
A Tutorial Introduction to Structured Isar
Proofs

Tobias Nipkow

Institut für Informatik, TU München
http://www.in.tum.de/∼nipkow/

1 Introduction

This is a tutorial introduction to structured proofs in Isabelle/HOL. It introduces
the core of the proof language Isar by example. Isar is an extension of the apply -
style proofs introduced in the Isabelle/HOL tutorial [4] with structured proofs
in a stylised language of mathematics. These proofs are readable for both human
and machine.

1.1 A first glimpse of Isar

Below you find a simplified grammar for Isar proofs. Parentheses are used for
grouping and ? indicates an optional item:

proof ::= proof method? statement* qed
| by method

statement ::= fix variables
| assume propositions
| (from fact*)? (show | have) propositions proof

proposition ::= (label :)? string

fact ::= label

A proof can be either compound (proof – qed) or atomic (by). A method is a
proof method.

This is a typical proof skeleton:

proof
assume " the-assm"

have " . . . " — intermediate result
...
have " . . . " — intermediate result
show " the-concl"

qed

It proves the-assm =⇒ the-concl. Text starting with “—” is a comment. The
intermediate haves are only there to bridge the gap between the assumption and
the conclusion and do not contribute to the theorem being proved. In contrast,
show establishes the conclusion of the theorem.

http://www.in.tum.de/~nipkow/

1.2 Background

Interactive theorem proving has been dominated by a model of proof that goes
back to the LCF system [2]: a proof is a more or less structured sequence of
commands that manipulate an implicit proof state. Thus the proof text is only
suitable for the machine; for a human, the proof only comes alive when he can see
the state changes caused by the stepwise execution of the commands. Such proofs
are like uncommented assembly language programs. Their Isabelle incarnation
are sequences of apply -commands.

In contrast there is the model of a mathematics-like proof language pioneered
in the Mizar system [5] and followed by Isar [7]. The most important arguments
in favour of this style are communication and maintainance: structured proofs
are immensly more readable and maintainable than apply -scripts.

For reading this tutorial you should be familiar with natural deduction and
the basics of Isabelle/HOL [4] although we summarize the most important as-
pects of Isabelle below. The definitive Isar reference is its manual [6]. For an
example-based account of Isar’s support for reasoning by chains of (in)equations
see [1].

1.3 Bits of Isabelle

Isabelle’s meta-logic comes with a type of propositions with implication =⇒ and
a universal quantifier

∧
for expressing inference rules and generality. Iterated

implications A1 =⇒ . . . An =⇒ A may be abbreviated to [[A1; . . . ; An]] =⇒ A.
Applying a theorem A =⇒ B (named T) to a theorem A (named U) is written
T[OF U] and yields theorem B.

Isabelle terms are simply typed. Function types are written τ1 ⇒ τ2.
Free variables that may be instantiated (“logical variables” in Prolog par-

lance) are prefixed with a ?. Typically, theorems are stated with ordinary free
variables but after the proof those are automatically replaced by ? -variables.
Thus the theorem can be used with arbitrary instances of its free variables.

Isabelle/HOL offers all the usual logical symbols like −→, ∧, ∀ etc. HOL
formulae are propositions, e.g. ∀ can appear below =⇒, but not the other way
around. Beware that −→ binds more tightly than =⇒: in ∀x.P −→ Q the ∀x
covers P −→ Q, whereas in ∀x.P =⇒ Q it covers only P .

Proof methods include rule (which performs a backwards step with a given
rule, unifying the conclusion of the rule with the current subgoal and replacing
the subgoal by the premises of the rule), simp (for simplification) and blast (for
predicate calculus reasoning).

1.4 Advice

A word of warning for potential writers of Isar proofs. It is easier to write obscure
rather than readable texts. Similarly, apply -style proofs are sometimes easier to
write than readable ones: structure does not emerge automatically but needs to
be understood and imposed. If the precise structure of the proof is unclear at

2

beginning, it can be useful to start with apply for exploratory purposes until
one has found a proof which can be converted into a structured text in a second
step. Top down conversion is possible because Isar allows apply -style proofs as
components of structured ones.

Finally, do not be mislead by the simplicity of the formulae being proved,
especially in the beginning. Isar has been used very successfully in large appli-
cations, for example the formalisation of Java dialects [3].

The rest of this tutorial is divided into two parts. Section 2 introduces proofs
in pure logic based on natural deduction. Section 3 is dedicated to induction.

2 Logic

2.1 Propositional logic

Introduction rules We start with a really trivial toy proof to introduce the
basic features of structured proofs.

lemma "A −→ A"

proof (rule impI)

assume a: "A"

show "A" by(rule a)

qed

The operational reading: the assume-show block proves A =⇒ A (a is a degen-
erate rule (no assumptions) that proves A outright), which rule impI ((?P =⇒
?Q) =⇒ ?P −→ ?Q) turns into the desired A −→ A. However, this text is much
too detailed for comfort. Therefore Isar implements the following principle:

Command proof automatically tries to select an introduction rule based
on the goal and a predefined list of rules.

Here impI is applied automatically:

lemma "A −→ A"

proof
assume a: A

show A by(rule a)

qed

As you see above, single-identifier formulae such as A need not be enclosed in
double quotes. However, we will continue to do so for uniformity.

Instead of applying fact a via the rule method, we can also push it directly
onto our goal. The proof is then immediate, which is formally written as “.” in
Isar:

lemma "A −→ A"

proof
assume a: "A"

from a show "A" .

3

qed

We can also push several facts towards a goal, and put another rule in between
to establish some result that is one step further removed. We illustrate this by
introducing a trivial conjunction:

lemma "A −→ A ∧ A"

proof
assume a: "A"

from a and a show "A ∧ A" by(rule conjI)

qed

Rule conjI is of course [[?P; ?Q]] =⇒ ?P ∧ ?Q.
Proofs of the form by(rule name) can be abbreviated to “..” if name refers

to one of the predefined introduction rules (or elimination rules, see below):

lemma "A −→ A ∧ A"

proof
assume a: "A"

from a and a show "A ∧ A" ..
qed

This is what happens: first the matching introduction rule conjI is applied (first
“.”), the remaining problem is solved immediately (second “.”).

Elimination rules A typical elimination rule is conjE, ∧-elimination:

[[?P ∧ ?Q; [[?P; ?Q]] =⇒ ?R]] =⇒ ?R

In the following proof it is applied by hand, after its first (major) premise has
been eliminated via [OF ab] :

lemma "A ∧ B −→ B ∧ A"

proof
assume ab: "A ∧ B"

show "B ∧ A"

proof (rule conjE[OF ab]) — conjE[OF ab] : ([[A; B]] =⇒ ?R) =⇒ ?R

assume a: "A" and b: "B"

from b and a show ?thesis ..
qed

qed

Note that the term ?thesis always stands for the “current goal”, i.e. the enclos-
ing show (or have) statement.

This is too much proof text. Elimination rules should be selected automat-
ically based on their major premise, the formula or rather connective to be
eliminated. In Isar they are triggered by facts being fed into a proof. Syntax:

from fact show proposition proof

where fact stands for the name of a previously proved proposition, e.g. an as-
sumption, an intermediate result or some global theorem, which may also be

4

modified with OF etc. The fact is “piped” into the proof, which can deal with it
how it chooses. If the proof starts with a plain proof, an elimination rule (from
a predefined list) is applied whose first premise is solved by the fact. Thus the
proof above is equivalent to the following one:

lemma "A ∧ B −→ B ∧ A"

proof
assume ab: "A ∧ B"

from ab show "B ∧ A"

proof
assume a: "A" and b: "B"

from b and a show ?thesis ..
qed

qed

Now we come to a second important principle:

Try to arrange the sequence of propositions in a UNIX-like pipe, such
that the proof of each proposition builds on the previous proposition.

The previous proposition can be referred to via the fact this. This greatly reduces
the need for explicit naming of propositions. We also rearrange the additional
inner assumptions into proper order for immediate use:

lemma "A ∧ B −→ B ∧ A"

proof
assume "A ∧ B"

from this show "B ∧ A"

proof
assume "B" "A"

from this show ?thesis ..
qed

qed

Because of the frequency of from this, Isar provides two abbreviations:

then = from this

thus = then show

Here is an alternative proof that operates purely by forward reasoning:

lemma "A ∧ B −→ B ∧ A"

proof
assume ab: "A ∧ B"

from ab have a: "A" ..
from ab have b: "B" ..
from b a show "B ∧ A" ..

qed

It is worth examining this text in detail because it exhibits a number of new
concepts. For a start, it is the first time we have proved intermediate propositions
(have) on the way to the final show. This is the norm in nontrivial proofs where
one cannot bridge the gap between the assumptions and the conclusion in one
step. To understand how the proof works we need to explain more Isar details:

5

– Method rule can be given a list of rules, in which case (rule rules) applies
the first matching rule in the list rules.

– Command from can be followed by any number of facts. Given from f1 . . . fn,
the proof step (rule rules) following a have or show searches rules for a
rule whose first n premises can be proved by f1 . . . fn in the given order.

– “..” is short for by(rule elim-rules intro-rules)1, where elim-rules and intro-
rules are the predefined elimination and introduction rule. Thus elimination
rules are tried first (if there are incoming facts).

Hence in the above proof both haves are proved via conjE triggered by from ab

whereas in the show step no elimination rule is applicable and the proof succeeds
with conjI. The latter would fail had we written from a b instead of from b a.

A plain proof with no argument is short for proof (rule elim-rules intro-
rules)1. This means that the matching rule is selected by the incoming facts and
the goal exactly as just explained.

Although we have only seen a few introduction and elimination rules so far,
Isar’s predefined rules include all the usual natural deduction rules. We conclude
our exposition of propositional logic with an extended example — which rules
are used implicitly where?
lemma "¬ (A ∧ B) −→ ¬ A ∨ ¬ B"

proof
assume n: "¬ (A ∧ B)"

show "¬ A ∨ ¬ B"

proof (rule ccontr)

assume nn: "¬ (¬ A ∨ ¬ B)"

have "¬ A"

proof
assume a: "A"

have "¬ B"

proof
assume b: "B"

from a and b have "A ∧ B" ..
with n show False ..

qed
hence "¬ A ∨ ¬ B" ..
with nn show False ..

qed
hence "¬ A ∨ ¬ B" ..
with nn show False ..

qed
qed

Rule ccontr (“classical contradiction”) is (¬ P =⇒ False) =⇒ P. Apart from
demonstrating the strangeness of classical arguments by contradiction, this ex-
ample also introduces two new abbreviations:

hence = then have
with facts = from facts this

1 or merely (rule intro-rules) if there are no facts fed into the proof

6

2.2 Avoiding duplication

So far our examples have been a bit unnatural: normally we want to prove rules
expressed with =⇒, not −→. Here is an example:

lemma "A ∧ B =⇒ B ∧ A"

proof
assume "A ∧ B" thus "B" ..

next
assume "A ∧ B" thus "A" ..

qed

The proof always works on the conclusion, B ∧ A in our case, thus selecting
∧-introduction. Hence we must show B and A ; both are proved by ∧-elimination
and the proofs are separated by next:

next deals with multiple subgoals. For example, when showing A ∧ B we need
to show both A and B. Each subgoal is proved separately, in any order. The
individual proofs are separated by next. 2

Strictly speaking next is only required if the subgoals are proved in different
assumption contexts which need to be separated, which is not the case above.
For clarity we have employed next anyway and will continue to do so.

This is all very well as long as formulae are small. Let us now look at some
devices to avoid repeating (possibly large) formulae. A very general method is
pattern matching:

lemma "large_A ∧ large_B =⇒ large_B ∧ large_A"

(is "?AB =⇒ ?B ∧ ?A")

proof
assume "?AB" thus "?B" ..

next
assume "?AB" thus "?A" ..

qed

Any formula may be followed by (is pattern) which causes the pattern to be
matched against the formula, instantiating the ? -variables in the pattern. Sub-
sequent uses of these variables in other terms causes them to be replaced by the
terms they stand for.

We can simplify things even more by stating the theorem by means of the
assumes and shows elements which allow direct naming of assumptions:

lemma assumes ab: "large_A ∧ large_B"

shows "large_B ∧ large_A" (is "?B ∧ ?A")

proof
from ab show "?B" ..

next
from ab show "?A" ..

2 Each show must prove one of the pending subgoals. If a show matches multiple
subgoals, e.g. if the subgoals contain ?-variables, the first one is proved. Thus the
order in which the subgoals are proved can matter — see §3.1 for an example.

7

qed

Note the difference between ?AB, a term, and ab, a fact.
Finally we want to start the proof with ∧-elimination so we don’t have to

perform it twice, as above. Here is a slick way to achieve this:

lemma assumes ab: "large_A ∧ large_B"

shows "large_B ∧ large_A" (is "?B ∧ ?A")

using ab

proof
assume "?B" "?A" thus ?thesis ..

qed

Command using can appear before a proof and adds further facts to those
piped into the proof. Here ab is the only such fact and it triggers ∧-elimination.
Another frequent idiom is as follows:

from major-facts show proposition using minor-facts proof

Sometimes it is necessary to suppress the implicit application of rules in a
proof. For example show(s) "P ∨ Q" would trigger ∨-introduction, requiring
us to prove P, which may not be what we had in mind. A simple “-” prevents
this faux pas:

lemma assumes ab: "A ∨ B" shows "B ∨ A"

proof -

from ab show ?thesis

proof
assume A thus ?thesis ..

next
assume B thus ?thesis ..

qed
qed

Alternatively one can feed A ∨ B directly into the proof, thus triggering the
elimination rule:

lemma assumes ab: "A ∨ B" shows "B ∨ A"

using ab

proof
assume A thus ?thesis ..

next
assume B thus ?thesis ..

qed

Remember that eliminations have priority over introductions.

2.3 Avoiding names

Too many names can easily clutter a proof. We already learned about this as a
means of avoiding explicit names. Another handy device is to refer to a fact not
by name but by contents: for example, writing ‘A ∨ B‘ (enclosing the formula

8

in back quotes) refers to the fact A ∨ B without the need to name it. Here is a
simple example, a revised version of the previous proof

lemma assumes "A ∨ B" shows "B ∨ A"

using ‘A ∨ B‘

which continues as before.
Clearly, this device of quoting facts by contents is only advisable for small

formulae. In such cases it is superior to naming because the reader immediately
sees what the fact is without needing to search for it in the preceding proof text.

The assumptions of a lemma can also be referred to via their predefined name
assms. Hence the ‘A ∨ B‘ in the previous proof can also be replaced by assms.
Note that assms refers to the list of all assumptions. To pick out a specific one,
say the second, write assms(2).

This indexing notation name(.) works for any name that stands for a list of
facts, for example f.simps, the equations of the recursively defined function f .
You may also select sublists by writing name(2− 3).

Above we recommended the UNIX-pipe model (i.e. this) to avoid the need to
name propositions. But frequently we needed to feed more than one previously
derived fact into a proof step. Then the UNIX-pipe model appears to break
down and we need to name the different facts to refer to them. But this can be
avoided:

lemma assumes "A ∧ B" shows "B ∧ A"

proof -

from ‘A ∧ B‘ have "B" ..
moreover
from ‘A ∧ B‘ have "A" ..
ultimately show "B ∧ A" ..

qed

You can combine any number of facts A1 . . . An into a sequence by separat-
ing their proofs with moreover. After the final fact, ultimately stands for
from A1 . . . An. This avoids having to introduce names for all of the sequence
elements.

2.4 Predicate calculus

Command fix introduces new local variables into a proof. The pair fix-show
corresponds to

∧
(the universal quantifier at the meta-level) just like assume-

show corresponds to =⇒. Here is a sample proof, annotated with the rules that
are applied implicitly:

lemma assumes P: "∀ x. P x" shows "∀ x. P(f x)"

proof — allI : (
∧
x. ?P x) =⇒ ∀ x. ?P x

fix a

from P show "P(f a)" .. — allE : [[∀ x. ?P x; ?P ?x =⇒ ?R]] =⇒ ?R

qed

Note that in the proof we have chosen to call the bound variable a instead of x
merely to show that the choice of local names is irrelevant.

9

Next we look at ∃ which is a bit more tricky.

lemma assumes Pf: "∃ x. P(f x)" shows "∃ y. P y"

proof -

from Pf show ?thesis

proof — exE : [[∃ x. ?P x;
∧
x. ?P x =⇒ ?Q]] =⇒ ?Q

fix x

assume "P(f x)"

thus ?thesis .. — exI : ?P ?x =⇒ ∃ x. ?P x

qed
qed

Explicit ∃-elimination as seen above can become cumbersome in practice. The
derived Isar language element obtain provides a more appealing form of gener-
alised existence reasoning:

lemma assumes Pf: "∃ x. P(f x)" shows "∃ y. P y"

proof -

from Pf obtain x where "P(f x)" ..
thus "∃ y. P y" ..

qed

Note how the proof text follows the usual mathematical style of concluding P (x)
from ∃x.P (x), while carefully introducing x as a new local variable. Technically,
obtain is similar to fix and assume together with a soundness proof of the
elimination involved.

Here is a proof of a well known tautology. Which rule is used where?

lemma assumes ex: "∃ x. ∀ y. P x y" shows "∀ y. ∃ x. P x y"

proof
fix y

from ex obtain x where "∀ y. P x y" ..
hence "P x y" ..
thus "∃ x. P x y" ..

qed

2.5 Making bigger steps

So far we have confined ourselves to single step proofs. Of course powerful auto-
matic methods can be used just as well. Here is an example, Cantor’s theorem
that there is no surjective function from a set to its powerset:

theorem "∃ S. S /∈ range (f :: ’a ⇒ ’a set)"

proof
let ?S = "{x. x /∈ f x}"

show "?S /∈ range f"

proof
assume "?S ∈ range f"

then obtain y where "?S = f y" ..
show False

proof cases

10

assume "y ∈ ?S"

with ‘?S = f y‘ show False by blast

next
assume "y /∈ ?S"

with ‘?S = f y‘ show False by blast

qed
qed

qed

For a start, the example demonstrates two new constructs:

– let introduces an abbreviation for a term, in our case the witness for the
claim.

– Proof by cases starts a proof by cases. Note that it remains implicit what
the two cases are: it is merely expected that the two subproofs prove P =⇒
?thesis and ¬P =⇒ ?thesis (in that order) for some P.

If you wonder how to obtain y : via the predefined elimination rule [[b ∈ range

f;
∧
x. b = f x =⇒ P]] =⇒ P.

Method blast is used because the contradiction does not follow easily by just
a single rule. If you find the proof too cryptic for human consumption, here is a
more detailed version; the beginning up to obtain stays unchanged.

theorem "∃ S. S /∈ range (f :: ’a ⇒ ’a set)"

proof
let ?S = "{x. x /∈ f x}"

show "?S /∈ range f"

proof
assume "?S ∈ range f"

then obtain y where "?S = f y" ..
show False

proof cases

assume "y ∈ ?S"

hence "y /∈ f y" by simp

hence "y /∈ ?S" by(simp add: ‘?S = f y‘)

with ‘y ∈ ?S‘ show False by contradiction

next
assume "y /∈ ?S"

hence "y ∈ f y" by simp

hence "y ∈ ?S" by(simp add: ‘?S = f y‘)

with ‘y /∈ ?S‘ show False by contradiction

qed
qed

qed

Method contradiction succeeds if both P and ¬P are among the assumptions
and the facts fed into that step, in any order.

As it happens, Cantor’s theorem can be proved automatically by best-first
search. Depth-first search would diverge, but best-first search successfully navi-
gates through the large search space:

11

theorem "∃ S. S /∈ range (f :: ’a ⇒ ’a set)"

by best

2.6 Raw proof blocks

Although we have shown how to employ powerful automatic methods like blast

to achieve bigger proof steps, there may still be the tendency to use the default
introduction and elimination rules to decompose goals and facts. This can lead
to very tedious proofs:

lemma "∀ x y. A x y ∧ B x y −→ C x y"

proof
fix x show "∀ y. A x y ∧ B x y −→ C x y"

proof
fix y show "A x y ∧ B x y −→ C x y"

proof
assume "A x y ∧ B x y"

show "C x y" sorry
qed

qed
qed

Since we are only interested in the decomposition and not the actual proof,
the latter has been replaced by sorry. Command sorry proves anything but is
only allowed in quick and dirty mode, the default interactive mode. It is very
convenient for top down proof development.

Luckily we can avoid this step by step decomposition very easily:

lemma "∀ x y. A x y ∧ B x y −→ C x y"

proof -

have "
∧
x y. [[A x y; B x y]] =⇒ C x y"

proof -

fix x y assume "A x y" "B x y"

show "C x y" sorry
qed
thus ?thesis by blast

qed

This can be simplified further by raw proof blocks, i.e. proofs enclosed in braces:

lemma "∀ x y. A x y ∧ B x y −→ C x y"

proof -

{ fix x y assume "A x y" "B x y"

have "C x y" sorry }
thus ?thesis by blast

qed

The result of the raw proof block is the same theorem as above, namely
∧
x

y. [[A x y; B x y]] =⇒ C x y. Raw proof blocks are like ordinary proofs except
that they do not prove some explicitly stated property but that the property
emerges directly out of the fixes, assumes and have in the block. Thus they

12

again serve to avoid duplication. Note that the conclusion of a raw proof block
is stated with have rather than show because it is not the conclusion of some
pending goal but some independent claim.

The general idea demonstrated in this subsection is very important in Isar
and distinguishes it from apply -style proofs:

Do not manipulate the proof state into a particular form by applying proof
methods but state the desired form explicitly and let the proof methods
verify that from this form the original goal follows.

This yields more readable and also more robust proofs.

General case distinctions As an important application of raw proof blocks
we show how to deal with general case distinctions — more specific kinds are
treated in §3.1. Imagine that you would like to prove some goal by distinguishing
n cases P1, . . . , Pn. You show that the n cases are exhaustive (i.e. P1 ∨ . . .∨Pn)
and that each case Pi implies the goal. Taken together, this proves the goal. The
corresponding Isar proof pattern (for n = 3) is very handy:

proof -

have "P1 ∨ P2 ∨ P3" ...

moreover
{ assume P1

...

have ?thesis ... }
moreover
{ assume P2

...

have ?thesis ... }
moreover
{ assume P3

...

have ?thesis ... }
ultimately show ?thesis by blast

qed

2.7 Further refinements

This subsection discusses some further tricks that can make life easier although
they are not essential.

and Propositions (following assume etc) may but need not be separated by
and. This is not just for readability (from A and B looks nicer than from A B)
but for structuring lists of propositions into possibly named blocks. In

assume A: A1 A2 and B: A3 and A4

label A refers to the list of propositions A1 A2 and label B to A3.

13

note If you want to remember intermediate fact(s) that cannot be named di-
rectly, use note. For example the result of raw proof block can be named by
following it with note some_name = this. As a side effect, this is set to the list
of facts on the right-hand side. You can also say note some_fact, which simply
sets this, i.e. recalls some_fact, e.g. in a moreover sequence.

fixes Sometimes it is necessary to decorate a proposition with type constraints,
as in Cantor’s theorem above. These type constraints tend to make the theorem
less readable. The situation can be improved a little by combining the type
constraint with an outer

∧
:

theorem "
∧
f :: ’a ⇒ ’a set. ∃ S. S /∈ range f"

However, now f is bound and we need a fix f in the proof before we can refer
to f. This is avoided by fixes:

theorem fixes f :: "’a ⇒ ’a set" shows "∃ S. S /∈ range f"

Even better, fixes allows to introduce concrete syntax locally:

lemma comm_mono:

fixes r :: "’a ⇒ ’a ⇒ bool" (infix ">" 60) and
f :: "’a ⇒ ’a ⇒ ’a" (infixl "++" 70)

assumes comm: "
∧
x y::’a. x ++ y = y ++ x" and

mono: "
∧
x y z::’a. x > y =⇒ x ++ z > y ++ z"

shows "x > y =⇒ z ++ x > z ++ y"

by(simp add: comm mono)

The concrete syntax is dropped at the end of the proof and the theorem becomes

[[
∧
x y. ?f x y = ?f y x;∧
x y z. ?r x y =⇒ ?r (?f x z) (?f y z); ?r ?x ?y]]

=⇒ ?r (?f ?z ?x) (?f ?z ?y)

obtain The obtain construct can introduce multiple witnesses and propositions
as in the following proof fragment:

lemma assumes A: "∃ x y. P x y ∧ Q x y" shows "R"

proof -

from A obtain x y where P: "P x y" and Q: "Q x y" by blast

Remember also that one does not even need to start with a formula containing
∃ as we saw in the proof of Cantor’s theorem.

Combining proof styles Finally, whole apply -scripts may appear in the leaves
of the proof tree, although this is best avoided. Here is a contrived example:

lemma "A −→ (A −→ B) −→ B"

proof

14

assume a: "A"

show "(A −→B) −→ B"

apply(rule impI)

apply(erule impE)

apply(rule a)

apply assumption

done
qed

You may need to resort to this technique if an automatic step fails to prove the
desired proposition.

When converting a proof from apply -style into Isar you can proceed in a
top-down manner: parts of the proof can be left in script form while the outer
structure is already expressed in Isar.

3 Case distinction and induction

Computer science applications abound with inductively defined structures, which
is why we treat them in more detail. HOL already comes with a datatype of lists
with the two constructors Nil and Cons. Nil is written [] and Cons x xs is
written x # xs.

3.1 Case distinction

We have already met the cases method for performing binary case splits. Here
is another example:

lemma "¬ A ∨ A"

proof cases

assume "A" thus ?thesis ..
next

assume "¬ A" thus ?thesis ..
qed

The two cases must come in this order because cases merely abbreviates (rule

case_split) where case_split is [[?P =⇒ ?Q; ¬ ?P =⇒ ?Q]] =⇒ ?Q. If we re-
verse the order of the two cases in the proof, the first case would prove ¬ A =⇒
¬ A ∨ A which would solve the first premise of case_split, instantiating ?P with
¬ A, thus making the second premise ¬ ¬ A =⇒ ¬ A ∨ A. Therefore the order
of subgoals is not always completely arbitrary.

The above proof is appropriate if A is textually small. However, if A is large,
we do not want to repeat it. This can be avoided by the following idiom

lemma "¬ A ∨ A"

proof (cases "A")

case True thus ?thesis ..
next

case False thus ?thesis ..

15

qed

which is like the previous proof but instantiates ?P right away with A. Thus
we could prove the two cases in any order. The phrase case True abbreviates
assume True: A and analogously for False and ¬ A.

The same game can be played with other datatypes, for example lists, where
tl is the tail of a list, and length returns a natural number (remember: 0−1 = 0):

lemma "length(tl xs) = length xs - 1"

proof (cases xs)

case Nil thus ?thesis by simp

next
case Cons thus ?thesis by simp

qed

Here case Nil abbreviates assume Nil: xs = [] and case Cons abbreviates
fix ? ?? assume Cons: xs = ? # ??, where ? and ?? stand for variable names
that have been chosen by the system. Therefore we cannot refer to them. Luckily,
this proof is simple enough we do not need to refer to them. However, sometimes
one may have to. Hence Isar offers a simple scheme for naming those variables:
replace the anonymous Cons by (Cons y ys), which abbreviates fix y ys as-
sume Cons: xs = y # ys. In each case the assumption can be referred to inside
the proof by the name of the constructor. In Section 3.4 below we will come
across an example of this.

3.2 Structural induction

We start with an inductive proof where both cases are proved automatically:

lemma "2 * (
∑

i::nat≤n. i) = n*(n+1)"

by (induct n) simp_all

The constraint ::nat is needed because all of the operations involved are over-
loaded. This proof also demonstrates that by can take two arguments, one to
start and one to finish the proof — the latter is optional.

If we want to expose more of the structure of the proof, we can use pattern
matching to avoid having to repeat the goal statement:

lemma "2 * (
∑

i::nat≤n. i) = n*(n+1)" (is "?P n")

proof (induct n)

show "?P 0" by simp

next
fix n assume "?P n"

thus "?P(Suc n)" by simp

qed

We could refine this further to show more of the equational proof. Instead we
explore the same avenue as for case distinctions: introducing context via the
case command:

lemma "2 * (
∑

i::nat ≤ n. i) = n*(n+1)"

16

proof (induct n)

case 0 show ?case by simp

next
case Suc thus ?case by simp

qed

The implicitly defined ?case refers to the corresponding case to be proved, i.e.
?P 0 in the first case and ?P(Suc n) in the second case. Context case 0 is empty
whereas case Suc assumes ?P n. Again we have the same problem as with case
distinctions: we cannot refer to an anonymous n in the induction step because it
has not been introduced via fix (in contrast to the previous proof). The solution
is the one outlined for Cons above: replace Suc by (Suc i) :

lemma fixes n::nat shows "n < n*n + 1"

proof (induct n)

case 0 show ?case by simp

next
case (Suc i) thus "Suc i < Suc i * Suc i + 1" by simp

qed

Of course we could again have written thus ?case instead of giving the term
explicitly but we wanted to use i somewhere.

3.3 Generalization via arbitrary

It is frequently necessary to generalize a claim before it becomes provable by
induction. The tutorial [4] demonstrates this with itrev xs ys = rev xs @ ys,
where ys needs to be universally quantified before induction succeeds.3 But
strictly speaking, this quantification step is already part of the proof and the
quantifiers should not clutter the original claim. This is how the quantification
step can be combined with induction:

lemma "itrev xs ys = rev xs @ ys"

by (induct xs arbitrary: ys) simp_all

The annotation arbitrary: vars universally quantifies all vars before the induc-
tion. Hence they can be replaced by arbitrary values in the proof.

Generalization via arbitrary is particularly convenient if the induction step
is a structured proof as opposed to the automatic example above. Then the claim
is available in unquantified form but with the generalized variables replaced by
? -variables, ready for instantiation. In the above example, in the Cons case the
induction hypothesis is itrev xs ?ys = rev xs @ ?ys (available under the name
Cons).

3.4 Inductive proofs of conditional formulae

Induction also copes well with formulae involving =⇒, for example
3 rev [] = [], rev (x # xs) = rev xs @ [x],
itrev [] ys = ys, itrev (x # xs) ys = itrev xs (x # ys)

17

lemma "xs 6= [] =⇒ hd(rev xs) = last xs"

by (induct xs) simp_all

This is an improvement over that style the tutorial [4] advises, which requires
−→. A further improvement is shown in the following proof:

lemma "map f xs = map f ys =⇒ length xs = length ys"

proof (induct ys arbitrary: xs)

case Nil thus ?case by simp

next
case (Cons y ys) note Asm = Cons

show ?case

proof (cases xs)

case Nil

hence False using Asm(2) by simp

thus ?thesis ..
next

case (Cons x xs’)

with Asm(2) have "map f xs’ = map f ys" by simp

from Asm(1)[OF this] ‘xs = x#xs’‘ show ?thesis by simp

qed
qed

The base case is trivial. In the step case Isar assumes (under the name Cons)
two propositions:

map f ?xs = map f ys =⇒ length ?xs = length ys

map f xs = map f (y # ys)

The first is the induction hypothesis, the second, and this is new, is the premise
of the induction step. The actual goal at this point is merely length xs = length

(y # ys). The assumptions are given the new name Asm to avoid a name clash
further down. The proof procedes with a case distinction on xs. In the case xs

= [], the second of our two assumptions (Asm(2)) implies the contradiction 0 =

Suc(. . .). In the case xs = x # xs’, we first obtain map f xs’ = map f ys, from
which a forward step with the first assumption (Asm(1)[OF this]) yields length

xs’ = length ys. Together with xs = x # xs this yields the goal length xs =

length (y # ys).

3.5 Induction formulae involving
∧

or =⇒

Let us now consider abstractly the situation where the goal to be proved contains
both

∧
and =⇒, say

∧
x. P x =⇒ Q x. This means that in each case of the

induction, ?case would be of the form
∧
x. P’ x =⇒ Q’ x. Thus the first proof

steps will be the canonical ones, fixing x and assuming P’ x. To avoid this
tedium, induction performs the canonical steps automatically: in each step case,
the assumptions contain both the usual induction hypothesis and P’ x, whereas
?case is only Q’ x.

18

3.6 Rule induction

HOL also supports inductively defined sets. See [4] for details. As an example
we define our own version of the reflexive transitive closure of a relation — HOL
provides a predefined one as well.

inductive set
rtc :: "(’a × ’a)set ⇒ (’a × ’a)set" ("_*" [1000] 999)

for r :: "(’a × ’a)set"

where
refl: "(x,x) ∈ r*"

| step: " [[(x,y) ∈ r; (y,z) ∈ r*]] =⇒ (x,z) ∈ r*"

First the constant is declared as a function on binary relations (with concrete
syntax r* instead of rtc r), then the defining clauses are given. We will now
prove that r* is indeed transitive:

lemma assumes A: "(x,y) ∈ r*" shows "(y,z) ∈ r* =⇒ (x,z) ∈ r*"

using A

proof induct

case refl thus ?case .
next

case step thus ?case by(blast intro: rtc.step)

qed

Rule induction is triggered by a fact (x1, . . . , xn) ∈ R piped into the proof, here
using A. The proof itself follows the inductive definition very closely: there is one
case for each rule, and it has the same name as the rule, analogous to structural
induction.

However, this proof is rather terse. Here is a more readable version:

lemma assumes "(x,y) ∈ r*" and "(y,z) ∈ r*" shows "(x,z) ∈ r*"

using assms

proof induct

fix x assume "(x,z) ∈ r*" — B [y := x]
thus "(x,z) ∈ r*" .

next
fix x’ x y

assume 1: "(x’,x) ∈ r" and
IH: "(y,z) ∈ r* =⇒ (x,z) ∈ r*" and
B: "(y,z) ∈ r*"

from 1 IH[OF B] show "(x’,z) ∈ r*" by(rule rtc.step)

qed

This time, merely for a change, we start the proof with by feeding both as-
sumptions into the inductive proof. Only the first assumption is “consumed” by
the induction. Since the second one is left over we don’t just prove ?thesis but
(y,z) ∈ r* =⇒ ?thesis, just as in the previous proof. The base case is trivial.
In the assumptions for the induction step we can see very clearly how things fit
together and permit ourselves the obvious forward step IH[OF B].

The notation case (constructor vars) is also supported for inductive defini-
tions. The constructor is the name of the rule and the vars fix the free variables

19

in the rule; the order of the vars must correspond to the left-to-right order of
the variables as they appear in the rule. For example, we could start the above
detailed proof of the induction with case (step x’ x y). In that case we don’t
need to spell out the assumptions but can refer to them by step(.), although
the resulting text will be quite cryptic.

3.7 More induction

We close the section by demonstrating how arbitrary induction rules are applied.
As a simple example we have chosen recursion induction, i.e. induction based
on a recursive function definition. However, most of what we show works for
induction in general.

The example is an unusual definition of rotation:

fun rot :: "’a list ⇒ ’a list" where
"rot [] = []" |

"rot [x] = [x]" |

"rot (x#y#zs) = y # rot(x#zs)"

This yields, among other things, the induction rule rot.induct :

[[P [];
∧
x. P [x];

∧
x y zs. P (x # zs) =⇒ P (x # y # zs)]] =⇒ P a0

The following proof relies on a default naming scheme for cases: they are called
1, 2, etc, unless they have been named explicitly. The latter happens only with
datatypes and inductively defined sets, but (usually) not with recursive func-
tions.

lemma "xs 6= [] =⇒ rot xs = tl xs @ [hd xs]"

proof (induct xs rule: rot.induct)

case 1 thus ?case by simp

next
case 2 show ?case by simp

next
case (3 a b cs)

have "rot (a # b # cs) = b # rot(a # cs)" by simp

also have " . . . = b # tl(a # cs) @ [hd(a # cs)]" by(simp add:3)

also have " . . . = tl (a # b # cs) @ [hd (a # b # cs)]" by simp

finally show ?case .
qed

The third case is only shown in gory detail (see [1] for how to reason with chains
of equations) to demonstrate that the case (constructor vars) notation also
works for arbitrary induction theorems with numbered cases. The order of the
vars corresponds to the order of the

∧
-quantified variables in each case of the

induction theorem. For induction theorems produced by fun it is the order in
which the variables appear on the left-hand side of the equation.

The proof is so simple that it can be condensed to

by (induct xs rule: rot.induct) simp_all

20

References

1. Gertrud Bauer and Markus Wenzel. Calculational reasoning revisited — an
Isabelle/Isar experience. In R. Boulton and P. Jackson, editors, Theorem Proving
in Higher Order Logics, TPHOLs 2001, volume 2152 of Lect. Notes in Comp. Sci.,
pages 75–90. Springer-Verlag, 2001.

2. M.C.J. Gordon, Robin Milner, and C.P. Wadsworth. Edinburgh LCF: a
Mechanised Logic of Computation, volume 78 of Lect. Notes in Comp. Sci.
Springer-Verlag, 1979.

3. Gerwin Klein and Tobias Nipkow. A machine-checked model for a Java-like
language, virtual machine and compiler. ACM Transactions on Programming
Languages and Systems, 28(4):619–695, 2006.

4. Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of Lect. Notes in Comp. Sci.
Springer-Verlag, 2002. http://www.in.tum.de/∼nipkow/LNCS2283/.

5. P. Rudnicki. An overview of the Mizar project. In Workshop on Types for Proofs
and Programs. Chalmers University of Technology, 1992.

6. Markus Wenzel. The Isabelle/Isar Reference Manual. Technische Universität
München, 2002. http://isabelle.in.tum.de/dist/Isabelle2002/doc/isar-ref.pdf.

7. Markus Wenzel and Freek Wiedijk. A comparison of the mathematical proof
languages Mizar and Isar. J. Automated Reasoning, pages 389–411, 2002.

21

http://www.in.tum.de/~nipkow/LNCS2283/
http://isabelle.in.tum.de/dist/Isabelle2002/doc/isar-ref.pdf

	A Tutorial Introduction to Structured Isar Proofs
	Tobias Nipkow

