
λ
→

∀
=Is

ab
el
le

β

α

 S/H

Hammering Away
A User’s Guide to Sledgehammer for Isabelle/HOL

Jasmin Christian Blanchette
Institut für Informatik, Technische Universität München

June 21, 2010

Contents
1 Introduction 2

2 Installation 2

3 First Steps 3

4 Command Syntax 4

5 Option Reference 5
5.1 Mode of Operation . 6
5.2 Problem Encoding . 7
5.3 Output Format . 8
5.4 Timeouts . 9

1

1 Introduction

Sledgehammer is a tool that applies first-order automatic theorem provers
(ATPs) on the current goal. The supported ATPs are E [4], SPASS [6], and
Vampire [3], which can be run locally or remotely via the SystemOnTPTP
web service [5].

The problem passed to ATPs consists of the current goal together with a
heuristic selection of facts (theorems) from the current theory context, filtered
by relevance. The result of a successful ATP proof search is some source text
that usually (but not always) reconstructs the proof within Isabelle, without
requiring the ATPs again. The reconstructed proof relies on the general-
purpose Metis prover [2], which is fully integrated into Isabelle/HOL, with
explicit inferences going through the kernel. Thus its results are correct by
construction.

Examples of Sledgehammer use can be found in Isabelle’s src/HOL/Metis
Examples directory. Comments and bug reports concerning Sledgehammer
or this manual should be directed to blannospamchette@in.tum.de.

2 Installation

Sledgehammer is part of Isabelle, so you don’t need to install it. However,
it relies on third-party automatic theorem provers (ATPs). Currently, E,
SPASS, and Vampire are supported. All of these are available remotely via
SystemOnTPTP [5], but if you want better performance you will need to
install at least E and SPASS locally.

There are three main ways to install E and SPASS:

• If you installed an official Isabelle package with everything inside, it
should already include properly setup executables for E and SPASS,
ready to use.

• Otherwise, you can download the Isabelle-aware E and SPASS binary
packages from Isabelle’s download page. Extract the archives, then
add a line to your ~/.isabelle/etc/components file with the absolute
path to E or SPASS. For example, if ~/.isabelle/etc/components
does not exist yet and you extracted SPASS to /usr/local/spass-3.7,
create the file ~/.isabelle/etc/components with the single line

/usr/local/spass-3.7

2

• If you prefer to build E or SPASS yourself, feel free to do so and set
the environment variable E HOME or SPASS HOME to the directory that
contains the eproof or SPASS executable, respectively.

To check whether E and SPASS are installed, follow the example in §3.

3 First Steps

To illustrate Sledgehammer in context, let us start a theory file and attempt
to prove a simple lemma:

theory Scratch
imports Main
begin

lemma “ [a] = [b] ←→ a = b”
sledgehammer

After a few seconds, Sledgehammer produces the following output:

Sledgehammer: ATP “e” for subgoal 1:
([a] = [b]) = (a = b)
Try this command: by (metis hd.simps).
To minimize the number of lemmas, try this command:
sledgehammer minimize [atp = e] (hd.simps).

Sledgehammer: ATP “spass” for subgoal 1:
([a] = [b]) = (a = b)
Try this command: by (metis insert Nil last ConsL).
To minimize the number of lemmas, try this command:
sledgehammer minimize [atp = spass] (insert Nil last ConsL).

Sledgehammer: ATP “remote vampire” for subgoal 1:
([a] = [b]) = (a = b)
Try this command: by (metis One nat def raw empty replicate

insert Nil last ConsL replicate Suc).
To minimize the number of lemmas, try this command:
sledgehammer minimize [atp = remote vampire]

(One nat def raw empty replicate insert Nil
last ConsL replicate Suc).

3

Sledgehammer ran E, SPASS, and the remote version of Vampire in parallel.
If E and SPASS are not installed (§2), you will see references to their remote
American cousins remote e and remote spass instead of e and spass.

Based on each ATP proof, Sledgehammer gives a one-liner proof that uses
the metis method. You can click them and insert them into the theory text.
You can click the “sledgehammer minimize” command if you want to look
for a shorter (and faster) proof. But here the proof found by E looks perfect,
so click it to finish the proof.

You can ask Sledgehammer for an Isar text proof by passing the isar proof
option:

sledgehammer [isar proof]

When Isar proof construction is successful, it can yield proofs that are more
readable and also faster than the metis one-liners. This feature is experi-
mental.

4 Command Syntax

Sledgehammer can be invoked at any point when there is an open goal by
entering the sledgehammer command in the theory file. Its general syntax
is as follows:

sledgehammer subcommand ? options? facts override? num?

For convenience, Sledgehammer is also available in the “Commands” submenu
of the “Isabelle” menu in Proof General or by pressing the Emacs key sequence
C-c C-a C-s. This is equivalent to entering the sledgehammer command
with no arguments in the theory text.

In the general syntax, the subcommand may be any of the following:

• run (the default): Runs Sledgehammer on subgoal number num (1
by default), with the given options and facts.

• minimize: Attempts to minimize the provided facts (specified in the
facts override argument) to obtain a simpler proof involving fewer
facts. The options and goal number are as for run.

4

• messages: Redisplays recent messages issued by Sledgehammer. This
allows you to examine results that might have been lost due to Sledge-
hammer’s asynchronous nature. The num argument specifies a limit
on the number of messages to display (5 by default).

• available atps: Prints the list of installed ATPs. See §2 and §5.1 for
more information on how to install ATPs.

• running atps: Prints information about currently running ATPs, in-
cluding elapsed runtime and remaining time until timeout.

• kill atps: Terminates all running ATPs.

• refresh tptp: Refreshes the list of remote ATPs available at System-
OnTPTP [5].

Sledgehammer’s behavior can be influenced by various options, which can be
specified in brackets after the sledgehammer command. The options are
a list of key–value pairs of the form “[k1 = v1, . . . , kn = vn]”. For Boolean
options, “= true” is optional. For example:

sledgehammer [isar proof, timeout = 120 s]

Default values can be set using sledgehammer params:

sledgehammer params options

The supported options are described in §5.

The facts override argument lets you alter the set of facts that go through
the relevance filter. It may be of the form “(facts)”, where facts is a space-
separated list of Isabelle facts (theorems, local assumptions, etc.), in which
case the relevance filter is bypassed and the given facts are used. It may also
be of the form (add : facts1), (del : facts2), or (add : facts1 del : facts2), where
the relevance filter is instructed to proceed as usual except that it should
consider facts1 highly-relevant and facts2 fully irrelevant.

5 Option Reference

Sledgehammer’s options are categorized as follows: mode of operation (§5.1),
problem encoding (§5.2), output format (§5.3), and timeouts (§5.4).

The descriptions below refer to the following syntactic quantities:

5

• 〈string〉: A string.

• 〈bool〉: true or false.

• 〈bool or smart〉: true, false, or smart.

• 〈int〉: An integer.

• 〈time〉: An integer followed by min (minutes), s (seconds), or ms
(milliseconds), or the keyword none (∞ years).

Default values are indicated in square brackets. Boolean options have a
negated counterpart (e.g., debug vs. no debug). When setting Boolean op-
tions, “= true” may be omitted.

5.1 Mode of Operation

atps = 〈string〉
Specifies the ATPs (automated theorem provers) to use as a space-
separated list (e.g., “e spass”). The following ATPs are supported:

• e: E is an ATP developed by Stephan Schulz [4]. To use E, set
the environment variable E HOME to the directory that contains the
eproof executable, or install the prebuilt E package from Isabelle’s
download page. See §2 for details.

• spass: SPASS is an ATP developed by Christoph Weidenbach et
al. [6]. To use SPASS, set the environment variable SPASS HOME
to the directory that contains the SPASS executable, or install the
prebuilt SPASS package from Isabelle’s download page. See §2 for
details.

• spass tptp: Same as the above, except that Sledgehammer com-
municates with SPASS using the TPTP syntax rather than the
native DFG syntax. This ATP is provided for experimental pur-
poses.

• vampire: Vampire is an ATP developed by Andrei Voronkov and
his colleagues [3]. To use Vampire, set the environment variable
VAMPIRE HOME to the directory that contains the vampire exe-
cutable.

• remote e: The remote version of E executes on Geoff Sutcliffe’s
Miami servers [5].

6

• remote spass: The remote version of SPASS executes on Geoff
Sutcliffe’s Miami servers.

• remote vampire: The remote version of Vampire executes on
Geoff Sutcliffe’s Miami servers. Version 9 is used.

By default, Sledgehammer will run E, SPASS, and Vampire in parallel.
For E and SPASS, it will use any locally installed version if available,
falling back on the remote versions if necessary. For historical reasons,
the default value of this option can be overridden using the option
“Sledgehammer: ATPs” from the “Isabelle” menu in Proof General.

It is a good idea to run several ATPs in parallel, although it could slow
down your machine. Tobias Nipkow observed that running E, SPASS,
and Vampire together for 5 seconds yields the same success rate as
running the most effective of these (Vampire) for 120 seconds [1].

atp = 〈string〉
Alias for atps.

overlord
[
= 〈bool〉

]
[false] (neg.: no overlord)

Specifies whether Sledgehammer should put its temporary files in $ISA-
BELLE HOME USER, which is useful for debugging Sledgehammer but
also unsafe if several instances of the tool are run simultaneously. The
files are identified by the prefix prob ; you may safely remove them
after Sledgehammer has run.

See also debug (§5.3).

5.2 Problem Encoding

explicit apply
[
= 〈bool〉

]
[false] (neg.: implicit apply)

Specifies whether function application should be encoded as an explicit
“apply” operator. If the option is set to false, each function will be
directly applied to as many arguments as possible. Enabling this option
can sometimes help discover higher-order proofs that otherwise would
not be found.

full types
[
= 〈bool〉

]
[false] (neg.: partial types)

Specifies whether full-type information is exported. Enabling this op-
tion can prevent the discovery of type-incorrect proofs, but it also tends
to slow down the ATPs significantly. For historical reasons, the default

7

value of this option can be overridden using the option “Sledgehammer:
ATPs” from the “Isabelle” menu in Proof General.

relevance threshold = 〈int〉 [50]

Specifies the threshold above which facts are considered relevant by the
relevance filter. The option ranges from 0 to 100, where 0 means that
all theorems are relevant.

relevance convergence = 〈int〉 [320]

Specifies the convergence quotient, multiplied by 100, used by the rele-
vance filter. This quotient is used by the relevance filter to scale down
the relevance of facts at each iteration of the filter.

theory relevant
[
= 〈bool or smart〉

]
[smart]

(neg.: theory irrelevant)

Specifies whether the theory from which a fact comes should be taken
into consideration by the relevance filter. If the option is set to smart,
it is taken to be true for SPASS and false for E and Vampire, because
empirical results suggest that these are the best settings.

defs relevant
[
= 〈bool〉

]
[false] (neg.: defs irrelevant)

Specifies whether the definition of constants occurring in the formula to
prove should be considered particularly relevant. Enabling this option
tends to lead to larger problems and typically slows down the ATPs.

respect no atp
[
= 〈bool〉

]
[true] (neg.: ignore no atp)

Specifies whether Sledgehammer should honor the no atp attributes.
The no atp attributes marks theorems that tend to confuse ATPs, typ-
ically because they can lead to unsound ATP proofs [1]. It is normally
a good idea to leave this option enabled, unless you are debugging
Sledgehammer.

5.3 Output Format

verbose
[
= 〈bool〉

]
[false] (neg.: quiet)

Specifies whether the sledgehammer command should explain what
it does.

debug
[
= 〈bool〉

]
[false] (neg.: no debug)

Specifies whether Nitpick should display additional debugging infor-

8

mation beyond what verbose already displays. Enabling debug also
enables verbose behind the scenes.

See also overlord (§5.1).

isar proof
[
= 〈bool〉

]
[false] (neg.: no isar proof)

Specifies whether Isar proofs should be output in addition to one-liner
metis proofs. Isar proof construction is still experimental and often
fails; however, they are usually faster and sometimes more robust than
metis proofs.

isar shrink factor = 〈int〉 [1]

Specifies the granularity of the Isar proof. A value of n indicates that
each Isar proof step should correspond to a group of up to n consecutive
proof steps in the ATP proof.

5.4 Timeouts

timeout = 〈time〉 [60 s]

Specifies the maximum amount of time that the ATPs should spend
looking for a proof. For historical reasons, the default value of this
option can be overridden using the option “Sledgehammer: Time Limit”
from the “Isabelle” menu in Proof General.

minimize timeout = 〈time〉 [5 s]

Specifies the maximum amount of time that the ATPs should spend
looking for a proof for sledgehammer minimize.

References

[1] S. Böhme and T. Nipkow. Sledgehammer: Judgement day. In J. Giesl and
R. Hähnle, editors, Automated Reasoning: IJCAR 2010, Lecture Notes
in Computer Science. Springer-Verlag, 2010.

[2] J. Hurd. Metis theorem prover. http://www.gilith.com/software/
metis/.

[3] A. Riazanov and A. Voronkov. The design and implementation of Vam-
pire. Journal of AI Communications, 15(2/3):91–110, 2002.

9

http://www.gilith.com/software/metis/
http://www.gilith.com/software/metis/

[4] S. Schulz. E—a brainiac theorem prover. Journal of AI Communications,
15(2/3):111–126, 2002.

[5] G. Sutcliffe. System description: SystemOnTPTP. In J. G. Carbonell and
J. Siekmann, editors, Automated Deduction — CADE-17 International
Conference, volume 1831 of Lecture Notes in Artificial Intelligence, pages
406–410. Springer-Verlag, 2000.

[6] C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, and
P. Wischnewski. SPASS version 3.5. http://www.spass-prover.org/
publications/spass.pdf.

10

http://www.spass-prover.org/publications/spass.pdf
http://www.spass-prover.org/publications/spass.pdf

	Introduction
	Installation
	First Steps
	Command Syntax
	Option Reference
	Mode of Operation
	Problem Encoding
	Output Format
	Timeouts

