q [P & Q]" : thm

val minor = "[| P; Q |] ==> R [[| P; Q |] ==> R]" : thm

Look at the minor premise, recalling that meta-level assumptions are shown
in brackets. Using minor, we reduce R to the subgoals P and Q :

by (resolve_tac [minor] 1);

Level 1

R

1. P

2. Q

Deviating from §6.3, we apply (∧E1) forwards from the assumption P ∧ Q
to obtain the theorem P [P ∧Q].

major RS conjunct1;

val it = "P [P & Q]" : thm

by (resolve_tac [major RS conjunct1] 1);

Level 2

R

1. Q

Similarly, we solve the subgoal involving Q .

4Some ML compilers will print a message such as binding not exhaustive. This warns
that Goal must return a 2-element list. Otherwise, the pattern-match will fail; ML will
raise exception Match.

10 DERIVING RULES IN ISABELLE 46

major RS conjunct2;

val it = "Q [P & Q]" : thm

by (resolve_tac [major RS conjunct2] 1);

Level 3

R

No subgoals!

Calling topthm returns the current proof state as a theorem. Note that it
contains assumptions. Calling qed discharges the assumptions — both occur-
rences of P ∧Q are discharged as one — and makes the variables schematic.

topthm();

val it = "R [P & Q, P & Q, [| P; Q |] ==> R]" : thm

qed "conjE";

val conjE = "[| ?P & ?Q; [| ?P; ?Q |] ==> ?R |] ==> ?R" : thm

10.2 Definitions and derived rules

Definitions are expressed as meta-level equalities. Let us define negation and
the if-and-only-if connective:

¬?P ≡ ?P → ⊥
?P ↔ ?Q ≡ (?P → ?Q) ∧ (?Q → ?P)

Isabelle permits meta-level rewriting using definitions such as these. Un-
folding replaces every instance of ¬?P by the corresponding instance of
?P → ⊥. For example, ∀x . ¬(P(x) ∧ ¬R(x , 0)) unfolds to

∀x . (P(x) ∧ R(x , 0)→ ⊥)→ ⊥.

Folding a definition replaces occurrences of the right-hand side by the left.
The occurrences need not be free in the entire formula.

When you define new concepts, you should derive rules asserting their ab-
stract properties, and then forget their definitions. This supports modularity:
if you later change the definitions without affecting their abstract properties,
then most of your proofs will carry through without change. Indiscriminate
unfolding makes a subgoal grow exponentially, becoming unreadable.

Taking this point of view, Isabelle does not unfold definitions automati-
cally during proofs. Rewriting must be explicit and selective. Isabelle pro-
vides tactics and meta-rules for rewriting, and a version of the Goal command
that unfolds the conclusion and premises of the rule being derived.

10 DERIVING RULES IN ISABELLE 47

For example, the intuitionistic definition of negation given above may
seem peculiar. Using Isabelle, we shall derive pleasanter negation rules:

[P]
....
⊥
¬P

(¬I) ¬P P
Q

(¬E)

This requires proving the following meta-formulae:

(P =⇒ ⊥) =⇒ ¬P (¬I)

[[¬P ; P]] =⇒ Q . (¬E)

10.3 Deriving the ¬ introduction rule

To derive (¬I), we may call Goal with the appropriate formula. Again, the
rule’s premises involve a meta-connective, and Goal returns one-element list.
We bind this list to the ml identifier prems.

val prems = Goal "(P ==> False) ==> ~P";

Level 0

~P

1. ~P

val prems = ["P ==> False [P ==> False]"] : thm list

Calling rewrite_goals_tac with not_def, which is the definition of nega-
tion, unfolds that definition in the subgoals. It leaves the main goal alone.

not_def;

val it = "~?P == ?P --> False" : thm

by (rewrite_goals_tac [not_def]);

Level 1

~P

1. P --> False

Using impI and the premise, we reduce subgoal 1 to a triviality:

by (resolve_tac [impI] 1);

Level 2

~P

1. P ==> False

by (resolve_tac prems 1);

Level 3

~P

1. P ==> P

The rest of the proof is routine. Note the form of the final result.

10 DERIVING RULES IN ISABELLE 48

by (assume_tac 1);

Level 4

~P

No subgoals!

qed "notI";

val notI = "(?P ==> False) ==> ~?P" : thm

There is a simpler way of conducting this proof. The Goalw command
starts a backward proof, as does Goal, but it also unfolds definitions. Thus
there is no need to call rewrite_goals_tac:

val prems = Goalw [not_def]

"(P ==> False) ==> ~P";

Level 0

~P

1. P --> False

val prems = ["P ==> False [P ==> False]"] : thm list

10.4 Deriving the ¬ elimination rule

Let us derive the rule (¬E). The proof follows that of conjE above, with
an additional step to unfold negation in the major premise. The Goalw

command is best for this: it unfolds definitions not only in the conclusion
but the premises.

Goalw [not_def] "[| ~P; P |] ==> R";

Level 0

[| ~ P; P |] ==> R

1. [| P --> False; P |] ==> R

As the first step, we apply FalseE:

by (resolve_tac [FalseE] 1);

Level 1

[| ~ P; P |] ==> R

1. [| P --> False; P |] ==> False

Everything follows from falsity. And we can prove falsity using the premises
and Modus Ponens:

by (eresolve_tac [mp] 1);

Level 2

[| ~ P; P |] ==> R

1. P ==> P

by (assume_tac 1);

Level 3

[| ~ P; P |] ==> R

No subgoals!

11 DEFINING THEORIES 49

qed "notE";

val notE = "[| ~?P; ?P |] ==> ?R" : thm

Goalw unfolds definitions in the premises even when it has to return them
as a list. Another way of unfolding definitions in a theorem is by applying
the function rewrite_rule.

11 Defining theories

Isabelle makes no distinction between simple extensions of a logic — like
specifying a type bool with constants true and false — and defining an entire
logic. A theory definition has a form like

T = S1 + · · · + Sn +

classes class declarations
default sort
types type declarations and synonyms
arities type arity declarations
consts constant declarations
syntax syntactic constant declarations
translations ast translation rules
defs meta-logical definitions
rules rule declarations
end

ML ML code

This declares the theory T to extend the existing theories S1, . . . , Sn . It may
introduce new classes, types, arities (of existing types), constants and rules;
it can specify the default sort for type variables. A constant declaration
can specify an associated concrete syntax. The translations section specifies
rewrite rules on abstract syntax trees, handling notations and abbreviations.
The ML section may contain code to perform arbitrary syntactic transforma-
tions. The main declaration forms are discussed below. There are some more
sections not presented here, the full syntax can be found in an appendix of
the Reference Manual. Also note that object-logics may add further theory
sections, for example typedef, datatype in HOL.

All the declaration parts can be omitted or repeated and may appear in
any order, except that the ml section must be last (after the end keyword).
In the simplest case, T is just the union of S1, . . . , Sn . New theories always
extend one or more other theories, inheriting their types, constants, syn-
tax, etc. The theory Pure contains nothing but Isabelle’s meta-logic. The
variant CPure offers the more usual higher-order function application syntax
t u1 . . . un instead of t(u1, . . . , un) in Pure.

11 DEFINING THEORIES 50

Each theory definition must reside in a separate file, whose name is the
theory’s with .thy appended. Calling use_thy "T" reads the definition from
T.thy, writes a corresponding file of ml code .T.thy.ML, reads the latter
file, and deletes it if no errors occurred. This declares the ml structure T ,
which contains a component thy denoting the new theory, a component for
each rule, and everything declared in ML code.

Errors may arise during the translation to ml (say, a misspelled keyword)
or during creation of the new theory (say, a type error in a rule). But if all
goes well, use_thy will finally read the file T.ML (if it exists). This file
typically contains proofs that refer to the components of T . The structure is
automatically opened, so its components may be referred to by unqualified
names, e.g. just thy instead of T.thy.

use_thy automatically loads a theory’s parents before loading the theory
itself. When a theory file is modified, many theories may have to be reloaded.
Isabelle records the modification times and dependencies of theory files. See
the Reference Manual for more details.

11.1 Declaring constants, definitions and rules

Most theories simply declare constants, definitions and rules. The constant
declaration part has the form

consts c1 :: τ1
...

cn :: τn

where c1, . . . , cn are constants and τ1, . . . , τn are types. The types must
be enclosed in quotation marks if they contain user-declared infix type con-
structors like *. Each constant must be enclosed in quotation marks unless
it is a valid identifier. To declare c1, . . . , cn as constants of type τ , the n
declarations may be abbreviated to a single line:

c1, ..., cn :: τ

The rule declaration part has the form

rules id1 "rule1"
...

idn "rulen"

where id1, . . . , idn are ml identifiers and rule1, . . . , rulen are expressions of
type prop. Each rule must be enclosed in quotation marks. Rules are simply
axioms; they are called rules because they are mainly used to specify the
inference rules when defining a new logic.

11 DEFINING THEORIES 51

The definition part is similar, but with the keyword defs instead of
rules. Definitions are rules of the form s ≡ t , and should serve only
as abbreviations. The simplest form of a definition is f ≡ t , where f is a
constant. Also allowed are η-equivalent forms of this, where the arguments
of f appear applied on the left-hand side of the equation instead of abstracted
on the right-hand side.

Isabelle checks for common errors in definitions, such as extra variables on
the right-hand side and cyclic dependencies, that could least to inconsistency.
It is still essential to take care: theorems proved on the basis of incorrect
definitions are useless, your system can be consistent and yet still wrong.

This example theory extends first-order logic by declaring and defining
two constants, nand and xor:

Gate = FOL +

consts nand,xor :: [o,o] => o

defs nand_def "nand(P,Q) == ~(P & Q)"

xor_def "xor(P,Q) == P & ~Q | ~P & Q"

end

Declaring and defining constants can be combined:

Gate = FOL +

constdefs nand :: [o,o] => o

"nand(P,Q) == ~(P & Q)"

xor :: [o,o] => o

"xor(P,Q) == P & ~Q | ~P & Q"

end

constdefs generates the names nand_def and xor_def automatically, which
is why it is restricted to alphanumeric identifiers. In general it has the form

constdefs id1 :: τ1
"id1 ≡ . . ."
...

idn :: τn
"idn ≡ . . ."

! A common mistake when writing definitions is to introduce extra free variables
on the right-hand side as in the following fictitious definition:

defs prime_def "prime(p) == (m divides p) --> (m=1 | m=p)"

Isabelle rejects this “definition” because of the extra m on the right-hand side,
which would introduce an inconsistency. What you should have written is

defs prime_def "prime(p) == ALL m. (m divides p) --> (m=1 | m=p)"

11 DEFINING THEORIES 52

11.2 Declaring type constructors

Types are composed of type variables and type constructors. Each type
constructor takes a fixed number of arguments. They are declared with an
ml-like syntax. If list takes one type argument, tree takes two arguments
and nat takes no arguments, then these type constructors can be declared
by

types ’a list

(’a,’b) tree

nat

The type declaration part has the general form

types tids1 id1

...

tidsn idn

where id1, . . . , idn are identifiers and tids1, . . . , tidsn are type argument lists
as shown in the example above. It declares each idi as a type constructor
with the specified number of argument places.

The arity declaration part has the form

arities tycon1 :: arity1
...

tyconn :: arityn

where tycon1, . . . , tyconn are identifiers and arity1, . . . , arityn are arities.
Arity declarations add arities to existing types; they do not declare the types
themselves. In the simplest case, for an 0-place type constructor, an arity
is simply the type’s class. Let us declare a type bool of class term, with
constants tt and ff . (In first-order logic, booleans are distinct from formulae,
which have type o :: logic.)

Bool = FOL +

types bool

arities bool :: term

consts tt,ff :: bool

end

A k -place type constructor may have arities of the form (s1, . . . , sk)c, where
s1, . . . , sn are sorts and c is a class. Each sort specifies a type argument; it
has the form {c1, . . . , cm}, where c1, . . . , cm are classes. Mostly we deal with
singleton sorts, and may abbreviate them by dropping the braces. The arity
(term)term is short for ({term})term. Recall the discussion in §1.2.

11 DEFINING THEORIES 53

A type constructor may be overloaded (subject to certain conditions)
by appearing in several arity declarations. For instance, the function type
constructor fun has the arity (logic, logic)logic; in higher-order logic, it is
declared also to have arity (term, term)term.

Theory List declares the 1-place type constructor list , gives it the arity
(term)term, and declares constants Nil and Cons with polymorphic types:5

List = FOL +

types ’a list

arities list :: (term)term

consts Nil :: ’a list

Cons :: [’a, ’a list] => ’a list

end

Multiple arity declarations may be abbreviated to a single line:

arities tycon1, ..., tyconn :: arity

11.3 Type synonyms

Isabelle supports type synonyms (abbreviations) which are similar to
those found in ml. Such synonyms are defined in the type declaration part
and are fairly self explanatory:

types gate = [o,o] => o

’a pred = ’a => o

(’a,’b)nuf = ’b => ’a

Type declarations and synonyms can be mixed arbitrarily:

types nat

’a stream = nat => ’a

signal = nat stream

’a list

A synonym is merely an abbreviation for some existing type expression.
Hence synonyms may not be recursive! Internally all synonyms are fully ex-
panded. As a consequence Isabelle output never contains synonyms. Their
main purpose is to improve the readability of theory definitions. Synonyms
can be used just like any other type:

consts and,or :: gate

negate :: signal => signal

5In the consts part, type variable ’a has the default sort, which is term. See the
Reference Manual for more information.

11 DEFINING THEORIES 54

11.4 Infix and mixfix operators

Infix or mixfix syntax may be attached to constants. Consider the following
theory:

Gate2 = FOL +

consts "~&" :: [o,o] => o (infixl 35)

"#" :: [o,o] => o (infixl 30)

defs nand_def "P ~& Q == ~(P & Q)"

xor_def "P # Q == P & ~Q | ~P & Q"

end

The constant declaration part declares two left-associating infix operators
with their priorities, or precedences; they are ¬& of priority 35 and # of
priority 30. Hence P # Q # R is parsed as (P # Q) # R and P # Q ¬& R
as P # (Q ¬& R). Note the quotation marks in "~&" and "#".

The constants op ~& and op # are declared automatically, just as in ml.
Hence you may write propositions like op #(True) == op ~&(True), which
asserts that the functions λQ . True # Q and λQ . True ¬& Q are identical.

Infix syntax and constant names may be also specified independently. For
example, consider this version of ¬&:

consts nand :: [o,o] => o (infixl "~&" 35)

Mixfix operators may have arbitrary context-free syntaxes. Let us add
a line to the constant declaration part:

If :: [o,o,o] => o ("if _ then _ else _")

This declares a constant If of type [o, o, o]⇒ o with concrete syntax if P
then Q else R as well as If(P,Q,R). Underscores denote argument po-
sitions.

The declaration above does not allow the if-then-else construct to be
printed split across several lines, even if it is too long to fit on one line. Pretty-
printing information can be added to specify the layout of mixfix operators.
For details, see the Reference Manual, chapter ‘Defining Logics’.

Mixfix declarations can be annotated with priorities, just like infixes. The
example above is just a shorthand for

If :: [o,o,o] => o ("if _ then _ else _" [0,0,0] 1000)

The numeric components determine priorities. The list of integers defines, for
each argument position, the minimal priority an expression at that position
must have. The final integer is the priority of the construct itself. In the
example above, any argument expression is acceptable because priorities are
non-negative, and conditionals may appear everywhere because 1000 is the
highest priority. On the other hand, the declaration

11 DEFINING THEORIES 55

If :: [o,o,o] => o ("if _ then _ else _" [100,0,0] 99)

defines concrete syntax for a conditional whose first argument cannot have the
form if P then Q else R because it must have a priority of at least 100.
We may of course write

if (if P then Q else R) then S else T

because expressions in parentheses have maximal priority.
Binary type constructors, like products and sums, may also be declared

as infixes. The type declaration below introduces a type constructor ∗ with
infix notation α ∗ β, together with the mixfix notation < , > for pairs. We
also see a rule declaration part.

Prod = FOL +

types (’a,’b) "*" (infixl 20)

arities "*" :: (term,term)term

consts fst :: "’a * ’b => ’a"

snd :: "’a * ’b => ’b"

Pair :: "[’a,’b] => ’a * ’b" ("(1<_,/_>)")

rules fst "fst(<a,b>) = a"

snd "snd(<a,b>) = b"

end

! The name of the type constructor is * and not op *, as it would be in the case
of an infix constant. Only infix type constructors can have symbolic names

like *. General mixfix syntax for types may be introduced via appropriate syntax

declarations.

11.5 Overloading

The class declaration part has the form

classes id1 < c1
...

idn < cn

where id1, . . . , idn are identifiers and c1, . . . , cn are existing classes. It
declares each idi as a new class, a subclass of ci . In the general case, an
identifier may be declared to be a subclass of k existing classes:

id < c1, ..., ck

Type classes allow constants to be overloaded. As suggested in §1.2, let us
define the class arith of arithmetic types with the constants + :: [α, α] ⇒ α
and 0, 1::α, for α::arith. We introduce arith as a subclass of term and add
the three polymorphic constants of this class.

12 THEORY EXAMPLE: THE NATURAL NUMBERS 56

Arith = FOL +

classes arith < term

consts "0" :: ’a::arith ("0")

"1" :: ’a::arith ("1")

"+" :: [’a::arith,’a] => ’a (infixl 60)

end

No rules are declared for these constants: we merely introduce their names
without specifying properties. On the other hand, classes with rules make
it possible to prove generic theorems. Such theorems hold for all instances,
all types in that class.

We can now obtain distinct versions of the constants of arith by declaring
certain types to be of class arith. For example, let us declare the 0-place type
constructors bool and nat :

BoolNat = Arith +

types bool nat

arities bool, nat :: arith

consts Suc :: nat=>nat

rules add0 "0 + n = n::nat"

addS "Suc(m)+n = Suc(m+n)"

nat1 "1 = Suc(0)"

or0l "0 + x = x::bool"

or0r "x + 0 = x::bool"

or1l "1 + x = 1::bool"

or1r "x + 1 = 1::bool"

end

Because nat and bool have class arith, we can use 0, 1 and + at either type.
The type constraints in the axioms are vital. Without constraints, the x in
1 + x = 1 (axiom or1l) would have type α::arith and the axiom would hold
for any type of class arith. This would collapse nat to a trivial type:

Suc(1) = Suc(0 + 1) = Suc(0) + 1 = 1 + 1 = 1!

12 Theory example: the natural numbers

We shall now work through a small example of formalized mathematics
demonstrating many of the theory extension features.

12.1 Extending first-order logic with the natural num-
bers

Section 1 has formalized a first-order logic, including a type nat and the
constants 0 :: nat and Suc :: nat ⇒ nat . Let us introduce the Peano axioms

12 THEORY EXAMPLE: THE NATURAL NUMBERS 57

for mathematical induction and the freeness of 0 and Suc:

P [0/x]

[P]
....

P [Suc(x)/x]

P [n/x]
(induct)

provided x is not free in
any assumption except P

Suc(m) = Suc(n)
m = n (Suc inject)

Suc(m) = 0

R
(Suc neq 0)

Mathematical induction asserts that P(n) is true, for any n :: nat , provided
P(0) holds and that P(x) implies P(Suc(x)) for all x . Some authors express
the induction step as ∀x .P(x)→ P(Suc(x)). To avoid making induction re-
quire the presence of other connectives, we formalize mathematical induction
as

[[P(0);
∧

x . P(x) =⇒ P(Suc(x))]] =⇒ P(n). (induct)

Similarly, to avoid expressing the other rules using ∀, → and ¬, we take
advantage of the meta-logic;6 (Suc neq 0) is an elimination rule for Suc(m) =
0:

Suc(m) = Suc(n) =⇒ m = n (Suc inject)

Suc(m) = 0 =⇒ R (Suc neq 0)

We shall also define a primitive recursion operator, rec. Traditionally, prim-
itive recursion takes a natural number a and a 2-place function f , and obeys
the equations

rec(0, a, f) = a

rec(Suc(m), a, f) = f (m, rec(m, a, f))

Addition, defined by m + n ≡ rec(m, n, λx y . Suc(y)), should satisfy

0 + n = n

Suc(m) + n = Suc(m + n)

Primitive recursion appears to pose difficulties: first-order logic has no
function-valued expressions. We again take advantage of the meta-logic,
which does have functions. We also generalise primitive recursion to be
polymorphic over any type of class term, and declare the addition function:

rec :: [nat , α::term, [nat , α]⇒ α]⇒ α

+ :: [nat , nat]⇒ nat

6On the other hand, the axioms Suc(m) = Suc(n) ↔ m = n and ¬(Suc(m) = 0) are
logically equivalent to those given, and work better with Isabelle’s simplifier.

12 THEORY EXAMPLE: THE NATURAL NUMBERS 58

12.2 Declaring the theory to Isabelle

Let us create the theory Nat starting from theory FOL, which contains only
classical logic with no natural numbers. We declare the 0-place type con-
structor nat and the associated constants. Note that the constant 0 requires
a mixfix annotation because 0 is not a legal identifier, and could not otherwise
be written in terms:

Nat = FOL +

types nat

arities nat :: term

consts "0" :: nat ("0")

Suc :: nat=>nat

rec :: [nat, ’a, [nat,’a]=>’a] => ’a

"+" :: [nat, nat] => nat (infixl 60)

rules Suc_inject "Suc(m)=Suc(n) ==> m=n"

Suc_neq_0 "Suc(m)=0 ==> R"

induct "[| P(0); !!x. P(x) ==> P(Suc(x)) |] ==> P(n)"

rec_0 "rec(0,a,f) = a"

rec_Suc "rec(Suc(m), a, f) = f(m, rec(m,a,f))"

add_def "m+n == rec(m, n, %x y. Suc(y))"

end

In axiom add_def, recall that % stands for λ. Loading this theory file creates
the ml structure Nat, which contains the theory and axioms.

12.3 Proving some recursion equations

Theory FOL/ex/Nat contains proofs involving this theory of the natural num-
bers. As a trivial example, let us derive recursion equations for +. Here is
the zero case:

Goalw [add_def] "0+n = n";

Level 0

0 + n = n

1. rec(0,n,%x y. Suc(y)) = n

by (resolve_tac [rec_0] 1);

Level 1

0 + n = n

No subgoals!

qed "add_0";

And here is the successor case:

Goalw [add_def] "Suc(m)+n = Suc(m+n)";

Level 0

Suc(m) + n = Suc(m + n)

1. rec(Suc(m),n,%x y. Suc(y)) = Suc(rec(m,n,%x y. Suc(y)))

13 REFINEMENT WITH EXPLICIT INSTANTIATION 59

by (resolve_tac [rec_Suc] 1);

Level 1

Suc(m) + n = Suc(m + n)

No subgoals!

qed "add_Suc";

The induction rule raises some complications, which are discussed next.

13 Refinement with explicit instantiation

In order to employ mathematical induction, we need to refine a subgoal by
the rule (induct). The conclusion of this rule is ?P(?n), which is highly
ambiguous in higher-order unification. It matches every way that a formula
can be regarded as depending on a subterm of type nat . To get round this
problem, we could make the induction rule conclude ∀n .?P(n) — but putting
a subgoal into this form requires refinement by (∀E), which is equally hard!

The tactic res_inst_tac, like resolve_tac, refines a subgoal by a rule.
But it also accepts explicit instantiations for the rule’s schematic variables.

res_inst_tac insts thm i instantiates the rule thm with the instantiations
insts, and then performs resolution on subgoal i .

eres_inst_tac and dres_inst_tac are similar, but perform elim-resolution
and destruct-resolution, respectively.

The list insts consists of pairs [(v1, e1), . . . , (vn , en)], where v1, . . . , vn are
names of schematic variables in the rule — with no leading question marks!
— and e1, . . . , en are expressions giving their instantiations. The expres-
sions are type-checked in the context of a particular subgoal: free variables
receive the same types as they have in the subgoal, and parameters may ap-
pear. Type variable instantiations may appear in insts, but they are seldom
required: res_inst_tac instantiates type variables automatically whenever
the type of ei is an instance of the type of ?vi .

13.1 A simple proof by induction

Let us prove that no natural number k equals its own successor. To
use (induct), we instantiate ?n to k ; Isabelle finds a good instantiation for ?P .

Goal "~ (Suc(k) = k)";

Level 0

Suc(k) ~= k

1. Suc(k) ~= k

13 REFINEMENT WITH EXPLICIT INSTANTIATION 60

by (res_inst_tac [("n","k")] induct 1);

Level 1

Suc(k) ~= k

1. Suc(0) ~= 0

2. !!x. Suc(x) ~= x ==> Suc(Suc(x)) ~= Suc(x)

We should check that Isabelle has correctly applied induction. Subgoal 1 is
the base case, with k replaced by 0. Subgoal 2 is the inductive step, with k
replaced by Suc(x) and with an induction hypothesis for x . The rest of the
proof demonstrates notI, notE and the other rules of theory Nat. The base
case holds by Suc_neq_0:

by (resolve_tac [notI] 1);

Level 2

Suc(k) ~= k

1. Suc(0) = 0 ==> False

2. !!x. Suc(x) ~= x ==> Suc(Suc(x)) ~= Suc(x)

by (eresolve_tac [Suc_neq_0] 1);

Level 3

Suc(k) ~= k

1. !!x. Suc(x) ~= x ==> Suc(Suc(x)) ~= Suc(x)

The inductive step holds by the contrapositive of Suc_inject. Negation rules
transform the subgoal into that of proving Suc(x) = x from Suc(Suc(x)) =
Suc(x):

by (resolve_tac [notI] 1);

Level 4

Suc(k) ~= k

1. !!x. [| Suc(x) ~= x; Suc(Suc(x)) = Suc(x) |] ==> False

by (eresolve_tac [notE] 1);

Level 5

Suc(k) ~= k

1. !!x. Suc(Suc(x)) = Suc(x) ==> Suc(x) = x

by (eresolve_tac [Suc_inject] 1);

Level 6

Suc(k) ~= k

No subgoals!

13.2 An example of ambiguity in resolve_tac

If you try the example above, you may observe that res_inst_tac is not ac-
tually needed. Almost by chance, resolve_tac finds the right instantiation
for (induct) to yield the desired next state. With more complex formulae,
our luck fails.

13 REFINEMENT WITH EXPLICIT INSTANTIATION 61

Goal "(k+m)+n = k+(m+n)";

Level 0

k + m + n = k + (m + n)

1. k + m + n = k + (m + n)

by (resolve_tac [induct] 1);

Level 1

k + m + n = k + (m + n)

1. k + m + n = 0

2. !!x. k + m + n = x ==> k + m + n = Suc(x)

This proof requires induction on k . The occurrence of 0 in subgoal 1 indicates
that induction has been applied to the term k + (m + n); this application
is sound but will not lead to a proof here. Fortunately, Isabelle can (lazily!)
generate all the valid applications of induction. The back command causes
backtracking to an alternative outcome of the tactic.

back();

Level 1

k + m + n = k + (m + n)

1. k + m + n = k + 0

2. !!x. k + m + n = k + x ==> k + m + n = k + Suc(x)

Now induction has been applied to m + n. This is equally useless. Let us
call back again.

back();

Level 1

k + m + n = k + (m + n)

1. k + m + 0 = k + (m + 0)

2. !!x. k + m + x = k + (m + x) ==>

k + m + Suc(x) = k + (m + Suc(x))

Now induction has been applied to n. What is the next alternative?

back();

Level 1

k + m + n = k + (m + n)

1. k + m + n = k + (m + 0)

2. !!x. k + m + n = k + (m + x) ==> k + m + n = k + (m + Suc(x))

Inspecting subgoal 1 reveals that induction has been applied to just the
second occurrence of n. This perfectly legitimate induction is useless here.

The main goal admits fourteen different applications of induction. The
number is exponential in the size of the formula.

13 REFINEMENT WITH EXPLICIT INSTANTIATION 62

13.3 Proving that addition is associative

Let us invoke the induction rule properly, using res_inst_tac. At the same
time, we shall have a glimpse at Isabelle’s simplification tactics, which are
described in the Reference Manual.

Isabelle’s simplification tactics repeatedly apply equations to a subgoal,
perhaps proving it. For efficiency, the rewrite rules must be packaged into a
simplification set, or simpset. We augment the implicit simpset of FOL
with the equations proved in the previous section, namely 0 + n = n and
Suc(m) + n = Suc(m + n):

Addsimps [add_0, add_Suc];

We state the goal for associativity of addition, and use res_inst_tac to
invoke induction on k :

Goal "(k+m)+n = k+(m+n)";

Level 0

k + m + n = k + (m + n)

1. k + m + n = k + (m + n)

by (res_inst_tac [("n","k")] induct 1);

Level 1

k + m + n = k + (m + n)

1. 0 + m + n = 0 + (m + n)

2. !!x. x + m + n = x + (m + n) ==>

Suc(x) + m + n = Suc(x) + (m + n)

The base case holds easily; both sides reduce to m + n. The tactic Simp_tac

rewrites with respect to the current simplification set, applying the rewrite
rules for addition:

by (Simp_tac 1);

Level 2

k + m + n = k + (m + n)

1. !!x. x + m + n = x + (m + n) ==>

Suc(x) + m + n = Suc(x) + (m + n)

The inductive step requires rewriting by the equations for addition and
with the induction hypothesis, which is also an equation. The tac-
tic Asm_simp_tac rewrites using the implicit simplification set and any useful
assumptions:

by (Asm_simp_tac 1);

Level 3

k + m + n = k + (m + n)

No subgoals!

14 A PROLOG INTERPRETER 63

14 A Prolog interpreter

To demonstrate the power of tacticals, let us construct a Prolog interpreter
and execute programs involving lists.7 The Prolog program consists of a
theory. We declare a type constructor for lists, with an arity declaration to
say that (τ)list is of class term provided τ is:

list :: (term)term

We declare four constants: the empty list Nil ; the infix list constructor :; the
list concatenation predicate app; the list reverse predicate rev . (In Prolog,
functions on lists are expressed as predicates.)

Nil :: αlist

: :: [α, αlist]⇒ αlist

app :: [αlist , αlist , αlist]⇒ o

rev :: [αlist , αlist]⇒ o

The predicate app should satisfy the Prolog-style rules

app(Nil , ys , ys)
app(xs , ys , zs)

app(x : xs , ys , x : zs)

We define the naive version of rev , which calls app:

rev(Nil ,Nil)
rev(xs , ys) app(ys , x : Nil , zs)

rev(x : xs , zs)

Theory Prolog extends first-order logic in order to make use of the
class term and the type o. The interpreter does not use the rules of FOL.

Prolog = FOL +

types ’a list

arities list :: (term)term

consts Nil :: ’a list

":" :: [’a, ’a list]=> ’a list (infixr 60)

app :: [’a list, ’a list, ’a list] => o

rev :: [’a list, ’a list] => o

rules appNil "app(Nil,ys,ys)"

appCons "app(xs,ys,zs) ==> app(x:xs, ys, x:zs)"

revNil "rev(Nil,Nil)"

revCons "[| rev(xs,ys); app(ys,x:Nil,zs) |] ==> rev(x:xs,zs)"

end

7To run these examples, see the file FOL/ex/Prolog.ML.

14 A PROLOG INTERPRETER 64

14.1 Simple executions

Repeated application of the rules solves Prolog goals. Let us append the lists
[a, b, c] and [d , e]. As the rules are applied, the answer builds up in ?x.

Goal "app(a:b:c:Nil, d:e:Nil, ?x)";

Level 0

app(a : b : c : Nil, d : e : Nil, ?x)

1. app(a : b : c : Nil, d : e : Nil, ?x)

by (resolve_tac [appNil,appCons] 1);

Level 1

app(a : b : c : Nil, d : e : Nil, a : ?zs1)

1. app(b : c : Nil, d : e : Nil, ?zs1)

by (resolve_tac [appNil,appCons] 1);

Level 2

app(a : b : c : Nil, d : e : Nil, a : b : ?zs2)

1. app(c : Nil, d : e : Nil, ?zs2)

At this point, the first two elements of the result are a and b.

by (resolve_tac [appNil,appCons] 1);

Level 3

app(a : b : c : Nil, d : e : Nil, a : b : c : ?zs3)

1. app(Nil, d : e : Nil, ?zs3)

by (resolve_tac [appNil,appCons] 1);

Level 4

app(a : b : c : Nil, d : e : Nil, a : b : c : d : e : Nil)

No subgoals!

Prolog can run functions backwards. Which list can be appended with
[c, d] to produce [a, b, c, d]? Using REPEAT, we find the answer at once, [a, b]:

Goal "app(?x, c:d:Nil, a:b:c:d:Nil)";

Level 0

app(?x, c : d : Nil, a : b : c : d : Nil)

1. app(?x, c : d : Nil, a : b : c : d : Nil)

by (REPEAT (resolve_tac [appNil,appCons] 1));

Level 1

app(a : b : Nil, c : d : Nil, a : b : c : d : Nil)

No subgoals!

14.2 Backtracking

Prolog backtracking can answer questions that have multiple solutions.
Which lists x and y can be appended to form the list [a, b, c, d]? This
question has five solutions. Using REPEAT to apply the rules, we quickly find
the first solution, namely x = [] and y = [a, b, c, d]:

14 A PROLOG INTERPRETER 65

Goal "app(?x, ?y, a:b:c:d:Nil)";

Level 0

app(?x, ?y, a : b : c : d : Nil)

1. app(?x, ?y, a : b : c : d : Nil)

by (REPEAT (resolve_tac [appNil,appCons] 1));

Level 1

app(Nil, a : b : c : d : Nil, a : b : c : d : Nil)

No subgoals!

Isabelle can lazily generate all the possibilities. The back command returns
the tactic’s next outcome, namely x = [a] and y = [b, c, d]:

back();

Level 1

app(a : Nil, b : c : d : Nil, a : b : c : d : Nil)

No subgoals!

The other solutions are generated similarly.

back();

Level 1

app(a : b : Nil, c : d : Nil, a : b : c : d : Nil)

No subgoals!

back();

Level 1

app(a : b : c : Nil, d : Nil, a : b : c : d : Nil)

No subgoals!

back();

Level 1

app(a : b : c : d : Nil, Nil, a : b : c : d : Nil)

No subgoals!

14.3 Depth-first search

Now let us try rev , reversing a list. Bundle the rules together as the ml
identifier rules. Naive reverse requires 120 inferences for this 14-element
list, but the tactic terminates in a few seconds.

Goal "rev(a:b:c:d:e:f:g:h:i:j:k:l:m:n:Nil, ?w)";

Level 0

rev(a : b : c : d : e : f : g : h : i : j : k : l : m : n : Nil, ?w)

1. rev(a : b : c : d : e : f : g : h : i : j : k : l : m : n : Nil,

?w)

val rules = [appNil,appCons,revNil,revCons];

14 A PROLOG INTERPRETER 66

by (REPEAT (resolve_tac rules 1));

Level 1

rev(a : b : c : d : e : f : g : h : i : j : k : l : m : n : Nil,

n : m : l : k : j : i : h : g : f : e : d : c : b : a : Nil)

No subgoals!

We may execute rev backwards. This, too, should reverse a list. What is the
reverse of [a, b, c]?

Goal "rev(?x, a:b:c:Nil)";

Level 0

rev(?x, a : b : c : Nil)

1. rev(?x, a : b : c : Nil)

by (REPEAT (resolve_tac rules 1));

Level 1

rev(?x1 : Nil, a : b : c : Nil)

1. app(Nil, ?x1 : Nil, a : b : c : Nil)

The tactic has failed to find a solution! It reached a dead end at subgoal 1:
there is no ?x1 such that [] appended with [?x1] equals [a, b, c]. Backtracking
explores other outcomes.

back();

Level 1

rev(?x1 : a : Nil, a : b : c : Nil)

1. app(Nil, ?x1 : Nil, b : c : Nil)

This too is a dead end, but the next outcome is successful.

back();

Level 1

rev(c : b : a : Nil, a : b : c : Nil)

No subgoals!

REPEAT goes wrong because it is only a repetition tactical, not a search
tactical. REPEAT stops when it cannot continue, regardless of which state
is reached. The tactical DEPTH_FIRST searches for a satisfactory state, as
specified by an ml predicate. Below, has_fewer_prems specifies that the
proof state should have no subgoals.

val prolog_tac = DEPTH_FIRST (has_fewer_prems 1)

(resolve_tac rules 1);

Since Prolog uses depth-first search, this tactic is a (slow!) Prolog interpreter.
We return to the start of the proof using choplev, and apply prolog_tac:

choplev 0;

Level 0

rev(?x, a : b : c : Nil)

1. rev(?x, a : b : c : Nil)

14 A PROLOG INTERPRETER 67

by prolog_tac;

Level 1

rev(c : b : a : Nil, a : b : c : Nil)

No subgoals!

Let us try prolog_tac on one more example, containing four unknowns:

Goal "rev(a:?x:c:?y:Nil, d:?z:b:?u)";

Level 0

rev(a : ?x : c : ?y : Nil, d : ?z : b : ?u)

1. rev(a : ?x : c : ?y : Nil, d : ?z : b : ?u)

by prolog_tac;

Level 1

rev(a : b : c : d : Nil, d : c : b : a : Nil)

No subgoals!

Although Isabelle is much slower than a Prolog system, Isabelle tactics can
exploit logic programming techniques.

REFERENCES 68

References

[1] David Aspinall. Proof General. http://proofgeneral.inf.ed.ac.uk/.

[2] Antony Galton. Logic for Information Technology. Wiley, 1990.

[3] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A
Theorem Proving Environment for Higher Order Logic. Cambridge
University Press, 1993.

[4] Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth.
Edinburgh LCF: A Mechanised Logic of Computation. LNCS 78. Springer,
1979.

[5] Paul Hudak and Joseph H. Fasel. A gentle introduction to Haskell.
SIGPLAN Notices, 27(5), May 1992.

[6] Paul Hudak, Simon Peyton Jones, and Philip Wadler. Report on the
programming language Haskell: A non-strict, purely functional language.
SIGPLAN Notices, 27(5), May 1992. Version 1.2.

[7] G. P. Huet. A unification algorithm for typed λ-calculus. Theoretical
Computer Science, 1:27–57, 1975.

[8] Dale Miller. Unification under a mixed prefix. Journal of Symbolic
Computation, 14(4):321–358, 1992.

[9] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A
Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer-Verlag, 2002.

[10] Tobias Nipkow and Christian Prehofer. Type reconstruction for type classes.
Journal of Functional Programming, 5(2):201–224, 1995.

[11] Bengt Nordström, Kent Petersson, and Jan Smith. Programming in
Martin-Löf’s Type Theory. An Introduction. Oxford University Press, 1990.

[12] Lawrence C. Paulson. Natural deduction as higher-order resolution. Journal
of Logic Programming, 3:237–258, 1986.

[13] Lawrence C. Paulson. Logic and Computation: Interactive proof with
Cambridge LCF. Cambridge University Press, 1987.

[14] Lawrence C. Paulson. The foundation of a generic theorem prover. Journal
of Automated Reasoning, 5(3):363–397, 1989.

[15] Lawrence C. Paulson. Isabelle: The next 700 theorem provers. In
P. Odifreddi, editor, Logic and Computer Science, pages 361–386. Academic
Press, 1990.

http://proofgeneral.inf.ed.ac.uk/

REFERENCES 69

[16] Lawrence C. Paulson. Designing a theorem prover. In S. Abramsky, D. M.
Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer
Science, volume 2, pages 415–475. Oxford University Press, 1992.

[17] Lawrence C. Paulson. ML for the Working Programmer. Cambridge
University Press, 2nd edition, 1996.

[18] F. J. Pelletier. Seventy-five problems for testing automatic theorem provers.
Journal of Automated Reasoning, 2:191–216, 1986. Errata, JAR 4 (1988),
235–236 and JAR 18 (1997), 135.

[19] Steve Reeves and Michael Clarke. Logic for Computer Science.
Addison-Wesley, 1990.

[20] Patrick Suppes. Axiomatic Set Theory. Dover, 1972.

[21] Larry Wos. Automated reasoning and Bledsoe’s dream for the field. In
Robert S. Boyer, editor, Automated Reasoning: Essays in Honor of Woody
Bledsoe, pages 297–342. Kluwer Academic Publishers, 1991.

Index

!! symbol, 28
|] symbol, 28
% symbol, 28
:: symbol, 27, 28
== symbol, 28
==> symbol, 28
=> symbol, 27
=?= symbol, 28
[symbol, 27
[| symbol, 28
] symbol, 27
{ symbol, 27
} symbol, 27

allI theorem, 41
arities

declaring, 4, 52
Asm_simp_tac, 62
assume_tac, 33, 35, 41
assumptions

deleting, 21
discharge of, 7
lifting over, 15
of main goal, 44
use of, 18, 31

axioms
Peano, 57

ba, 34
back, 61, 65
backtracking

Prolog style, 64
bd, 34
be, 34
Blast_tac, 42, 43
br, 34
by, 34

choplev, 40, 41, 66
classes, 3

built-in, 27

classical reasoner, 42
conjunct1 theorem, 30
constants, 3

clashes with variables, 10
declaring, 50
overloaded, 55
polymorphic, 3

CPure theory, 49

definitions, 6, 50
and derived rules, 46–49

DEPTH_FIRST, 66
destruct-resolution, 23, 33
disjE theorem, 35
dres_inst_tac, 59
dresolve_tac, 33, 36, 42

eigenvariables, see parameters
elim-resolution, 21, 33
equality

polymorphic, 3
eres_inst_tac, 59
eresolve_tac, 33, 36, 42
examples

of deriving rules, 44
of induction, 59, 60
of simplification, 62
of tacticals, 41
of theories, 51–56, 58, 63
propositional, 19, 34, 36
with quantifiers, 19, 37, 39, 41

exE theorem, 41

FalseE theorem, 48
first-order logic, 1
flex-flex constraints, 6, 28, 31
flexflex_rule, 32
forward proof, 23, 26–33
fun type, 1, 4
function applications, 1, 8

Goal, 34, 44

70

INDEX 71

Goalw, 48

has_fewer_prems, 66
higher-order logic, 4

identifiers, 26
impI theorem, 35, 47
infixes, 54
instantiation, 59–62
Isabelle

object-logics supported, i
overview, i
release history, i

λ-abstractions, 1, 8, 28
λ-calculus, 1
LCF, i
LCF system, 17, 29
level of a proof, 34
lifting, 15
logic class, 4, 6, 27

major premise, 23
Match exception, 45
meta-assumptions

syntax of, 24
meta-equality, 6, 28
meta-implication, 6, 7, 28
meta-quantifiers, 6, 8, 28
meta-rewriting, 46
mixfix declarations, 54, 55, 58
ML, i
ML section, 49
mp theorem, 30

Nat theory, 58
nat type, 3, 4
not_def theorem, 47
notE theorem, 60
notI theorem, 48, 60

o type, 3, 4
ORELSE, 41
overloading, 4, 55

parameters, 8, 37

lifting over, 16
Prolog theory, 63
Prolog interpreter, 63
proof state, 17
proofs

commands for, 34
PROP symbol, 28
prop type, 27, 28
prop type, 6
prth, 30
prthq, 30, 32
prths, 30
Pure theory, 49

qed, 34, 46
quantifiers, 5, 8, 37

read_instantiate, 32
refl theorem, 32
REPEAT, 37, 41, 64, 66
res_inst_tac, 59, 62
reserved words, 26
resolution, 11, 13

in backward proof, 17
with instantiation, 59

resolve_tac, 33, 35, 60
result, 34
rewrite_goals_tac, 47, 48
rewrite_rule, 49
RL, 32
RLN, 32
RS, 30, 32
RSN, 30, 32
rules

declaring, 50
derived, 14, 24, 44, 46
destruction, 23
elimination, 23
propositional, 7
quantifier, 8

search
depth-first, 65

show_hyps, 32, 45

INDEX 72

signatures, 9
Simp_tac, 62
simplification, 62
simplification sets, 62
sort constraints, 27
sorts, 5
spec theorem, 31, 39, 41
standard, 30
substitution, 8
Suc_inject, 60
Suc_neq_0, 60
syntax

of types and terms, 27

tacticals, 20, 41
tactics, 20

assumption, 33
resolution, 33

term class, 4
terms

syntax of, 1, 28
theorems

basic operations on, 29
printing of, 29

theories, 9
defining, 49–59

thm ML type, 29
topthm, 46
Trueprop constant, 7, 28
type constraints, 28
type constructors, 1
type identifiers, 27
type synonyms, 53
types

declaring, 52
function, 1
higher, 5
polymorphic, 3
simple, 3
syntax of, 1, 27

undo, 34
unification

higher-order, 11, 60

incompleteness of, 12
unknowns, 11, 27, 37

function, 12, 31, 37
use_thy, 50

variables
bound, 8

	I Foundations
	Formalizing logical syntax in Isabelle
	Simple types and constants
	Polymorphic types and constants
	Higher types and quantifiers

	Formalizing logical rules in Isabelle
	Expressing propositional rules
	Quantifier rules and substitution
	Signatures and theories

	Proof construction in Isabelle
	Higher-order unification
	Joining rules by resolution

	Lifting a rule into a context
	Lifting over assumptions
	Lifting over parameters

	Backward proof by resolution
	Refinement by resolution
	Proof by assumption
	A propositional proof
	A quantifier proof
	Tactics and tacticals

	Variations on resolution
	Elim-resolution
	Destruction rules
	Deriving rules by resolution

	II Using Isabelle from the ML Top-Level
	Forward proof
	Lexical matters
	Syntax of types and terms
	Basic operations on theorems
	*Flex-flex constraints

	Backward proof
	The basic tactics
	Commands for backward proof
	A trivial example in propositional logic
	Part of a distributive law

	Quantifier reasoning
	Two quantifier proofs: a success and a failure
	Nested quantifiers
	A realistic quantifier proof
	The classical reasoner

	III Advanced Methods
	Deriving rules in Isabelle
	Deriving a rule using tactics and meta-level assumptions
	Definitions and derived rules
	Deriving the introduction rule
	Deriving the elimination rule

	Defining theories
	Declaring constants, definitions and rules
	Declaring type constructors
	Type synonyms
	Infix and mixfix operators
	Overloading

	Theory example: the natural numbers
	Extending first-order logic with the natural numbers
	Declaring the theory to Isabelle
	Proving some recursion equations

	Refinement with explicit instantiation
	A simple proof by induction
	An example of ambiguity in resolve_tac
	Proving that addition is associative

	A Prolog interpreter
	Simple executions
	Backtracking
	Depth-first search

